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A B S T R A C T

Hardness is a materials’ property with implications in several industrial fields, including oil and gas,
manufacturing, and others. However, the relationship between this macroscale property and atomic (i.e.,
microscale) properties is unknown and in the last decade several models have unsuccessfully tried to correlate
them in a wide range of chemical space. The understanding of such relationship is of fundamental importance
for discovery of harder materials with specific characteristics to be employed in a wide range of fields. In
this work, we have found a physical descriptor for Vickers hardness using a symbolic-regression artificial-
intelligence approach based on compressed sensing. SISSO (Sure Independence Screening plus Sparsifying
Operator) is an artificial-intelligence algorithm used for discovering simple and interpretable predictive models.
It performs feature selection from up to billions of candidates obtained from several primary features by
applying a set of mathematical operators. The resulting sparse SISSO model accurately describes the target
property (i.e., Vickers hardness) with minimal complexity. We have considered the experimental values
of hardness for binary, ternary, and quaternary transition-metal borides, carbides, nitrides, carbonitrides,
carboborides, and boronitrides of 61 materials, on which the fitting was performed.. The found descriptor
is a non-linear function of the microscopic properties, with the most significant contribution being from a
combination of Voigt-averaged bulk modulus, Poisson’s ratio, and Reuss-averaged shear modulus. Results of
high-throughput screening of 635 candidate materials using the found descriptor suggest the enhancement of
material’s hardness through mixing with harder yet metastable structures (e.g., metastable VN, TaN, ReN2,
Cr3N4, and ZrB6 all exhibit high hardness).
1. Introduction

Hardness is a mechanical property of materials important for several
industrial applications. In particular, hardness is measured and used as
a parameter determining the type of application itself for materials in
construction or manufacturing, e.g., cutting, drilling, or grinding [1–
3]. Over the years, various scales of hardness have been proposed.
The Vickers scale is considered universal because it spans both macro-
and micro-scales and is independent of the size of the indenter [4].
Thus, Vickers hardness is commonly measured in various applications
to determine whether a material is superhard, typically 40 GPa or
higher hardness [5,6]. In some applications these materials are required
to fulfil additional requirements. For example, they need to preserve
their hardness at high pressure and temperature, be non-toxic, and so
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on. Therefore, searching for hard and superhard materials with differ-
ent chemical compositions remains an important challenge. The best
candidates for superhard materials are borides, carbides, and nitrides
of metals [7,8].

In order to find materials with high hardness among many candi-
dates, one can synthesize and test all of them one by one. However,
this is obviously a very inefficient approach. Alternatively, one can
find a correlation between hardness and features (or their mathematical
combinations) that are easy to evaluate. This correlation can then be
used to quickly explore the chemical space of candidate materials (see
also discussion and Fig.3 in Penev et al. [9]). Such a combination of
features is called descriptor.
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Fig. 1. Schematic workflow of the SISSO method, illustrating the steps from the training set and primary features to the final high-throughput screening.
Both macroscopic properties (fluidity, elastic stiffness, ductility,
strength, crack resistance and viscosity) and microscopic properties
(from atomistic simulations) can be important constituents of the de-
scriptor [4]. Which features are most important or sufficient is un-
known, but it is known that none of the single features tested so far is a
good descriptor. On the other hand, a set of physically relevant features
can be relatively easily obtained from atomistic simulations. Therefore,
it is attractive to explore whether a mathematical combination of such
features (perhaps non-linear) correlates with Vickers hardness. In the
last decade several semi-empirical models were developed that use elas-
tic properties as input to predict the hardness [10–12]. Low accuracy
of such models points out that other features must be included.

Recently, Podryabinkin et al. [13] proposed an alternative approach
to calculate the hardness, which utilizes first-principles calculations and
machine learning potentials that were actively learned on local atomic
environments in order to explicitly model the process of nanoindenta-
tion. Although this method is highly accurate, it is too computationally
expensive for a high-throughput screening. Thus, there is a need for a
physical, easily computable descriptor of hardness that can be used for
a high-throughput search for superhard materials in the vast chemical
space. Such descriptor is found here using sure independence screening
plus sparsifying operator (SISSO) [14–19]. In the past, neural networks
have been used several times to describe Vickers hardness [20–23].
However, the considered chemical and structural spaces were quite lim-
ited. Moreover, no microscopic information was used in these studies.
Also, due to the nature of such machine learning methods, all physical
meaning is lost, providing no insight into the structural features that
could be explored to create new, harder materials.

2. Methods

The workflow that we have used and showed in Fig. 1 is described
below. The initial step is to define the set of primary features of materi-
als. The primary features are readily available or obtainable properties
that may have a physical relation to the target property (i.e. Vicker’s
hardness) of 61 compounds for which the experimental value is known.
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We have included all features that can be obtained from atomistic
simulations easier than hardness itself and are physically related to
bond strength, bond breaking, and restructuring [4]. For example, first
ionization energy is related to chemical bond hardness [24]. Bulk and
shear moduli are used in the well-known Chen’s model [11]. Other
features are mechanical properties (Young’s modulus, Poisson’s ratio,
and so on) that are related to hardness, but this relationship is non-
trivial [4]. We use SISSO to both select most relevant features (or rather
combination of features) from the initial set and find a (possibly non-
linear) relationship between these features and hardness, as described
below. The accuracy of the model and in particular its predictive
power (accuracy of predicting hardness for materials not included in
the training set) indicate whether the initial set of primary features is
sufficient for predicting hardness.

Primary features are combined using a set of mathematical opera-
tors to form a large number (up to tens of billions) of complex features.
Each complex feature is a (generally) non-linear formula including one,
two, or more primary features, depending on requested complexity
level (more complex combinations lead to larger feature spaces). These
complex features are used in SISSO as a basis in materials space:
the target property is expressed as a linear combination of complex
features, but each complex feature may be a non-linear function of
primary features. Primary features themselves are also included in the
basis. Using complex features is a crucial step, because in general
primary features may not correlate well with the target property, while
their combination may represent a physical relation that describes
target property very well. For example, there is no physical reason
why either electron affinity or ionization potential should correlate
to electronic excitation energy, while the difference between them is
directly physically related to it.

Here, we have produced an initial set with 20 primary features, see
Table 1. This set is used to generate 1260 candidate features (complex
plus primary). The list of primary features includes the properties such
as radii of the atoms in the compound, density, bulk and shear moduli,
as well as the elasticity tensor components, elastic anisotropy, Poisson’s

ratio, Young’s modulus, and more (see Table 1).
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Table 1
Primary features used for construction of the descriptor.

Name Units Abbreviation

Density g/cm3 D
Voigt averaging of bulk modulus 𝐵𝑉 GPa 𝐵𝑉
Reuss averaging of bulk modulus 𝐵𝑅 GPa 𝐵𝑅
Voigt–Reuss–Hill averaging of bulk modulus 𝐵𝑉 𝑅𝐻 GPa 𝐵𝑉 𝑅𝐻
Voigt averaging of shear modulus 𝐺𝑉 GPa 𝐺𝑉
Reuss averaging of shear modulus 𝐺𝑅 GPa 𝐺𝑅
Voigt–Reuss–Hill averaging of shear modulus 𝐺𝑉 𝑅𝐻 GPa 𝐺𝑉 𝑅𝐻
Young’s modulus GPa Y
Fraction Fr
Elastic anisotropy el
Poisson’s ratio 𝜎
Maximum atomic radius Å 𝑅𝑋
Minimum atomic radius Å 𝑅𝑁
Weighted atomic radius Å 𝑅𝑊
Maximum atomic weight a.m.u. 𝐴𝑋
Minimum atomic weight a.m.u. 𝐴𝑁
Weighted atomic weight a.m.u. 𝐴𝑊
Maximum first ionization energy eV 𝐼𝑋
Minimum first ionization energy eV 𝐼𝑁
Weighted first ionization energy eV 𝐼𝑊

All of the primary features utilized in this study were obtained from
ither the literature [25] or from the Materials Project database [26].
he primary features were combined using the following set of opera-
ors [14–19]:

̂ ≡ {+,−, ∗, ∕, −1, 2, 3,
√

, 3
√

, exp, log, | − |}[𝜙1, 𝜙2], (1)

where 𝜙1 and 𝜙2 are primary features (in case of a unary operator,
only one feature 𝜙1 is considered). The set of operators is applied
recursively to generate features of increasing complexity. Complexity
level zero (𝛷0) contains only primary features. 𝛷1 contains 𝛷0, features
obtained by applying unary operators to all primary features, and
binary combinations of primary features. 𝛷2 contains 𝛷1 plus all new
features obtained by unary and binary operations on 𝛷1. In this work,
𝛷2 is the highest considered level of complexity.

SISSO is used to both select the most important complex (or pri-
mary) features and find the model for the target property. Thus, SISSO
automatically, as explained below, finds the most important primary
features and the physically interpretable descriptor from data. The
number of selected features (descriptor dimension) depends on the
required accuracy of training data fitting: the larger it is, the better is
the fitting. However, larger number of complex features will eventually
result in overfitting, which leads to worsening prediction accuracy for
new materials not included in the training set. The optimal number
of complex features is determined by cross-validation. In this work we
have used 10-fold cross-validation (CV10). This consisted in randomly
subdividing the data set in ten subsets and progressively using nine
subsets for training the SISSO model and one subset for verification of
the model. The prediction (CV10) error is then evaluated as an average
model error for the 10 verification subsets. As the number of complex
features in the model (which is an input parameter) increases, the
fitting error first decreases, but eventually starts to increase, indicating
overfitting. The dimension that yields minimum CV10 error is then used
to find the best SISSO model using all training data.

3. Results and discussion

3.1. Development of the descriptor

We have collected a set of 635 compounds, selected from the Ma-
terials Project database [26]. Materials without reliable experimental
data for Vickers hardness (i.e., target property) were eliminated from
the dataset, as those that were deemed unstable according to DFT
calculations from aforementioned database. This led to a total of 61

compounds for our training dataset, containing both hard materials
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(borides, carbides, nitrides, etc.) and comparatively soft ionic crystals
and oxides (NaCl, Al2O3, etc.). In order to access the values of such
primary features and the properties for the training data sets, a re-
quest can be made via the GitHub (see link in the Appendix A). The
dataset for the target property (hardness) was created using information
gathered from Zhang et al. [27]. The best found descriptors with
different dimension (from 1D to 6D), see Eqs. (A1)–(A6) are presented
in Appendix A. The CV10 error as a function of dimension is shown
in Fig. 2a. As we can see, CV10 error increases from dimension larger
than two, while the fitting root-mean square error (RMSE) reduces
monotonically as the dimension of the descriptor increases (red curve
in Fig. 2a). CV10 is expected to increase in case of overfitting, which
happens when the number of parameters, in this case the dimension of
descriptor, is so high that the model learns random details and noise
in the dataset, making it unable to correctly predict the property of
unexplored materials. Thus, according to CV10, the obtained optimal
descriptor dimension is two. This 2D descriptor bears a relatively
complex analytical form:

𝐻𝑆𝐼𝑆𝑆𝑂
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 0.147 ⋅

𝐵𝑉

𝜎 3
√

𝐺𝑅
− 1.136 ⋅

𝐵𝑅 log𝑅𝑋
𝐴𝑊

− 5.679 (2)

where 𝐵𝑉 , 𝐵𝑅 are the values of bulk modulus calculated using Voigt
and Reuss averaging methods, [28,29] respectively, while 𝐺𝑅 is the
shear modulus calculated using Reuss averaging method, 𝜎 is a Pois-
son’s ratio, 𝐴𝑊 is the average atomic mass of the compound, and 𝑅𝑋
is the maximum atomic radius of the species in the compound. The
computed atomic radius and mass data were obtained from the Python
library for materials analysis, Pymatgen [30].

The correlation between the optimal SISSO model and experimental
hardness values is shown in Fig. 2b. The error distribution for hardness
prediction using the optimal model with the 2D descriptor is shown
as the inset to Fig. 2b. We attained a relatively low fitting RMSE of
4.28 GPa, as well as CV10 RMSE of 5.48 GPa for 2D model, with a
maximum absolute error (MaxAE) of 10.1 GPa on the training set. The
average relative error with respect to experimental hardness is 1.99%,
which is small enough for a fast screening of promising candidates
and lowest compared to what obtained with different previous models
as Teter [10], Chen [11] and Mazhnik [12] that are respectively
21 %, 14 % and 16 %. The small CV10 error also indicates that
the chosen set of primary features contains the important physical
quantities that are necessary for describing the hardness. Although
including more advanced and therefore computationally more expen-
sive primary features, e.g. surface or defect formation energies, may
significantly improve the model, the reasonable predictive power of
the current model indicates that these more advanced features can be
approximately expressed through the employed primary features.

3.2. Analysis of the impact of dimension of descriptor

Furthermore, to better understand the impact that each component
of the two-dimensional descriptor has on the outcome, we calculated an
importance score 𝐼𝑆 for each term in Eq. (2) towards the total error of
our model. This involved eliminating one component of the descriptor
at a time and re-fitting the model with the remaining component. The
resulting one-dimensional derivative models are formulated as follows:

𝐻1 = 𝑎1 ⋅
𝐵𝑅 log𝑅𝑋

𝐴𝑊
+ 𝑏1 (3)

and

𝐻2 = 𝑎2 ⋅
𝐵𝑉

𝜎 3
√

𝐺𝑅
+ 𝑏2 (4)

Coefficients 𝑎1, 𝑏1, and 𝑎2, 𝑏2 were fitted separately for 𝐻1 and 𝐻2
by minimizing RMSE, and are equal to 𝑎1 = 15.384, 𝑏1 = 0, and 𝑎2
= 0.1485, 𝑏 = −7.2.
2
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Fig. 2. (a) Root-mean square error (RMSE) for the SISSO model and the average RMSE of CV10. Dashed vertical line denotes the optimal descriptor dimension. (b) The correlation
between predicted hardness by 2D SISSO descriptor and experimental values of 61 compounds. The inset shows the distribution of RMSE and maximum absolute error (MaxAE)
for the prediction of hardness 2D SISSO descriptor.
The 𝐼𝑆 is calculated by using the RMSE and MaxAE values for 𝐻1
and 𝐻2, respectively, for our dataset as follows:

𝐼𝑆RMSE
𝑖 = 1 −

RMSE(𝐻𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 )
RMSE(𝐻𝑖)

(5)

𝐼𝑆MaxAE
𝑖 = 1 −

MaxAE(𝐻𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 )
MaxAE(𝐻𝑖)

(6)

Calculated importance scores based on RMSE and MaxAE are re-
spectively 0.49 and 0.52 for 𝐼𝑆1, and 0.07 and 0.06 for 𝐼𝑆2. Thus, the
first descriptor component in Eq. (2) plays a more significant role in
hardness according to our model. However, including both descriptor
components in the SISSO model reduces the RMSE and MaxAE errors
by 6%–7%. The RMSE on the shared dataset is 5.2 GPa for 𝐻1 and
9.3 GPa for 𝐻2. The use of both 𝐻1 and 𝐻2 results in a lower error
value of 4.28 GPa, highlighting the importance of the 2D descriptor in
comparison to the 1D counterpart.

The obtained 2D model was used to perform high-throughput
screening of hard and superhard materials belonging to binary, ternary,
and quaternary transition metal borides, carbides, and nitrides. The
required crystal structures of experimentally known and hypothetical
structures were extracted using the Materials Project database [26]. In
total, 635 structures were gathered for the selected classes of materials.
For each structure, we have extracted the necessary properties for the
developed model, including bulk and shear moduli, Poisson’s ratio, and
the averaged atomic mass of each compound. The maximum radius
of the atoms in the compound was determined using the Pymatgen
library [30].

To analyse the collected data, we have constructed the correla-
tion plot displaying the relationships between SISSO Vickers hardness,
bulk modulus, Poisson’s ratio, and shear modulus for 635 inorganic
compounds. This excludes diamond, borocarbides, carbonitrides, and
layered compounds, as shown in Fig. 3a. The colour scale of the
points indicated the energy above the convex hull to represent the
(meta)stability of each compound. A clear trend in increasing hardness
with higher 𝐵𝑣∕𝜎 values is visible. There are outliers which show
high hardness and quite low shear modulus, together with a low 𝐵𝑣∕𝜎
value which contradicts the general trend. These outliers correspond to
metastable structures (see red and green points in Fig. 3a). Despite the
denominator of Eq. (2) containing 𝐺𝑅, the correlation between 𝐵𝑉 and
𝐺𝑅 (Fig. B.1 in Appendix B) results in an overall increase in hardness as
shear modulus increases. The correlation between 𝐵𝑉 and 𝐺𝑅 for stable
structures is further enhanced (see

Fig. B.1 in Appendix B). Moreover, compounds conforming to the
general trend exhibit the Pugh’s ratio (i.e., G/B) ranging from 0.5
to 0.8, as shown in Figs. B.1 and B.2 in Appendix B, which is in-
dicative of how brittle the material becomes or not. This supports
non-linear relationship between hardness and other properties, empha-
sising the significance of accounting for this non-linearity to identify
hard materials.
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In Fig. 3a, well-known hard and superhard compounds for a total of
635 are identified as reference points. This aids in understanding the
location of other compounds in relation to them. The highest values of
hardness belong to boride and carbide compounds (see Fig. 3b, c).

Among selected borides (Fig. 3b), ZrB6 (mp-1001788), a metastable
compound located 0.4 eV/atom above the convex hull (according to
data from the Materials Project) and with a predicted SISSO hardness
of 46 GPa, can be highlighted. ZrB6 has a crystal structure similar
to that of calcium hexaboride, consisting of a 3D boron cage, which
contributes to its high bulk modulus and hardness. The influence of
the boron cage on the mechanical and elastic properties of borides has
previously been demonstrated for hafnium borides [31]. It should be
noted that, while such a crystal type is typical for borides of rare-earth
elements, it is an unusual metastable structure for transition metals,
with an extremely low Reuss-averaged shear modulus of 2 GPa and
a low 𝐵𝑣∕𝜎 of 500 GPa (the Poisson’s ratio is 0.39). However, this
discovery suggests a promising way to enhance the hardness of rare-
earth borides by incorporating transition metals as substitutes within
the crystal structure. Also, high hardness is predicted for well-known
superhard compounds, namely TiB2, ReB2, HfB2, and CrB4 (see Fig. 3b).

Among the carbides, cubic polymorphic modification of tungsten
carbide (WC) with 𝐹 4̄3𝑚 space group (see Fig. 3c) has the highest
hardness of 46 GPa. WC (mp-1008635) has a zincblende structure
where each tungsten atom forms corner-sharing WC4 tetrahedra with
four equivalent carbon atoms. The structure has a bulk modulus of
249 GPa and a shear modulus of 3 GPa, resulting in a very high
Poisson’s ratio of 0.48. Despite its high hardness, this structure is
deemed unstable with an energy of formation 0.67 eV/atom above the
convex hull (according to data from the Materials Project). The well-
known hexagonal modification of WC has an SISSO hardness of 35 GPa
with bulk and shear moduli equal to 387 and 276 GPa respectively.
Predicted values are in good agreement with experimental data and
those obtained by other models [32]. Hexagonal WC has the highest
𝐵𝑣∕𝜎 ratio compared to the other considered carbides at a value of
1842 GPa. Two other structures with comparable mechanical charac-
teristics to WC are CrC (mp-1018050) and MoC (mp-2305) as shown
in Fig. 3c. Both of these have a hexagonal 𝑃 6̄𝑚2 space group, the same
as in hexagonal WC. Each metal atom in the structure forms bonds
with six equivalent carbons to create a mixture of distorted face, edge,
and corner-sharing MeC6 pentagonal pyramids. It is predicted that the
SISSO hardness of both CrC and MoC is approximately 30 GPa. The
bulk modulus of both structures is roughly 350 GPa, whereas the shear
modulus is about 240 GPa. CrC proves metastable with an energy of
formation 80 meV/atom above the convex hull, whereas MoC is stable
and holds a calculated energy of formation of only 1 meV/atom above
the convex hull.

The hardest found compounds among nitrides are VN, TaN, and
ReN , see Fig. 3d. VN (mp-1002105) belongs to the 𝑃𝑚3̄𝑚 space group
2
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Fig. 3. (a) The SISSO 𝐻𝑉 model predictions are plotted against 𝐵𝑣∕𝜎 for considered 635 inorganic compounds. Specific classes of materials are also shown, including (b) borides,
(c) carbides, and (d) nitrides. Colorbar shows the energy of formation above the convex hull denoting stability of each structure.
and is located 0.68 eV/atom above the convex hull. The SISSO model
predicts its hardness to be 34 GPa with 𝐵𝑣∕𝜎 = 1650 GPa (while
Poisson’s ratio is 0.16). TaN (mp-1009831), which has a SISSO hardness
of 31 GPa is isostructural to well-known WC structure and belongs to
the 𝑃 3̄𝑚2 space groups. It has a Poisson’s ratio of 0.21 and 𝐵𝑣∕𝜎 =
1610 GPa, as shown in Fig. 3d. Renium dinitride (mp-1019055) is
located 0.49 eV/atom above the convex hull and predicted to have a
hardness of 32 GPa with 𝐵𝑣∕𝜎 = 1650 GPa.

Another interesting nitride material is Cr3N4 (mp-1014460), see
Fig. 3d. The material has a 𝑃𝑚3̄𝑚 space group and can be depicted
as a rocksalt structure with a missing atom in the 4a Wyckoff position
which results in fractional composition. Its predicted SISSO hardness is
33 GPa, and it has a low Poisson’s ratio of 0.1, leading to a high 𝐵𝑣∕𝜎
value of 1380 GPa.

Furthermore, we compare our SISSO hardness model with other
machine learning and empirical models, we have used Teter’s [10],
Chen’s [11], Mazhnik-Oganov’s [12], and XGBoost [33] models to
predict the hardness of structures in the created dataset. The Fig. 4
portrays their correlations with the SISSO model for stable structures
lied on the convex hull. The colour scale indicated variations between
the SISSO and the considered reference model. Our model yields a good
agreement of predicted hardness values with the Teter model, as shown
in Fig. 4a. The greatest difference between predictions was 12 GPa for
hexagonal NaBPt3 (mp-28614), and the next greatest was 20 GPa for
zincblende FeN (mp-6988). The largest deviation between the SISSO
model and Chen’s model was found to be 15.5 GPa for NaBPt3 (see
Fig. 4b). The SISSO hardness of this compound is 21.2 GPa, whereas
Chen’s hardness is only around 5 GPa. This significant variation could
be attributed to the highly anisotropic structure of NaBPt3, resulting in
a difference of 33 GPa between Reuss- and Voigt-averaged shear moduli
according to the Materials Project. In our model, we use Reuss aver-
aging, resulting in higher hardness than Chen’s model, which uses the
Voigt–Reuss–Hill averaged shear modulus. The latter is lower compared
to the Reuss averaged value for NaBPt . Predictions of our model align
3
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well with the recent Mazhnik-Oganov model [12] as shown in Fig. 4c,
except for NaBPt3 and FeN, where the differences are similar to Teter’s
model.

The use of machine-learning XGBoost model for predicting hardness
was innovative and highly efficient [33]. We trained the same XGBoost
model as was used in Ref. [33] on our training set, and predicted
hardness for all the considered compounds. First, we performed the
10-fold cross-validation using the same techniques and dataset as for
SISSO training, that is, we divided the dataset into 10 subsets and
trained the XGBoost model using 9 of those subsets. The CV10 error
was calculated as the mean value of the test RMSE acquired for each of
the ten subsets, and equated to 7.8 GPa, which is approximately twice
as high as the CV10 error for SISSO. The distribution of errors for the
XGBoost model for CV10 is shown in the Appendix B (Fig. B.3). The
correlations between the XGBoost model and the SISSO model is shown
in Fig. 4d. Numerous structures have a hardness disparity ranging
from 12 to 17 GPa. Most of these structures comprise rare-earth metal
carbides, specifically Y2C (mp-1334), Sc4C3 (mp-15661), Y4C5 (mp-
9459), Y2ReC2 (mp-21003). Such significant differences in the hardness
predicted by the XGBoost and SISSO models for our compounds can
be attributed to the fitting hyperparameters of the XGBoost algorithm,
which need to be redefined before training on the new training set.
When considering only transition-metal borides, carbides, and nitrides,
much lower differences can be obtained between XGBoost and SISSO,
as XGBoost more accurately describes these classes of compounds (see
Fig. B.4 in Appendix B).

Our findings demonstrate that SISSO identified a physical signifi-
cance of the 𝐵𝑣∕𝜎 ratio for hardness, enabling one to quickly estimate
the hardness of a compound across a diverse range of chemical com-
positions and crystal structures. A greater 𝐵𝑣∕𝜎 ratio corresponds to
heightened hardness.
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Fig. 4. Correlations between SISSO hardness and (a) Teter [10], (b) Chen [11], (c) Mazhnik-Oganov [12], (d) XGBoost [33] models for considered stable structures. Colorbar

shows the difference between two sets of data.
4. Conclusion

In conclusion, our study successfully identified a physical descriptor
for Vickers hardness through a novel application of the SISSO artificial-
intelligence algorithm. By leveraging a symbolic-regression approach
based on compressed sensing, we have derived a non-linear function
correlating microscopic properties to macroscale hardness for a wide
range of materials. The key contributors to this descriptor are the Voigt-
averaged bulk modulus, Poisson’s ratio, and Reuss-averaged shear mod-
ulus, reflecting the intricate relationship between these properties and
material hardness. The model, validated against experimental values
for a diverse set of transition-metal compounds, demonstrates signif-
icant predictive power. High-throughput screening of 635 candidate
materials using this descriptor reveals promising pathways for enhanc-
ing material hardness, particularly through the incorporation of harder,
metastable structures such as VN, TaN, ReN2, Cr3N4, and ZrB6.

Broadly, these findings underscore the transformative potential of
artificial intelligence in materials science. By bridging the gap between
atomic-level properties and macroscale characteristics, such approaches
can accelerate the discovery and design of advanced materials with
tailored properties, driving innovation across various industrial sectors.
This research not only provides a robust tool for predicting mate-
rial hardness, but also highlights the importance of interdisciplinary
methodologies in solving complex materials challenges.
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Appendix A. Predicted descriptors

All the data about datasets are available via the github link by
request: github.com/AlexanderKvashnin/SISSO_hardness.git. There is a
list of predicted descriptors by SISSO used for calculations the RMSE
and CV10 in Fig. 1a.

𝐻1𝐷 = 0.182 ⋅
𝐵𝑅

𝜎 3
√

𝑌
− 6.191 (A.1)

𝐻2𝐷 = 0.147 ⋅
𝐵𝑉

𝜎 3
√

𝐺𝑅
− 1.136 ⋅

𝐵𝑅 log𝑅𝑋
𝐴𝑊

− 5.679 (A.2)

𝐻3𝐷 = 0.659 ⋅
𝐵𝑅
3
√

− 1.405 ⋅
𝐺𝑉 ⋅ log𝑅𝑋
𝜎 𝑌 𝐴𝑊

http://github.com/AlexanderKvashnin/SISSO_hardness.git


C. Tantardini et al. Journal of Computational Science 82 (2024) 102402 
− 0.042 ⋅ 𝐹𝑟
𝑅𝑁 log 𝑒𝑙

− 12.221 (A.3)

𝐻4𝐷 = 0.677 ⋅
𝐵𝑅

𝜎 3
√

𝑌
− 0.133 ⋅ 𝑌

𝐷
⋅ log𝑅𝑋

+ 0.041 ⋅ 𝐹𝑟
𝑅𝑁 log 𝑒𝑙

− 13.228 ⋅
𝐼𝑊

𝐼𝑋
√

𝑅𝑊
− 1.471 (A.4)

𝐻5𝐷 = 0.155 ⋅
𝐵𝑅

𝜎 3
√

𝐺𝑉
− 0.353 ⋅

𝐺𝑉
𝐷

⋅ log𝑅𝑋 + 0.054 ⋅ 𝐹𝑟
𝑅𝑊 log 𝑒𝑙

− 1027 ⋅
|𝐵𝑉 − 𝐺𝑅|

exp𝐴𝑁
+ 3.190 ⋅

𝑅𝑊
𝑒𝑙|𝐵𝑅 − 𝐺𝑉 |

− 5.873 (A.5)

𝐻6𝐷 = 0.177 ⋅
𝐵𝑅

𝜎 3
√

𝐺𝑉
− 41.972 ⋅

log𝑅𝑋
𝐴𝑊

⋅ 𝜎 + 0.046 ⋅
𝐺𝑅

𝑅𝑁 log 𝑒𝑙

− 1175 ⋅
|𝐵𝑅 − 𝐺𝑅|

exp𝐴𝑁
+ 0.047 ⋅ 𝐷3

|𝐵𝑉 − 𝐺𝑉 |

− 0.963 ⋅
𝐴𝑋
𝐴𝑊

⋅
√

𝐴𝑁 + 3.815 (A.6)

Appendix B. Additional data

Fig. B.1. Correlation between Voigt-averaged bulk modulus and Reuss-averaged shear
modulus of stable and metastable structures among borides, carbides, and nitrides.
Colorbar shows the energy of formation above the convex hull denoting stability of
each structure.

Fig. B.2. Correlation between Voigt-averaged bulk modulus and Reuss-averaged shear
modulus of only stable structures among borides, carbides, and nitrides.
7 
Fig. B.3. Distribution of CV10 errors for XGBoost model. Maximum absolute error is
25.6 GPa, RMSE is 7.8 GPa.

Fig. B.4. Correlation between SISSO hardness and XGBoost [33] model for considered
stable carbides, borides and nitrides only. Colorbar shows the difference between two
sets of data.
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