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Abstract
In highly renewable power systems the increased weather dependence can result in new resilience
challenges, such as renewable energy droughts, or a lack of sufficient renewable generation at times
of high demand. The weather conditions responsible for these challenges have been well-studied in
the literature. However, in reality multi-day resilience challenges are triggered by complex
interactions between high demand, low renewable availability, electricity transmission constraints
and storage dynamics. We show these challenges cannot be rigorously understood from an
exclusively power systems, or meteorological, perspective. We propose a new method that uses
electricity shadow prices—obtained by a European power system model based on 40 years of
reanalysis data—to identify the most difficult periods driving system investments. Such difficult
periods are driven by large-scale weather conditions such as low wind and cold temperature
periods of various lengths associated with stationary high pressure over Europe. However, purely
meteorological approaches fail to identify which events lead to the largest system stress over the
multi-decadal study period due to the influence of subtle transmission bottlenecks and storage
issues across multiple regions. These extreme events also do not relate strongly to traditional
weather patterns (such as Euro-Atlantic weather regimes or the North Atlantic Oscillation index).
We therefore compile a new set of weather patterns to define energy system stress events which
include the impacts of electricity storage and large-scale interconnection. Without interdisciplinary
studies combining state-of-the-art energy meteorology and modelling, further strive for adequate
renewable power systems will be hampered.

1. Introduction

As electricity grids reach ever higher levels of renew-
able penetration to meet net-zero emissions tar-
gets, their weather dependence increases. Weather
and climate variability therefore become increasingly
important for power system operations and planning
[1, 2]. However, traditional power system modelling
has relied on a ‘typical meteorological year’ which
may only include a few hourly time slices to rep-
resent demand and renewable variability. There has
been a large effort over recent years to incorporate

the impacts of climate variability into power sys-
tem modelling, and running multi-year hourly sim-
ulations is becoming more common [3–11] with
climate scientists now producing demand, wind
and solar inputs for national and continental-scale
modelling [12–16]. Particularly in systems contain-
ing large amounts of wind power generation, the
choice of simulation years can significantly impact
the operational adequacy of a system [3–5] and not
considering year-to-year climate variability can also
lead to failure to meet long-term decarbonisation
objectives [4].
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Multi-decadal climate simulations are also
important for characterising the most challenging
days for power system operation (e.g. days that might
lead to blackouts). These energy system stress events
can be investigated without a full power systemmod-
elling approach by looking at time series of demand
or demand–net-renewables (‘net load’) [17–21].
Although these events are commonly periods of peak
demand, they may include times of wind droughts
(prolonged low wind speeds) [22], solar droughts or
dunkelflauten (‘dark doldrums’).

In a renewables-based power system both electri-
city demand and generation are driven by weather
and cannot be considered independently; it is thus
becoming common practice to consider times of
energy system stress as compound events involving
a combination of near-surface temperatures, wind
speeds, irradiance and hydrological variables across
large geographic and temporal scales [10, 23, 24]. For
example, high pressure systems can cause compound
events [17, 25], affecting multiple countries simul-
taneously. While the basic mechanics of periods with
energy scarcity in Europe revolve around extremely
low near-surface temperatures (for demand) and
low near-surface wind speeds (for wind power pro-
duction), we still lack a detailed understanding of
the power system dynamics during these weather-
driven extremes, including electricity transmission
and storage.

The complicating factors of transmission and
storage motivate the use of a high-resolution power
system optimisation model to identify periods of
power system stress. Such models output shadow
prices, a proxy for nodal electricity prices, which have
been used successfully as a metric for strained sup-
ply situations in studies using dispatch optimisation
models [24, 26, 27]. With the shift towards power
systems dominated by variable renewable genera-
tion, where capital expenditure represents the major-
ity of total system costs instead of operational and
fuel costs, we propose using a capacity expansion
model instead. Thus, we co-optimise infrastructure
investments and dispatch decisions simultaneously
in order to generate cost-optimal, fully decarbon-
ised power system designs for Europe. In this setting,
high shadow prices primarily indicate system-defining
events triggering large investments. For the present
study, we use PyPSA-Eur [28, 29], an open optimisa-
tion model for the European power system.

The central questionwe address is that of identify-
ing energy system stress events for decarbonised sys-
tems, and classifying the weather regimes leading to
such events. We investigate events using three differ-
ent approaches over four decades of weather vari-
ability. Approach 1 is a baseline method rooted in
energy meteorology and assesses the difficulty of a
period by net load as is commonly done [17–19].
The main novelty lays in approach 2, where we fil-
ter system-defining eventswhose total electricity costs

explain large investments, based on the shadow prices
obtained by the capacity expansion model. Approach
3 is a validation using dispatch optimisations with
out-of-sample weather years and lost load as an
alternative metric to shadow prices.

Identifying the large-scale weather patterns lead-
ing to system-defining events is of central import-
ance for systems planning, operations and forecast-
ing. Whereas previous studies have compiled weather
patterns leading to high net load or compound events
[17, 18, 25], an analysis informed by the operation
of power systems including transmission and storage
into account is missing. We show that this additional
consideration can impact results significantly. While
both approach 2& 3 take power system dynamics into
account, we find that approach 2 is the more practical
and computationally less demanding of the two (as
approach 3 requires many additional optimisations),
while the outcomes of approach 2 & 3 are similar.

To summarise, the key aims of this paper are to:

• Filter out and delineate system-defining events
using shadow price outputs from a power system
optimisation model.

• Classify these events based on the prevailing
weather conditions, and determine the main
factors leading to continent-wide system stress.

• Construct a new set of weather patterns that define
European power system stress from both a climate
and power systems modelling perspective.

Section 2 describes the meteorological and model-
ling set-up and introduces the definition of system-
defining events. In section 3 we combine the insights
from the power systemmodel and meteorology to lay
out weather patterns underlying power system stress.
We put the results into context of the expansion of
renewables and conclude with section 4.

2. Data andmethods

In the spirit of Craig et al [2] we apply a trans-
disciplinary approach to identifying challenging
weather for power systems. First, we use outputs
from a power system optimisation model to filter out
system-defining events that drive investment in addi-
tional generator capacities. For these time periods,
we cluster the meteorological conditions into groups
such that we can identify weather patterns that drive
weather stress events. Then we analyse the effects in
the power system (model) during these time periods
to determine which components lead to difficulties
and are under stress.

2.1. Datasets and tools
The weather inputs to the meteorological analyses
and to the power system optimisation model are
based on ERA5 reanalysis data [30] and are described
in the following section. We represent the European
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power system by using the open-source energy system
optimisation model (ESOM) PyPSA-Eur (github.
com/PyPSA/PyPSA-Eur) [31] (version 0.6.1) with
small modifications; the modelling setup follows
thereafter.

2.1.1. Meteorological inputs and energy variables
We use gridded weather variables from the ERA5
reanalysis [30] from 1980 until 2021. 2m temperat-
ure, 10mwind speed and surface air pressure over the
region 34◦–72◦ N, 15◦–35◦ E) are used to investigate
the meteorological conditions at times of power sys-
tem stress.We use 500 hPa geopotential height anom-
alies over the Euro-Atlantic region (90◦ W–30◦ E,
20◦–80◦ N) to create European weather regimes (see
section 2.4).

Weather-dependent power systems time series
are mainly generated using the open-source software
Atlite [15]. In Atlite, 100m wind speeds from ERA5
are first extrapolated to turbine hub height using a
logarithm law and passed through a reference power
curve to obtain capacity factors (fraction of rated
power output that can be produced at the given wind
speed); we use the Vestas 112V 3MW turbine for our
calculations. PV capacity factors are computed from
ERA5 direct and diffuse shortwave radiation influx
data using a reference solar panel model, assuming
no tracking and a fixed 35◦ panel slope. Weather-
dependent electricity demand is generated based on
historical ENTSO-E data and adjusted for heating or
cooling demand using a heating/cooling degree days
approach as in [9, 23, 32].

2.1.2. Power system modelling set-up
PyPSA-Eur is configuredwith high spatial (181 gener-
ation and 90 network nodes [33]) and temporal resol-
ution (1-hourly), making it well-suited to investigat-
ing a highly renewable European electricity network
[9, 34–40]. The model is solved for forty individual
weather years (July 1980 – June 2020, preserving win-
ters). Although capable of a sector-coupled represent-
ation of the European energy system (e.g. including
the heat and transport sectors), we restrict PyPSA-Eur
to the optimisation of the power sector alone for clar-
ity. We minimise total system costs of the European
power system by optimising investment and dispatch
of electricity generation, storage, and transmission to
meet prescribed hourly national demand over a year.
Themodel performs a partial greenfield optimisation,
i.e. with existing transmission network (2019) and
capacities of hydropower and nuclear power (2022),
but without existing renewable capacities (see figure
S1 for a break-down of total system costs for the forty
different weather years). Our cost assumptions are
based on a modelling horizon of 2030 and we assume
a fully decarbonised power system; the available gen-
eration technologies are thus nuclear and renewables:
hydropower and biomass (non-expandable), solar,
onshore and offshore wind power (all expandable).

Transmission can be expanded (overnight) by 25%
compared to current levels (figure 6 in Hörsch and
Brown [28]), and electricity can be stored through
hydro reservoirs (non-expandable), battery storage
and hydrogen storage. This can be thought of as
modelling an ambitious, early decarbonisation of the
European electricity sector using current or near-
future technologies. The focus on the power sys-
tem enables a study of weather dependence providing
more evidence on transmission and storage before the
impacts of long-term climate change emerge.

We run capacity expansion optimisations for each
of the 40 weather years (July–June) separately, arriv-
ing at 40 different cost-optimal system designs. The
overall make-up the resulting designs is similar for all
weather yearswith total system costs being dominated
bywind, then solar investment expenditure.However,
there are significant variations in the magnitudes of
installed capacities, as well as in the investment in
hydrogen and battery storage; see figure S1. Running
separate optimisations allows for the identification
of system-defining events in each weather year, as
opposed to only a smaller number of events that are
defining over the entire 40 year period. The single-
year optimisations also allow for a high spatial and
temporal resolution, whereas 40 year optimisations
have only been accomplished at amoderate resolution
[9]. While basing the results on 40 different system
designs is a potential limitation (is a period identi-
fied as challenging for one design also challenging for
other designs?), cross-validation using load shedding
(Approach 3) shows that there is very good align-
ment between system-defining events in one year and
load shedding events for other designs operated on
the same year (see also section 2.6).

2.2. Dual variables and shadow prices
PyPSA-Eur is formulated as a linear program in order
to find investment- and operational decisions which
minimise the objective (total system costs) with linear
constraints ensuring feasibility of the model result.
An optimal solution to a linear program consists of
an optimal value for each decision variable, as well as
an optimal dual value for each linear constraint. These
dual values indicate howmuch the objective function
would decrease if the corresponding constraint was
relaxed by one unit, quantifying the ‘difficulty’ of sat-
isfying the given constraint.

The dual variables corresponding to the con-
straints ensuring that a fixed demand is met at
each network node n and timestep t are denoted
λn,t following [31]. These dual variables—also called
shadowprices of electricity—can be interpreted as the
modelled price of electricity (in EUR / MWh) at the
given node and time (see e.g. [26, 27] in the context
of dispatch optimisation). Note, however, that des-
pite this economic interpretation the shadow prices
are not comparable to electricity prices in the cur-
rent Europeanmarket, as the shadowprices are largely
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driven by the need for renewable expansion in the
model, not marginal operating costs.

Apart from these, other hourly and locational
dual variables corresponding to constraints on trans-
mission and storage can be used to reveal transmis-
sion congestion rents and values of stored energy in
the model, respectively (see supplementary mater-
ials A.2). Since transmission expansion costs are
recovered through congestion rents in the model, the
congestion rent time series can reveal which times
primarily triggered investment in transmission; the
same goes for storage.

2.3. Identifying system-defining events
In this paper a system-defining event is a period
where the incurred electricity costs surpass a specified
threshold within a limited time frame. We restrict the
duration of a system-defining event to a maximum of
twoweeks, and set theminimumcost threshold to 100
bn EUR.

An event starting at t0 and lasting for T hours is
considered system-defining if

∑
n

t0+T−1∑
t=t0

dn,t ·λn,t ⩾ C (1)

for C= 100 bn EUR and T⩽ 336 (the number of
hours in two weeks), where dn,t is the electricity
demand at node n and time step t, in MWh. A pri-
ori, many overlapping events of various lengths meet
the above criteria. For the purposes of this study, we
thus filter out overlapping events until only a non-
overlapping set of system-defining events remains; see
the supplementary materials for an exact description
of the filtering procedure.

By definition, relaxing either the length or cost
threshold can only lead to additional events being
classified as system-defining; we have chosen the
threshold values used in this study so as to produce
approximately one system-defining event per year.
The relative values of the thresholds can affect the
average duration of identified events; we chose the
cost threshold so as to obtain events averaging around
7 days—the discharge duration of hydrogen storage
included in our model. See also figure S2 for an over-
view of most costly periods of varying times across
the studied weather years. It should be stressed that
the thresholds can be freely adjusted in future studies
to fit the research questions at hand.

2.4. Traditional meteorological weather regimes
To understand the weather conditions present dur-
ing system-defining events we use a weather regimes
approach. Weather regimes are recurring large-scale
atmospheric circulation patterns that can be linked
to surface weather, and energy system impacts [14].
Previous work has shown weather regimes have
predictability for energy applications out to a few

weeks ahead [41], which is beneficial for energy
system planning. Weather regimes are calculated
from daily-mean October–March 500 hPa geopoten-
tial height (Z500) anomalies over the Euro-Atlantic
region (90◦ W–30◦ E, 20◦–80◦ N) following the
classification method of [42]. The first 14 empir-
ical orthogonal functions (EOFs) of the Z500 data
are computed [43], which capture 89% of total data
variance. The associated Principal Component time
series (PCs) are used as inputs for the k-means clus-
tering algorithm, with four clusters (which has pre-
viously been found to be the optimal number over
the region [42]). Using the PCs of the Z500 data
makes the problem significantly quicker to compute
without losing useful information about the large-
scale weather conditions. The four cluster centroids
are: the positive and negative phases of the North
Atlantic Oscillation (NAO), the Atlantic Ridge and
Scandinavian Blocking (see figures 6(c)–(f) for visu-
alisation of these). We then find the weather regime
present during each system-defining event. Previous
work has shown that although these patterns have
some useful sub-seasonal predictability for energy
applications, extreme events are not necessarily rep-
resented well by the cluster centroids [18]. Therefore,
apart from finding the regime number during each
extreme event, the pattern correlation between the
days’ Z500 anomaly, and the days’ cluster centroid is
also calculated.

2.5. K-means clustering of system-defining events
In addition to weather regimes defined in terms
of 500 hPa geopotential height anomaly represent-
ing mid-troposphere dynamics, we also study near-
surface weather data during extreme events. These
near-surface data better represent the weather con-
ditions present near the power system impacts. For
each system-defining event hourly gridded 2m tem-
perature and 10m wind speeds are taken for the
region described in section 2.1.1. This gives 5615
hours (∼233 days) of data. We then perform another
k-means clustering, similar to the method of [42]
and applied above to Z500 data (see section 2.4).
Temperatures and wind speeds are first normalised
by their 1980–2021 daily climatologies (by bothmean
and standard deviation, to allow both fields to be
comparable). The data are then converted into prin-
cipal components (the first 14 are kept, explaining
56% of the total variance). These principal com-
ponents are then grouped into four clusters using
the k-means algorithm. Four was identified as the
optimal number of clusters using the silhouette score
(commonly used to determine optimal cluster num-
ber for k-means algorithms). There was no obvi-
ous elbow present when using the elbow method
(not shown). The cluster centroids can then be ana-
lysed and compared to more traditional methods as
in section 2.4.
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2.6. Validation using load shedding as indicator for
difficulty
An alternative approach to capture the adequacy of
the power system is tomeasure load shedding (unmet
demand) in a fixed power system design. In the con-
text of net-zero scenarios, we can first obtain a power
system design from a capacity expansion model, and
then subject that design to a dispatch optimisation
with different inputs in order to measure potential
load shedding. In our case, we run a capacity expan-
sion model with one weather year y1, and perform a
dispatch optimisation over a different weather year
y2. Periods of system stress in weather year y2 can
then be recognised by high load shedding in this
dispatch optimisation. We perform this cross-year
dispatch optimisation for all 1600 combinations of
y1,y2 ∈ {1980/81, . . . ,2019/20} and average the load
shedding profiles for each weather year to obtain time
series comparable to those derived from electricity
shadow prices. Calculating the average load shedding
based on the out-of-sampleweather years relies on the
optimal networks (or some other network assump-
tions) and is computationally more expensive than
section 2.3.

3. Results

Traditionally, power grids and generation stock have
been designed around fossil fuels which could act
as dispatchable generators, especially during peak
demand. With increased reliance on variable renew-
ables and balancing via transmission and energy stor-
age, this paradigm breaks down. In particular, the
most critical events to system design extend bey-
ond a single hour or day, and identifying such peri-
ods no longer depends only on weather data but
also power system parameters including storage and
transmission [7, 20, 44, 45].

We propose a re-orientation to studying power
system stress through system-defining weather
events (see table 1 and figure 1). Electricity shadow
prices reveal which time periods cause additional
infrastructure investments (section 2.3) and determ-
ine an hourly total electricity cost (figure 2) whose
yearly sum is the total annual value of electricity
in the model. The total annual value of electricity
is closely linked to the total system cost (differing
only because of existing infrastructure), which is
dominated in this model by investment costs (espe-
cially as renewables are optimised from scratch—see
figure S1).

3.1. Characteristics of periods driving system
design
We find that on average across 40 weather years,
the single most expensive day in each year accounts
for 12.4% (6.6%–31.3%) of total yearly electricity
cost, whereas 19 weather years contain a three-week

Table 1. An overview over the three approaches we compare in
this study. Approach 1 is commonly used in the literature. We
introduce approach 2 in this study (also see sections 2.2 and 2.3)
and validate it with approach 3 (see section 2.6). Also see figure 1
for a visualisation of the workflow.

Approach Underlying method Description

1 Net load Energy
meteorology
inputs

Periods of
mismatch of load
and renewable
production.

2 Shadow prices Capacity
expansion

Periods that are
defining for
system design.

3 Load shedding Dispatch
optimisation

Periods of failure
to meet demand.

period accruing more than 50% of total electricity
cost (figure S2). This heterogeneity of events calls
into question the use of representative periods or
time slices in energy systems modelling. Moreover,
we find large variations between different weather
years, with the single most expensive week explain-
ing between 18% and 77% of total respective electri-
city costs. For context, the total yearly electricity costs
(that also include the value of existing infrastructure)
range from 216 to 330 billion EUR depending on the
weather year.

As introduced in section 2.3, we define a system-
defining event as accumulating costs exceeding 100
billion EUR in less than two weeks. We identify 32
such events which all happen between November and
February (see figure 2 and table S1). The events vary
in length considerably (2–13 days), being 7 days long
on average.

We find that meteorologically extreme single days
[18, 19, 46] do not reliably identify system-defining
events in individual weather years (figure S3). While
such extreme days almost always lead to high shadow
prices, these are not necessarily surrounded by a chal-
lenging enough period to have a large impact on sys-
tem design (e.g. see the events in 1997/98, 2011/12
and 2012/13 from Bloomfield et al [19], figures S3
and S4); the same also holds for week-long events
(figures 2 and S5–S8).

As opposed to methods considering only peak
load or net load, (i.e. peak mismatch between renew-
able generation and load) [17–20, 23], using power
system optimisation outputs to identify system-
defining events takes the complex interactions
between storage and transmission into account.
Moreover, we need not make assumptions about
the availability of storage and transmission in any
particular region.

3.2. Origins of power systems stress events
In line with previous research, we find that power sys-
tem stress occurs in the winter months when temper-
atures, wind and solar production are low in Europe

5
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Figure 1. An overview over the workflow and the three approaches we compare in this study. For a definition of the approaches,
see table 1.

Figure 2. An overview of all identified system-defining events in the context of daily system cost. Additionally the week with the
highest net load for each year is marked (approach 1 in table 1). Only winter months are shown as shadow prices are consistently
low during the summer. All costs are in 2013 EUR, but derive from model shadow prices, not actual market prices.

[19, 40, 45]. Power systems based on renewables are
primarily wind-dependent in the winter, especially
in the northern latitudes [47], making them prone
to ‘wind droughts’. Using standard cost projections,

we see annualised investments of 60.9 bn EUR in
wind power (onshore and offshore), 28.4 bn EUR
in solar power, 15.2 and 13.3 bn EUR in batteries
and hydrogen storage respectively, and 18.4 bn EUR

6
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Figure 3. A summary of key metrics compared to 40 year means. Each dot represents the mean value of the metric in question
over one system-defining event. From left to right: (a) renewable production deviation from 40 year mean at the time of each
event, (b) load deviation from 40 year mean at the time of each event, (c) mean shadow price of transmission congestion during
each event, (d) mean value of stored energy for each event. An overview over all events can be found in table S1.

in transmission expansion (mean over 40 individual
weather year optimisations—figure S1).

We find significant variations in the magnitude
and location of stress triggers over Europe across
the 32 system-defining events (e.g. figures S9 and
S10). Still, all but one identified events are consist-
ently driven by low wind power and high load anom-
alies (figures 3(a) and (b)) when aggregating over the
whole system. Moreover, we find that even though
the lowwind and high load anomalies during system-
defining events are concentrated over certain regions,
high shadow prices typically spread to the whole con-
tinent (figure 4). This is despite a modest maximum
allowed transmission investment of 25% compared to
the current-day grid value in the model. Only peri-
pheral regions (northern Scandinavia and, to a lesser
extent, the Iberian peninsula) have significantly lower
shadow prices during some of the events; even then
they are much higher than average.

3.3. Role of transmission and storage during
system-defining events
While system-defining events can be caused by vari-
ousmeteorological conditions, themost severe events
almost always impact the sizing of all power sys-
tem components. Figure 4 shows a representative
example of a week-long system-defining event dur-
ing December 2007. This period was caused by a high
pressure system over central Europe causing a period
of prolonged low wind as well as high heating load
(figures 4(a) and (b)). The event is identified as dif-
ficult by the spiking electricity shadow prices (shown
by region in figure 4(c) and over time in (d)).

To discern the roles of transmission and stor-
age during this event, we consider the dual vari-
ables of the line capacity constraints and inter-hour
storage energy level linking constraints respectively

(see section 2.2 and supplementary materials for
details).While we see in figure 3 that the 40 yearmean
shadow price of congestion µl,t across the network is
just below 2 EUR / MW, figure 4(c) shows that µl,t

reaches event-average values above 1000 EUR / MW
for individual lines. This demonstrates that the event
in question is a major factor in driving transmission
expansion—in fact some 39% of the total annual net-
work congestion rent for the 2007/08 network was
gained during the week in figure 4. There is signific-
ant congestion between continental Europe on one
hand and Scandinavia and the British Isles on the
other hand, with significant wind- and hydropower
supplied from these regions. The transmission grid is
well-connected enough to avoid extreme price spikes
in the affected regions.

The value of stored hydrogen energy around the
December 2007 event in figure 4(d) reaches a max-
imum during the event, but as the marginal elec-
tricity prices are higher still, the entire hydrogen
storage reserves in the network are discharged. This
particular system-defining event was preceded by a
week of already high prices and high values of stored
energy, during which not all hydrogen storage was
able to fill up in anticipation of the main event.
Other weather years containmeteorologically distinct
system-defining periods up to several weeks apart
that are nonetheless connected by sustained high val-
ues of storage in the interim. This underlines the
temporal interdependence of power system dynam-
ics when storage is included, meaning that periods of
system stress cannot be studied as isolated events.

3.4. Comparison to the traditional relationship
between climate and power systems
Composites of the normalised surface weather con-
ditions observed during each of the 32 events from
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Figure 4. System-defining events are the result of an interplay of low renewable availability, high load, storage constraints and
transmission congestion. Inputs in the top row, comparable to a usual meteorological approach (approach 1). System variables in
the bottom row. (a) Average weather in Europe over the example event. Note the wind speed anomalies over the North Sea region
and the temperature anomalies in Central Europe in figure S11. (b) Time series of wind power production and electricity load
around the highlighted event (smoothed with rolling averages of 24 hours). The dashed lines show seasonality deduced from the
period 1980–2020. (c) Network map of the European power system with the edge widths showing shadow prices of congestion
and the regions shaded with the average electricity price during the event. (d) Time series of electricity prices, value of hydrogen
storage (with logarithmic scales), and the hydrogen storage level around the highlighted event (all network averages). All costs are
in 2013 EUR.

approach 2 (table 1) are shown in figures 5(a) and
(b). The events are defined by high pressure systems
over Central Europe and the North Sea region (where
the capacity expansion model mainly builds wind
power), resulting in cold temperatures and low wind
speeds. This is similar to the synoptic situations [17,
18, 25] seen using approach 1.

Within figures 5(a) and (b) multiple surface
weather conditions are present. Performing K-means
clustering on the normalised hourly near-surface
temperature and wind speed fields over the 32
events to isolate key weather patterns of interest
(see section 2.5) gives the four clusters shown in
figures 5(c)–(j). All include high pressure centres over
parts of Europe and low winds over the North Sea.

However, each cluster has very different spatial pat-
terns of surface temperature anomalies, which are
not seen in studies neglecting transmission and stor-
age constraints [18, 19]. Future work will investig-
ate if these conditions are unique to system-defining
events, or if it is possible to also have these anomal-
ous weather conditions at times of low power system
stress.

If instead each day is assigned to a more tra-
ditional Euro-Atlantic weather regimes framework
from Cassou [42], we see a high frequency of
Scandinavian blocking (54%) which is over double
the 25% seen climatologically. We also see over four
times fewer instances of NAO+ (figure 6). Generally
the pattern correlation between each day’s weather
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Figure 5.Meteorological conditions during system-defining events (a) and (b). For all 32 events, (c)–(j) are the four extracted
clusters of events.

and the assigned cluster is low (figure 6), particu-
larly when a day is assigned to NAO+ or the Atlantic
ridge. Figure 6(g) shows the 500 hPa geopotential
height composite for all of the system defining events.
This explains the higher prevalence of Scandinavian
blocking events (figure 6(d)) but importantly, the

system defining events resemble a fusion between
the high pressure centre from the Scandinavian
blocking pattern, and low pressure region from the
NAO− pattern.

Figure 7 shows the temporal evolution of the
weather regime categorisation from figure 6 over each
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Figure 6. (a) Frequency of occurrence of Euro-Atlantic weather regimes as defined in [42] during system-defining events (with
the solid dot marking the overall 40 year relative frequency of each regime), (b) pattern correlation between the daily 500 hPa
geopotential height anomaly from the 32 system-defining events and the four Euro-Atlantic weather regimes, (c)–(f) 500 hPa
geopotential height (Z500) anomaly composites for the Euro-Atlantic weather regime cluster centroids, (g) Z500 anomaly
composite during the 32 system-defining events.

event. The figure is centred around the peak day of
each event, which is the day containing the single
most expensive hour of the event. It is interesting to
note that the peak day can be at any point during the
extreme event, and that the weather regime present
during an extreme event is often quite persistent. Both
of these are interesting points for future work. The
results in this section motivate the need for more
bespoke approaches to extreme energy days [48, 49].

When considering seasonal extremes, previous
studies have shown strong correlations between
the NAO and national demand and wind power

generation [17, 50–52]. Winters with a negative
NAO index have weaker surface pressure gradients
across Europe, leading to colder, stiller conditions and
higher seasonal demands. Figure 8(a) shows positive
correlation between the October-March NAO index
and European mean wind capacity factor (R= 0.52),
with similarly strong negative correlations seen for
NAO index and European mean load (Figure 8(b)).
Significant correlation is also found when costs of
electricity (between October and March) are con-
sidered (R=−0.42). Winters with a negative NAO
index generally exhibit higher costs (figure 8(c)).
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Figure 7. Daily evolution of the predominant weather regime during each system-defining event (see table S1). The events are
centred around the peak day, which is the day containing the single most expensive hour of the event. If the association of a day to
a weather regime is not statistically significant, it is shown with high transparency.

However, there are times where a high cost can hap-
pen in a mild winter. For instance, January 1997
(figures S12 and S13) experienced a low-wind-cold-
snap driving high system costs; a very anomalous
event compared to the rest of the season.

Fully modelling transmission and storage con-
straints can lead to a different characterisation of the
most challenging winters for power system operation
than seen in studies entirely based on meteorological
input variables. This is particularly important when
considering the sub-seasonal to seasonal prediction of
extreme energy events.

3.5. Validation of system-defining events
We validate our approach through load shedding (or
lost load) which is a commonly used tool to meas-
ure power system adequacy [9, 49, 53, 54]. Load
shedding can be measured in dispatch optimisa-
tions of fixed power system designs, whereas capa-
city expansion models avoid any load shedding
by design.

To validate whether system-defining events align
with periods of high load shedding, we calculate
for each weather year yi the hourly average load
shedding in the dispatch optimisations of the power
system designs obtained from weather years yj, j ∈
{1980/81, . . . ,2019/20} operating over year yi (a
total of 40 dispatch optimisations per weather year).
See section 2.6 and supplementary materials for
details. We find that all but one system-defining
events overlap with the week-long periods of highest
load shedding in the weather year they occurred in.

In any year, system-defining events tend to be
those with high load shedding; either method can be
used to identify power system stress. Crucially, both
shadow prices and load shedding agree on extreme
events that are different than those from approach 1
(table 1) based only on net load (figures S14–S17).
This highlights yet again the importance of detailed
power systems modelling (also required for com-
puting load shedding) in identifying weather stress
events.
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Figure 8. The relationship between October–March mean North Atlantic Oscillation (NAO) index and October–March (a)
European mean onshore wind capacity factor, (b) total European net load, and (c) total costs of electricity (all between October
and March). The year with the highest costs accrued between October and March (1996/97) is marked with green in (a)–(c). R
values show the Pearson correlation coefficient between variables. Similar results are seen for individual countries (not shown).

Arriving at load shedding data takes an additional
step (possibly on top of approach 2): first obtaining
one or several system designs and then running them
in dispatch mode to reveal load shedding. The latter
approach also entails additional assumptions: one has
to choose which input scenarios to use for capacity
expansion steps and dispatch steps respectively.

4. Discussion & conclusions

In this study we investigate difficult weather events
for power systems through an integrated approach
combining meteorology with power systems model-
ling. To improve resilience against weather extremes,
we show that it is not enough to look at meteorolo-
gical variables alone (Approach 1), but we also need
to include a detailed representation of future, to-be-
designed energy systems (Approaches 2 and 3). We
propose identifying system-defining weather periods
as those being the main drivers of investments; such
periods are defined by high electricity shadow prices
in a power systems model. As this approach builds
directly on modelling outputs, it is free of assump-
tions on specific characteristics of extreme events.

We find that risk factors like persistent low tem-
peratures and low wind align well with previous
literature [21, 22, 55], however, conventional meteor-
ological analysis does not reliably identify the most
severe difficult periods for future power systems.
In particular, challenging periods for the integrated
European network vary in duration and are charac-
terised by transmission and storage interactions over
time, not only extreme weather. We see that isol-
ated regional studies are not good enough, as the vast
majority of the continent experiences uniformly high
shadow prices during all system-defining events. To
reliably predict future energy system stress events tra-
ditional meteorological classifications [18, 42, 55] are
not enough, and more detailed knowledge on surface
weather impacts on power systems is needed [14, 49].

Since our approach is based on single-year optim-
isations resulting in different system designs for

different weather years, electricity shadow prices and
thus severity of events are not directly comparable
across weather years. This limitation can be addressed
by using load shedding (approach 3 in table 1) instead
of electricity shadowprices to identify extreme events.
However, our validation shows that the load shed-
ding and shadow price approaches agree on the
most severe events in each individual weather year.
Computing load shedding is also more computation-
ally expensive and involvesmore assumptions, requir-
ing a two-step process.

Restricting our analysis to events shorter than two
weeks, we capture significant fractions of total electri-
city cost, but do not capture the full chain of cascading
compound events. A complete understanding of how
seasonal weather relates to total annual system cost
(beyond the partial correlation with the NAO index)
is still elusive. Perfect foresight also limits the ability
of our model to react realistically to multi-week or
longer events. On the other hand, our analysis also
does not focus on very brief events. Further analysis
over a variety of event length, both longer and shorter,
would be beneficial.

An interesting extension of this study would be
the inclusion of sector coupling: electrification of
heating strengthens the impacts of heating load and
the inclusion of more sectors could lead to differ-
ent dynamics than in the power sector alone. Still,
low wind generation will be key in years to come
due to higher penetration of renewable technologies.
With ever-improving climate models, these methods
could be applied to climate model projections, as sys-
tem insights based on weather from the 1980s might
not necessarily be transferable to mid-century sys-
tems under climate change.

The question of pinning down what makes cer-
tain weather years difficult (in terms of system costs)
remains complicated and computationally expens-
ive; the main part of investments throughout the
years is driven by a few short-lived and severe events.
Our classification can help meteorologists, transmis-
sion system operators and long-term system planners
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to develop early warning systems and resilience
strategies for these events. It is worth remembering
that current systems usually struggle with high load,
but that these risks and coping mechanisms will shift
towards supply issues when renewable production
dominates. A good understanding of the anatomy of
such events will help in risk assessments including fre-
quency and severity under climate change, crucial for
ensuring system adequacy.

Our flexible approach can be applied to other
contexts beyond this European case study and shows
that rigid assumption-based analyses within one dis-
cipline do not suffice for challenges the world is
facing. Our approach exploits inherent information
from existing models and unites perspectives from
linear optimisation, energy modelling, and meteoro-
logy to enhance the understanding on howmore resi-
lient future energy systems can be planned. Without
interdisciplinary studies with state-of-the-art power
system models and meteorological data, progress in
researching and implementing renewable energy sys-
tems cannot be made.
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