
Original Research Article

Medical Decision Making
2024, Vol. 44(7) 828–842
� The Author(s) 2024

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/0272989X241264572
journals.sagepub.com/home/mdm

Modeling Radiologists’ Assessments to

Explore Pairing Strategies for Optimized
Double Reading of Screening Mammograms
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Purpose. To develop a model that simulates radiologist assessments and use it to explore whether pairing readers based
on their individual performance characteristics could optimize screening performance. Methods. Logistic regression
models were designed and used to model individual radiologist assessments. For model evaluation, model-predicted
individual performance metrics and paired disagreement rates were compared against the observed data using Pearson
correlation coefficients. The logistic regression models were subsequently used to simulate different screening programs
with reader pairing based on individual true-positive rates (TPR) and/or false-positive rates (FPR). For this, retrospec-
tive results from breast cancer screening programs employing double reading in Sweden, England, and Norway were
used. Outcomes of random pairing were compared against those composed of readers with similar and opposite TPRs/
FPRs, with positive assessments defined by either reader flagging an examination as abnormal. Results. The analysis
data sets consisted of 936,621 (Sweden), 435,281 (England), and 1,820,053 (Norway) examinations. There was good
agreement between the model-predicted and observed radiologists’ TPR and FPR (r � 0.969). Model-predicted
negative-case disagreement rates showed high correlations (r � 0.709), whereas positive-case disagreement rates had
lower correlation levels due to sparse data (r � 0.532). Pairing radiologists with similar FPR characteristics (Sweden:
4.50% [95% confidence interval: 4.46%–4.54%], England: 5.51% [5.47%–5.56%], Norway: 8.03% [7.99%–8.07%])
resulted in significantly lower FPR than with random pairing (Sweden: 4.74% [4.70%–4.78%], England: 5.76%
[5.71%–5.80%], Norway: 8.30% [8.26%–8.34%]), reducing examinations sent to consensus/arbitration while the TPR
did not change significantly. Other pairing strategies resulted in equal or worse performance than random pairing. Con-
clusions. Logistic regression models accurately predicted screening mammography assessments and helped explore differ-
ent radiologist pairing strategies. Pairing readers with similar modeled FPR characteristics reduced the number of
examinations unnecessarily sent to consensus/arbitration without significantly compromising the TPR.

Highlights

� A logistic-regression model can be derived that accurately predicts individual and paired reader performance
during mammography screening reading.

� Pairing screening mammography radiologists with similar false-positive characteristics reduced false-positive
rates with no significant loss in true positives and may reduce the number of examinations unnecessarily sent
to consensus/arbitration.
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Breast cancer remains a major global health concern, and
early detection plays a crucial role in improving patient
outcomes. Population-based mammography screening
programs have shown to be effective in reducing breast
cancer–related mortality due to earlier detection of the
disease.1–4 However, the challenges posed by the com-
plexity of mammographic images and the potential for
human error underline the need for continuous efforts to
improve the interpretation of screening mammography.
One approach to improving mammography interpreta-
tion is the implementation of double reading. Screening
programs in Europe, Australia, and New Zealand have
implemented double reading, in which each screening
examination is assessed by 2 independent readers,
increasing the cancer detection rate (CDR) for combined
assessments.5–7 Usually, discordant assessments between
the 2 readers are referred to an arbitrator or discussed at
a consensus meeting, so that a final recall decision can be
made. In some screening programs, concordant positive
assessments are also referred for a final check by an arbi-
trator or by consensus. In countries in which screening
mammograms are single read, a potential double-reading
strategy is to use artificial intelligence (AI) as a second
independent reader.8–11

The success of double reading, however, may rely on
how the radiologists are paired. Countries currently
employing double reading generally pair readers ran-
domly without considering the characteristics of the read-
ers. However, matching radiologists with different
strengths can potentially maximize the detection of breast
cancer while minimizing the chances of false positives. A
previously published study showed that the accuracy of
mammography interpretation with double reading can
indeed be improved by optimizing the set of paired radi-
ologists.12 However, this study did not identify what the
a priori pairing strategy should be to achieve this optimi-
zation. A potential pairing optimization strategy for
screening may be based on individual reader performance
characteristics, which vary considerably among radiolo-
gists.13 The present study was triggered by the findings of
another previous study,14 which found that radiologist
screening performance characteristics influenced the per-
formance of radiologist pairs. However, that study was
not able to detect significant variations in overall group
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performance resulting from different pairing strategies
based on individual characteristics. This might be due to
the limitation that with existing real-world screening
data, each screening examination is read by only 2 read-
ers, and therefore exhaustive exploration of different
pairing strategies is not possible.

Previous studies have used mathematical models of
the human observer, known as model observers, to inves-
tigate the diagnostic potential of different images and
consequently the performance of radiologists.15,16 How-
ever, to the best of our knowledge, there are no studies
that used retrospective screening data to model radiolo-
gist assessments and immediately use this for generating
a new data set. While several studies have explored the
association between radiologist characteristics and
screening performance, they did not focus on modeling
individual radiologists explicitly.17,18

Therefore, this study aims to develop an explanatory
logistic regression model designed to simulate individual
radiologists’ assessments and use it to investigate if there
is a strategy for pairing radiologists based on individual
screening performance characteristics that would opti-
mize overall screening performance. By modeling radiol-
ogists’ assessments and creating interpretations involving
all readers for all examinations, we are able to explore
various radiologist pairing strategies against random
pairing with sufficient statistical power.

Methods

Reader Model

Model definition. A logistic model is derived to fit
observed data that is binary in nature. Let Y� and Yþ

represent the screening outcomes (1 = recall, 0 = return
to screening) for negative (noncancer) and positive (can-
cer) cases, respectively. When Y� has a value of 1 for a
given case and reader, the decision is defined as a false
positive, and when Yþ has a value of 1, the decision is
defined as a true positive.

The model posits a latent decision variable for each
reader and case. Let the readers be indexed by
j= 1, . . . , J , negative cases by k = 1, . . . ,K�j , and posi-
tive cases by k = 1, . . . ,Kþj . Note that positive and nega-
tive cases are considered to be completely independent
(Kþ � K�). The decision variables, q�jk for negative cases
and qþjk for positive cases are assumed to be the sum of a
reader-specific effect, r�j or rþj , and a case-specific effect,
C�k or Cþk ,

q�jk = r�j +C�k and qþjk = rþj +Cþk : ð1Þ

The reader effects, parameterized by r�j and rþj , are con-
sidered to be fixed effects (and they include any global
intercept parameter). The case effects, C�k and Cþk , are
assumed to be random effects, modeled as realizations of
a normal random process with a mean of 0 and a stan-
dard deviation of sC� or sCþ for the negative and posi-
tive examinations, respectively. A logistic link function
converts the qjk variables into abnormal-interpretation
probabilities,

a�jk =
exp(q�jk)

1+ exp(q�jk)
and aþjk =

exp(qþjk)

1+ exp(qþjk)
: ð2Þ

Note that a�jk represents the probability of a false-positive
interpretation and aþjk represents a true-positive interpre-
tation, conditioned on a specific reader and a specific
case. For a given reader, the unconditional probability of
an abnormal interpretation (across cases) is the expected
value of the probabilities in equation 2 over the distribu-
tion of case effects,

a�j =E a�jk

� �
C�

k
; N 0,sC�ð Þ

and aþj =E aþjk

� �
Cþ

k
; N 0,sCþð Þ

:

ð3Þ

These probabilities represent the reader’s false-positive
rate (1 2 specificity) and true-positive rate (sensitivity)
over the population of cases. Let A�j and Aþj represent
the number of abnormal findings for negative and posi-
tive cases, respectively; these are presumed to be related
to the reader parameters through binomial distributions,

A�j ; B a�j ,K
�
j

� �
and Aþj ; B aþj ,K

þ
j

� �
: ð4Þ

Equations 1 to 4 relate the model parameters (equation
1) to observed single-reader data (equation 4).

Up to this point, we have analyzed only single-reader
performance, but we can use a similar approach to
extend the approach to disagreement rates between
paired readers. For a pair of readers, indexed by j and j0

(j 6¼ j0), let the negative cases be indexed by
k = 1, . . . ,K�

jj
0 and the positive cases be indexed by

k = 1, . . . ,Kþ
jj
0 . We can define case-specific disagreement

rates based on the probabilities in equation 2 as

d�
jj
0
k
= a�jk 1� a�

j
0
k

� �
+ a�

j
0
k

1� a�jk

� �
and

dþ
jj
0
k
= aþjk 1� aþ

j
0
k

� �
+ aþ

j
0
k

1� aþjk

� �
: ð5Þ
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These case-specific probabilities can be marginalized into
reader-pair–specific probabilities by taking the expecta-
tion across cases,

d�
jj
0 =E d�

jj
0
k

� �
C�

k
; N 0,sC�ð Þ

and dþ
jj
0 =E dþ

jj
0
k

� �
Cþ

k
; N 0,sCþð Þ

:

ð6Þ

Let D�
jj
0 and Dþ

jj
0 represent the number of disagreements

for negative and positive cases, respectively; these are
presumed to be related to the reader parameters through
binomial distributions,

D�
jj
0 ; B d�

jj
0 ,K�

jj
0

� �
and Dþ

jj
0 ; B dþ

jj
0 ,Kþ

jj
0

� �
: ð7Þ

Note that both the abnormal-interpretation probabil-
ities, a�j and aþj , and the disagreement probabilities, d�

jj
0

and dþ
jj
0 , are related to the data through binomial distri-

butions. But the disagreement component of the model
plays a crucial role, since the model is not identifiable
(i.e., multiple parameter values produce identical
abnormal-interpretation probabilities) based on the
abnormal interpretation component alone.

Model fitting. Our implementation of the model com-
puted expectations in equations 3 and 6 using Monte
Carlo integration with 1,000,000 sample case effects for
each integral. This resulted in 1,000,000 sample abnor-
mal interpretation and disagreement probabilities in
equations 2 and 5, and these were averaged to get high-
precision estimates of reader abnormal-interpretation
probabilities and paired disagreement rates. For rates
that were near the estimated values, the Monte Carlo
coefficient of variation on abnormal interpretation rates
was less than 1%.

Estimation of the reader parameters and the case var-
iances was performed by maximizing the log-likelihood
defined by the binomial distributions in equations 4 and
7. This approach allows the computation of individual
reader performance characteristics as well as paired dis-
agreement probabilities. We describe this for positive
cases, but there is a corresponding log-likelihood for neg-
ative cases. The resulting optimization function is

l rþ1 , . . . , rþNR
,sCþ

� �
=
XNR

j= 1

(Kþj ln aþj

� �
+ Kþj � Aþj

� �
ln 1� aþj

� �
)

+
X

j, j0ð Þ2P

(Kþ
jj
0 ln dþ

jj
0

� �
+ Kþ

jj
0 � Dþ

jj
0

� �
ln 1� dþ

jj
0

� �
)+X :

ð8Þ

where X represents constant terms unrelated to the para-
meters (log-factorial components) and P represents the
set of observed reader pairs in the data. An optimization
algorithm implementing Powell’s method19 with standard
convergence criterion (fTol = 10�4) was used to find maxi-
mum likelihood estimates of the reader parameters (r�j
and rþj ) and case standard deviations (sC� and sCþ ) that
maximize this function.

For graphical evaluations of model fit, estimated
reader abnormal interpretation rates (a�j and aþj , equa-
tion 3) and paired disagreement rates (d�

jj
0 and dþ

jj
0 , equa-

tion 6) were compared to direct estimates of the
quantities from the data. Direct estimates for the abnor-
mal interpretation rates are given by

FPRj =A�j =K�j and TPRj =Aþj =Kþj : ð9Þ

and for the disagreement rates by

DR�
jj
0 =D�

jj
0=K�

jj
0 and DRþ

jj
0 =Dþ

jj
0 =Kþ

jj
0 : ð10Þ

These rates were adjusted using the Agresti-Coull proce-
dure,20 which was also used to obtain 95% confidence
intervals.

Double Reading Simulation

Assuming the logistic regression models adequately
accounted for single-reader performance and disagree-
ment rates between paired readers, the reader parameters
(r�j and rþj ) and case standard deviations (sC� and sCþ )
were used to simulate double reading and investigate the
effect of different pairings of readers computationally. A
random pairing strategy was compared against 2 main
other pairing strategies, including 1) pairing readers with
similar performance characteristics and 2) pairing read-
ers with opposite performance characteristics. In total, 7
different pairing strategies were simulated:

1. Similar true-positive rate (TPR)
2. Similar false-positive rate (FPR)
3. Opposite TPR
4. Opposite FPR
5. Total similars = combination of TPR and FPR

(TPR + FPR 3 slope)
6. Total opposites = combination of TPR and FPR

(TPR + FPR 3 slope)
7. Random

For the pairing of similar and opposite readers, the mod-
eled reader-specific TPR and FPR from equation 3 were

Gommers et al. 831



used. For the 3 similar pairing strategies, the available
reader with the lowest performance value in question
(TPR, FPR, TPR + FPR 3 slope) was selected and
paired with the reader closest in corresponding perfor-
mance (i.e., had the second lowest value, Figure 1A).
This pairing continued for the readers with the third and
fourth lowest values, and so forth, until all readers were
assigned. For the 3 opposite pairing strategies, readers
were split into 2 groups, as above and below the median
of that performance metric. The available reader with the
lowest performance value in question (TPR, FPR, TPR
+ FPR 3 slope) in one group (i.e., below the median)
was paired with the available reader with the lowest value
in the other group (i.e., above the median), until all read-
ers were assigned (Figure 1B). For the total similar and
opposite pairing strategies, the same pairing strategy as
shown in Figure 1A and B was used, but now the slopes
of the linear regression lines of the individual TPR and
FPR were used for pairing (TPR + FPR 3 slope). For
random pairing, readers were randomly sampled without
replacement, making sure that no reader was paired with
themselves.

For pairs, case-specific paired abnormal interpretation
rates based on the probabilities in equation 2 are defined
as

p�
jj
0
(k)

= a�jk + a�
j
0
k
� (a�jk)(a

�
j
0
k
) and

pþ
jj
0
(k)

= aþjk + aþ
j
0
k
� (aþjk)(a

þ
j
0
k
): ð11Þ

where jj
0

kð Þ is defined as the pair of readers assigned a
given examination. Equation 11 defines disagreement
between 2 readers as an abnormal interpretation for the

pair. This maintains a high sensitivity in which cancer
cases are, at least, being discussed in a consensus meeting
or send to a third reader for arbitration.21

Data Sets

For this study, the above-described model was derived
using the screening reading results from 3 different breast
cancer screening programs: the Swedish CSAW (Cohort
of Screen-Age Women) data set,22 the English CO-OPS
(Changing case Order to Optimize patterns of Perfor-
mance in Screening) data set,23,24 and a data set from
BreastScreen Norway. These data sets were also used in
a previously published article that investigated pairing
strategies based on reader performance.14 However, the
previous publication included analysis performed on the
observed data, rather than using the data to derive a
reader model to exhaustively explore all possible pair-
ings. The study population and screening procedures of
the 3 data sets have been previously described.14,22–26

Briefly, the CSAW data set consists of women aged 40 to
74 y who participated in 2-view digital mammographic
screening in the Stockholm region in Sweden between
2008 and 2015. The regional Ethical Review Board in
Sweden approved the use of the CSAW data and waived
the need for informed consent. The CO-OPS data set
consists of women aged 47 to 73 y who attended 2-view
digital mammography screening between 2012 and 2014
in England. Institutional Review Board approval for the
original CO-OPS trial was obtained from Coventry and
Warwickshire National Health Service Research Ethics
Committee (June 27, 2012), and each breast screening
director gave informed consent. The nationwide data set

Figure 1 Explanation for the pairing of readers being either (A) similar or (B) opposite in their performance characteristics. The
colors and symbols represent the pairs of readers, and the dashed lines are the median TPR and FPR of the readers. FPR, false-
positive rate; TPR, true-positive rate.
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from the Norwegian screening program consists of
women aged 50 to 69 y who underwent 2-view digital
screening mammography between 2004 and 2018. The
Norwegian data were obtained in accordance with the
legal bases outlined in the Norwegian Cancer Registry
Regulations of December 21, 2001, No. 47, and the
requirement for informed consent was waived. In the 3
screening programs, mammograms are double read by 2
readers, who have access to prior mammograms if avail-
able. There are some variations in recall protocols, as
depicted in Figure 2. Across all programs, agreements on
negative assessments are deemed normal, while discre-
pancies are resolved either through a third reader’s eva-
luation or a consensus meeting. Notably, in Sweden and
Norway, agreed positive assessments prompt discussion
in a consensus meeting to assess the necessity of further
diagnostic evaluation, whereas in England, such agree-
ments typically lead to immediate recall.

Breast cancers included invasive cancers or ductal car-
cinoma in situ that were diagnosed with needle biopsy or
surgery after diagnostic workup in screening or clinically
in between screening rounds (i.e., interval cancer). Entries
from symptomatic women and readings with missing
reader data or inadequate images were excluded. For an
appropriate fit of the logistic regression model, readers
had to have at least 1 true-positive and false-positive
assessment, and the number of true- and false-positives
should not be equal to the total number of positive and
negative examinations, respectively. To meet these cri-
teria, pairs with a relatively low volume in the data set
were also excluded.

Simulation to Optimize Screening Performance

Double reading strategies. The logistic regression models
were used to explore radiologist pairing strategies based
on individual screening performance, as described above.
To mimic real-world breast cancer screening, each of the
7 above-described pairing strategies was simulated by
sampling 365 screening days with 4,000 examinations dis-
tributed over 32 batches per day. For each screening day,
a random set of 16 readers was chosen. Within the simu-
lations, each of the batches was read by 2 of the 16 ran-
domly selected radiologists reading that day, with the
constraint that each reader read about the same number
of batches. Each day, 8 unique pairs were created, ensur-
ing a similar number of pairs per day for all pairing stra-
tegies. All 7 simulations involved the same examinations
and readers; the only difference was the pairing of the
readers. In the end, all 7 simulations resulted in 1,460,000
examinations (4,000 3 365) with each having 2 individ-
ual outcome probabilities (reader 1 and reader 2) from
equation 2 and a paired probability from equation 11.
The main endpoint was the expected group TPR and
FPR of each pairing strategy, given by

FPRtotal =
XK�

k�= 1

p�
jj
0
(k�)

=K� and

TPRtotal =
XKþ

kþ= 1

pþ
jj
0
(kþ)

=Kþ: ð12Þ

Bootstrap resampling (n = 1,000) was used to obtain
95% confidence intervals for the group performance.

Figure 2 Explanation of the recall procedures in the involved data sets.
The red circle (+) represents a positive assessment warranting further diagnostic workup, while the green circle (–) represents a negative

assessment. AAt most centers, only discrepant readings were resolved with a third reader or consensus meeting. However, at certain centers with

elevated recall rates, arbitration was also applied when both readers had a positive assessment.
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The 95% confidence intervals were Bonferroni corrected
for 6 comparisons and used to compare the 3 similar and
3 opposite pairing strategies against the random pairing
strategy. TPR and FPR were plotted, and nonoverlap-
ping confidence intervals were regarded as statistically
significant.

In addition, differences in the number of true-positive
(TP) and false-positive (FP) examinations between the
different pairing strategies and the random pairing strat-
egy were illustrated. For this, individual outcome prob-
abilities (equation 2) were sampled as absolute values of
0 (indicating no suggested recall) or 1 (indicating sug-
gested recall) according to the Bernoulli distribution,
resulting in 3 potential paired assessments—concordant
positive, concordant negative, and discordant
assessments—facilitating the evaluation of differences in
the number of TP and FP examinations.

Individual reading. To compare the performance of the
double reading pairing strategies to that of individual
readers, individual reader simulations were also per-
formed. The simulations involved the same examinations
and readers as for the paired simulations, but this time
each examination was interpreted by only 1 of the 16 ran-
dom readers reading that day, again with the constraint
that each reader interpreted the same number of batches.
Individual abnormal interpretation probabilities were
obtained from equation 2 and used to calculate grouped
TPR and FPR of examinations read by 1 reader only:

FPRsingle =
XK�

k�= 1

a�j(k�)=K� and TPRsingle =
XKþ

kþ= 1

aþj(kþ)=Kþ:

ð13Þ

where j kð Þ indicates the reader assigned to exam k. The
95% confidence intervals, obtained from bootstrap
resampling (n = 1,000), were Bonferroni corrected for 7
comparisons contrasting the TPR and FPR of the 7 dou-
ble reading strategies against the TPR and FPR of the
individual reading.

All statistical analyses were performed in each of the 3
data sets separately. Model fitting was performed in the
Interactive Data Language version 8.2.3 (IDL, L3Harris
Geospatial, Broomfield, CO, USA), and the resulting
model parameters were subsequently used to simulate
pairing strategies in R studio version 4.1.0 (RStudio,
PBC, Boston, MA, USA). The funding source ensured
the authors’ independence in designing the study, inter-
preting the data, and writing the article.

Results

Figure 3 summarizes how the final study samples were
assembled. For an appropriate fit of our logistic regres-
sion model, an exclusion criterion of at least 17 positive
reads per pair was needed to make sure that the number
of true and false positives was not equal to the total num-
ber of positive and negative examinations, respectively.
The final study samples consisted of n = 936,621 (Swe-
den), n = 435,281 (England), and n = 1,820,053 (Nor-
way) screening examinations.

Study Sample Characteristics

The population and reader characteristics varied among
the study samples (Table 1). The Swedish study sample
included the youngest population of women with a med-
ian age of 53 y at screening. Paired TPR and FPR in all
study samples were higher than individual TPR and

Figure 3 Flowchart of screening examinations after applying exclusion criteria.
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FPR as a result of our pairing rule, where disagreement
between 2 readers was defined as a positive assessment.
The English study sample showed the highest average
individual TPR (78.2%) and paired TPR (83.0%),
whereas the Norwegian study sample had the highest
individual and paired FPRs (5.1% and 8.0%, respec-
tively). Norway’s study sample also showed most dis-
agreement between readers in a pair (5.6%).

Model Fit

The single-reader performance from the model showed
good agreement with the Agresti-Coull adjusted observed
data (Figure 4, dark-blue triangles). The individual TPR
values showed Pearson correlation coefficients of 0.969,
0.973, and 0.988 for the Swedish, English, and Norwegian
study sample, respectively. The individual FPR values had
Pearson correlation coefficients of 0.978, 0.990 and 0.996
for the Swedish, English, and Norwegian study samples.

The light-blue dots in Figure 4 show the modeled dis-
agreement rates compared against the observed data. For
this comparison only, the pairs observed in the actual
screening data set could be used (Sweden: 58 of the 528

possible pairs; England: 193 of the 21,115 possible pairs;
Norway: 223 of the 7,140 possible pairs). Disagreement
rates for positive cases showed lower levels of correlation
with the Swedish, English, and Norwegian study samples,
having Pearson correlation coefficients of 0.727, 0.658,
and 0.532, respectively. As expected, pairs that read a rel-
atively small number of examinations had large error bars
for the estimates of positive pair disagreement. Disagree-
ment rates for negative cases showed higher correlations
with coefficients of 0.709, 0.846, and 0.923 for the Swed-
ish, English, and Norwegian study samples, respectively.

The modeled individual TPR and FPR showed the
commonly found association between TPR and FPR,
with high TPR readers tending to have higher FPR
(Figure 5).

Screening Simulation

Double reading strategies. The grouped TPR and FPR
of the 7 modeled pairing strategies, based on the mod-
eled individual TPR and FPR from Figure 5, are shown
in Figure 6 and Table 2. The pattern for all 3 study sam-
ples looks similar. According to our pairing rule, pairing

Table 1 Population, Reader, and Pair Characteristics for the Study Samples after Selection Criteria

Sweden England Norway
n = 936,621

Examinations

n = 435,281

Examinations

n = 1,820,053

Examinations

Population characteristics
Women, n 390,680 435,281 653,161
Median age at screening, years (IQR) 53 (46–62) 59 (53–65)a 59 (54–64)

Screening programs (double reading)
Screening interval, mo 18–24b 36 24
Recalled examinations, per 1,000 17.8c 41.1 29.7
Detected cancers, per 1,000 3.3c,d 9.2f 5.8f

Interval cancers, per 1,000 1.8c,e 2.2g 1.8g

Reader characteristics
Readers, n 33 206 120
Average true-positive rate, % 63.0 78.2 70.2
Average false-positive rate, % 3.5 4.1 5.1

Pair characteristics
Pairs, n 58 193 223
Average true-positive rate, % 70.3 83.0 81.6
Average false-positive rate, % 5.0 5.5 8.0
Disagreement between readers in a pair, % 2.3 3.0 5.6

IQR, interquartile range.
aAge was missing for 4 screening examinations.
bWomen aged 49 y and older were invited every 24 mo, while younger women were invited every 18 mo.
cThe final screening assessment was missing for 16 screening examinations.
dRecall and breast cancer detection within 12 mo after screening.
eWomen who did not have a screen-detected cancer but had a breast cancer diagnosed within 18 to 24 mo after screening.
fBreast cancer detected before the next screening examination as a result of recall at screening.
gWomen who did not have a screen-detected cancer but had a breast cancer diagnosed before the next screening round.
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readers who are similar in a certain performance metric
resulted in a lower value for the paired outcome of that
metric. Pairing strategies involving readers with similar
TPR (TPR Sweden: 64.72% [95% confidence interval
{CI}: 63.36%–66.07%], England: 81.23% [95% CI:
80.52%–81.95%], Norway: 78.83% [95% CI: 78.06%–
79.60%]) resulted in a statistically significant reduction
of the TPR when compared with random pairing strate-
gies (Sweden: 67.95% [95% CI: 66.64%–69.25%], Eng-
land: 85.38% [95% CI: 84.73%–86.03%], Norway:
80.66% [95% CI: 79.93%–81.39%]). In addition, the
FPR of pairing strategies involving 2 similar FPR read-
ers (FPR Sweden: 4.50% [95% CI: 4.46%–4.54%], Eng-
land: 5.51% [95% CI: 5.47%–5.56%], Norway: 8.03%
[95% CI: 7.99%–8.07%]) was statistically significantly
lower compared with the FPR of the random pairing
strategies (Sweden: 4.74% [95% CI: 4.70%–4.78%],
England: 5.76% [95% CI: 5.71%–5.80%], Norway:

8.30% [95% CI: 8.26%–8.34%]). Conversely, pairing
opposite readers increased the value of the paired out-
come of what they were opposite in. However, none of
the pairing strategies resulted in a statistically significant
increased TPR compared with the random pairing strategy
(Figure 6, Table 2). To extrapolate these findings to the
context of screening programs, the resulting recall rate
(RR) and CDR of the different modeled pairing strategies
were calculated (Figure A1). For all 3 data sets, pairing
readers with similar FPR resulted in a significantly lower
RR, while CDR did not significantly change.

Figure 7 shows the difference in the absolute number
of TP and FP between the similar/opposite pairing stra-
tegies and the random pairing strategy, according to our
pairing rule. The pairing strategy with similar FPR read-
ers resulted in the best outcome, reducing the number
of FPs with reductions of 23,605 (68,866!65,261;
25.23%), 23,447 (83,073!79,626; 24.15%), and 23,475

Figure 4 Comparison of modeled and observed single-reader performance and paired disagreement rates.
The scatterplots show single-reader performance and paired disagreement rates for the Swedish, English, and Norwegian study sample. The dark-

blue triangles represent single-reader performance (top: true-positive rates, bottom: false-positive rates). The light-blue dots represent the

disagreement rates for pairs of readers (top: positive cases, bottom: negative cases). The diagonal represents perfect agreement between the

modeled and observed data. The observed proportions were adjusted using the Agresti-Coull procedure for 95% confidence intervals. FPR, false-

positive rate; TPR, true-positive rate.
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(120,146!116,671; 22.89%) FP screening examinations
for Sweden, England, and Norway, respectively. The other
pairing strategies resulted in similar or worse group out-
comes. Compared with the random pairing strategy, the
pairing strategy with similar TPR readers reduced the
number of TP the most with 2225 (5,084!4,859;
24.43%), 2681 (14,364!13,683; 24.74%), and 2192
(9,000!8,808; 22.13%) TP screening examinations for

Sweden, England, and Norway, respectively. For the
opposite pairing strategies, the number of FPs increased
compared with random pairing, especially for pairs with
opposite FPR characteristics readers (FP Sweden: [+739,
68,866!69,605; +1.07%], England: [+1,291, 83,073!
84,364; +1.55%], Norway: [+1,627, 120,146!121,773;
+1.35%]). The TPs for the opposite pairing strategies
remained essentially similar.

Figure 5 Modeled TPR and FPR of the individual readers.
The scatterplots show true-positive and false-positive rates for the Swedish, English, and Norwegian study sample. The linear regression line

shows the association between TPR and FPR. FPR, false-positive rate; TPR, true-positive rate.

Table 2 Screening Performance for the Different Pairing Strategiesa

Sweden England Norway

TPR (95% CI) FPR (95% CI) TPR (95% CI) FPR (95% CI) TPR (95% CI) FPR (95% CI)

Similar FPR 66.81
(65.48–68.14)

4.50
(4.46–4.54)*

85.42
(84.77–86.07)

5.51
(5.47–5.56)*

80.30
(79.57–81.04)

8.03
(7.99–8.07)*

Total similars 65.10
(63.74–66.45)*

4.60
(4.56–4.64)*

81.35
(80.64–82.05)*

5.74
(5.70–5.78)

78.93
(78.16–79.70)*

8.19
(8.14–8.23)*

Similar TPR 64.72
(63.36–66.07)*

4.67
(4.63–4.72)

81.23
(80.52–81.95)*

5.77
(5.72–5.81)

78.83
(78.06–79.60)*

8.26
(8.22–8.30)

Opposite TPR 67.99
(66.69–69.29)

4.75
(4.71–4.79)

86.17
(85.54–86.79)

5.77
(5.72–5.81)

80.44
(79.70–81.17)

8.30
(8.26–8.34)

Total opposites 68.01
(66.71–69.32)

4.79
(4.75–4.83)

86.17
(85.55–86.79)

5.78
(5.74–5.83)

80.49
(79.76–81.22)

8.34
(8.30–8.38)

Opposite FPR 67.87
(66.55–69.19)

4.80
(4.76–4.84)

85.34
(84.70–85.97)

5.84
(5.80–5.89)

80.53
(79.80–81.27)

8.40
(8.36–8.44)*

Random (reference) 67.95
(66.64–69.25)

4.74
(4.70–4.78)

85.38
(84.73–86.03)

5.76
(5.71–5.80)

80.66
(79.93–81.39)

8.30
(8.26–8.34)

CI, confidence interval; FPR, false-positive rate; TPR, true-positive rate.
aTPR and FPR are percentages, and 95% CI are Bonferroni adjusted (P values \0.05/6) confidence intervals, obtained by bootstrap resampling

(n = 1,000). Nonoverlapping CIs with the random pairing strategy were regarded as statistically significant, as indicated by the asterisk.
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Individual reading. The performance measures of the
individual reading simulation were compared against the
double reading performance measures for the different
pairing strategies (Figure 8, Appendix Table A.1). The
TPR and FPR of the individual simulation (Sweden:
TPR: 60.46% [95% CI: 59.08%–61.83%], FPR: 3.50%
[95% CI: 3.47%–3.54%], England: TPR: 78.72% [95%
CI: 77.97%–79.48%], FPR: 4.17% [95% CI: 4.13%–
4.21%], and Norway: TPR: 69.53% [95% CI: 68.68%–
70.39%], FPR: 5.10% [95% CI: 5.06%–5.13%]) were

statistically significantly lower compared with the TPR
and FPR of all double reading pairing strategies in all 3
data sets (Sweden: TPR �64.72%, FPR: �4.50%, Eng-
land: TPR �81.23%, FPR: �5.51%, Norway: TPR
�78.83%, FPR: �8.03%).

Discussion

As demonstrated in this study, modeling can overcome
limitations inherent to using real-world data directly.

Figure 6 Screening performance for the different pairing strategies based on paired assessment.
The scatterplots show overall true-positive and false-positive rates of the different pairing strategies for the Swedish, English, and Norwegian

study samples. The colors and symbols represent the different pairing strategies. Error bars are 95% confidence intervals, obtained by bootstrap

resampling (n = 1,000) and adjusted for 6 comparisons. Bold error bars indicate statistical significance. Please note that the axes are different,

due to differences in TPR and FPR between the study samples. FPR, false-positive rate; TPR, true-positive rate.

Figure 7 Change in the number of paired true-positives (pink) and false-positives (blue) for the different similar and opposite
pairing strategies compared to the random pairing strategy.
This simulation assumed a population size of 1,460,000 examinations. Positive assessments are determined by our pairing rule, which defines an

examination as positive if any of the readers flags it as abnormal. Percentages indicate the change in the number of TP or FP compared with

random pairing and vary as random pairing results in different numbers for TP and FP across the 3 different study samples. FP, false positive;

TP, true positive.
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Our logistic regression models allowed for the explora-
tion of both individual and paired reader performance
during screening mammogram interpretation exhaus-
tively, evaluating the latter even for case readings that
did not take place in the real world. The strong Pearson
correlations between the model-predicted values and
observed data suggest that these models can effectively
capture single-reader performance and disagreement
rates between paired readers. While our study focused
on pairing strategies in the context of breast cancer
screening, the approach may have potential for broader
applications across diverse research fields. The ability to
model and simulate scenarios opens opportunities to
explore real-world data sets with more statistical power.

There might be some discrepancies between the pre-
dicted performance and actual outcomes if this were to
be implemented in actual screening practice. However,
we anticipate that the modeled performance in this study
will closely approximate actual performance since indi-
vidual TPR and FPR and case-negative disagreement
rates showed robust associations (Pearson correlation
.0.7) between model-predicted and observed data. Case-
positive disagreement rates resulted in lower levels of
association. This can be attributed to the relatively low
number of positive cases per pair in the observed data,
highlighting the challenge of assessing reader perfor-
mance in the context of rare events. Nevertheless, the
derived models allowed for the exploration of different
pairing strategies, something that would not have been

possible with sufficient statistical power in actual screen-
ing reading data sets. Of particular interest was the pair-
ing strategy that emphasized the similarity in FPR
between readers. This strategy, when compared with ran-
dom pairing, consistently yielded a reduction in the num-
ber of FPs for all 3 study samples. This can be explained
by the fact that similar FPR readers had a higher degree
of concordance in negative assessments, leading to lower
paired FPR values and thus lower grouped FPR, whereas
random or opposite characteristic readers in a pair dis-
agree more, which, in turn, led to higher FPR values
based on our pairing rule in which discrepant readings
were classified as positive readings. Constructing pairs of
radiologists with similar FPR characteristics did not
show a significant change in overall TPR. This suggests
that strategically pairing radiologists with similar FPR
characteristics may increase reading performance. Addi-
tional analyses (Figure A1) also showed that pairing
readers with similar FPR resulted in a significantly lower
RR, while CDR did not significantly change. Therefore,
pairing readers with similar FPR characteristics, thereby
reducing FPR/RR without significantly changing TPR/
CDR, may offer a practical solution to reduce the num-
ber of unnecessary examinations forwarded to consensus
or arbitration, most probably without negatively affect-
ing CDRs in actual practice. Such a reduction will reduce
the workload on health care professionals and the num-
ber of potential false-positive recalls, alleviating the bur-
den on both screened women and the health care system.

Figure 8 Screening performance for individual reading and different double reading strategies.
The scatterplots show the overall true-positive and false-positive rates of the different pairing strategies for the Swedish, English, and Norwegian

study samples. The red triangles represent the average screening performance for the random pairing strategy, the black dots represent the

specific pairing strategies, and the blue triangle with point down represents the performance for individual reading. Error bars are 95%

confidence intervals, obtained by bootstrap resampling (n = 1,000) and adjusted for 7 comparisons. The TPR and FPR of the individual

simulation were statistically significantly lower compared with the TPR and FPR of the double reading pairing strategies in all 3 data sets. FPR,

false-positive rate; TPR, true-positive rate.
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The differences in performance introduced by the dif-
ferent pairing strategies are overall small, as could be
expected,12 but for a large screening program with a single
picture archiving and communication systems (PACS) sys-
tem, so might be the costs, if any, of implementing a spe-
cific paired-reading strategy. Such a PACS system, from
which readers can read mammograms from any location,
provides opportunities for strategic pairing by implement-
ing automated pairing algorithms. The automatic pairing
algorithms could be based on the available radiologists
and their regularly benchmarked performance metrics.
Peer review and feedback sessions of discrepant examina-
tions may help radiologists improve their screening perfor-
mance and bring the number of discrepancies in their FP
down, naturally employing our pairing strategy of pairing
readers with similar FPR characteristics. However, before
implementing and to ascertain cost-effectiveness, thorough
analyses should be conducted.

Further studies should show how radiologists that are
relatively similar in FPR but still somewhat different in
TPR can be distinguished. This is crucial to avoid missing
more cases of cancers. Further studies are also needed to
assess the impact of pairing similar FPR readers on final
screening outcomes after consensus/arbitration. In addi-
tion, it should be noted that pairing readers with similar
characteristic results in higher variation in performance
among different pairs. In contrast, pairing opposite charac-
teristic readers results in more consistent performance mea-
sures across pairs, consequently leading to more consistent
results among women. There may also be another optimal
pairing strategy that further maximizes paired reading per-
formance based on other factors. A previously published
study by Gandomkar et al.27 proposed pairing radiologists
with different cognitive eye-tracking metrics to optimize
double reading. However, this study was performed with
an enriched test set and investigated the performance of
different pairs but not the group performance of all radiol-
ogists together. Furthermore, eye trackers are not, perhaps
yet, used in screening programs. Eventually, prospective
screening studies should be considered before implement-
ing any pairing strategy in practice.

Our findings also raise possibilities for other future
applications, like lung cancer screening. Even in the non-
medical environment, similar models could be used, for
instance if double reading were ever used in airport bag
screening. Also, in breast cancer screening programs with
single reading, a new potential use of an optimal pairing
strategy may be if the program incorporates AI as a sec-
ond stand-alone reader. This would allow for the AI set-
tings to be adjusted to the performance of the paired
human reader to optimize this hybrid reading screening
performance. This is especially important since our

findings do suggest that double reading is an important
mechanism to improve early detection of breast cancer
(Figure 8), as previously shown.6,28,29 However, the indi-
vidual modeling in this study is based on readers who in
screening practice performed double reading. Readers
who know they will be reading on their own will proba-
bly behave differently, thus warranting further research.
In programs already using double reading, AI might
eventually replace one of the readers. The human-AI
combination would then again allow for the AI settings
to be adjusted to the performance of the paired human
reader to optimize the combination of the human reader
and AI. Finally, using AI for decision support for radiol-
ogists may help to align the FPR of the readers, enhan-
cing our pairing strategy, especially when both readers
rely on AI in a similar manner. However, such an
approach warrants thorough additional investigation
and is deemed beyond the scope of our current study
objectives.

Our study has several strengths and limitations. A
major strength of this study is the inclusion of 3 different
data sets, which allowed us to evaluate the effect of the
pairing strategies in 3 different countries with different
screening practices. The fact that the results for all 3 data
sets appear similar strengthens our conclusions. Further-
more, the models of radiologists’ assessments developed
in this study showed strong associations between the
modeled and observed data and may thus be helpful for
future modeling studies that include actual screening
interpretation, in which each examination is read by
either 1 or 2 radiologists. A limitation of our study was
that the pairing strategies were based on the difference in
performance between readers, but many different combi-
nations of pairing strategies exist, and we did not maxi-
mize the pairing strategies to be as similar or opposite as
possible as a group. Furthermore, consensus/arbitration
assessments could not be modeled as we did not have
information on the consensus/arbitration readers to
develop a model of that screening interpretation stage. We
also did not have information on which readers were
blinded, so we could not control for these differences. Fur-
ther research with a large radiologists’ cohort that includes
more information on lesions, the radiologists’ experience
levels, and characteristics of consensus and/or arbitration
readers is needed to possibly identify other prospective
selection criteria for optimally pairing readers.

In conclusion, this study showed the potential of
logistic regression models to predict individual and
paired reader performance during screening mammo-
gram interpretation. With it, it was shown that strategic
pairing of radiologists with similar FPR characteristics
demonstrates promise in reducing false positives while
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preserving overall TPR. Telemedicine provides opportu-
nities for strategic pairing, but the implementation of
automated pairing algorithms and exploration of addi-
tional prospective selection criteria for double reading
are essential steps in translating these findings into prac-
tice. Future research should also focus on the impact of
consensus and arbitration decisions on reader pairing
strategies.
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