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Abstract
To avert a climate disaster, the global energy system quickly needs to transition
to net-zero emissions. This will involve drastic reductions in the use of fossil
fuels on one hand and electrification based on renewable energy on the other
hand. Research has shown that the transition is technically feasible, but presents
us with difficult trade-offs and compromises. Since renewable energy is more
exposed to variability, the future will also present us with new robustness
challenges.

Energy systems optimisation models, used to investigate possible future energy
system designs, by default optimise for the least total cost. However, recent
research has shown that near-optimal solutions, which are feasible and only
slightly more expensive than cost-optimal ones, open up more options and
create space for exploring factors that are hard to quantify. In this thesis, we
develop a new methodology for approximating the space of all near-optimal
solutions. It is applied to mapping out regional planning flexibility in Europe,
analysing possible pathways for European green hydrogen production and
studying how weather years impact the space of system designs. Across the
board, the results show a wealth of options, creating much-needed space for
public debate.

The advances in near-optimal methods are balanced by contributions towards
improving robustness in energy systems design. We introduce a new method
for identifying extreme weather events in energy systems with high shares of
renewables, and use it to find the weather regimes posing the greatest risk of
blackouts to a future European power system. By intersecting near-optimal
spaces, we explore European energy system designs that are not only robust
against different weather years but also various scenarios, including changing
technology costs and land-use restrictions. In a case study on Norwegian hy-
drogen exports, we show that while technically feasible, the systemic impact
of exports would face significant challenges in terms of land-use, social accep-
tance and equity. By taking a holistic perspective, energy systems modelling
can help us brace for an uncertain future.
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How to read this thesis

This thesis consists of a collection of articles and an accompanying introduction.
The introduction sets up the context and motivation for the included articles,
and provides time and space for the discussion of research methods, philo-
sophical reflections and background material. It also includes an executive
summary of the main results of the included articles, showing how they answer
the overarching research questions of the thesis.

Chapter 1 (the “introduction to the introduction”, as it were) is written in an
more accessible style than the rest of the thesis. If you are curious about the
topic of this thesis but are not an expert in energy systems research, you should
still find this section interesting.

Chapter 2 (Background) covers the most essential theory needed to understand
the methodology and results of the included articles. Chapter 3 contains a brief
technical summary of the main findings in the included articles, organised
thematically. Chapter 4 contextualises the results and points to future research
directions.



Samandrag
For å unngå ein total klimakrise er det kritisk at det globale energisystemet
går mot netto null utslepp so raskt som mogleg. Dette vil innebere ein drastisk
nedgang i bruken av fossile brennstoff på den ein side, og auka elektrifisering
basert på fornybar kraft på den andre. Forskinga viser at det let seg gjera, reint
teknisk sett, men at overgangen vil by på vanskelege kompromiss og avvegingar.
Fordi fornybar kraft er meir variabel, får me også større utfordringar knytt til
pålitelegheit.

Energisystemmodellar blir brukte til å analysere framtidige energisystem, og
blir vanlegvis optimaliserte for lågast totalkostnad. Nyare forsking har derimot
peika på nær-optimale løysingar, som er funksjonelle og berre litt dyrare enn
dei kostnads-optimale, som interessante. Dei opnar opp for fleire moglegheitar,
og skapar rom for å utforska faktorar som er vanskelege å kvantifisere. I denne
avhandlinga utviklar me ein ny metodikk for å kartleggja rommet av alle
nær-optimale løysingar til ein modell. Metoden blir nytta til å kasta lys på
regional planleggingsfleksibilitet i Europa, til å analysere moglege framtider
for Europeisk produksjon av grønt hydrogen, samt til å forske på korleis vêret
påverkar moglege energisystemløysingar.

Framgangen i nær-optimale metodar vert balansert av bidrag til forskinga rundt
robuste energisystem. Me introduserer ein ny måte å identifisere dei mest
utfordrande vêrsituasjonane for energisystem med ein høg grad av fornybar
kraft, og brukar resultata til å peike på kva type vêrregime som vil kunne føre
til straumkutt i framtidas Europa. Ved å rekna ut snittet av fleire nær-optimale
rom finn me løysingar for det Europeiske energisystemet som er robuste, ikkje
berre mot endrande vêr men òg ulike kostnadar og areal-avgrensingar. Til slutt
ser me på norsk eksport av hydrogen; dette synar seg å vera mogleg i stor
skala, men dei gjennomgripande konsekvensane for arealbruk, sosial aksept
og fordelingspolitikk vil utgjera store hinder. Ved å ta omsyn til heilheita kan
energisystemmodellering hjelpa oss gå ei usikker framtid i møte.
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Korleis lesa denne avhandlinga?

Denne avhandlinga består av ein artikkelsamling samt ein introduksjon eller
“kappe” til samlinga. Kappa kontekstualiserer ogmotiverer artiklane, og tek tida
til å diskutera forskingsmetodane, drøfte forskingsfilosofi og presentera bak-
grunnsmateriale. Den inneheld òg eit samandrag av hovudresultata i artiklane,
og viser korleis dei svarar på forskingsspørsmåla i avhandlinga.

Kapittel 1, introduksjonen til kappa, er skreve i eit mindre teknisk språk enn
resten av avhandlinga. Dersom du er interessert i temaet til avhandlinga, men
ikkje er ekspert på energisystemmodellering, bør denne delen likevel kunne by
på noko.

Kapittel 2 dekker det viktigaste bakgrunnsmaterialet som trengs til å forstå
artiklane. Kapittel 3 inneheld ein kort og tematisk oppsummering av dei vikti-
gaste resultata i artiklane. Kapittel 4 set alt i ein større kontekst og peikar på
nokre moglege områder for framtidig forsking.
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1
Introduction

Many times I’ve gazed along the open road
Many times I’ve lied and many times I’ve listened
Many times I’ve wondered how much there is to know
Many dreams come true, and some have silver linings

— Led Zeppelin, Over the Hills and Far Away

The world is going through unprecedented climate change, prompting
the declaration of a climate crisis. Global warming has already reached

+1.1◦C1, leading to widespread negative impacts including reduced food se-
curity, lethal heat waves and infrastructure damage, among others.[1] These
climate risks will only intensify and become more complex to manage at +2◦C
warming and beyond.

In one sense, avoiding future disaster is simple: greenhouse gas emissions must
go down as soon as possible. While subject to great uncertainty, unmitigated
climate change has been estimated to reduce global GDP by 19% by 2050[2] and
50% by the end of the century[3] (compared to a no-warming baseline). This
can be translated to a social cost of carbon dioxide (SCC/SCCO2), equivalent
to the expected economic damage done by each tonne of CO2 emitted and
variously estimated at anywhere between 200–1000 EUR/tCO2.[3]–[5] This cost
is currently not fully accounted for2, and a switch to renewable energy can cut

1. Specifically, the global surface temperature was 1.1◦C higher in 2011–2020 than in the
1850–1900 period.[1]

2. The average price for emissions allowances in the EU emissions trading scheme (a cap-

1
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emissions at a price significantly below the SCCO2
[7]

On the other hand, cutting emissions presents many crossroads, choices and
difficult trade-offs. For example, CO2-emissions from the transportation sector
could be reduced by a shift from cars to public transport, by switching from
combustion engine cars to electric cars, by the increased use of bio-fuels or by
a combination of the above and other measures. Each option involves a variety
of different parties with different interests and can have wide-ranging impacts
beyond the transportation sector alone (e.g. land use of bio-fuel production,
mining ofmaterials for batteries),making the choice a difficult political question.
This may explain part of the substantial gap[1] between current climate policies
and the targets set in the Paris agreement, intended to keep global warming
“well below +2◦C”.[8]

More immediately relevant to this thesis, there are many different ways to
decarbonise the energy sector. Both solar,wind,hydroelectric andnuclear power
are major sources of low-emissions energy, but the ideal balance between these
technologies is by no means a given. Decarbonisation involves some major
open engineering questions, for instance, how to maintain system robustness
and resilience under increasing shares of variable renewables such as solar and
wind power; a question to which we return. On the whole, however, it has been
amply demonstrated that net-zero emission energy systems are technically
feasible.[9]–[11]

Arguably, the more pressing questions surrounding the energy transition are
of a socio-political nature. Which technologies are deemed socially acceptable
from a perspective of visual disturbance, equity and energy independence?
Which industries are set to lose and gain? Where does the transition lead to
job creation and losses?

The central aim of this thesis is to explore and expand our understanding of
which future system designs are feasible and which are not. Mathematical
models called energy system optimisation models (ESOMs) are a useful tool in
this context, simulating the operations of an energy system with resolution
needed to capture the variability of solar andwind power. Most research thus far,
however, has focussed on exploring cost-optimal energy system solutions. These
solutions can be fragile; by design they have the minimal needed capacities
in order to meet modelled demands. This means they can be vulnerable to
shocks that are not or cannot be accounted for in modelling, such as extreme
weather, natural disasters, import disruptions or political upheaval. Moreover,
purely cost-optimal solutions are often less socially or politically acceptable
than slightly more expensive alternatives — cost is not everything. A major

and-trade mechanism for reducing emissions in the EU) was 84 EUR/tCO2 in 2023.[6]



1.1 a crash course in near-optimality 3

focus in this work is to look beyond cost-optimality in an effort to create space
for public debate and acceptable trade-offs.

1.1 A crash course in near-optimality

The 20th century saw the breakthrough and widespread application of math-
ematical optimisation in planning and logistics, enabled by advances in both
mathematical theory and computers. The modern academic discipline embody-
ing this practice is called operations research, and has its roots inWorldWar II.[12]
Typical problems addressed in operations research include the optimisation of
scheduling, flows of goods and placement of redistribution centres.

In the context of operations research, one usually takes the perspective of a
central planner: the scope of the problem at hand is limited to choosing the
best (e.g. cheapest, most efficient) solution among many possible alternatives.
Strikingly often, such problems can be reduced to or may be related to so-
called linear programs: a special type of optimisation problem where the
space of alternatives (the feasible space) is bounded by linear constraints and
the objective function (i.e. the thing to be optimised) is also linear. Linear
programs can be solved particularly efficiently (a feat of much research; see
e.g.Smith et al.[13]), meaning that even problem instances with thousands or
millions of variables can be solved relatively quickly.

Planning and operation of an energy system3 can in many cases be approx-
imated by a linear program. Such a linear program, called an energy system
optimisation model (ESOM) in this context, can be used to optimise both op-
erations (hour to hour, day to day) and planning (e.g. where to place which
power plants, where to strengthen the transmission grid by how much) simul-
taneously. The set of possible operations and planning choices is the feasible
space in this case, and solving the linear program means finding the point in
that space which optimises a given objective function. In the vast majority of
cases, this objective function is total system cost⁴.

Energy system optimisation models of this kind have a history of actual use in

3. For now, regard an energy system as being composed of the major components producing,
converting, storing and transporting energy in a given geographical region. For example,
the European energy system would encompass the transmission grid, the natural gas
network and reserves and all power plants producing electricity. The exact delineation
(i.e. which elements are and are not a part of the energy system) can be tailored to the
problem at hand.

4. Typically calculated as the sum of annual operational costs and annualised investment
costs
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Space of feasible
energy system designs
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cost-optimal solution Near-optimal space

cost bound

Figure 1.1: Abstract illustration of the near-optimal space of an energy system optimi-
sation model. There is just one cost-optimal solution, but there are many
different solutions (point in the near-optimal space) that are also feasible
and only a little more expensive.

public administrations. The MARKAL family of models was one of the first,[14]
being developed in an international collaboration under the International
Energy Agency, and subsequently evolving into the TIMES model,[15] versions
of which are still in use today. The current research field includes a large array of
different models all following the same basic mathematical structure.[16]

Such models, however, essentially only strive for operational feasibility and
cost minimisation. As we have seen, questions around the energy transition
can be highly political; an axis that cannot easily be expressed as minimising
total system cost and which is largely unaccounted for in ESOMs. An over-
reliance on cost-optimisation could divert attention away from real alternatives,
and at worst endanger the success of a rapid energy transition with all due
consequences.

A key idea underpinning this thesis is to look not only for a single cost-optimal
solution, but rather to look for a wide range of alternative solutions. These
solutions should still be feasible (i.e. they should “work” from a technical point
of view) and should not be too expensive. Figure 1.1 illustrates such a space
of alternative solutions; it is commonly called a near-optimal (feasible) space.
The idea is not new in itself, having roots in a paper by Brill from 1979[17] and
being applied for the first time to energy systems by DeCarolis in 2011.[18] While
subsequently developed,[19]–[21] the present work makes significant advances
in techniques to systematically map out near-optimal solutions, as well as
highlighting novel applications.

The vantage point afforded by near-optimal solutions can lead to important
and useful insights into the ongoing energy transition. Broadly speaking, the
wealth of different options that become possible at only slight cost increases
is striking, and goes under the radar when focusing on cost-optimality only.
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At the same time, working with near-optimal spaces presents its own chal-
lenges in the form of added complexity (making dissemination more difficult)
and computational burden. Finally, while mapping out near-optimal spaces
increases the number of energy system solutions under consideration, it is cru-
cial to simultaneously address robustness to variable weather, climate change,
changing costs, unexpected crises and other factors.

1.2 Robustness and feasibility

Energy systems can be fragile to changes and shocks from within and without.
This is certainly not a new phenomenon — the 1973 oil shock,[22] triggered
by the Yom Kippur War and characterised by a sudden quadrupling of global
oil prices, had wide-reaching immediate and long term consequences. More
recently, the Russian invasion of Ukraine in 2022 has led to a gas crisis in Europe
with a tenfold increase in gas prices at its peak, inducing a sharp reduction in
gas demand.[23] Both of the above take the form of a supply shock first and
foremost; another common type of shock is extreme weather or natural disaster
leading to power grid black-outs. A notable recent incident is the winter storm
Uri which caused wide-spread black-outs across the isolated Texas electricity
grid, resulting in dozens of deaths due to hypothermia and at least $130 billion
in damages.[24]

Future energy systems may need to be robust to different kinds of shocks,
especially as ever larger fractions of primary energy are sourced from renew-
ables, and as climate change leads to more extreme weather. The variability
of most renewable energy sources presents challenges on multiple time scales,
from the daily[25],[26] and yearly[27],[28] to decadal,[29] and the question of how
to brace for this variability is far from solved. Less of a shock but more of a
long-term risk is that of climate change affecting both energy demand and
renewable generation.[30]–[33] As the total cost of energy supply shifts more to
capital expenditure (wind turbines, solar panels, etc.) and less to operational
expenditure (fuels such as oil and gas), different kinds of supply shocks may
take hold, hitting renewable energy generation supply chains.

“Robustness” can mean a variety of things in the context of energy systems plan-
ning. Loosely speaking, one can say that a particular energy system is robust
against a certain set of events when these events do not significantly impact
the ability of the system to satisfy a given energy demand at reasonable cost.
Robustness against completely predictable events is usually a given, but events
whose nature and frequency of impact are uncertain are more difficult to plan
for. Some events may not be predictable exactly, but we might still have good
statistical models for them. At the other extreme are “black swan” events:[34]
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completely unforeseen events whose timing and consequences cannot be pre-
dicted using current knowledge and methods, such as a major political crisis,
war or pandemic.

Energy system optimisation models often incorporate some variability, such as
simulating operations over one or a few years of historical weather. Further-
more, common tactics used to enhance robustness of model solutions include
accounting for possible transmission grid failure, ensuring available backup
generation andmore. However, how best to dealwith the various types of shocks
and risks in energy systems modelling is still an open field of research.

Feasibility does not have a precise definition in the context of energy systems
modelling;[9] it is sometimes taken to mean what is “technically possible” in
the world of physics, while viability also takes socio-economic constraints into
account. In the context of this thesis, we refer to an energy system design
being feasible in a particular model when the design is able to deliver on energy
demand in that model. Feasibility as thus relative to any given model, and a
solution that is feasible is only robust to the events and shocks represented in
that model.

1.3 Research questions

The primary motivation of this thesis is to explore different options for the
energy transition, going beyond cost-optimality. We formulate this as the fol-
lowing research question:

Question 1. How can we map out which energy system designs are feasible
and affordable, and which are not?

In light of the above discussion on feasibility, this question should be interpreted
relative to an energy systems model. Note that we leave it slightly open to
interpretation what it means to “map out”; in Chapter 2 we see that the
mathematical space of all feasible solutions is sufficiently complicated that only
a simplified representation can be approximated in most cases.

If energy system models do not sufficiently account for robustness, their results
run the risk of being overly optimistic and vulnerable to extreme events and
shocks. This weakness extends to any answers to Question 1. It is therefore
crucial to pursue robustness in modelling in parallel.

Question 2. How can we find energy system designs that are robust against
changing weather, climate, costs, political conditions and other factors?
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Finally, it is important not to lose sight of the eventual goal of energy systems
modelling research: to inform effective policy decisions. Advances in modelling
are mainly useful to the extent that they lead to more effective decision support
(directly or indirectly),[35] and therefore we explicitly ask about the policy-
relevance of methodological development.

Question 3. What are the most relevant implications for energy policy
resulting from advances in energy systems modelling?

1.4 Overview over research contributions

1.4.1 Research articles

This thesis includes five research articles exploring the stated research questions
from various angles. Herewe provide a brief overview outlining how each article
helps answer the above research questions; Chapter 3 gives a more technical
and thematically organised summary of the main results. For ease of exposition,
we refer to each article by single-word labels as listed in Table 1.1.

The first article, “1: Intersections”, addresses Question 1 directly, laying out
a new framework for working with near-optimal spaces in the context of en-
ergy systems modelling. Previous work on near-optimal spaces had employed
various ad-hoc methods for producing collections of near-optimal energy sys-
tem designs. “1: Intersections” stresses the interpretation of a suitable low-
dimensional representation of a near-optimal space as a geometric object (a
convex polytope) that can be mapped out as a whole. This systematic approach
reveals large tracts of system designs that have previously largely gone under
the radar. A novel technique enabled by the geometric perspective is comput-
ing the intersection of multiple near-optimal spaces, effectively cataloguing
solutions that are feasible and near-optimal under different scenarios. This
technique was showcased with the specific application of finding energy system
designs that are robust against many different weather conditions, thus also
addressing Question 2.

“2: Weather” further develops the topic of weather resilience by proposing a
special class of energy system model output variables to identify extreme peri-
ods. In particular, this article builds on the premise of a future decarbonised
European power grid with most electricity being produced by wind and solar
power. Such a scenario induces vulnerability to cold periods with low winds,
potentially leading to blackouts. In the article, we⁵ show that electricity trans-

5. The academic “we” is used as a common custom; the articles included in this thesis also
have multiple co-authors. See “Notes on included articles” in the appendix.
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Label Title Status / reference

1: Intersections Intersecting near-optimal spaces: Eu-
ropean power systems with more re-
silience to weather variability

Published in Energy
Economics[36]

2: Weather Using power system modelling outputs
to identify weather-induced extreme
events in highly renewable systems

Published in
Environmental Research
Letters[37]

3: Trade-offs Trade-offs between regional and conti-
nental energy system design flexibility

Under review at Nature
Sustainability[38]

4: Pathways Diverse pathways for green hydrogen
production in Europe

Manuscript[39]

5: Exports The competitive edge of Norway’s hy-
drogen by 2030: Socio-environmental
considerations

Published in the
International Journal of
Hydrogen Energy[40]

Table 1.1: Papers included in this thesis.

mission and storage infrastructure play a crucial role in such periods, and that
the most severe events occur on a continental scale. This in turn influences
what kinds of weather (i.e. what types of large-scale pressure systems) are crit-
ical for the electricity grid. The article improves our understanding of climate
and weather resilience in energy systems planning, addressing an important
part of Question 2.

“3: Trade-offs” introduces a novel application of near-optimal spaces (building
on the theory developed in “1: Intersections”) to the problem of regional
design flexibility. Especially focusing on implications for European cooperation
towards the 2050 target of net carbon neutrality (thus addressing Question 3),
the article systematically maps out the regional/spatial variety of feasible
European energy system designs. A surprising amount of design flexibility is
revealed, showing that most studied regions have vast ranges of options in
terms of renewable energy development and energy import/export balance.
Importantly, however, key regions and technologies are revealed to have a
disproportionate importance for the success of the overall European energy
transition.

Taking a different, narrower perspective on European energy policy, “4: Path-
ways” considers the ways forward for European green hydrogen production
specifically. Green hydrogen⁶ is a major question mark in European energy

6. Hydrogen is a gas which can be used as an effective energy carrier (i.e. to store and
transport energy) and as an alternative to for instance natural gas. It can be produced by
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policy towards 2040 and 2050; it could play a large role in reducing CO2 emis-
sions, but competes with carbon capture and storage in this regard. We use
near-optimal techniques to map out the breadth of different trajectories that
European green hydrogen production could take over the 2025-2050 time hori-
zon. This is the first time near-optimal techniques have been used to study the
development of energy systems over a sequence of time horizons. Consistent
with the theme of “1: Intersections” and “3: Trade-offs”, we find a large range
of possibilities even with a moderate total cost increase. An extensive scenario
analysis reveals which factors are the most significant for green hydrogen de-
velopment in terms of minimum and maximum viable production. Combining
methodological development with insights for policy, this article touches on
both Question 1 and 3.

Finally, “5: Exports” approaches the emerging European hydrogen sector from
a different angle, investigating the prospects for Norwegian hydrogen exports
to continental Europe. Break-even price ranges are obtained for three different
overall export scenarios and a large variety of input cost assumptions. Rather
than focusing specifically on mapping out the “entire” option space for hydro-
gen exports, however, this article addresses the limitations of modelling for
cost-optimality. While blue⁷ and green hydrogen exports are feasible from a
technological perspective, a variety of concerns including public perception of
onshore wind power, conflicts of interest with indigenous land use and fierce
competition for any newly available electricity combine to cast doubt on the
prospects for hydrogen exports.

Together, the five articles included in this thesis form a holistic approach to en-
ergy systems design, connecting developments in both theory and application.
Moreover, “2: Weather” and “5: Exports” especially are examples of interdis-
ciplinary work, connecting energy systems modelling with meteorology and
social science, respectively. Questions 1 and 2 are complementary in the sense
that the first asks how more options can be found, while the second considers
which options might have to be struck out for lacking robustness (Figure 1.2).
Seen together, the thesis attempts to strike a balance.

different means; “green” hydrogen is hydrogen produced by electrolysis using renewable
electricity.

7. “Blue” hydrogen is produced from natural gas using steam methane reforming combined
with carbon capture and storage.
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1: Intersections

2: Weather 5: Exports3: Trade-offs 4: Pathways

Exploring more options Robustness and social acceptance

Question 1 Question 2

Figure 1.2: Abstact illustration of how the paper position themselves with respect to
Questions 1 and 2.

1.4.2 Open modelling and transparency

Openness in energy research is critical for transparency,[41] but open code and
data also allow for greatly improved productivity for the research field as a
whole. Recent years have seen great leaps in the capabilities of open source
energy systems modelling frameworks, and this thesis would not have been
possible only a few years earlier for lack of sufficiently capable open source
models for the European energy system. While there are currently several
alternatives, the work in this thesis has benefited primarily from the PyPSA-Eur
model,[11],[42] which itself builds on the PyPSA framework.[43]

All software and data used to produce the results in this thesis have been
made available under open licenses; see the individual articles for specific
accounts on where to find these resources. Of particular note is the software
connected to “1: Intersections”,which includes the first adaptation of PyPSA-Eur
capable of running with more than a single weather year. Whenever practical,
improvements and bug fixes to PyPSA and PyPSA-Eur have been contributed
back upstream for the benefit of all users. While each individual change might
be small, they add up to a total of +2348/-2433 lines added/removed across 95
commits.

Apart from open source code contributions, work on this thesis has also been
the impulse for several dissemination efforts. This includes several popular
scientific presentations at events open to the public, as well as a school tour.
Of a more persistent nature, three blog entries have been written for https://
blogg.forskning.no/blogg-energiomstillinga on the topics of nuclear power
in Norway, the Longyearbyen energy transition and the results of “2: Weather”,
respectively.

https://blogg.forskning.no/blogg-energiomstillinga
https://blogg.forskning.no/blogg-energiomstillinga
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1.4.3 Research articles not included in this thesis

Two additional works are worth mentioning for completeness even though
they are not included in this thesis. The first is a brief exposition[44] of the
initial work going into what was then “PyPSA meets Africa” and which has
since become the PyPSA-Earth model. This article has been omitted due to my
relatively minor contribution towards its publication and in order to preserve
the thematic focus of this thesis.

The second is a manuscript in development on stakeholder perspectives on
the Longyearbyen energy transition. This collaboration with Oskar Vågerö and
Aleksander Grochowicz represents a leap in the practical application of the
near-optimal methods developed in this thesis. Building on a model for the
isolated Longyearbyen energy system, located on Svalbard, we develop an
interactive interface for exploring near-optimal energy alternatives and collect
the preferred solutions of about 120 residents (∼5% of the total population).
The results reveal a wide disparity between residents’ visions for their future
energy supply, and a surprisingly high willingness to accept higher electricity
prices in order to pursue grid resilience and emission reductions, among other
objectives. While relevant for this thesis, the manuscript is not included as it is
still under development.

1.5 Research philosophy

Research does not spring into the world fully formed as published articles;
it is developed over time by human beings. Especially in the field of energy
systems modelling, many choices must be made throughout the duration of a
research project, from modelling methodology to specific model input param-
eters. These choices may have both practical and ethical dimensions.[35],[45]
Indeed, energy systems research being tightly interwoven with policy and poli-
tics means that researchers must balance positivist and normative approaches
to their work.[45] In other words, energy systems research can both include
dispassionate, objective accounts about how energy systems function and could
develop in the future (positivism) as well as prescriptions for energy systems
should develop (normativism). In this context, personal convictions can easily
influence one’s work, and it is thus worth discussing the main motivations
underpinning this thesis. We follow this up with a brief discussion of the most
important principles guiding the choices of methodology and approach to the
research questions.

At the foundation of this thesis lies the acknowledgement of the climate crisis
being one of the great challenges currently facing humanity. Current policies
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put us on track for 2.5–2.9◦C of global warming by the end of the century,[46]
which would lead to devastating consequences.[1] Keeping global warming
well below 2◦C and ideally below 1.5◦C (as set out in the Paris Agreement[8])
must involve drastic reductions in the use of fossil fuels across the energy,
transportation and industrial sectors. The hope is that this thesis will, in a
small way, help in the successful execution of this transition for the benefit of
humanity.

What this thesis does not aim for is the promotion of any one particular solution
or technology over another. As hinted at already, energy transition presents
us with many difficult dilemmas such as choices between different low-carbon
energy sources (e.g. wind, solar, nuclear, fossil fuels with carbon capture and
storage) and means of providing flexibility (e.g. transmission lines, hydrogen
storage and transportation, batteries). As this thesis takes a holistic approach
(hence the talk of “energy systems”, not single sources of energy), it is important
to answer our research questions with as little bias as possible, creating a factual
basis for democratic decision-making. Each competing sector stands to gain or
lose and has its own lobby groups; none of them have influenced the making
of this thesis.

An important principle guiding the formation of this thesis, and the choice of
research questions and article topics, is that of striving for interdisciplinary
work. Straddling the intersection between operations research, engineering,
climate science and political economy, the field of energy systems modelling
benefits from diverse perspectives, methods and expertise. Indeed, some of the
key challenges in energy systems modelling research going forward, such as
better integrating climate modelling results[47] and social factors,[48] naturally
require interdisciplinary work. Questions 2 and 3 in this thesis are asked in this
context.



2
Background

When you are young, they assume you know nothing
— Taylor Swift, cardigan

This chapter gives a more complete overview of the basic theory and tech-
niques used in the field of energy systems modelling than could be given

in the included articles. By no means exhaustive, we give an introduction to
what energy system models are, and a brief overview of current state-of-the-art
understanding of best modelling practices and trade-offs.

In the last part of the chapter, we give an account of near-optimal methods
in particular: the technique at the base of “1: Intersections”, “3: Trade-offs”
and “4: Pathways”. We cover both developments in the literature as well as
advances made especially in “1: Intersections”.

The remainder of this chapter and the next assumes basic familiarity with
linear programming; for a reference on this topic see for instance Hillier et
al.[49] or Smith et al..[13]

2.1 Definitions

Before anything else can be expounded on, we need to resolve a basic question:
what is an energy system, and what is an energy system model? Energy systems

13
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modelling takes a rather peculiar role in the field of science. The discipline
does not follow the scientific method directly, posing hypotheses about the
real world which can be falsified based on observation. Energy system models
are not models that aim to describe and predict observed natural processes or
the laws of nature. Instead of asking “how do real energy systems behave?”,
the research questions of interest are usually of a more speculative nature, e.g.
“which energy systems are likely to be realised in the future?” (see Question 1).
Sometimes, the questions are even of a normative nature, e.g. “what should a
future energy system look like?”.

Given this somewhat ambiguous state of affairs, it is helpful to reflect on
what energy systems and energy system models are and are not. Through
this philosophical discussion, we see that energy system models often have
hypothetical/fictional target systems — a fact it is important to be explicitly
aware of when evaluating the usefulness of modelling results. Indeed, the
idiom “modelling for insights, not numbers”[50] has become famous for good
reason.

2.1.1 Energy systems

One definition of energy systems is given by Kotzur et al. in their guide to han-
dling complexity in energy systems modelling.[51] Drawing on general systems
studies,[52],[53] they identify a system as consisting of a number of elements or
components and the interactions between them, with the interactions typically
being more complex than the individual elements. Additionally, a system is
described as having a boundary (i.e. it must be clear which elements are and are
not part of the system), but may in turn interact with its environment. As such,
onemay consider hierarchies of systems,with one system acting as a component
in a larger system (see Figure 2 in Kotzur et al.[51] for an illustration).

Energy systems in particular can take many forms, that is, there are different
types of energy systems with different sets of components, interactions and
system boundaries. Still, there are enough commonalities between these large
classes of energy systems that they can sensibly be studied (and modelled) in
some generality. We define energy systems as follows:

Definition 1. An energy system is a system comprising one or more components
extracting energy or energy carriers (e.g. electricity, heat, natural gas), one or
more consumers of energy (e.g. households, industry, cars) and any number of
related components converting, transporting or storing energy.

We may apply the above definition equally to systems that currently exist
(i.e. the components and their relations can be found in the real world) and
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hypothetical systems that may or may not come to exist in the future.

In simplified terms, we can imagine an energy system having a rather “linear”
form where energy is first produced1, then transported and/or converted, and
finally consumed.[48] Left up to interpretation in the above definition are the
system boundaries, and this is where individual energy systems diverge widely.
Energy system boundaries consist of at least the following facets:

Energy carriers: Which energy carriers are seen to be part of the system?
Typically at minimum electricity, but could include heat, natural gas,
hydrogen, etc.

Production scope: At which components is energy introduced into the sys-
tem? Different points include production of primary energy (renewable
energy generation, natural gas wells, coal mines), fuel-based electricity
generation (natural gas turbines, hydrogen fuel cells) or other sources
such as imports or a grid connection.

Consumption scope: At which components is energy consumed? This could
be the distribution grid in aggregate, households, industry, consumers of
industrial output, etc.

Spatial scope: Spatial location and extent of the system under consideration.
In terms of extent, there is room to consider global systems all the way
down to individual buildings.

A final dimension which might or might not be considered part of the system
boundaries is that of time. Sometimes we consider energy systems as static,
time-less entities (a “snapshot” of a past, present or hypothetical energy system),
whereas other times we consider energy systems (either real or hypothetical)
as evolving over time. One may distinguish between short-term time horizons,
where the components of the system stay the same but their operations are
considered on a time scale of minutes, hours or days, and long-term horizons
where the structure of the system itself changes over the course of years or
decades.

Table 2.1 gives an overview of the boundaries of the energy systems studied in
the paper included in this thesis, following the above classification. As can be
seen from the table, the articles all encompass a large spatial scope, though the
spatial resolution is correspondingly low, aggregating all individual components

1. Physically, energy is always conserved and not “produced” from nothing. In keeping with
common conventions, we still often refer to extraction of energy as “energy production” in
the context of energy systems: the point where energy is introduced into the system.
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Carriers Production Consumption Spatial

“1: Intersections” Electricity Renewables, nuclear &
natural gas turbines

Fixed load on
transmission grid

Europe2

“2: Weather” Electricity Renewables & nuclear Fixed load on
transmission grid

Europe2

“3: Trade-offs” Elec., heat,
others

Renewables, nuclear &
fossil fuel
extraction/imports

Fixed demands
for various energy
carriers

Europe2

“4: Pathways” Elec., heat,
others

Renewables, nuclear &
fossil and green fuel
extraction/imports

Fixed demands
for various energy
carriers

Europe3

“5: Exports” Elec., heat,
others

Renewables, nuclear &
fossil fuel
extraction/imports

Fixed demands
for various energy
carriers

Norway+⁴

Table 2.1: An overview of the boundaries of the energy systems investigated in the
articles included in this thesis. Here, the “others” category in Carriers
includes natural and synthetic gas, fossil oil and synthetic fuel, biomass,
hydrogen, ammonia and methanol.

and demand to a regional or national level. Some of the articles deal only with
the electricity sector directly, while others consider other energy carriers as
well.

There are many interactions between energy systems and their environment.
One dynamic of particular importance is the entanglement between energy
systems and the global carbon cycle. At the most basic level, an energy system
can have a one-way interaction with the carbon cycle by emitting CO2 through
the burning of fossil fuels. Energy systems with a larger scope (and especially
future energy systems closer to net carbon neutrality) interact with the carbon
cycle at more points through carbon capture, utilisation and storage/sequestra-
tion⁵. As such, it may at times be useful to consider an “extended energy system”
including not only the flow of energy but also the flow of anthropogenic carbon
in the same spatial scope. Carbon may enter this system through various means
(fossil fuels, biomass, direct air capture) and likewise exit the system through
CO2 emissions to the atmosphere, by sequestering CO2 underground, etc. See

2. Specifically: the EU in addition to Albania, Bosnia and Herzegovina, Montenegro, North
Macedonia, Norway, Serbia, Switzerland and the United Kingdom

3. Specifically: the EU excluding Cyprus, Luxembourg and Malta but including Norway,
Switzerland and the United Kingdom

4. Specifically: Denmark, Finland,Germany,Norway, Sweden, the Netherlands and the United
Kingdom

5. CO2 may be stored temporarily, e.g. in pressurised tanks, or may be sequestered, that is,
pumped underground and stored away almost permanently.
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Energy
production

Conversion,
transportation, etc.

Energy
consumption

Energy system

Carbon cycle

Interactions with
environment

Figure 2.1: An illustration of an energy system, including the interaction with the
carbon cycle.

Figure 2.1 for an illustration.

2.1.2 Energy systemmodels

In order to study real and hypothetical energy systems, it is convenient to
employ models. Philosophically speaking, it is not easy to define what a model
is⁶; at a bare minimum, a model is a simplified representation of some aspect
of reality or some system or class of systems. In our case, we are interested in
models for energy systems, both real and hypothetical. Note that one model
typically represents many similar systems (for instance, all possible systems
with a specified structure). When a model represents its target system well
enough,we can study the model to learn about the target system. In many cases,
energy systemmodels are not only used to help understand their target systems,
but also as a way of efficiently exploring many different alternatives.

Following Definition 1, a model of an energy system typically consists of a
collection of models of the components of the target system(s), together with
models for a subset of the interactions between these components, and the
interactions with the system environment.

6. See the Stanford Encyclopedia of Philosophy for an excellent discussion of various types
of models and how to define them.[54]
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A wide variety of different energy system models exist, falling into different
categories depending on their purpose and formulation. In the broadest sense,
one may distinguish between operations and planning⁷ models, depending on
whether the components of the target system are considered to be fixed, or
whether one or more is subject to change. This thesis focuses entirely on the
latter category. In planning models, there could be one or multiple planning
horizons, i.e. discrete points in time where the components of the system are
changed.

A slightly fuzzier distinction could be made between so-called top-down and
bottom-up models. Herbst et al.[55] provide a good overview of this categori-
sation, and identify several sub-categories. Top-down models generally have
highly aggregated representations of the physical components of the target
system, while focusing more on the high-level dynamics over time between
the components and the system environment. Such models typically employ
economic theory to track prices, growth, demographic development, etc., and
usually target systems with national to global spatial scope. Bottom-up models,
on the other hand, are distinguished by their relatively high level of tech-
nological detail (concentrating on more accurate representation of physical
infrastructure over time and space), while focusing less on the macroeconomic
forces considered in top-downmodels. Somemodels may blur the lines between
these two categories. The articles in this thesis use a bottom-up model.

Energy system models may be categorised by their mathematical structure⁸.
Themajority of energy systemmodels in use today are optimisation models[56] —
also the type used in this thesis. However, other types exist, such as multi-agent
models and partial equilibrium models. Several surveys and categorisations
have been published on the topic,[56]–[59] and it is outside the scope of this
thesis to give a comprehensive account of all possible types of models and their
uses in the literature.

Definition 2. An energy system optimisation model (ESOM) consists of a set
of representations of energy systems (usually called the feasible space), as well
as an objective function which maps each feasible system to a real number
representing some quantity of interest — typically cost.

Strictly speaking, an energy system optimisation model might be considered a
set of models together with an objective function. In practice, the individual

7. There is no standard terminology for “planning” models; operations models are sometimes
also called “simulation” models.

8. While models can take many forms such as scale models, analogies, and descriptions,[54]
energy system models are almost exclusively mathematical in nature, in that some math-
ematical structure (a collection of mathematical objects and equations describing their
relations) is taken to be the simplified reflection of the target system(s).
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elements of the feasible space usually follow the same structure, in that each
element represents a system with the same set of components, but may differ
in the sizing and operations of these components.

In our context, a single instance of an energy system is modelled as a vector 𝑥 ∈
R𝑛, each coordinate representing some physical quantity in the target system,
such as the nameplate capacity of a power plant or the amount of electrical
current flowing through a transmission line at a particular point in time. The
feasible space, then, is simply a subset of R𝑛, and the objective function is a
function 𝑐 : R𝑛 → R. Such a model can be solved by finding a feasible system
minimising or maximising the objective function. The practical difficulty of
solving an optimisation model depends on the structure of the feasible space
and objective function, as well as the dimensionality 𝑛. Sometimes, the ESOM
can include multiple objective functions, which leads to the field of multi-
objective optimisation.[60]

As defined here, an energy system optimisation model is is a set of points
𝑀 ⊂ R𝑛 together with an objective function 𝑐 : 𝑀 → R. In practice, models
(𝑀,𝑐) are almost always parametrised over certain sets of assumptions (e.g.
costs, technological parameters, land use constraints, etc.); the result is some-
times called a model generator.[61] For example, PyPSA-Eur[42] can be seen
as a model generator; running the data workflow for a particular configura-
tion of parameters produces a concrete model. Some model generators are
in turn based on so-called model frameworks, which are software packages
facilitating the formulation of model generators. Examples include PyPSA[43]

and Calliope.[62]

2.2 Basics of energy system optimisation models

The goal of this section is to introduce a simple, explicit example of an energy
system optimisation model consisting of variables, constraints and an objective
function written out fully. Our example will include energy generation, storage
and transmission between different nodes. However, for a much more complete
reference on the topic, see e.g. Kirschen et al..[63]

Planning models (as opposed to operations models) are instances of the ca-
pacity expansion problem. Recall that an optimisation problem in all generality
consists of a feasible space 𝑀 ⊂ R𝑛 and an objective function 𝑐 : 𝑀 → R.
The coordinates of each feasible point 𝑥 ∈ 𝑀 ⊂ R𝑛 are called the decision
variables of the problem. In a capacity expansion problem, there are two types
of decision variables: capacity expansion variables, and operational variables.
The capacity expansion variables represent components of the target system
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that can be expanded, such as new power plants being built or transmission
lines reinforced. The operational variables each represent the operational state
of a particular component at a particular time, such as the output of a power
plant or the state of charge of a battery.

In the simplest form of capacity expansion problems, the feasible space of the
optimisation problem is defined by linear constraints and the objective function
is also linear in the decision variables, resulting in a linear program (LP). We
start by explicitly writing down a simple example, and gradually add more
functionality (variables, constraints) to the problem in order to represent more
involved energy systems.

ESOMs are defined over a discrete number of time-steps 𝑡 ∈ {1, . . . ,𝑇 }; these
could for instance be the hours in a year. Let a fixed energy demand 𝑑𝑡 be
given for each time step. Next, assume we have 𝑁 generators with maximum
capacities 𝑔max (in MW) for 𝑖 ∈ {1, . . . , 𝑁 }. Each generator has a variable cost
𝑐𝑖 (€/MWh) of producing energy, and its capacity may be expanded for a cost
of 𝐶𝑖 (€/MW). This expansion cost is typically annualised. Finally, let 𝑢𝑖𝑡 be
the capacity factor of generator 𝑖 at time 𝑡 , meaning the fraction of nominal
capacity available at that time.

Let the capacity expansion variables be 𝑔𝑖 (MW); the optimised size of each
power plant. Let 𝑥𝑖𝑡 (MW) be the operational variables, indicating the power
output of the 𝑖th generator at time step 𝑡 . Then a complete capacity expansion
problem can be formulated as follows:

Minimise:∑
𝑖 𝐶𝑖 · 𝑔𝑖 +

∑
𝑖,𝑡 𝑐𝑖 · 𝑥𝑖𝑡

Such that:∑
𝑖 𝑥𝑖𝑡 ≥ 𝑑𝑡 for all 𝑡 ∈ {1, . . . ,𝑇 }
𝑥𝑖𝑡 ≤ 𝑢𝑖𝑡 · 𝑔𝑖 for all 𝑡 ∈ {1, . . . ,𝑇 } and 𝑖 ∈ {1, . . . , 𝑁 }
𝑔𝑖 ≤ 𝑔max

𝑖 for all 𝑖 ∈ {1, . . . , 𝑁 }
𝑥𝑖𝑡 , 𝑔𝑖 ≥ 0 for all 𝑡 ∈ {1, . . . ,𝑇 } and 𝑖 ∈ {1, . . . , 𝑁 }

(2.1)

More abstractly, an LP such as the above can be written as “min 𝑐 ·𝑥 s.t. 𝐴𝑥 ≤ 𝑏”,
where 𝑐, 𝑥 and𝑏 are vectors and𝐴 a matrix; each row of𝐴 encodes a constraint
and each column a variable.

As a next step, let us incorporate multiple locations (nodes), and a transmission
grid connecting them. We can regard the nodes and the transmission lines as
forming a directed graph (the orientation of the edges does not matter except
as a sign convention). Let 𝑛 index the nodes in our model so that we now
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have demand, production and capacity variables given by 𝑑𝑡𝑛, 𝑥𝑖𝑡𝑛 and 𝑔𝑖𝑛,
respectively. Furthermore, let ℓ index the lines/edges in our model. Now, we
can let the decision variables 𝑓𝑡ℓ (MW) denote the active power flow along line
ℓ (positive in the direction of ℓ) at time 𝑡 . Let 𝐹ℓ (MW) denote the maximum
capacity of line ℓ . For notational convenience, let 𝐾𝑛ℓ denote the entries in the
incidence matrix of our directed graph. That is, 𝐾𝑛ℓ = 1 if link ℓ ends at node
𝑛 and 𝐾𝑛ℓ = −1 if link ℓ starts at node 𝑛.

A capacity expansion problem with multiple nodes and transmission can then
be formulated as follows (omitting the indices for brevity):

Minimise:∑
𝑖,𝑛𝐶𝑖𝑛 · 𝑔𝑖𝑛 +

∑
𝑖,𝑡,𝑛 𝑐𝑖 · 𝑥𝑖𝑡𝑛

Such that:∑
𝑖 𝑥𝑖𝑡𝑛 +

∑
ℓ 𝐾𝑛ℓ · 𝑓𝑡ℓ ≥ 𝑑𝑡𝑛

𝑥𝑖𝑡𝑛 ≤ 𝑢𝑖𝑡𝑛 · 𝑔𝑖𝑛
𝑓𝑡ℓ ≤ 𝐹ℓ

𝑓𝑡ℓ ≥ −𝐹ℓ
𝑔𝑖𝑛 ≤ 𝑔max

𝑖𝑛

𝑥𝑖𝑡𝑛, 𝑔𝑖𝑛 ≥ 0

(2.2)

In the above, we take the capacities 𝐹ℓ to be constant; they might as well be
treated as capacity expansion variables in their own right.

The above formulation uses the most simplistic way of modelling electricity
transmission; a so-called transport model. In reality, active power flow between
two nodes is not decided outright by the grid operator, but is a function of the
phase angle (voltage angle) between those nodes (as well as the conductance
and susceptance, or, equivalently, the resistance and reactance of the line), and
the sum of the phase angles over any circuit in the grid must sum up to 0 (Kir-
choff’s Voltage Law).[64] Under a number of simplifications and linearisations,
one can approximate

𝑓ℓ ≈
𝜃𝑛 − 𝜃𝑚
𝑥ℓ

(2.3)

where 𝑥ℓ is the reactance of line ℓ and 𝜃𝑛, 𝜃𝑚 are the phase angles at either end
of the line. This constraint can be added directly to Equation 2.2 (adding 𝜃𝑛 as
decision variables), but other options are also available in order to implement
Kirchoff’s Voltage Law. See Neumann et al.[65] for an in-depth comparison
of various transmission formulations, as well as consideration of transmission
losses.

The last major component we have not yet touched on is energy storage. This
could be added through capacity expansion variables 𝑒𝑖𝑛 (MWh) and 𝑠𝑖𝑛 (MW)
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representing the size and charge/discharge capacity of the 𝑖th storage unit
at node 𝑛. Let 𝐶 (𝑒 )

𝑖𝑛
and 𝑆 (𝑠 )

𝑖𝑛
be their respective capital costs. Let 𝑥 (𝑖 )

𝑖𝑡𝑛
≥ 0

and 𝑥 (𝑜 )
𝑖𝑡𝑛

≥ 0 be charging and discharge rate in MW, respectively. Let 𝑦𝑖𝑡𝑛 be
the state-of-charge of storage unit 𝑖 at node 𝑛 and time 𝑡 . Finally, let 𝜂𝑖𝑛 be
discharge efficiency. Then we could reformulate the objective function as

∑︁
𝑖,𝑛

(
𝐶𝑖𝑛 · 𝑔𝑖𝑛 +𝐶 (𝑒 )𝑒𝑖𝑛 +𝐶 (𝑠 )𝑠𝑖𝑛

)
+
∑︁
𝑖,𝑡,𝑛

𝑐𝑖 · 𝑥𝑖𝑡𝑛, (2.4)

and the demand constraint as∑︁
𝑖

(
𝑥𝑖𝑡𝑛 + 𝜂𝑖𝑛 · 𝑥 (𝑜 )

𝑖𝑡𝑛
− 𝑥 (𝑖 )

𝑖𝑡𝑛

)
+
∑︁
ℓ

𝐾𝑛ℓ · 𝑓𝑡ℓ ≥ 𝑑𝑡𝑛 . (2.5)

We limit 𝑥 (𝑜 )
𝑖𝑡𝑛

and 𝑥 (𝑖 )
𝑖𝑡𝑛

by 𝑠𝑖𝑛, analogous to generators. The state-of-charge is
handled by setting 𝑦𝑖𝑡𝑛 ≤ 𝑒𝑖𝑛, and introducing the constraint

𝑦𝑖,𝑡,𝑛 = 𝑦𝑖,𝑡−1,𝑛 + 𝑥 (𝑖 )
𝑖𝑡𝑛

− 𝑥 (𝑜 )
𝑖𝑡𝑛

for all 𝑡 ∈ {2, . . . ,𝑇 }, (2.6)

preserving the state-of-charge from one time-step to the next. Optionally, one
could also add a standing loss to the above by e.g. substituting (1 − 𝛿)𝑦𝑖,𝑡−1,𝑛
for 𝑦𝑖,𝑡−1,𝑛 for some percentage loss 𝛿 .

Many other types of constraints could be added to the above LP; we do not give
an exhaustive overview here. Examples include global constraints to limit cer-
tain types of generation, such as in order to limit emissions, global constraints
limiting the total build-out of certain types of generators, or constraints enforc-
ing some variation of import/export balance.

While the above LP is designed for a power system (i.e. only electricity gener-
ation, transmission, and demand are modelled), LPs with a similar structure
can be created to model systems with multiple energy carriers. In such cases,
controllable links (similar to transmission lines in the transport model) with
conversion factors are typically used to convert from one energy carrier to
another.

We restrict our attention to pure linear programs in this thesis, but more
complex behaviour can be achieved using, for instance, integer variables, non-
linear objective functions or other features making the optimisation non-linear.
This naturally impacts solving time.
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2.3 Spatial and temporal aggregation

LPs can be solved quite efficiently; they were famously proved to be solvable in
polynomial time through the ellipsoid method by Khachiyan in 1979.⁹ Modern
interior point methods can solve LPs with millions of constraints and variables
in a matter of minutes or hours. Still, problem size needs to be kept under
control, and the number of variables and constraints can quickly add up. As a
simple example, consider a model with 100 nodes, 8760 time steps (one for each
hour in a year) and 5 different components at each node. This already results
in 100 ·8760 ·5 = 4,380,000 operational variables. While still surmountable for
good LP solvers, having orders of magnitude more variables quickly becomes
impractical.

Moreover, it bears mentioning that LP solvers have not benefited as greatly from
hardware improvements as many other applications. This is because increasing
hardware capabilities since the mid-2000s has mainly stemmed from larger
numbers of processing cores, while CPU frequency has largely flattened.[51]
LP solvers spend most of their time on large matrix factorisations, however,
and current state-of-the-art solvers are not able to exploit parallelism beyond
about 16 threads.[67] While progress has been made on more parallelisable and
distributable solving algorithms,[67] such methods are not yet broadly applied
in the field of energy systems modelling.

Europe counts more than 7000 power plants.[68] Some aggregation is thus
needed in order to produce a model that can be solved effectively. Typically,
one uses a combination of spatial aggregation (reducing the number of nodes)
and temporal aggregation (reducing the number of time steps). One could
consider the study of the most effective aggregation strategies as a research
field on its own.[69]–[72] Abstractly speaking, aggregation in the context of
LPs means substituting sets of constraints and/or variables (corresponding
to sets of rows and columns in the coefficient matrix 𝐴, respectively) for a
smaller number of representative constraints/variables.[73] A priori, there is no
guarantee that such aggregation results in an LP with solutions that are optimal
or even feasible in the original LP. The challenge is finding an aggregation
scheme which yields results that are close enough to feasible and optimal for
practical purposes. Kotzur et al. give an excellent overview of aggregation in
ESOMs as of 2021,[51] touching on both spatial and temporal aggregation.

There are generally two dimensions of spatial aggregation. The number of
generators or other components can be reduced (e.g. grouping generators
with similar characteristics that are located at the same model node), and the
number of model nodes can be reduced (grouping nodes with similar demand

9. See Grötschel et al.[66] for an exposition.
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profiles and sets of generators). Frysztacki et al.[74] study various combinations
of both techniques in the context of the European power system, also providing
a brief overview of different clustering algorithms applied to spatial aggregation
in ESOMs.

Temporal aggregation has receivedmore attention in the literature; a review[69]

by Hoffmann et al. lists 129 publications on the topic between 1999 and 2019.
In early models it was common to reduce model size by only modelling a few
representative hours or days a year. This works well for systems with little
temporal interdependence and small spatial scales. The state-of-charge cannot
be tracked under naive use of representative periods, however, and over large
geographical regions, typical periods become less and less representative. Some
progress, however, has been made on various methods to link states-of-charge
between chronologically ordered representative periods; see Section 3.2.4 in
the above-mentioned review. The alternative is aggregating neighbouring time-
steps, either uniformly (e.g. reducing temporal resolution from 1-hourly to
3-hourly) or via some clustering scheme resulting in time-steps of varying
lengths. The two approaches may also be combined by first selecting a number
of representative periods, and then reducing the time-resolution within each
representative period.[75]

After having decided on an overall aggregation strategy (representative periods,
merging neighbouring periods, some combination), one needs to decide how
to actually construct the reduced set of time-steps. In the case of a uniform
time resolution reduction (e.g. 1- to 3-hourly), this is rather trivial. When using
representative periods, a common method is to use some clustering algorithm
(k-means, hierarchical, etc.) to cluster all available periods, and choose cluster
centres (mediods / centroids) as representative periods.[70] This is sometimes
combined with the selection of more “extreme” periods in order to better
capture the variability in the full set of available periods; see Section 4.1.1 in
the aforementioned review.[69]

2.4 Accounting for uncertainty

Energy systems modelling is an exercise in simplification, which necessarily
leads to some deviations from the actual energy systems of interest. But
simplification is far from the only potential source of error we have to contend
with.

As previously explained, planning models have hypothetical target energy
systems which are meant to represent plausible realisations of future energy
systems; say, a net-zero European energy system in 2050. Such models are
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only useful to the extent that their target systems might actually be realised.
For example, we could model with cheap fusion energy by 2050, but this is
so unlikely[76],[77] as to be of little value for decision-making. Oftentimes, it
is less clear what is plausible and what is not. For example, how will climate
change impact mean wind speeds around the North Sea? Given the unclear
magnitude of future climate change as well as an incomplete understanding
of its impact on wind speeds,[31],[78],[79] this is an example of uncertainty that
should be accounted for in energy systems planning.

2.4.1 Uncertainty and sensitivity analysis

In the context of energy systems modelling, uncertainty is usually thought of
as influencing the environment and exogenous factors impacting the target
energy system. Once those external factors are fixed, however, an energy system
optimisation model is deterministic in nature. Thus if the planning horizon is
2050, the modeller needs to make certain choices about parameters such as
weather and climate, technology costs, demand patterns and more, and these
parameters may be subject to more or less uncertainty. Rather than choosing
single values for each parameter (possibly carrying bias), we can also consider
ranges or distributions.

Thinking about an ESOM as a feasible space 𝑀 and objective function 𝑐,
uncertain parameters may influence both 𝑀 and 𝑐, or both the coefficients 𝐴,
bounds 𝑏 and objective 𝑐 in a linear program. Formally, it is useful to consider
choices for all parameters (costs, capacity factors, demand profiles, etc.) as
points 𝑝 in some parameter space P ⊆ R𝑚, and the coefficients, bounds and
objective function making up a linear ESOM as functions of 𝑝, such that the LP
is now written as min 𝑐 (𝑝) · 𝑥 s.t. 𝐴(𝑝)𝑥 ≤ 𝑏 (𝑝). The optimum value of the LP,
𝑐opt, is then itself a function 𝑐opt(𝑝) of the parameters 𝑝 (though by no means
a linear function!). LPs do not generally have a unique optimum but rather
an optimal facet; letting 𝑋 opt be the set of optimal solutions to the LP (that is,
𝑋 opt = {𝑥 ∈ R𝑛 | 𝐴𝑥 ≤ 𝑏 and 𝑐 · 𝑥 = 𝑐opt), this set would also be a function of
the parameters: 𝑋 opt(𝑝).

The parameter space P is often implicitly or explicitly equipped with a proba-
bility distribution; for the purpose of exposition, it is simplest to consider finite
P with a discrete probability distribution defined in terms of a probability
density function P(𝑝) ∈ [0, 1] (with

∑
𝑝∈P P(𝑝) = 1). Often, it is difficult to

estimate the “true” probability distribution underlying the parameters, and we
are left with best guesses. It is now natural to ask about the distribution of the
random variable 𝑐opt(𝑝) —what, for instance, is the expected total system cost
E (𝑐opt(𝑝))? When the probability distribution on P represents our best guess
at how factors such as climate, costs and demand could develop into the future,
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then E (𝑐opt(𝑝)) represents our best guess at the expected minimum cost of
a future energy system. The distributions of other properties of ESOMs apart
from optimal value 𝑐opt may likewise be studied under uncertainty. Usually one
cannot hope to calculate such values in closed form (optimal solutions being a
non-linear function of 𝑝), and we are left estimating their values by means of
Monte Carlo simulations or similar techniques.

Commonly, we are not only interested in the distribution of optimal system
designs, but also in the relative importance of various parameters. For exam-
ple, does the cost of solar panels or the cost of natural gas have a greater
impact on optimal system design? This can help our understanding of how
energy systems interact with their environment, and help identify the most
important risk factors for energy systems planning. Analysing the relative im-
portance of parameters is called sensitivity analysis, whereas quantifying the
distributions of model outputs or characteristics is sometimes called uncertainty
analysis.[80]

For sensitivity analyses, one usually considers a limited number of individual
parameters (𝑝1, 𝑝2, . . . , 𝑝𝑘 ) = 𝑝 ∈ P. The general question is then how impor-
tant each parameter is to the model solution characteristic of interest (such
as the optimal system cost 𝑐opt(𝑝)). This question can be made more specific
in a few different ways. A common approach is to fix the parameters to some
baseline value (𝑝1, . . . , 𝑝𝑘 ) = (𝑏1, . . . , 𝑏𝑘 ), and then vary each 𝑝𝑖 one at a time.
For instance, one could estimate the variance V

(
𝑐opt(𝑝) | 𝑝 𝑗 = 𝑏 𝑗 ∀𝑗 ≠ 𝑖

)
for

each 𝑖 by running the model for different values of 𝑝𝑖 , keeping the other 𝑝 𝑗
fixed.

While simple, the one-at-a-time method has a weakness: it may depend strongly
on the baseline point 𝑏. Generally, sensitivities may be different in different
parts of the parameter space P, while a one-at-a-time analysis only explores
a small part of P.[81] Various methods exist to assess sensitivities across P,
called global sensitivity analysis. For instance, one could estimate the variance
V𝑝𝑖

(
E𝑝∼𝑖 (𝑐opt(𝑝) | 𝑝𝑖)

)
, where the variance is taken over the 𝑖th parameter 𝑝𝑖

and the expected value is taken over all other parameters (with 𝑝𝑖 fixed). This
is in a sense the component of the overall variance of 𝑐opt(𝑝) explained by 𝑝𝑖 .
An alternative approach, used in “5: Exports”, is to perform a multi-variable
linear regression to compute coefficients 𝑎1, . . . , 𝑎𝑘 and a constant 𝐶 such that
𝑐opt(𝑝) ≈ 𝑎1𝑝1 + · · · + 𝑎𝑘𝑝𝑘 +𝐶; the coefficients are in this case a measure of
the sensitivity of 𝑐opt to each parameter. Of course, any of the above sensitivity
analyses could also be performed on some other model characteristic than
optimal system cost 𝑐opt. Global sensitivity analysis is an extensive field (with
energy systems modelling being far from the only application), and questions
abound regarding how best to sample P in order to produce the most accurate
estimates, how to reduce the sample size, etc.; we refer to Saltelli et al.[80] for
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a reference on this topic.

2.4.2 Stochastic programming

Uncertainty analysis and sensitivity analysis can explain how ESOM results vary
with changing parameters. For these analyses, it is not necessary to change
anything about the model; it typically just needs to be solved a number of
times with different parameters (in a Monte Carlo simulation or similar).
Sometimes, it is desirable to include some aspect of uncertainty into the model
outright.

In stochastic programming, the premise is to minimise the expected objective
value of an ESOM over a set of possible parameter combinations (often called
events in stochastic programming literature). A common starting point is a two-
stage stochastic linear program,[82] where some decisions are made in stage one,
and “recourse” can be taken in the second stage upon the revealing of some
previously unknown information. In the case of energy systems modelling, one
can naturally take the first-stage decision variables 𝑥 cap to be the capacity ex-
pansion variables, the second-stage decision variables the operational variables
𝑥op. Assuming that parameters 𝑝 ∈ P do not affect the capacity expansion
variables, we can write a simple two-stage stochastic program as follows:

min𝑥 cap
(
𝑐cap · 𝑥 cap + E𝑝∈P (min 𝑐op(𝑝) · 𝑥op(𝑝))

)
s.t.

𝐴cap𝑥cap ≤ 𝑏cap

𝑇 (𝑝)𝑥cap +𝑊𝑥op(𝑝) ≤ 𝑏op(𝑝)
(2.7)

Here, the expectation in the objective function is of the objective function of a
purely “operational” optimisation problem where the installed capacities 𝑥 cap
have been fixed. Thematrices𝑇 (𝑝),𝑊 define the coefficients in this operational
problem; 𝑇 (𝑝) is called the transition matrix determining how

A concrete example would be having tomake some investment decisions subject
to uncertain future fuel prices, wind conditions or hydro-power reservoir levels;
with the above stochastic program it is possible to minimise the expected total
system cost over a given probability distribution on P. A stochastic program in
the above form can be rewritten as a “plain” linear programwhose size increases
with the number |P | of possible parameter realisations under consideration[82]
— in this formulation one has a separate set of operational variables 𝑥op,𝑝
for each 𝑝 ∈ P. Since the first-stage capacity variables 𝑥cap of a solution to
Equation 2.7 are feasible for any scenario 𝑝 ∈ P, stochastic programming can
help find robust solutions, though the cost for single scenarios may be high as
long as the total expected cost across P is low.
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2.5 Near-optimal methods

As laid out in Chapter 1, one of the main aims of this thesis is to take advantage
of near-optimal solutions of ESOMs. One of the first techniques used to explore
near-optimal solutions systematically is calledmodelling to generate alternatives
(MGA), and was originally developed by Brill in the late 70s[17] and applied
to problems in land and water management. DeCarolis was the first to apply
MGA to the domain of energy systems modelling,[18] while Neumann et al.[20]

popularised the term near-optimal feasible space in the field of energy systems
modelling. Recently, Pedersen et al.[21] were the first to attempt to fully map
out the near-optimal feasible space of an ESOM.

In an ESOM defined as a linear program min 𝑐 · 𝑥 st. 𝐴𝑥 ≤ 𝑏 with an optimal
value 𝑐opt, the 𝜀-near-optimal space of the linear program is

F𝜀 =
{
𝑥 ∈ R𝑛 | 𝐴𝑥 ≤ 𝑏 and (1 + 𝜀)𝑐 · 𝑥 ≤ 𝑐opt

}
. (2.8)

The near-optimal space is obtained from the feasible space of themodel (defined
as {𝑥 ∈ R𝑛 | 𝐴𝑥 ≤ 𝑏}) by adding the single constraint (1 + 𝜀)𝑐 · 𝑥 ≤ 𝑐opt; a
bound on total system cost depending on the cost slack 𝜀. Each point in F𝜀 is
a near-optimal feasible solution. The feasible space of an LP is a polyhedron;
for energy system models we can safely assume that their feasible spaces are
polytopes (i.e. bounded polyhedra; no variables are unbounded). Then, F𝜀 is
also a polytope.

In general, large ESOMs may have millions of decision variables, meaning
that F𝜀 is a subset of a very high-dimensional space. It is thus helpful to
consider projections of F𝜀 onto a smaller number of dimensions. Following the
terminology of “1: Intersections”, let 𝜋 : (𝑥cap, 𝑥op) ↦→ 𝑥cap be the linear map
forgetting about operational variables, and

F ′
𝜀 = 𝜋 (F𝜀) = {𝑥cap | (𝑥cap, 𝑥op) ∈ F𝜀} . (2.9)

This is the lower-dimensional polytope of all capacity decision vectors 𝑥 cap for
which there exist operations 𝑥op such that the resulting solution is feasible and
near-optimal.

Often, F ′
𝜀 may still be too high-dimensional (i.e. there may be dozens or

hundreds of capacity decision variables), and we can further reduce this by
a linear map 𝜎 , which could, for instance, aggregate all capacity variables of
a certain type (say, all wind power capacities). This results in the reduced
𝜀-near-optimal feasible space A𝜀 = 𝜎 (F ′

𝜀 ); again a polytope.

While it is easy to define A𝜀 , just formulating an ESOM as a linear program
does not automatically give rise to an explicit description of A𝜀 as the convex
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hull of a set of vertices. In general, the best we can do is to solve the original LP
with various different objective functions and learn one new vertex of A𝜀 for
each optimisation. Specifically, for a direction (vector) 𝑑 in the ambient space
of A𝜀 we can solve the LP

max𝑑 · 𝑦 s.t. 𝜎 ◦ 𝜋 (𝑦) = 𝑥 and 𝑥 ∈ F𝜀 . (2.10)

A solution 𝑦∗ to the above is an extreme point of A𝜀 in the direction 𝑑;
equivalently, in the intersection ofA𝜀 and its supporting hyperplane normal to
𝑑. Note, however, that the above optimisation problem has as many variables
as the original LP, and is no easier to solve. In “1: Intersections”, we investigate
how to “explore” A𝜀 efficiently using a limited number of optimisations.

In the literature, some reduced space A𝜀 is usually explored primarily in the
directions parallel to the axes; for instance, exploring maximum and minimum
total installed solar and wind capacities.[20],[83] Another common approach is
to find “maximally different” points in F ′

𝜀 by starting with one point 𝑥1 on
the boundary (say, an optimum) and then choosing a direction 𝑑1 pointing
“away” from 𝑥1 in some sense, obtaining the point 𝑥2 and repeating this
procedure.[18],[19],[84] This is known as the Hop-Skip-Jump method.

Near-optimal methods are being developed actively; see Lau et al.[85] for a
recent review on the topic. Challenges remain in terms of computational com-
plexity, applications and communication; Section 4.2 lists a few open questions
and future research directions.





3
Results

Money, money, money
Always sunny
In the rich man’s world

— ABBA, Money Money Money

While Subsection 1.4.1 already gives a preview of the research contribu-
tions of each article included in this thesis, we revisit the results here

from a more technical point of view. The results are organised thematically
instead of paper by paper. This chapter is only meant to give an overview of
the most important results in each article; see the articles in full for a complete
account.

3.1 Near-optimal spaces

Both “1: Intersections”, “3: Trade-offs” and “4: Pathways” contribute signifi-
cantly to the literature on near-optimal spaces in energy systems modelling,
helping to answer Question 1. In the first of these articles, we introduce the
dimension-reduction framework presented in Section 2.5 in terms of reduced
near-optimal spaces, which were only used implicitly in previous publications.
Viewing reduced near-optimal spaces as explicit low-dimensional polytopes that
can be approximated and subsequently analysed as geometric objects opens
up new, previously unexploited opportunities. The headline technique using

31
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this geometric perspective, introduced in “1: Intersections”, is the possibility of
intersecting reduced near-optimal spaces of variations of the same model, for
instance with different parameters (see Subsection 2.4.1). The resulting inter-
section consists of points that are feasible for each considered model variation
— the applications to robustness are discussed in Section 3.2 Moreover, the
intersection approach enables the approximate computation of cost-optimal
system designs that are feasible for all model variations considered, while such
an optimisation with a single combined model might be computationally in-
tractable. This was shown in “1: Intersections” in the case of computing system
designs feasible for all weather years from 1980 to 2020.

Suppose that points 𝑦,𝑦′ ∈ A𝜀 are obtained via two model optimisations
with different objectives. Then it follows from convexity (since A𝜀 is a convex
polytope) that any linear interpolation 𝑦′′ = 𝑟𝑦 + (1 − 𝑟 )𝑦′ is also in A𝜀 . The
point 𝑦′′, however, is in the reduced, low-dimensional space A𝜀 . It does not
give us a full system design in F ′

𝜀 (or complete solution, including operations,
in F𝜀). All we know is that there exists some 𝑥 ′′ ∈ F𝜀 such that 𝜎 ◦𝜋 (𝑥 ′′) = 𝑦′′.
In “1: Intersections”, we consider for the first time the problem of finding such
an explicit solution 𝑥 ′′, including in the case of points in the intersection of
several reduced near-optimal spaces. This was applied not in the case of linear
interpolations, but with 𝑦′′ representing a centre point of the intersection of
several near-optimal spaces (see Section 3.2).

Another technique that is enabled by the geometric interpretation of near-
optimal spaces is that of singling out one variable, and observing how changes
in this variable impact the shape of the near-optimal space in terms of the
remaining variables. Specifically, let A = A𝜀 ⊂ R𝑘 be a reduced near-
optimal space with coordinates 𝑦1, . . . , 𝑦𝑘 . Then we can consider the level sets
A𝑦𝑖=𝛼 = {(𝑦1, . . . , 𝑦𝑘 ) ∈ A | 𝑦𝑖 = 𝛼} for𝛼 betweenmin𝑦∈A 𝑦𝑖 andmax𝑦∈A 𝑦𝑖 .
For example, we could have 𝑦1, 𝑦2, 𝑦3 represent total installed onshore wind,
offshore wind and solar capacities in GW. Then A𝑦2=10 would represent all
points (𝑦1, 𝑦3) of onshore wind and solar capacity that are near-optimal and
feasible together with 10GW of offshore wind. In “3: Trade-offs”, we use the
mean width1 𝛿 (𝑖, 𝛼) = 𝛿 (A𝑦𝑖=𝛼 ) of such level sets to determine the relative im-
pacts of different technologies on design flexibility. For example, when 𝛿 (𝑖, 𝛼)
increases more rapidly than 𝛿 ( 𝑗, 𝛼) for 𝛼 between 0 and 10, then technol-
ogy 𝑖 contributes more to design flexibility than technology 𝑗 . Here, we use
“design flexibility” to refer to the extent of a near-optimal space; a larger near-
optimal space indicates more flexibility in designing a near-optimal feasible
system.

The final methodological advance we highlight here is the first application

1. Defined as the mean of the widths max𝑦∈A 𝑦𝑖 −min𝑦∈A 𝑦𝑖 for each 𝑖.
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of near-optimal techniques in combination with myopic foresight pathway
optimisations, introduced in “4: Pathways”. While terminology is not universally
agreed upon, what we mean by “pathway optimisation” here is a sequence of
models 𝑀1, 𝑀2, . . . representing hypothetical energy systems at time horizons
𝑌 = 1, 2, . . . , such that the results of 𝑀1 are used as a starting point for 𝑀2,
and so forth. Specifically, optimised capacities from 𝑀𝑖−1 are carried over to
𝑀𝑖 while phasing out older capacities; let

min 𝑐𝑖𝑥𝑖 s.t. 𝐴𝑖 |𝑥𝑖−1𝑥𝑖 ≤ 𝑏𝑖 |𝑥𝑖−1 (3.1)

denote the LP for the 𝑖 time horizon, with capacities 𝑥𝑖−1 carried over from
the previous time horizon. In the context of the next few decades, a de-
creasing cap on CO2 emissions may be imposed on successive models. For
example, in “4: Pathways” we consider the European energy system at 𝑌 =

2025, 2030, 2035, 2040, 2045, 2050 with CO2 limits following the 55%, 90%
and 100% reduction targets for 2030, 2040 and 2050 respectively. Let 𝑥∗1, 𝑥

∗
2, . . .

be cost-optimal solutions at the considered time horizons, and 𝑐opt1 , 𝑐
opt
2 , . . .

the associated optimal system costs. Then, instead of considering near-optimal
spaces for each time horizon in isolation (which would ignore the temporal
inter-dependence through the carrying over of optimised capacities), we pro-
pose looking instead at a sequence of near-optimal spaces where capacities are
carried over and cost bound is determined by 𝑥∗1, 𝑥

∗
2, . . . :

Cost-optimal: 𝑥∗1 𝑥∗2 𝑥∗3 · · ·

Near-optimal: F (1)
𝜀 F (2)

𝜀 F (3)
𝜀 · · ·

caps

cost bound

caps

cost bound cost bound

caps caps

(3.2)

To be more specific, we define

F (𝑖 )
𝜀 =

{
𝑥𝑖 ∈ R𝑛 | ∃𝑥𝑖−1 ∈ F (𝑖−1)

𝜀 s.t. 𝐴𝑖 |𝑥𝑖−1𝑥𝑖 ≤ 𝑏𝑖 |𝑥𝑖−1

and (1 + 𝜀)𝑐𝑖 · 𝑥𝑖 ≤ 𝑐opt𝑖

}
.

(3.3)

That is, each point in F (𝑖 )
𝜀 is near-optimal relative to an LP with capacities

carried over from some point in F (𝑖−1)
𝜀 , while the cost bound is determined by

the sequence of cost-optimal solutions 𝑥∗1, 𝑥
∗
2, . . . .

Using this approach, it is possible to study different system evolutions or path-
ways that are guaranteed to stay within a certain cost slack of the cost-optimal
pathway at all time horizons. The technique is applied in “4: Pathways” to map
out different trajectories for European green hydrogen production.
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3.2 Robustness

The word “robustness” can mean a number of different things in the context
of energy systems modelling. Our working definition will be that an energy
system is robust against a certain event if the system is still capable of delivering
the specified amount of energy to end-users after the event, possibly with a
change in operations at reasonable cost. By “event”, we mean specifically a
change either to the environment of the system, or to the system itself. A typical
example of such an event could be a drought leading to below normal hydro
power reservoir levels (external change), a sudden increase in solar panel prices
(external change) or the outage of a transmission line (internal change). Of
course, many more specific variations of robustness can be studied depending
on the type of event and the time scale over which the event and its response
play out.

This thesis makes several different contributions on the topic of robustness,
addressing Question 2. The first is in “2: Weather”, where we introduce a
new method for identifying extreme weather events. Energy systems will
increasingly rely on variable renewable resources such as wind and solar
power, whose energy production depends on the weather at any given time.
While the variability can be smoothed out over time and space with the use
of energy storage and transmission respectively, there can still be periods
with sustained low renewable production over a large area. In Europe, the
events of greatest interest are so-called “cold doldrums” or “dunkelflauten”;
periods during the winter (meaning low solar power production) with cold
temperatures (and thus a high heating demand) and low winds (meaning
low wind power production). Such events have previously been identified by
analysing country- or continent-wide renewable power production potential or
“demand − net renewables” / “net load” (i.e. temperature-dependant demand
minus renewable potential).

We show that using a power system model to identify extreme events — thus
accounting for energy storage and transmission—makes a difference and leads
to a discrepancy in identified events compared to methods using demand −
net renewables. In order to identify events, we use shadow prices of electricity.
These are the dual variables corresponding to the electricity balance constraints
(e.g. the first constraint in Equation 2.2), indicating by how much total system
cost would increase if electricity demand were to increase by one unit at
the given time and location. “2: Weather” represents the first application
of shadow prices to the identification of extreme events in the context of a
capacity expansion model; shadow prices are shown to be comparable to the
alternative metric of lost load, but easier to obtain. Having obtained a set of
extreme periods across the historical weather years 1980–2020, we furthermore
compile sets of typical weather patterns (both using near-surface variables and
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mid-troposphere variables) to show that the identified events do not conform
in a straight-forward way to commonly considered weather regimes. This
represents a step towards bridging the gap between energy systems research
on one hand and meteorology and climate science on the other.[47]

In “1: Intersections” and “3: Trade-offs”, we construct intersections of reduced
near-optimal spaces to construct more robust energy system designs. Here, the
type of robustness considered is with respect to changes within the energy
system, and specifically changes to overall investment in renewables. The idea
introduced in “1: Intersections” specifically is that points 𝑦 ∈ A𝜀 located well
into the interior of A𝜀 are robust to changes in the coordinates of the ambient
space of A𝜀 . For example, suppose that A𝜀 ⊂ R3 has coordinates 𝑦1, 𝑦2, 𝑦3
representing total investment in onshore wind, offshore wind and solar power
in billion EUR. Let𝑦 ∈ A𝜀 be located at least 5 bn EUR away from the boundary
of A𝜀 in any direction. That means that any point 𝑦′ within a distance of 5
bn EUR of 𝑦 is still inside of A𝜀 ; on other words, it represents a set of total
investment levels in onshore wind, offshore wind and solar power that are still
feasible and near-optimal. Thus,𝑦 is robust to perturbations in total investment
in renewables of up to 5 bn EUR.

In “1: Intersections”, we propose the Chebyshev centre of A𝜀 as the most
robust point in A𝜀 ; it is by definition the point 𝑦∗ at the centre of the largest
radius ball fully contained within A𝜀 . Thus, it is the point allowing the largest
perturbation in any direction while staying inside of A𝜀 . The Chebyshev
centre 𝑦∗ is by definition more costly than the cost-optimal solution, and in
the simple electricity-only set-up in “1: Intersections”, we show that for a
European power system with a high share of renewables, the Chebyshev centre
mainly over-invests in onshore wind power and, to a lesser extent, transmission
expansion.

In “3: Trade-offs”, we consider intersections of near-optimal spaces arising from
a number of different scenarios, including scenarios with different land-use
limitations and different capital costs for wind and solar power. The points in-
side the intersection of these spaces thus represent overall investment decisions
which are feasible and near-optimal even in the face of changing technology
costs.

3.3 Policy implications

Broadly speaking, all papers included in this thesis support the position that a
net-zero emissions energy system in Europe is possible, technologically speak-
ing, by 2050 at reasonable cost, as also shown in other studies.[7],[9],[86] Not
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only is it possible; near-optimal methods reveal that there are many options
for achieving decarbonisation. Other studiesPickering et al., Neumann et al.
have already shown that many options are available; a common interpretation
is that the near-optimal space of most energy systems is quite “flat” around
the optimum, meaning that relaxing cost-optimality only a little bit quickly
creates lots of space for different options. We show that this holds true in an
even wider sense than previously understood.

In “3: Trade-offs”, we reveal extensive regional investment flexibility, showing
that for instance wind power and hydrogen infrastructure investment can be
shifted around in Northern Europe (around the North Sea and Baltic Sea)
quite freely. This is despite only considering system designs that are robust
to different weather years, restrictive solar land-use constraints and changing
capital costs of wind and solar power. The spatial flexibility highlights the
need in Europe to coordinate wind power (both onshore and offshore) and
hydrogen infrastructure investment, as some minimum wind resources are
necessary while there is also some risk of over-investment and stranded assets.
On the flip side, we show for the first time how certain technologies in certain
places can contribute disproportionately to design flexibility. For example,
investment in solar in Germany, the Iberian peninsula and around the Adriatic
is seen to be especially important; without this investment, the chances of
system inadequacy or cost overruns are increased.

Another dimension where we reveal wide-ranging options that were previously
under-explored, is European green hydrogen production (“4: Pathways”). Hy-
drogen is seen as a promising energy carrier that could play an important role
in the energy transition leading up to net-zero emissions. It can be used to
store and transport energy, and is useful for satisfying some energy demand
directly or as an intermediate product in the production of various e-fuels
such as ammonia, methanol and synthetic fuel. It could be produced inside
Europe using either electricity (water electrolysis; the product is known as
“green” hydrogen) or natural gas (steam-methane reformation; the product is
known as “grey” or “blue” hydrogen, depending on whether the resulting CO2
is captured or not), or imported. We show that wide ranges of green hydrogen
production are possible within moderate increases of total system cost, deeply
impacting the flow of energy in the entire system. Green hydrogen competes
primarily with fossil fuels combined with carbon capture and sequestration
technology, and we see that the competition is surprisingly close, meaning
that large shifts from one to the other are possible with small changes in total
system cost. This makes the balance between green hydrogen and fossil fuels
with carbon capture and sequestration a question less of cost and more of other
factors such as public acceptance, risk and who stands to gain and lose.

Indeed, the prospects of wide-ranging possibilities for green hydrogen produc-
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tion are somewhat tempered by our results in “5: Exports”. Here, we highlight
the limitations that potential Norwegian hydrogen exports face in terms of
public scepticism around wind power, competition for scarce electricity and
distributional justice, even while the technical preconditions are all there. Fo-
cusing on overall system impact, it becomes clear that Norways green hydrogen
strategy cannot be considered in isolation. If anything, the most significant
challenge for Norwegian hydrogen exports is not of a technical nature, but of
sourcing electricity in a way that is widely acceptable for the public.





4
Discussion

Strange days have found us
And through their strange hours
We linger alone

— The Doors, Strange Days

Energy systems modelling is moving forward rapidly, with new models,
methods and insights appearing ever faster. To a large degree, this is

due to the benefits of open science, which in the context of energy systems
modelling means open data, open model code and open publications. This is
especially important in fields touching on policy and decision-making, where
transparency is crucial.[41] Starting with pioneering open source models such as
BALMOREL[87] (2000) and OSeMOSYS[88] (2008), there is now a wide selection
of general purpose open source energy system models available.[16] In partic-
ular, European-wide models such as PyPSA-Eur[42],[89] and Euro-Calliope[90]
covering the electricity, heating, gas and other energy sectors at the high spatial
and temporal resolution needed to capture renewable variability now enable
research that would have been painstaking in the past. Increasingly, PyPSA-
Earth[91] is bringing these benefits to a global coverage.

These crucial improvements in “modelling infrastructure” are leading to fruitful
new insights regarding the possible design and operations of the renewables-
based energy systems of the future, showing how the variability of wind- and
solar power can be compensated for by flexibility in storage, transmission,
sector-coupling and demand response. Several of the works in this thesis

39
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(“1: Intersections”, “3: Trade-offs”, “4: Pathways”) have helped to show that in
powering Europe with renewables, there is ample room for different choices.
Wherever we look (total renewable investment by technology, regional renew-
able investment, green hydrogen production), near-optimal methods reveal
many more choices than would be visible from a cost-optimal perspective
alone.

High-resolution technology-rich modelling studies are also encountering fun-
damental limitations regarding what can and cannot easily be represented in
optimisation models. Increasingly, we see that the plausibility of modelled solu-
tions for the energy transition is less a question of technological feasibility, and
more contingent on factors such as social acceptance, equity, geopolitics (“5: Ex-
ports”) and compatibility with accepted visions for the future.[92] To point out
just one specific incongruence, optimisation models typically take the perspec-
tive of a “central planner”,missing the intricacies of how decision-making works
in reality. A large-scale analysis of publications in energy research between 1999
and 2013 found that only 12.6% of the articles used any qualitative methods;[93]
the risks of over-quantification, meanwhile, are real.[94] This prompts more
interdisciplinary work incorporating elements from social science and qualita-
tive methods.[95]–[98] The present work also pushes for more interdisciplinarity
by including collaborations across meteorology (“2: Weather”) and the social
sciences (“5: Exports”).

One of the central themes of this thesis in addressing the pitfalls of over-
quantification and modelling blind-spots is to map out the options relevant
for particular questions as fully as possible. With a good overview of what is
technically feasible, it is possible to explore non-technological questions and
trade-offs systematically. That is, near-optimal methods create room for public
and academic debate around the different options for the energy transition,
without making too many assumptions or choices in advance.

4.1 Limitations

While limitations are discussed in each individual article included in this
thesis, we list here a few elements relevant to most or all of the modelling
results throughout the papers. We focus here on limitations of a “technical”
nature, i.e., over-simplifications or blind spots of the models in accurately
representing the intended target system. The account in this section is not
meant to be exhaustive, but rather point out only the most significant recurring
limitations.

The evolution and path-dependence of energy infrastructure is only taken into
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account in “4: Pathways”, whereas the other included publication are based
on single-horizon optimisation models only accounting for a single planning
horizon (2050, except for “5: Exports”, which uses 2030 as the planning hori-
zon). It could be argued that most energy infrastructure that exists today will
be (nearly) phased out by 2050, justifying a “clean slate” approach to what
the energy system might look like by 2050. This, however, ignores potential
challenges in scaling up nascent technologies such carbon capture and stor-
age as well as green hydrogen production, distribution and processing. More
significantly, even “4: Pathways” does not adequately represent technological
learning dynamics over time. Technological learning is the cost reduction ob-
served with increasing adoption of technologies such as solar panels, wind
turbines, batteries and hydrogen technology, and is often modelled as a per-
centage cost decrease per global doubling of production of the given technology
or product. It is a fundamentally non-linear dynamic, and thus difficult to in-
clude in large-scale ESOMs. However, a study on technological learning in the
European energy sector using integer linear programming and multi-horizon
perfect-foresight optimisations has found very large effects.[99] With perfect
foresight and technological learning it becomes much more attractive to in-
vest heavily and early in key technologies in order to drive down costs; such
dynamics are not captured in the studies included in this thesis.

Another dynamic that is ignored (except for in rudimentary form in “4: Path-
ways”) is that of most types of energy imports. Except for constant-price imports
of fossil fuels (which are, however, limited due to assumed decarbonisation),
the included publications except for “4: Pathways” do not include the possibility
of importing electricity or green fuels such as hydrogen, ammonia or methanol
from outside of Europe. Such imports, however, can have a large effect on
both optimal and near-optimal system design, as explored in “4: Pathways”
and investigated in much more detail a recent preprint on the topic.[100] The
EU imported 62.5% of its energy in 2022;[101] the transition to greater shares
of renewable energy presents an opportunity to achieve complete energy self-
sufficiency (“3: Trade-offs”). On the other hand, the EU has already set a target
for imports of 10Mt (∼330 TWh in lower heating value) of green hydrogen
by 2030.[102] Exactly which fraction of energy will be imported by 2050 is a
wide-open question.

The climate impact even of green hydrogen is also a potential challenge not
accounted for in the present work. While hydrogen is not itself a greenhouse
gas, but reacts with OH in the atmosphere, forming water on one hand and
prolonging the life-time of methane on the other (which is also broken down
by OH). Recently hydrogen was estimated to have a 100-year global warming
potential of 11.6,[103] meaning that 1 kg of hydrogen has the same warming
potential as 11.6 kg of CO2 over 100 years. The emerging hydrogen economy
will therefore need to be exceedingly cautious about potential leaks. And
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while a decarbonised energy system needs some combination of green hydro-
gen production or fossil fuel use combined with carbon capture and storage
(“4: Pathways”), the latter is not free of leakage concerns either.[104] The risk
of hydrogen-, methane or CO2-leaks has not been accounted for in the included
publications.

The works in this thesis mostly use the goal of a net-zero emissions energy
system by 2050 as a baseline. However, several complicating factors are not
taken into account. While “3: Trade-offs” and “4: Pathways” consider the pos-
sibility for negative emissions through the use of biomass with carbon capture
and storage (often known as “BECCS”), the overall net emission/absorption
of CO2 from land-use and other sources not related to energy are not very
well accounted for. Indeed, land use, land use change and forestry removed
a net 230 Mt CO2-equivalent from the atmosphere in in the EU in 2021,[105]
equivalent to 7% of EU CO2-emissions that year. At the same time, it is likely
for global warming to “overshoot” the 1.5◦C target, necessitating sustained
negative emissions.[1] Thus, the target level of positive or negative net CO2-
emissions from energy systems in 2050 and beyond and subject to uncertainty;
this uncertainty is not taken into account in the present work.

Future energy demand is possibly subject to even more uncertainty; still, de-
mand is mostly held fixed in the studies included in this thesis. Energy demand
may change with changing population sizes and economic development, as
well as behavioural patterns, efficiency gains and infrastructure changes (e.g.
increased use of public transportation). The fact that drastic changes in de-
mand are possible was recently demonstrated by a 19% reduction in natural
gas demand in the EU between August 2022 and January 2023 as a response
to the Russian invasion of Ukraine and the resulting energy crisis.[106] In a
sustainable society, humanity’s physical footprint must not exceed planetary
boundaries,[107] and it has been debated[108]–[111] whether continued economic
growth (and rising or even constant energy demand) is possible within these
boundaries over the next decades.

4.2 Future directions

Any of the limitations above give rise to new avenues of research. In this section,
we take a broader perspective on promising directions for future work.

There is most likely potential for further development of methods for exploring
and exploiting near-optimal spaces of ESOMs. Some immediate improvements
might be made to the procedures for selecting directions in which to explore a
near-optimal feasible space, developed in “1: Intersections”. Moreover, it seems
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plausible that there might be more efficient ways of approximating the inter-
section of a number of near-optimal spaces than first fully approximating each
component space and then intersecting them. Rather, a “running” approxima-
tion of the intersection could be kept track of, the the optimisation directions
for exploring component near-optimal spaces could be selected based on this
running approximation. This could help avoid the unnecessary exploration
of parts of the component near-optimal spaces which don’t determine the
intersection.

Approximating near-optimal spaces is computationally expensive, typically re-
quiring hundreds of optimisations of the same model with different objective
functions. The computational expense needed to produce works such as “1: In-
tersections” and “3: Trade-offs” is in the tens of thousands of processor-hours.
Reducing the computational burden would make near-optimal research signifi-
cantly easier to conduct, and lower the barrier of entry for researchers and others.
Exciting advances have been demonstrated using “surrogate modelling”,[83]
which involves training a specialised statistical model to “scale up” the re-
sults of low-resolution models to results mimicking those of high-resolution
models. Surrogate modelling has been applied in one study on near-optimal
alternatives,[83] but not in the context of fully mapping our reduced near-
optimal spaces such as in “1: Intersections” and “3: Trade-offs”. A radical
further step could be to train a statistical model (e.g. a neural network) to
predict key solution characteristics based on objective function for a single
model, or possibly for a parametrised set of models. This may help in explor-
ing high-dimensional reduced near-optimal spaces (e.g. for 𝑛 ≥ 10) where
conventional convex hull computations become impractical; the question is
whether generating a sufficiently large training dataset is computationally
feasible.

Major advances could also be made in research on the presentation, dissemina-
tion and communication of results from near-optimal studies. It’s impossible to
draw a 5-dimensional polytope intelligibly, and generally near-optimal spaces
present the risk of creating an overload of information, both for researchers
and others. One research article that is in development but not included in
this thesis (see Subsection 1.4.3) builds on data collected using a purpose-built
interactive user interface made for exploring the near-optimal space of a model
for the Longyearbyen energy system. Another example worth mentioning is
the interactive interface accompanying a recent work by Pickering et al.,[19]
found at https://explore.callio.pe. More work in this direction could prove
fruitful.

In terms of robustness, “2: Weather” presents advances in terms of understand-
ing extreme weather events, but leaves other questions open. The single most
expensive week in each year between 1980 and 2020 explains between 18%

https://explore.callio.pe
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and 77% of total system cost in the model employed in “2: Weather”, and we
have an understanding of what kind of weather causes these short/medium-
duration events. But what, exactly, makes a weather year generally difficult is
still an open question. That is, which combination of extreme events, seasonal
variations and annual means determine system cost and design for energy
systems with a high share of renewables?

“3: Trade-offs” showcased a new method for finding (approximate) system
designs that are robust against both different weather years, changes in tech-
nology costs and different land-use limitations. Further development of this
technique could be useful. As presented, the method guarantees robustness
against every single scenario under consideration; relaxing or refining this
assumption would be more realistic (not assuming simultaneous worst out-
comes in many independent factors). This might also enable the inclusion of
more varied scenarios still, including different supply shocks, climate change
scenarios and social acceptance scenarios.

4.3 Conclusion

The world is hurtling towards an uncertain future; it is claimed that today’s
state of affairs already qualifies as a “polycrisis”.[112] The climate crisis will only
worsen.[1] Our energy systems play a central role — the energy transition is
crucial for cutting emissions, and climate change in turn will impact energy
systems through supply, demand and infrastructure damage.

While the energy transition is technically feasible, it is fraught with difficult
trade-offs and compromises. Moreover, a successful transition will require both
domestic and international cooperation on a large scale. This thesis contributes
to the factual basis supporting the transition. We highlight the large ranges
of options that near-optimal methods reveal, as well as make advances in
developing more robust options. In a small way, this helps create space for
debate around different alternatives, making it easier to agree on and swiftly
execute the drastic measures needed to prevent climate disaster.
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A B S T R A C T

We suggest a new methodology for designing robust energy systems. For this, we investigate so-called
near-optimal solutions to energy system optimisation models; solutions whose objective values deviate only
marginally from the optimum. Using a refined method for obtaining explicit geometric descriptions of these
near-optimal feasible spaces, we find designs that are as robust as possible to perturbations. This contributes
to the ongoing debate on how to define and work with robustness in energy systems modelling.

We apply our methods in an investigation using multiple decades of weather data. For the first time, we
run a capacity expansion model of the European power system (one node per country) with a three-hourly
temporal resolution and 41 years of weather data. While an optimisation with 41 weather years is at the limits
of computational feasibility, we use the near-optimal feasible spaces of single years to gain an understanding
of the design space over the full time period. Specifically, we intersect all near-optimal feasible spaces for
the individual years in order to get designs that are likely to be feasible over the entire time period. We find
significant potential for investment flexibility, and verify the feasibility of these designs by simulating the
resulting dispatch problem with four decades of weather data. They are characterised by a shift towards more
onshore wind and solar power, while emitting more than 50% less CO2 than a cost-optimal solution over that
period.

Our work builds on recent developments in the field, including techniques such as Modelling to Generate
Alternatives (MGA) and Modelling All Alternatives (MAA), and provides new insights into the geometry of
near-optimal feasible spaces and the importance of multi-decade weather variability for energy systems design.
We also provide an effective way of working with a multi-decade time frame in a highly parallelised manner.
Our implementation is open-sourced, adaptable and is based on PyPSA-Eur.

1. Introduction

The climate crisis and tumbling prices for renewable technologies
in the last decade are leading to an unprecedented shift to variable
renewable and other low-carbon energy sources. The pace and extent at
which this transition is projected to take place often corresponds to a
complete overhaul of currently existing energy systems within a few
decades. This necessitates a renewed understanding of the workings
and planning of energy systems, taking into account future unknowns
including weather, climate, costs, and politics.

In the domain of energy system modelling, grappling with these
unknowns is an open research problem which has prompted many dif-
ferent approaches. In particular, weather variability has been identified

∗ Corresponding author.
E-mail address: aleksgro@math.uio.no (A. Grochowicz).

1 Equal contribution.

to have a large impact on model solutions: cost-optimal solutions are
often fragile in the sense that modelling with one weather year can
produce solutions that are infeasible for other weather years. At the
same time, recent work involving the relaxation of cost-optimality has
revealed the opportunities and insights provided by the near-optimal
feasible space of energy system optimisation models. Still, existing
methods only map out near-optimal solutions partially or heuristically,
and a complete understanding of the theoretical and computational
trade-offs has not yet been developed.

In this paper, we introduce a methodology to study robustness of
energy systems against uncertainties in inputs and apply it to inter-
annual weather variability. To start with, we investigate methods for
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approximating projections of near-optimal feasible spaces of energy
system models. We then intersect these spaces for varying input data
to produce solutions which are feasible in all scenarios. Finally, we
propose to consider points well in the interior of this intersection as
candidate robust solutions. This geometric approach lends itself to
building increased resilience against uncertainties and perturbation in
a systematic way and generating greater flexibility for policymakers.

We are interested in the problem of long-term planning of the
European power system with a large share of renewable production
capacity in order to meet emission targets. Capacity expansion models
are often used for this purpose, in which capacities of generation
technologies, storage, and transmission are optimised. The model at the
same time ensures feasibility by simultaneously solving the correspond-
ing optimal dispatch problem over a certain time period, ‘‘simulating’’
the operations of the network. Such models are vital exploratory tools
used to shape high-level European energy policy.

In this study, we use the open-source, bottom-up energy system op-
timisation model (ESOM) called PyPSA-Eur (Hörsch et al., 2018) for our
implementation. PyPSA-Eur consists of a model-building routine based
on the PyPSA (Python for Power System Analysis) framework (Brown
et al., 2018), collecting and processing the required input data from
various sources. It assembles a faithful representation of the Euro-
pean high-voltage transmission grid and existing generation capacities,
and uses Atlite (Hofmann et al., 2021) to compute capacity factor
time series for renewable energy sources (PV, wind, hydro), based on
historical ERA5 reanalysis weather data. We use PyPSA-Eur with a
partial greenfield approach under perfect foresight, including existing
transmission (expandable), hydropower and nuclear capacities (both
non-extendable), but optimising renewables (onshore & offshore wind
power, solar power), gas turbines and storage from zero. For the
purpose of demonstrating and validating our methodology, we use a
spatial resolution of one node per country, and a 3-hourly temporal
resolution (without time aggregation). However, our techniques can be
applied also when using a significantly higher resolution and including
more technologies and energy sectors.

Usually, these types of energy system models are optimised using
one or a few historical weather years (Ringkjøb et al., 2018), or
different weather years are used for sensitivity analyses (Lombardi
et al., 2020). The issue of weather year variability has been addressed in
the literature (Pfenninger and Staffell, 2016; Pfenninger, 2017; Collins
et al., 2018; Staffell and Pfenninger, 2018; Hilbers et al., 2020; Craig
et al., 2022; Ruhnau and Qvist, 2022) and has been identified as
an important factor for ESOM outcomes (Zeyringer et al., 2018). In
particular, using only a single weather year as input data for ESOMs
can produce design solutions which are over-fitted to that year, and
are not feasible in general (Bloomfield et al., 2016; Zeyringer et al.,
2018). However, most previous studies running ESOMs with decades
of weather data have either focused on a single country such as Ger-
many (Ruhnau and Qvist, 2022), the UK (Pfenninger, 2017; Zeyringer
et al., 2018), and the US (Dowling et al., 2020) (a single-node model),
or used only a European dispatch model to solve for operations, not
capacity expansion (Collins et al., 2018). One study on the impact of
different climate scenarios applied a TIMES model for the European
power system with a decades-long modelling horizon (Simoes et al.,
2021) in which the usage of representative time slices limited the
ability to model storage and capture medium- and long-term effects.
Pickering, Lombardi and Pfenninger have recently used the sector-
coupled Euro-Calliope model in a study of the European energy system
at a 96-node two-hourly resolution (Pickering et al., 2022); the main
results were generated over a single weather year but validated using
8 additional weather years.

To the authors’ knowledge, this is the first paper to run a spatially
resolved ESOM for the European power sector with multiple decades
of weather data, without aggregating to time slices. For this analysis,
we use 41 years of ERA5 reanalysis data (Hersbach et al., 2018) for
the European continent (from 1980 until 2020 inclusive). While we

aim to find system designs which are feasible for all weather years
under consideration, we base our methods on optimisations with single
weather years in order to reduce the computational burden. However,
we are still able to optimise our model with all 41 weather years in
order to validate our approach.

The robust solutions that we are interested in are near-optimal
feasible solutions, meaning that their costs do not go beyond a pre-
viously defined threshold. These solutions are ‘‘close to cost-optimal’’
and leave room for alternative objectives and desirable qualities; the
additional costs we accept lie below the 9%–23% deviation from cost
optimality (due to political, social, or technical reasons) that have been
observed in recent years in the UK (Trutnevyte, 2016). Following the
works by Neumann and Brown (2021) and Pedersen et al. (2021)
we exploit the geometric shape and properties of the near-optimal
space defined by the ESOM. Instead of studying the full-dimensional
near-optimal feasible space, we study a projection onto 5 relevant
dimensions representing total investments in certain technologies.

By varying the weather years as inputs, we then construct one
(reduced) near-optimal feasible space for each year. When we intersect
these near-optimal feasible spaces, we obtain a space of solutions in
which each point represents a set of total investment decisions which
are feasible for every year under consideration.

As the most robust candidate in the intersection, we choose the
point which lays in the middle, being as far away from being infeasible
as possible. This means that changes in total investment decisions (up to
a certain point) still leave us in the near-optimal feasible space for every
weather year. We then map the total investments back to a full system
design, and verify its feasibility by simulating its operations over the
entire time period. Note that our form of ‘‘robustness’’ is a geometric
concept (laying in the middle of a near-optimal feasible space) and is
only loosely connected to robust optimisation.

Apart from contributing to the discussion on energy system robust-
ness, our methods also have implications for ESOM parallelisation.
The difficulty in parallelising linear program (LP) solvers has been
highlighted as the main barrier preventing ESOMs in taking advantage
of increasing computational power (Kotzur et al., 2021). While there
are efforts to address this problem at the level of LP solvers (Rehfeldt
et al., 2022), we work at the level of model formulation. Finding
solutions which are feasible for many weather years by studying the
intersection of their respective near-optimal spaces can be an alter-
native to solving ESOMs with many weather years outright, which is
computationally prohibitive. Thus, our methods constitute a way of
heuristically replacing one large (difficult to parallelise) optimisation
by many optimisations with single weather years.

Finally, we formalise and significantly deepen the understanding
of the geometry and approximation of near-optimal feasible spaces
of ESOMs. Previously, Pedersen et al. proposed a methodology for
approximating near-optimal feasible spaces of ESOMs (Pedersen et al.,
2021), and used the results to study the density of certain system
design properties under projections of the near-optimal feasible space.
Furthermore, Lombardi et al. mapped out the utilisation of renew-
able capacity, transmission capacity, and storage capacity of chosen
near-optimal solutions, depending on different uncertainties, indicat-
ing overlaps between these (Lombardi et al., 2020). We detail the
dimension reductions involved in working with near-optimal feasible
spaces, and how to map back and forth between the different stages.
We then propose several variations on a general algorithm for ap-
proximating reduced near-optimal feasible spaces, and analyse their
convergence characteristics. The application of geometric descriptions
of near-optimal spaces to studying different weather years is also novel.

In summary, our paper contributes to the literature on ESOMs in
several ways. We formalise a general framework for working with
and intersecting near-optimal feasible spaces, which allows us to study
uncertainties of different kinds. We apply this framework to a first-
of-its-kind study of robustness of highly renewable scenarios for the
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European power system to decades of weather data. Beyond robust-
ness, the methods also contribute to parallelisation of energy system
optimisation models.

In Section 2 we formalise the methodology and introduce the nec-
essary steps to define ‘‘robust’’ energy system designs. Afterwards,
in Section 3, we describe the adapted PyPSA-Eur model we use and
our modelling set-up to obtain power systems resilient to 41 years
of weather data. In Section 4 we present our main findings on using
intersections of near-optimal feasible spaces, features of robust solu-
tions, and performance. We discuss ramifications of our approach in
Section 5, before we conclude with Section 6.

2. Methodology and formal definitions

We introduce the methodology used in this paper and describe
how we apply this to obtain energy system designs robust to weather
variability: in Section 2.1 we revisit the concept of near-optimality.
In Section 2.2 we discuss how dimension reduction is necessary to
describe the near-optimal feasible space in a computationally tractable
manner, and we elaborate on how we approximate near-optimal feasi-
ble spaces. Afterwards we introduce robustness as the geometric prop-
erty of lying in the intersection of different near-optimal feasible spaces
(Section 2.3). In Section 2.4 we then justify our choice of the Cheby-
shev centre as our robust solution of choice, as its location implies
maximal stability to perturbations. Finally, in Section 2.5 we suggest
different allocations that can translate a point in the low-dimensional
intersection of the near-optimal feasible spaces to a spatially resolved
(full-dimensional) energy system design.

2.1. Near-optimality

Let a capacity expansion problem be given as the linear program

min 𝑐 ⋅ 𝑥 such that 𝐴𝑥 ≤ 𝑏. (1)

Here, 𝑥 ∈ R𝑁 is a vector of decision variables, 𝑐 ∈ R𝑁 the coefficients
of the objective function, and 𝐴 ∈ R𝑀 ×R𝑁 and 𝑏 ∈ R𝑀 give the set of
𝑀 linear constraints. Let  be the feasible space of the linear program
Eq. (1), defined as

 ∶= {𝑥 ∣ 𝐴𝑥 ≤ 𝑏}. (2)

Letting 𝑥∗ ∈  be an optimal solution with objective value 𝑐 ⋅𝑥∗ = 𝑐opt ∈
R, and 𝜀 > 0 a chosen slack level, we define the 𝜀-near-optimal feasible
space as

𝜀 ∶= {𝑥 ∈  ∣ 𝑐 ⋅ 𝑥 ≤ (1 + 𝜀) ⋅ 𝑐opt}. (3)

When 𝜀 is clear from the context, we simply refer to 𝜀 as the near-
optimal space. For general linear programs, 𝜀 is a convex polyhedron,
and when 𝑥 is bounded (as is the case for energy system models), 𝜀
is a convex polytope. To work with 𝜀 geometrically, we can solve the
optimisation problem min 𝑑 ⋅ 𝑥 s.t. 𝐴𝑥 ≤ 𝑏 and 𝑐 ⋅ 𝑥 ≤ (1 + 𝜀) ⋅ 𝑐opt for
some objective 𝑑 in order to find a vertex or boundary point of 𝜀. In
the context of ESOMs, this amounts to solving the energy system model
once with an alternative objective function.

The definition of a near-optimal space is not new in the context
of ESOMs, and previous work has explored the near-optimal space
either through uniform sampling as Pedersen et al. (2021), maximally
different solutions as DeCarolis (2011) and Price and Keppo (2017), or
extreme points of the space (Neumann and Brown, 2021).

2.2. Dimension reduction

The near-optimal space 𝜀 is high-dimensional and complex; large-
scale ESOMs typically involve millions of variables (dimensions) and
constraints (hyperplanes defining the polytope). In this section we
reduce to a much lower-dimensional space in two steps; see Fig. 1 for
an overview of the maps and spaces involved.

In the case of capacity expansion models, we are most interested
in investment decision variables of the linear program, as opposed to all
other (operational) decision variables. Specifically, let 𝑥 = (𝑥𝐼 , 𝑥𝑂)𝑇 ∈
R𝑁 be split into investment decision variables 𝑥𝐼 ∈ R𝑁inv and opera-
tional decision variables 𝑥𝑂 ∈ R𝑁op , where 𝑁 = 𝑁inv + 𝑁op. Then we
define the projection map 𝜋 ∶R𝑁 → R𝑁inv by simply forgetting about
the operational decision variables. The image

 ′
𝜀 = 𝜋(𝜀) = {𝑥𝐼 ∈ R𝑁inv ∣ 𝑥 = (𝑥𝐼 , 𝑥𝑂)𝑇 ∈ 𝜀} (4)

of 𝜀 under 𝜋 is the 𝑁inv-dimensional 𝜀-near-optimal feasible space of
investment variables.

The convex polytope  ′
𝜀 consists of all points 𝑥𝐼 such that an energy

system with capacity investments given by 𝑥𝐼 is feasible and whose
total system cost (including operations) is at most (1+ 𝜀) ⋅ 𝑐opt. In short,
it is the space of all near-optimal feasible investment decisions. This
makes an explicit description of  ′

𝜀 interesting for decision-makers in
order to explore different kinds of near-optimal investments.

However, in a model with a high spatial resolution, the number of
investment decision variables 𝑁inv is typically still in the hundreds or
more (with multiple investment decisions at each node, and transmis-
sion expansion). This makes the polytope  ′

𝜀 ⊆ R𝑁inv difficult to work
with, visually and mathematically. Specifically, in order to work with
 ′
𝜀 we would want to find a set of points 𝑃 such that  ′

𝜀 is the convex
hull of 𝑃 . However, the number of vertices of an 𝑁inv-dimensional
polytope defined by 𝑀 hyperplanes is in 𝑂(𝑀⌊𝑁inv∕2⌋) — see Tóth et al.
(2017), Chapter 26. This puts a precise description of  ′

𝜀 in terms of
vertices out of reach.

One solution is to map down to a much lower-dimensional space
where we group and aggregate investment decision variables. Let
𝑥𝐼 = (𝑥1,… , 𝑥𝑁inv ) be the individual investment decision variables. Let
𝑇1,… , 𝑇𝑘 be a collection of sets of indices with 𝑇𝑖 ⊆ {1,… , 𝑁inv} and
𝑇𝑖 ∩ 𝑇𝑗 = ∅. For each index 𝑗 in one of these sets, we also choose a
coefficient/weight 𝑐𝑗 . Then we define a linear map 𝜎 ∶ ′

𝜀 → R𝑘 as:

𝜎(𝑥) =
(∑

𝑗∈𝑇𝑖 𝑐𝑗𝑥𝑗
)𝑘

𝑖=1
. (5)

In our case, we take each 𝑇𝑖 to be the set of indices identifying
decision variables that belong to a specific technology. We weight these
decision variables 𝑥𝑗 (for 𝑗 ∈ 𝑇𝑖) by their respective capital costs 𝑐𝑗 .
Specifically, throughout this paper we consider 𝑘 = 5, with 𝑇1,… , 𝑇5
corresponding to transmission expansion, PV expansion, onshore wind
expansion, offshore wind expansion and gas turbine expansion respec-
tively. In effect, 𝜎 maps a vector 𝑥𝐼 of investment decisions to a
summary of selected total investment costs.

Let

𝜀 = 𝜎( ′
𝜀) = {𝜎(𝑥𝐼 ) ∣ 𝑥𝐼 ∈  ′

𝜀} ⊆ R𝑘 (6)

be the image of  ′
𝜀 under 𝜎. Then 𝜀 is a 𝑘-dimensional convex polytope

(since convex polytopes are preserved by linear maps). Note that in
our specific choice of 𝑇1,… , 𝑇5 we have not included all investment
decision variables in 𝜎, only those we deemed most important for the
particular model instances we work with. Of course, different dimen-
sion reductions can be achieved by other choices of aggregation (groups
of indices 𝑇𝑖 and coefficients 𝑐𝑗). While we have taken the coefficients 𝑐𝑗
to be capital costs (making investment in different technologies easier
to compare), the coefficients could, for example, also be set to 1 in order
to consider only capacities.

The utility of the reduced near-optimal space 𝜀 is as a proxy for
system feasibility. If we can describe 𝜀 well, we can quickly assess
whether any given set of total investments 𝑦 ∈ 𝜀 can result in a
feasible system design. However, by aggregating investment decision
variables, we lose information on the specific feasible system designs
𝜎−1(𝑦) ⊆  ′

𝜀 realising the total investments 𝑦. The trade-off is that the
fewer dimensions 𝑘 we aggregate to, the easier 𝜀 is to work with, but
the less information it gives us. Each point 𝑦 ∈ 𝜀 can have a large
preimage under 𝜎 and 𝜋, meaning there may be many near-optimal
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Fig. 1. Illustration of how the spaces 𝜀,  ′
𝜀 and 𝜀 are connected. The map 𝜙 can be seen as a composition of a model optimisation ‘‘min 𝑐 ⋅ 𝑥 s.t. 𝐴𝑥 ≤ 𝑏 and 𝜎◦𝜋(𝑥) = 𝑦’’

composed with the projection 𝜋. It gives an explicit model design based on chosen coordinates 𝑦 in the reduced near-optimal feasible space 𝜀.

feasible solutions 𝑥 ∈ 𝜀 with the given total investments 𝑦 (see Fig. 1).
As we discuss in more detail in Section 2.5, to find a specific solution
𝑥 ∈ (𝜎◦𝜋)−1(𝑦) ⊆ 𝜀, we must solve a version of the original model
Eq. (1) in R𝑁 .

Similarly to Pedersen et al. (2021), we attempt to describe the low-
dimensional space 𝜀 explicitly. Again, in order to find an explicit
description of the polytope 𝜀, we would like to find (a large subset
of) its vertices. We can do this by optimising over 𝜀 with different
objective functions or directions in R𝑘. For each direction 𝑑 ∈ R𝑘, the
solution to the linear program

max 𝑑 ⋅ 𝑦 such that 𝑦 = 𝜎(𝜋(𝑥)) and 𝐴𝑥 ≤ 𝑏 and 𝑥 ∈ 𝜀 (7)

is an extreme point of 𝜀 in the direction 𝑑. The above linear program
can be solved by solving the original problem in Eq. (1) with the
new objective function −𝑑 ⋅ 𝜎(𝜋(𝑥)) (which is linear), and mapping the
solution to 𝜀 by 𝜎◦𝜋. In effect, for each extreme point of 𝜀 that we
want to find, we need to solve the original capacity expansion problem
once with an adapted objective function.

While we cannot expect to find all vertices of 𝜀 (quadratic in
the number of model constraints when 𝑘 = 4, 5 Tóth et al., 2017),
we want to find a set of extreme points 𝑃 such that their convex
hull approximates 𝜀 well. Given a ‘‘budget’’ of 𝑛 optimisations (and
hence 𝑛 extreme points), the natural question is: how do we choose
the directions 𝑑1,… , 𝑑𝑛 to optimise in, in order to get a set of points 𝑃
whose convex hull approximates 𝜀 the best possible?

We use an iterative approach to approximate 𝜀 while filtering
on already used (or similar) directions. At each step we optimise in
a different direction: depending on which property of the near-optimal
feasible space is of interest, there can be many different ways to choose
these directions. In our case we are interested in the largest ball within
the near-optimal feasible space, the Chebyshev ball (see Section 2.4).
Thus, we optimise at each iteration in the normal direction to a facet
tangential to the Chebyshev ball of the current approximated polytope.
If these have been exhausted, we choose the normal direction to the
largest facet by volume. For other approaches to choosing directions,
caveats and performance comparisons, see Appendix A. An illustration
of one step in this process is shown in Fig. 2. A simplified version
of the algorithm (based only on normals to large facets) is given in
pseudo-code in Algorithm 1.

Once in the low-dimensional space R𝑘 (with 𝑘 = 5 in our case), the
complexity of the geometric objects of interest is low enough that we
can do efficient exact computations on them. In particular, recall that
a polytope with 𝑛 vertices can only have 𝑂(𝑛2) facets for 𝑘 = 4, 5, so
computing the convex hull of the vertices, its volume, etc. has a time
complexity of 𝑂(𝑛2). We use the qhull software (Barber et al., 1996)
for computational geometry related to polytopes. Since the number of
vertices 𝑛 which we can compute (by solving Eq. (7) for each vertex)

is limited, the complexity of 𝑂(𝑛2) is acceptable for our purposes. In
particular, note that for our application, the complexity of Algorithm
1 is dominated by the model optimisations, not the computational
geometry.

Algorithm 1: Outline of algorithm for approximating 𝜀

𝑃 ∶= ∅;
for 𝑑 ∈ {𝑒1,−𝑒1, 𝑒2,−𝑒2,… , 𝑒𝑘,−𝑒𝑘} do

Let 𝑦 be extreme point on 𝜀 in direction 𝑑 (optimisation);
Add 𝑦 to 𝑃 ;

end
for 𝑖 ∈ {1,… , 𝑛} do

Let 𝐻 be the convex hull of 𝑃 ;
Let 𝐹1, 𝐹2,… be the facets of 𝐻 , sorted by decreasing
volume;

Let 𝑑𝑖 be the normal of facet 𝐹𝑖;
Let 𝑑 be the first of 𝑑1, 𝑑2,… which is not within a small
angle 𝜃 of any previously used direction;

Let 𝑦 be extreme point on 𝜀 in direction 𝑑 (optimisation);
Add 𝑦 to 𝑃 ;

end
Return convex hull of 𝑃 ;

2.3. Intersections and robust solutions

One of the new ideas we propose is to investigate the intersections
of the near-optimal spaces of related capacity expansion problems, or
different instances of the same abstract model. Of course, if  (𝑎), (𝑏) ⊆
R𝑁 are the feasible spaces of two linear programs 𝐴 and 𝐵, then
 (𝑎) ∩  (𝑏) is simply the space of all solutions 𝑥 which are feasible
for both problems. More interestingly for capacity expansion problems,
consider  ′

𝜀
(𝑎) ∩  ′

𝜀
(𝑏): the space of all investment allocations which are

both feasible and near-optimal for both 𝐴 and 𝐵.
In our case, we consider the near-optimal spaces for optimisation

problems defined with different weather years. Specifically, we use
41 years of reanalysis weather data (1980–2020) in order to compute
capacity factors and load time series as input for our model (Section 3.2
and Appendix B). This gives 41 model instances, each defined with
the input data from a different weather year. For brevity, let  ∶=
{1980,… , 2020} denote the set of weather years. Then for 𝑖 ∈  write

min 𝑐(𝑖) ⋅ 𝑥(𝑖) such that 𝐴(𝑖)𝑥(𝑖) ≤ 𝑏(𝑖) (8)

for the LP in Eq. (1) defined with weather year 𝑖. Let  (𝑖) be the feasible
space of the above LP. From these feasible spaces, we want to recover
investment allocations which are feasible for each of the weather years.
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Fig. 2. Illustration of a single step of Algorithm 1. Additionally, the Chebyshev ball (see Section 2.4) is shown at each stage.

Since total system costs vary considerably between cost optimisa-
tions with different weather years, we define a uniform system cost
bound across all weather years. Specifically, letting 𝑐(𝑖)opt be the optimal
objective value (total system cost) for weather year 𝑖, we take

𝑐∗ = max
𝑖∈ 𝑐(𝑖)opt (9)

to be the highest optimal system cost across all weather years under in-
vestigation. In defining near-optimal spaces with the different weather
years, we then set the slack relative to 𝑐∗ instead of relative to each 𝑐(𝑖)opt
for each weather year individually:

𝜀
(𝑖) = {𝑥 ∈  (𝑖) ∣ 𝑐 ⋅ 𝑥 ≤ (1 + 𝜀) ⋅ 𝑐∗}. (10)

We define  ′
𝜀
(𝑖) and (𝑖)

𝜀 similarly to  ′
𝜀 and 𝜀 (Eqs. (4) and (6)).

Now, the intersection ⋂
𝑖∈  ′

𝜀
(𝑖) is the space of investment decisions

which are feasible for all weather years under consideration and near-
optimal (relative to the most expensive year).2 We are interested in the
intersection of the reduced near-optimal space (𝑖)

𝜀 . Repurposing our
notation slightly, we write 𝜀 ∶=

⋂
𝑖 (𝑖)

𝜀 . Note that 𝜀 =
⋂

𝑖 𝜎( ′
𝜀
(𝑖)) =

𝜎
(⋂

𝑖  ′
𝜀
(𝑖)
)

. However, while we cannot easily find explicit descrip-
tions of the spaces  ′

𝜀
(𝑖), we can approximate each (low-dimensional)

(𝑖)
𝜀 as explained above. This, in turn, enables us to find an explicit

(approximate) description of 𝜀 =
⋂

𝑖 (𝑖)
𝜀 .

We call a set of total investments 𝑦 ∈ R𝑘 robust when 𝑦 ∈ 𝜀.
This means that for each weather year 𝑖, there exists some near-optimal
feasible model solution 𝑥(𝑖) ∈  (𝑖)

𝜀 (including investment and operation
decisions) such that 𝜎◦𝜋(𝑥(𝑖)) = 𝑦. Note that the same total investment
for each technology, 𝑦 ∈ 𝜀, may be spread differently onto the
different nodes of the model for each 𝑥(𝑖), 𝑖 ∈  . Formally speaking, it is
plausible that ⋂𝑖  ′

𝜀
(𝑖) = ∅ even if we find some robust point 𝑦 ∈ 𝜀. In

Section 2.5, however, we propose different methods for finding robust
allocations 𝑥𝐼 ∈

⋂
𝑖  ′

𝜀
(𝑖) such that 𝜎(𝑥𝐼 ) = 𝑦 if they exist, and in

Section 4.1 we show that this works well in practice.

2.4. Chebyshev centre

Among the total investment decisions in the intersection 𝜀 =⋂
𝑖 (𝑖)

𝜀 , we want to find choices that are not only feasible for all years
considered. We want to find the most resilient choice among all the
alternatives. We therefore select the point 𝑦ch ∈ 𝜀 maximally removed
in all directions from the boundary of 𝜀, meaning 𝑦ch is as far away
from being infeasible as possible. This is realised if we pick 𝑦ch to be the
Chebyshev centre (see Boyd and Vandenberghe (2004), Section 8.5.1),
i.e.

𝑦ch = argmax
𝑦∈𝜀

(𝑟) s.t. 𝐵𝑟(𝑦) ⊆ 𝜀, (11)

2 In fact, this resembles the near-optimal feasible space of a robust optimi-
sation program defined over the weather years  . Strictly speaking, however,
the different operational variables for different weather years make this a loose
generalisation of classical robust optimisation.

where 𝐵𝑟(𝑦) is the ball of radius 𝑟 around 𝑦. Figs. 2 and 3(b) show
examples of Chebyshev balls. The point 𝑦ch can be found efficiently
using a linear program. Specifically, let 𝑎𝑗 be the normal vectors of the
hyperplanes supporting 𝜀 and 𝑏𝑗 the associated offsets, so that each
𝑦 ∈ 𝜀 satisfies 𝑎𝑗 ⋅ 𝑦 ≤ 𝑏𝑗 for all 𝑗. Then 𝑦ch is given by

max 𝑟 such that 𝑎𝑗 ⋅ 𝑦 + 𝑟‖𝑎𝑗‖ ≤ 𝑏𝑗 ∀𝑗 and 𝑟 ≥ 0. (12)

2.5. Disaggregating robust solutions

The previous steps leading to the Chebyshev centre, one chosen
robust point, have all been performed in the reduced 𝜀-near-optimal
feasible spaces and their intersection, 𝜀. The designs that are of
ultimate interest to us, however, are elements in  ′

𝜀, including all
investment decision variables. Thus, we would like to define a function
𝜙 ∶ 𝜀 →  ′

𝜀 mapping robust total investments to complete system
designs realising those total investments. Being more precise, we need
to specify over which weather years the space we map back to is
defined — we want a map

𝜙 ∶ 𝜀 →  ′
𝜀
 , (13)

recalling the notation  = {1980,… , 2020}. From this map, we want to
obtain a robust near-optimal energy system design 𝑥rob = 𝜙(𝑦ch) at the
Chebyshev centre of 𝜀.

We can write our ESOM as in Eq. (8) but instead define it with all
41 weather years as min 𝑐 ⋅𝑥 such that 𝐴𝑥 ≤ 𝑏 ; its 𝜀-near-optimal
feasible space of investment variables is  ′

𝜀
 . Then we define the map

𝜙 (which we call 𝜙 for clarity) by adding constraints to the above LP
to ensure that the solution has total investments given by 𝑦 ∈ 𝜀:

𝜙 (𝑦) = 𝜋(argmin 𝑐 ⋅ 𝑥 ) such that 𝐴𝑥 ≤ 𝑏 and 𝜎◦𝜋(𝑥 ) = 𝑦.

(14)

Given that 𝜋 and 𝜎 are linear, the above is still a linear program. Note
that 𝜙 may not be well-defined for all 𝑦 if the corresponding linear
program has no solutions; this can happen if some total investments 𝑦
are realisable for each individual weather year, but not realisable by
any one complete system design over all 41 years.

Solving Eq. (14) amounts to solving an ESOM defined with 41
weather years, which is computationally challenging. Indeed, one of
the motivations for working with the intersection 𝜀 is that it can
be computed on the basis of model optimisations with single weather
years.

Thus, we propose two alternatives to the ‘‘exact’’ map 𝜙 . We call
the exact map and its alternatives allocations since they map total
investments 𝑦 ∈ 𝜀 to a spatially resolved allocation of investments
𝜙(𝑦) ∈  ′

𝜀
 . The alternative allocations are heuristics in the sense

that they map to designs that are not strictly speaking guaranteed
to be feasible. Formally, they map 𝜀 → R𝑁inv but may map some
points of 𝜀 outside of  ′

𝜀
 (whereas 𝜙 (𝜀) ⊆  ′

𝜀
 ). For the first
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Fig. 3. Near-optimal space approximation, intersection and Chebyshev centre.

Table 1
Overview over three different allocations to obtain ‘‘robust’’ solutions.

Map Short name Description Computation

𝜙 exact Fix the investment costs in
𝑦ch as additional
constraints. Then solve
Eq. (1) jointly over all
years.

Optimisation over 41 years
(134 GB RAM, 35 h)

𝜙(𝑖∗ ) conservative Fix the investment costs in
𝑦ch as additional
constraints. Then solve
Eq. (1) for the year with
the highest optimal cost,
𝑐∗.

1 single-year optimisations
(ca. 3 GB RAM, 0.25 h)

𝜙mean mean Fix the investment costs in
𝑦ch as additional
constraints. Then solve
Eq. (1) for all single years
and take the mean over all
capacities.

41 single-year
optimisations
(parallelisable, each ca.
3 GB RAM, 0.25 h)

alternative, which we call the ‘‘conservative’’ allocation, let 𝑖∗ be the
most expensive year, for which 𝑐(𝑖

∗)
opt = 𝑐∗. Then we simply take 𝜙(𝑖∗) as

an alternative to 𝜙 . That is, for the conservative allocation we take
the solution of the ESOM defined with weather year 𝑖∗, with the added
constraints that 𝜎◦𝜋(𝑥(𝑖∗)) = 𝑦ch. Computing 𝜙(𝑖∗) involves only one
model optimisation with a single weather year.

For the second alternative, which we call the ‘‘mean’’ allocation, we
follow the idea of the conservative allocation 𝜙(𝑖∗), but involve the other
weather years more. Indeed, we define 𝜙mean as

𝜙mean = 1
||

∑
𝑖∈

𝜙(𝑖). (15)

Computing 𝜙mean involves || model optimisations with single weather
years. In our case, || = 41. The exact and alternative allocations are
summarised in Table 1.

For comparison, we also define a ‘‘baseline’’ point in R𝑁inv which is
obtained by scaling up investments uniformly in the optimal solution
for the most expensive weather year. This is explained in more detail
in Section 4.3.

3. Implementation

3.1. Modelling set-up

We base our implementation on the PyPSA-Eur 0.4 model (Hörsch
et al., 2018), which is itself based on the general PyPSA framework

(version 0.18) (Brown et al., 2018). While we have modified PyPSA-
Eur for our purposes (as described in Appendix B), especially in order
to support multiple weather years, we have kept the model set-up
relatively close to the defaults as described in Hörsch et al. (2018).
We use the model in a partial greenfield configuration, where existing
transmission, nuclear3 and hydro capacities at current (2020) capacities
are included in the model from the start, but all other technologies start
at zero capacity.4 The extendable technologies included in the model
are transmission (both AC and relevant DC connections), battery and
hydrogen storage, onshore and offshore wind power, solar power and
open-cycle gas turbines. The model is run with a single investment
period and perfect foresight. We limit annual CO2 emissions to 95%
of 1990 levels.5 A one-node-per-country6 spatial resolution and a 3-
hourly temporal resolution is chosen. Note, however, that the spatial
and temporal resolution can be increased easily (as in PyPSA-Eur); the
resolution is limited in this paper in order to allow extensive validation
of our methods. We model the year 2030 with 41 distinct historical
weather years (1980–2020) driving renewable capacity factors and
electricity demand based on the default PyPSA-Eur cost assumptions7

(given in 2013 EUR) for the year 2030. Thus all weather years are
viewed as different potential realisations of 2030, and we can com-
pare investment and operational costs of multi-year optimisations to
single-year optimisations by taking annual averages.

Using enough weather data to accurately represent long- and short-
term dynamics and extreme events is difficult in ESOMs, considering
the resulting model size and increased solving complexity. However
limited the lessons of historical weather data are on future weather (van
der Wiel et al., 2019), further driven more and more by climate
change, the extreme events and variability represented here will still
likely offer insights for future designs. We capture historical climate
change implicitly here, whereas incoming trends and changes through
climate change are hard to predict and an active field of research in
itself (Wohland et al., 2017; Schlott et al., 2018; Kozarcanin et al.,
2019; Bloomfield et al., 2021).

3 Nuclear power in Germany is removed from the model.
4 PyPSA-Eur can also include existing biomass capacities in the model. Due

to their limited capacities, they do not lead to significant deviations in results
compared to the scenario we considered, so we choose to omit biomass for
simplicity of the setup.

5 We present additional results with a 100% emission reduction in
Appendix C.

6 Except for countries in multiple synchronous zones (Denmark, Spain, Italy,
UK), which are represented through two nodes.

7 https://github.com/PyPSA/pypsa-eur/blob/v0.4.0/data/costs.csv
(accessed 06/10/2022).
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3.2. Data

The data we use as input for our model lean heavily on the data and
sources used in PyPSA-Eur. For instance, we use cost data based on the
default costs considered in PyPSA-Eur, which are estimates for 20307

(in 2013 EUR). However, time series input data have been extended to
41 weather years.

We use reanalysis data to generate capacity factors for the renew-
able energy sources; our source is the hourly ERA5 dataset (Hersbach
et al., 2018) for the time period from 1980 up to and including 2020.
The open-source tool Atlite (Hofmann et al., 2021) translates weather
data to hourly capacity factors for solar PV, on- and offshore wind. The
inflow profiles for hydropower are generated similarly, however they
are corrected to fit production data given by Administration (2022).
We describe in detail how we process the data in Appendix B.

The load input data are generated using a regression model on
1980–2020 ERA5 temperature data. The regression is based on hourly
country-level ENTSO-E load data from 2010 to 2014 (ENTSO-E, 2022),
as well as the temperature data. We conduct a two-staged regression
with a similar approach to that used in Bloomfield et al. (2020). This
allows us to generate 41 years of country-level temperature-dependent
load data matching the weather data we use. Finally, we scale the
demand by a factor of 1.13 according to load projections for 2030 by
the European Commission.8 More details on the generated load data
can be found in Appendix B.

3.3. Modeller’s decisions

In this section, we discuss various details and choices regarding the
implementation of the methods described in Section 2. For the exact
code, including configuration options and installation and running
instructions, we refer to the GitHub repository.9

One of the first decisions we have to make is choosing a suitable
slack level 𝜀. For small 𝜀 the intersection 𝜀 may be empty; a priori
it is not clear how large 𝜀 has to be for 𝜀 to be nonempty. In our
case, we choose 𝜀 = 5% on top of the most expensive weather year,
but found that 𝜀 is even nonempty with 𝜀 = 2.5%; this may change
with a different modelling set-up. For comparison, Trutnevyte found
in Trutnevyte (2016) that the transition in the UK energy system from
1990 to 2014 deviated between 9 and 23% from the cost optimum.

Given that the dimension reduction map 𝜎 is our main tool in
working with near-optimal spaces (see Section 2.2), we need to define
it carefully. Both the number of dimensions 𝑘 that 𝜎 maps to and which
investment decision variables are mapped to each dimension must be
considered. We have investigated the convergence of Algorithm 1 with
𝑘 = 2, 3,… , 7 (Appendix A) and we find that it is tractable to work
with this number of dimensions. The decision variables that are mapped
to each dimension (the sets 𝑇1,… , 𝑇𝑘 in the notation of Section 2.2,
here abbreviated to ‘‘dimensions’’) should be chosen meaningfully. On
one hand, including as a dimension a technology which is not utilised
in cost-optimal solutions may be detrimental, as much computational
effort will be expended on potentially irrelevant solutions including this
technology. Moreover, the Chebyshev centre of the resulting space must
include at least a Chebyshev radius worth of that technology, which
may be sub-optimal. On the other hand, not including as a dimension
a technology which plays a significant role in any near-optimal solution
can limit the usefulness of the results. In our case, we choose to
map investment decision variables for transmission expansion, solar,
onshore wind, offshore wind and gas to 5 respective dimensions.

Lastly, we choose the coefficients 𝑐𝑗 in the definition of 𝜎 to be
the investment cost associated with the investment decision variable

8 https://ec.europa.eu/clima/document/download/ec1acac9-10fe-4eeb-
915f-cad388990e0f_en, Fig. 44 (accessed 23/06/2022).

9 https://github.com/aleks-g/intersecting-near-opt-spaces/tree/v1.0.1.

𝑥𝑗 ; this has the advantage of mapping to the single unit of EUR in
every dimension, making different dimensions easily comparable. In
contrast, for example, comparing renewable capacity expansion in MW
and storage capacity expansion in MWh directly is more difficult and
not as useful for the purpose of working with a Chebyshev ball. For
some applications one might consider scaling the weights 𝑐𝑗 for certain
dimensions, for example, when robustness to changes in investment in
one technology are more important than for other technologies.

A key driver of the computational demands of our approach is the
desired quality of approximation of near-optimal spaces. How many
iterations of Algorithm 1 are needed, depends on the number of dimen-
sions 𝑘, the mode of finding new directions to explore (see Fig. A.1) and
the intended use-case. A fixed number of iterations can be chosen, or
the algorithm can be ended once some convergence criteria is satisfied.
Either way, we refer to Appendix A for a discussion of the various
trade-offs involved.

The other factor influencing the computational effort is how much
time and computing power every single optimisation takes. This is
typically driven by the number of technologies, inter-temporal relations
between different variables (e.g. through storage), temporal resolu-
tion (Hoffmann et al., 2020) and spatial resolution (Tröndle et al.,
2020; Frysztacki et al., 2021). Deciding on the model complexity must
be done in light of the research question at hand. For our application
with weather years, we do assume that each individual model is defined
over a time period of one calendar year.

4. Results

We first present the main results pertaining to system design with
41 weather years, and the use of near-optimal spaces in this context
(Section 4.1). This is followed by a more detailed description of the
characteristics of our proposed robust solutions (Section 4.2). The
subsequent subsection focuses on validation results and a comparison of
the different robust design allocations (Section 4.3). Finally, we touch
on computational results and parallelisability (Section 4.4).

4.1. Weather years and intersection

First of all, optimising our model with each of the 41 considered
weather years individually shows large discrepancies in the respective
optimal solutions, re-affirming the importance of considering a large
set of different weather years. Optimal total system costs range from
121 billion EUR for 2020 to 152 billion EUR in 1985.10 The compo-
sition of investment by technology also differs significantly between
weather years, with especially the onshore- and offshore wind invest-
ment varying by up to around 20 and 25 billion EUR between years
(corresponding to variations up to 243 GW for onshore wind and 82 GW
for offshore wind), respectively. The inter-year variability in optimal
investments is illustrated in Fig. 5, where the investments are compared
to the robust solution 𝑥rob.

Meanwhile, for this study we also conduct the first capacity expan-
sion optimisations of a spatially resolved model for the European power
system with 41 weather years directly (one node per country, 3-hourly
resolution). These optimisations took in the order of 1–2 days (using
two threads) and up to 134 GB of memory. The optimal annualised
total system cost for the 41-year model is 137 billion EUR; only slightly
higher than the average of the total system costs of optimisations with
single weather years at 134 billion EUR. See also Fig. 7 for a break-
down into investment (for extendable technologies)- and variable costs
and comparison with the optimisations with single weather years. Apart

10 These and all the following total system costs are annualised and include
investment in new capacities as well as variable costs (in 2013 EUR), but not
existing capacities. See Section 3.1 for details on which existing technologies
are included in the model.
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Fig. 4. Projections of the near-optimal spaces for different weather years and their intersection. All values are annualised total investment costs per technology. For illustrative
purposes, we only plot the near-optimal spaces for 6 out of 41 weather years (in different hues of blue). The intersection of all 41 near-optimal spaces is filled in yellow and the
Chebyshev centre is marked with a cross.

from providing a basis of comparison, optimising the model with 41
weather years also allows us to compute the exact robust map 𝜙
in order to validate the alternative mean and conservative allocations
(Section 4.3).

We implement (as in Section 3) the methodology of intersecting
near-optimal spaces (laid out in Section 2) using PyPSA-Eur. With a
slack level of 𝜀 = 0.05 as in Eq. (9), we obtain a nonempty intersection
𝜀 and a robust allocation 𝑥rob that is fully feasible using all the
weather data of 41 years. Thus we show that there are robust solutions
with less than 5% additional costs (on top of the most expensive year).
We even find robust solutions which are less than 5% more expensive
than a system optimised with the entire period of 41 years (see Fig. 7).
Furthermore, the space 𝜀 offers significant flexibility for policymakers
beyond our point of reference 𝑥rob, and beyond what flexibility is
shown by previous MGA approaches.

Fig. 4 shows projections of a selection of near-optimal spaces (𝑖)
𝜀 for

weather years 𝑖 ∈ {1985, 1989, 1996, 2006, 2014, 2020} in addition to the
intersection 𝜀 =

⋂
𝑖∈ (𝑖)

𝜀 over all weather years. While the spaces are
5-dimensional (with the dimensions being investment in onshore wind,
offshore wind, solar, gas and transmission expansion), they have been

projected down to all possible pairs of technologies considered. The
Chebyshev centre, marked by a cross, is located within the intersection
which consists of the robust solutions. The figure reveals that there
is significant flexibility in these dimensions; while a certain amount
of investment in renewables is needed, the investment can be shifted
between different technologies while staying feasible and near-optimal.
Note also that the near-optimal spaces for different years resemble each
other in shape and location in space, but mainly differ in size. This
indicates that the effect of ‘‘difficult’’ weather years on modelling is
mainly that they restrict the size of the feasible design space.

We find that the Chebyshev radius of 𝜀 is 3.43 billion EUR, coming
near to the theoretical maximum possible radius of 3.80 billion EUR
given by the chosen slack level. Indeed, note that the distance between
cost-optimal solutions and the near-optimal cost constraint is 𝑐∗opt ⋅ 𝜀,
meaning that any near-optimal space can have a Chebyshev radius of
at most 𝑐∗opt ⋅ 𝜀∕2 ≈ 3.80 billion EUR. The result means that the total
investments in technologies that make up the dimensions of 𝜀 can
change by up to 3.43 billion EUR (corresponding to 2.35% of the total
cost of the robust system) in any direction, starting at the robust point
𝑦ch. The resulting (potentially reduced) total investments can still result
in a feasible design for every weather year.
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Fig. 5. Comparison of total investments for selected technologies in the optimal solutions for each weather year and the optimal solution with all weather years (‘‘41y’’) to the
robust point 𝑦ch. Positive values mean greater investment in the given technology by the robust solution.

Given that we work with an absolute objective bound (1.05 times
the cost of the most expensive year) for all near-optimal spaces, we find
that the smallest and largest near-optimal spaces differ in volume by a
factor of about 79. This means that some weather years by themselves
allow for many more different near-optimal feasible solutions than
others. Put differently, some weather years restrict the system design
much more than others. The smallest and largest near-optimal spaces
come from the weather years 1985 and 2020 respectively, and the
difference in volume corresponds to an average scaling factor of 791∕5 ≈
2.4 in every dimension. Meanwhile, the intersection of the near-optimal
spaces has a volume that is 79% and 36% of the volumes of the near-
optimal space for years 1985 and 1987, respectively, and is between

1% and 10% of the volume of all other near-optimal spaces. This means
that except for 1985 and 1987, 10% or less of near-optimal solutions
for any particular weather year are feasible for all other weather years
under consideration.

In fact, we find that the optimal solutions with the years 1985 and
1987 actually have total investments that lie within the intersection
𝜀. When operated over the entire weather year dataset, these designs
are practically feasible, with negligible load shedding. These results can
inform the choice of weather year to model with — if only a single (or
few) years can be chosen.

We note, however, that while there are weather years to which our
model does not ‘‘over-fit’’ in a single-year optimisation (1985 being
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Fig. 6. Annual average generation mixes for the optimal solutions for each single weather year, the optimal solution with all weather years (‘‘41y’’) and the robust allocations as
well as the baseline design. The baseline design is used for comparison in validation (Section 4.3).

such a year resulting in a generally applicable design), this result could
be particular to our modelling set-up.

4.2. Robust design characteristics

The robust solutions we compute, coming from the Chebyshev
centre of the intersection 𝜀, have several interesting properties. First,
we compare the investment composition of the robust point 𝑦ch to
that of optimisations using just a single year of weather data. We
then analyse total investment and operational costs. Finally, we present
results related to the CO2 limit.

Fig. 5 shows the differences in investment per technology between
the robust point and each of the optimal designs for individual years.
The robust point is characterised by more investment in onshore wind,
solar, transmission, and gas (sorted by decreasing additional invest-
ments). Meanwhile, most optima from single weather years over-invest
significantly in offshore wind power compared to the robust allocation
due to higher relative costs. In this particular set-up where gas can
smooth the electricity production, the cost benefits of additional on-
shore wind capacities outweigh the potential of offshore wind power
in the most favourable years. We conclude that here onshore wind
power contributes more than other technologies to robustness, followed
by solar power and transmission capacity.11 This holds as well when
one compares the investments in the robust (‘‘exact’’) allocation to the
optimal solution using all weather years (see the ‘‘41y’’ row in Fig. 5).

Fig. 6 shows the annual (for the optimisations with more weather
years, average) total electricity generation per technology. This shows
the increased importance of onshore wind and solar for the robust
system. Meanwhile, the figure also shows that although solutions for
individual years typically under-invest in gas turbines relative to the
robust ones, the robust solutions actually generate less power with
gas (and nuclear) in total. This reflects the fact that while additional
gas capacity is needed for robustness, the additional investment in
renewables leads to a reduced dependence on gas for ‘‘day-to-day’’
operations.

11 The conclusions can change with different assumptions — see Appendix C.

On that topic, Fig. 7 shows the variable and total system costs of
systems optimised with single weather years, as well as the robust
system and a system optimised with the full dataset of 41 weather
years. It illustrates that the robust design has a higher total investment
cost than designs for individual years, while the (average) operating
costs are lower due to the reduced use of gas and nuclear as mentioned
above. Recall that while we set the slack 𝜀 to 5%, we see that the
investment costs in fact lie only 0.4% above what would have to
be invested based on the most expensive year. With the (average)
variable costs of the robust system being lower due to a strengthening
of renewables, the total (annualised) system cost of the robust solution
is about 146 billion EUR and actually lower than the system costs for
some optimal solutions with single weather years. This is because the
total system cost for the robust solution is averaged over all 41 weather
years, with some being more expensive than others.

We also see that robust system designs emit less CO2 in our tests
compared to the single-year optimisations, and use 48% of the given
CO2 limit.12 This is again because robust designs direct more of the
total system cost into capital investment of renewables and less into
variable costs including gas, the only source of emissions in our model.
However, we should note that when we operate the design obtained
from e.g. a system optimisation with the single weather year 1985
over the entire time period (over which it is practically feasible), it
also does not use up the whole CO2 limit. Although capacity expansion
optimisations with single weather years always use up the CO2 limit,
the designs which are adapted to difficult years such as 1985 have
enough renewable capacities that they do not use up the CO2 limit in
a typical year.

Finally, Fig. 8 shows the geographical differences in investment
between the exact robust allocation and the cost-optimal solution with
41 weather years. We see that the majority of additional onshore wind
power in the robust system is allocated to the UK, followed by Poland,
France, Estonia and Sweden. The transmission capacity to the UK also
receives more investment in the robust allocation. Meanwhile, although

12 The optimal solution with all 41 weather years uses the whole CO2 limit
as well.
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Fig. 7. Comparison of cost-minimal designs based on optimisations over individual years to the annualised costs of robust designs (exact, mean and conservative, respectively),
an optimisation with all 41 years (‘‘41y’’) and the baseline design.

Fig. 8. Difference in investment between the exact robust allocation and the optimum solution with 41 weather years. Bars above the baselines mean that there is more investment
for that technology in the robust solution. For transmission there are only positive differences (negative differences are too small to appear on this scale), and AC and DC transmission
have been combined. For both bars and transmission lines, the same area means the same investment difference in EUR. All costs are annualised.

the system invests less in offshore wind in total, more offshore wind
investment is shifted to Denmark.

4.3. Validation of robust allocations

Recall from Section 2 that we can use a (large) number of optimisa-
tions with single weather years to find a robust point of total capacity
allocations 𝑦ch ∈ 𝜀 — the Chebyshev centre in the intersection of
near-optimal spaces of model instances using different weather years.

However, in order to find specific (per-node) investment allocations
fitting the given robust totals and being feasible for every weather
year, we have to map 𝑦ch back to  ′

𝜀
 . The exact allocation 𝜙 does

this by solving the original ESOM (with the additional constraint that
𝜎◦𝜋(𝑥) = 𝑦ch) with 41 weather years. Section 2.5 gives two alternatives
for allocating the robust capacities to individual nodes: the ‘‘mean’’ and
‘‘conservative’’ allocations, both based only on a number of optimisa-
tions with one single weather year at a time (see Table 1). Recall that
both the mean and conservative allocations have the same coordinates
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Table 2
Performance of the different allocation methods and the baseline for comparison. Note
that total load shedding (over 41 years) here includes technical infeasibility and over-
budget operations as explained earlier. The relative load shedding is with respect to
the total load of all 41 weather years.

Allocation method Total load shedding [TWh] Relative load shedding [%]

Exact 0.0 0.000
Conservative 46.7 0.032
Mean 119.0 0.081
Baseline 132.3 0.090

in 𝜀 as the exact allocation, namely 𝑦ch, but are not guaranteed to be
feasible for all 41 weather years.

In this section, we investigate the quality of these heuristic alloca-
tions. The basis for comparison is two-fold: the exact robust allocation
on the one hand, and a ‘‘naïve’’ baseline allocation based solely on the
most expensive weather year on the other hand. Specifically, in order to
make the designs more comparable, the baseline allocation is obtained
by taking the allocation from the single most expensive weather year
(1985 in our case) and uniformly scaling all expandable capacities up
by such a factor that the total capital cost of the whole network equals
that of the exact robust design. This way, the only difference between
the exact, mean, conservative, and baseline designs is how investment
is allocated (by technology and spatially), not the total investment
volume.

The validation of the robust allocations consists of a ‘‘stress test’’
where we operate the systems over the entire dataset of weather
years (i.e. only optimise the dispatch and not the investments). This
dispatch optimisation includes the 95% CO2 reduction constraint as in
the capacity optimisation. Similarly to how we ensure that the total
investment cost is equal between the four different allocations, we also
ensure that all designs keep to the same operational budget; namely the
total operational costs of the exact robust design. By allowing costly
load shedding (with variable costs of 7 300 EUR/MWh, as in Price
and Zeyringer (2022)), we make sure that the models are solvable.
The quality of the allocations is then measured in the amount of load
shedding; 0 load shedding means complete feasibility. In the presence
of a hard operational budget constraint, it should be understood that
total unmet demand combines actual unmet demand due to technical
infeasibility and over-budget operations. Without the operations budget
constraint, a number of designs – including all robust allocations and
also some optimal solutions for single years – are practically feasible
with all weather years (see Section 4.1), but simply have higher oper-
ational costs. In general, however, optimal solutions from single years
fail to serve the entire time period reliably.

Table 2 shows that the exact allocation has 0 load shedding as
expected, and is followed by the conservative allocation in quality. The
mean and baseline designs perform slightly worse, but still only up to
about 0.1% of the total load is shed or produced over budget. This
shows that the conservative and mean heuristics produce results that
are practically feasible.

4.4. Performance and computational effort

Our work demonstrates methods for working with decades of
weather and demand data in a parallelised setting. Namely, the mean
and conservative allocations produce robust system designs with
decades of weather data while only requiring model optimisations with
single weather years which can be parallelised effectively. This is done
by using the centre point of the intersection of near-optimal spaces for
different weather years to obtain a robust set of total capacities per
technology. From these we then compute specific per-node capacity
allocations adhering to the robust totals for each individual weather
year, and average the resulting capacities.

This is particularly relevant because solving ESOMs is usually
memory-constrained: a single large model may take more memory to

solve than is available on common systems. While effort is being spent
on splitting up and parallelising the solving process (Rehfeldt et al.,
2022), this is not yet practical. With our methods we avoid solving
models defined over a period of decades, and instead obtain results
based on many smaller runs — a process which is easily parallelised.
The workflow is now constrained by the number of available proces-
sors, which is better suited to current computational developments
which are in the direction of more, not faster processing cores.

While computational time often varies significantly based on a mul-
titude of factors (exact modelling set-up, model size, nature of objective
and constraints, numerical issues among others) and is difficult to
predict, the memory requirements are easier to derive directly from
model size (number of technologies, temporal and spatial resolution).
With our modelling set-up (see Section 3.1), a capacity expansion
optimisation with a single weather year takes 3.5–4 GB of memory
using the commercial optimisation software Gurobi (Gurobi Optimiza-
tion, 2022). Thus, our methods put optimal energy system design with
decades of weather data within reach of typical desktop computers for
the first time. For comparison, optimising with 41 years of weather data
in one model takes approximately 41 times as much memory, around
134 GB. For models with a higher spatial and temporal resolution,
our methods may currently be the only viable method of designing
a system with decades of weather data; we estimate that optimising
a typical PyPSA-Eur model with an hourly resolution and 181 nodes
(as suggested in Frysztacki et al. (2021)) with 41 weather years could
take around 1.7TB of memory, while this can be split into single-year
optimisations taking around 45 GB of memory each using our methods.

With our modelling set-up, a model optimisation with one weather
year takes 23 min of CPU time13 on average using Gurobi with 2
threads. Spending 10 initial optimisations along unit vectors in positive
and negative direction, 150 for the algorithm to approximate the near-
optimal space for each year and finally 1 optimisation per year to
compute per-node allocation of robust allocations, the mean allocation
takes approximately 41 ⋅ (10 + 150 + 1) ⋅ 23 = 151 823 min ≈ 2530 h of
CPU time to compute. On a cloud computing platform with 64 CPU
cores (and around 4 ⋅ 64 = 256 GB of memory), this equates to around
40 h of wall time.13 This is actually comparable to the wall time it
typically takes to solve a single capacity expansion optimisation with
41 weather years of the same model on the same platform, which is in
the range of 1–2 days.

We also investigate different methods for approximating near-
optimal spaces of ESOMs, focusing on how optimisation directions are
chosen, and how many optimisations are needed for a good approxima-
tion (for a different number of dimensions or projection variables). The
results presented in Appendix A support the configurations we choose
as default options.

5. Discussion

The urgent transition to energy systems based on intermittent re-
newable generation comes at a time with increasing computational
power and availability of extensive climate data. However, while using
ever larger models is helping us to understand the detailed functioning
of future energy systems, it does not necessarily improve the under-
standing of uncertainties and resilience. In this paper, we propose a
framework for producing energy system designs that are robust to
uncertainty, taking advantage of the geometry of near-optimal spaces.
We apply the framework to a study involving 41 weather years; the
importance of using as much weather data as possible has been shown
in the literature and is confirmed by our findings. Our framework can

13 We make a distinction between the CPU time of a process, which is the
sum of time spent on the process by all CPUs, and the wall time of a process,
which is the elapsed real time between process start and finish. Thus CPU time
may be larger than wall time for a parallelised process.
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help policymakers to investigate different alternatives (similarly to the
predecessors of this methodology, MGA and MAA) and overcome the
fallacy of single solutions that can become infeasible through marginal
perturbations.

Our choice of using the Chebyshev centre as a robust point is
motivated by it being maximally tolerant to changes in investment in
any direction. This is one of the distinctions to robust optimisation,
where the optimum solution (with respect to the worst-case scenario)
lies at the boundary of the intersection of feasible spaces, thus be-
coming infeasible with just marginal perturbations. At the same time,
we see that even a naïve over-investment starting at the cost-optimal
solution with a difficult weather year results in a system design which
is practically feasible for all considered weather years. The choice of
the Chebyshev centre can be seen as an attempt to find the most
advantageous over-investment for robustness. In other words, while
all additional investment contributes to robustness to some extent, our
methods are aimed at finding the most efficient additional investments
for robustness.

The first runs of a spatially resolved European power system opti-
misation model with four decades of weather data build on advances in
open data accessibility and computational resources. Our results show
that robust solutions stand out from standard cost-optimal solutions
by a relatively higher investment in onshore wind and solar power.
Furthermore, the increased investment in renewables reduces the usage
of gas and nuclear, which lowers the CO2 emissions of the system
by more than 50% (in comparison to optimising the system with 41
weather years). By adjusting the slack level 𝜀, our methods allow for a
trade-off between robustness and additional costs.

Beyond looking at how weather years influence total system cost or
investment composition, we see the effects of the choice of the weather
year on the entire near-optimal space. Whereas the shapes and locations
are fairly uniform, we see that near-optimal spaces for different weather
years vary significantly in size. We still find a significant amount of
flexibility within their intersection, mainly limited by a small number
of most difficult weather years.

In previous studies utilising MGA techniques, dimension reduction
has been used somewhat implicitly in order to make a systematic
exploration of reduced near-optimal spaces feasible. Mapping down to
a lower-dimensional space was seen as a way of summarising a few key
properties of model solutions. However, the geometry of reduced near-
optimal spaces has been largely unexploited, a gap we aimed to fill with
this paper. Moreover, we investigate and propose practical methods
for going back to spatially explicit investment decisions from points in
the reduced near-optimal space. Mapping the Chebyshev centre of an
intersection of near-optimal spaces back to a robust system design is
just one application of this idea.

At the same time, approximating and intersecting near-optimal
spaces as a way of designing systems which are feasible for many
weather years is a reasonable alternative to optimising with many
weather years directly from a computational perspective. Having split
the problem into many smaller optimisations with single weather years,
our methods are easily parallelised. This represents a new approach
to optimisation problems which previously have been considered in-
tractable or at least very impractical. In particular, an application of our
methods to larger models (including sectoral coupling, higher spatial or
temporal resolution) would be interesting and computationally feasible.
While we expect the heuristic allocations to work at higher spatial
resolutions (see also Frysztacki et al., 2022 for related work), their
quality should be investigated under such conditions.

We highlight that we study just one out of many definitions of
robustness (Moret et al., 2016; Maggioni et al., 2017); note also that
our techniques do not directly follow the concept of robust optimisation.
In all generality, robustness is a relative concept and is directed towards
some uncertainty. Although these uncertainties can be well understood,
some of them may be hard to quantify (e.g. political, societal changes),
other could be epistemic (e.g. extreme weather events, changes in

costs, or misspecifications of the model), or even aleatoric (as the
actual future weather conditions). For instance, Stirling (2010) locates
robustness in the overlap of problematic levels of knowledge about
possibilities and probabilities. All in all, our approach contributes to
a wide academic debate about how to deal with uncertainty and
robustness in energy systems modelling.

6. Conclusion

In this article we find that studying the near-optimal feasible space
is a helpful tool to achieve more robust solutions against uncertainties
for energy systems. When investigating weather variability, this enables
us to quantify the variations and to find alternative designs that allow
some flexibility for policymakers.

Since we utilised historical climate reanalysis data, we have not
incorporated the consequences of climate change that an energy system
in transition will face, nor the possibility of unseen extreme events.
It would be interesting to understand which developments will limit
flexibility and what events are defining for the design of a future
(climate-)robust energy system. Moreover, we see that a small number
of weather years including 1985 and 1987 constrain our system design
the most, having relatively small near-optimal feasible spaces. These
results call for a deeper understanding of which meteorological prop-
erties of these weather years, including extreme and compound events,
are determining for energy system design.

While we have applied a notion of robustness in the reduced near-
optimal space 𝜀, we have not considered robustness at lower levels
of the network. So although the point 𝑦ch ∈ 𝜀 is robust to a shift
in investments of 3.4 billion EUR, the system 𝑥rob ∈  ′

𝜀 is not robust
to such a shift at any one particular node in the network. There may
also be many system designs with very different per-node capacities
mapping to the same point 𝑦ch. Another interplay with the spatial
dimension is whether different regions contribute differently to the
robustness of the whole system, as hinted at by Fig. 8. Thus, spatial
aspects of robustness form an interesting avenue for future research.

More generally speaking, our methods leave a lot of room for
different choices of dimension reduction: choosing which variables
to aggregate and how. The choice leading to the most suitable re-
duced near-optimal space should be considered application-specific,
depending on the technologies of interest, their relative importance
and use-case for the reduced near-optimal space. Mapping to a space of
investment costs as we did is a neutral choice, but which reduction is
the most efficient for more specific purposes is still an open question.

The results we present here may depend on our particular modelling
set-up. To which extent specific technologies contribute to robust-
ness and flexibility may change if other technologies are included
(e.g. through sector coupling), additional restrictions are introduced
(e.g. on transmission) or the spatial and temporal resolutions of the
model are improved. And whereas our model has a single investment
period, it would be interesting to apply our methods with a model
considering transition pathways through multiple investment periods.
As our implementation is open-source and customisable, it should be
adaptable to this setting.

Last but not least, our methodology can also be used to investigate
other uncertainties besides weather variability. As near-optimal spaces
strongly depend on cost assumptions, future applications of the present
framework can contribute to an improved understanding of robustness
in the face of uncertain costs.
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Code & data availability

The code for our approach and its documentation can be found
at https://github.com/aleks-g/intersecting-near-opt-spaces/tree/v1.0.
1, and is made available under the GPL 3.0 license. Some of the
data included in the above repository (load and hydropower capacity
factors) were generated using the workflow available at https://github.
com/aleks-g/multidecade-data/tree/v1.0 (code licensed GPL 3.0, data
licensed CC-BY-4.0).

The reanalysis data we used for this study (for renewable capacity
factors and temperature-dependent load data) were downloaded from
the Copernicus Climate Change Service (C3S) Climate Data Store (Hers-
bach et al., 2018) using the Atlite software (Hofmann et al., 2021)
as documented in the main repository. We have additionally made
these weather data more easily available at https://doi.org/10.11582/
2022.0003414; they are shared under the ‘‘License to use Copernicus
Products’’,15 which is comparable to the CC-BY license. Neither the
European Commission nor the European Centre for Medium-Range
Weather Forecasts is responsible for any use that may be made of the
Copernicus information or data it contains.

Given the substantial size of the weather data needed for this study,
we generated a number of PyPSA networks which can be used to re-
produce our results without having to download and process the ERA5
data. They are available at https://doi.org/10.5281/zenodo.6683829
under the CC-BY-4.0 license.

All other data used in our model is directly inherited from PyPSA-
Eur and also openly available as described in Hörsch et al. (2018).

Appendix A. Direction generation

We give a more detailed overview on how to explore the near-
optimal space 𝜀 (here in the original sense as a reduced near-optimal
space and not the intersection), using the notation from Section 2.
Recall that we can compute an approximation of 𝜀 by finding a
number of its vertices (or rather, extreme points), and each such point
is obtained by solving the linear program in Eq. (7) with some different
objective (direction) 𝑑. As described in Algorithm 1, we first optimise
over 𝜀 ⊆ R𝑘 in each of the cardinal directions (positive and negative)
in order to obtain a first full 𝑘-dimensional approximation. Each of
these optimisations can be performed in parallel. Thereafter, in which
direction 𝑑 we choose to optimise over 𝜀 has a significant effect on
how well 𝜀 can be approximated in a limited number of optimisations.

We investigate and compare three methods that generate directions
in which to optimise over 𝜀. The first method is the simplest and

14 See instructions at https://github.com/aleks-g/intersecting-near-opt-
spaces/tree/v1.0.1.

15 https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-
copernicus-products.pdf (accessed 23/06/2022).

consists of choosing directions uniformly at random. For the remaining
two methods, the idea is to compute the convex hull of the points
obtained so far after every optimisation, say 𝐻𝑖, and use the geometric
properties of 𝐻𝑖 in some way to generate the ‘‘next’’ direction 𝑑𝑖+1. The
convex hull is computed using the program qhull (Barber et al., 1996).
The three methods are as follows:

1. ‘‘random-uniform’’: Choose a random vector from the uniform
distribution on the sphere in R𝑘.

2. ‘‘facets’’: Choose the normal vector to the facet of 𝐻𝑖 with the
largest volume.

3. ‘‘maximal-centre-then-facets’’: Compute the Chebyshev centre
𝑦ch of 𝐻𝑖 and the ball of maximal radius around it by solving
Eq. (12). Of all facets of 𝐻𝑖 tangential to this ball, choose the
one with the largest associated dual variable in Eq. (12) and take
its normal vector. If already used, take the normal vector to the
facet of 𝐻𝑖 with the largest volume.

With all these methods, we also use a filtering procedure: we
discard vectors that have already been used. For each method, it is
clear how to generate another direction if the first was discarded: for
example for the ‘‘facets’’ method we choose the normal of the facet
with the second-largest volume if the first direction was discarded. For
the ‘‘maximal-centre-then-facets’’ methods we fall back on the ‘‘facets’’
method when all normals to facets tangential to the Chebyshev ball
have already been used.

In the filtering procedure, we employ an angle threshold 𝜃 such
that a potential direction 𝑑 is discarded if it is within 𝜃 degrees of any
previously used direction. If the filter discards all possible directions,
we reduce the angle threshold 𝜃 by 20%. This is repeated every time
a method ‘‘runs out of directions’’, until 𝜃 falls below a pre-defined
minimum angle 𝜃𝑚𝑖𝑛, at which point the whole algorithm is terminated.

Note that the approximation of 𝜀 can be parallelised effectively
for any of the three direction generation methods, in the sense that
multiple optimisations in different directions can be run in parallel. For
the latter two methods, this means that the convex hull 𝐻𝑖−𝑃 must be
used in the calculation of the 𝑖th direction when there are 𝑃 parallel
optimisations. When 𝑃 is large, this means some of the generated
direction could be slightly inferior (being generated with an older hull
𝐻𝑖−𝑃 ).

We compare the performance of different methods in Fig. A.1. The
plots show that the three different direction generation methods have
different characteristics, but also that their performance varies sub-
stantially between different spaces (different weather years). Generally
speaking, we see that the ‘‘random-uniform’’ method attains the largest
volume in the long term, while the ‘‘facets’’ and ‘‘maximal-centre-then-
facets’’ methods attain similar volumes and have a stronger perfor-
mance initially. In terms of radius, the ‘‘random-uniform’’ method per-
forms worse, while the ‘‘maximal-centre-then-facets’ method converges
the quickest initially.

We see that a large number of iterations is needed to converge
in terms of volume, with the ‘‘random-uniform’’ attaining the highest
volume, but still not converging after 2000 iterations. Meanwhile, the
other two methods based on facet normals make large strides initially,
but display a false convergence below the actual volume after about
1000 iterations. Convergence in terms of the radius is better (especially
for the ‘‘maximal-centre-then-facets’’ method), but can be more erratic
than the convergence of volume. 150 iterations with the ‘‘maximal-
centre-then-facest’’ method were chosen as a compromise between
accuracy and computational demand for this paper.

In Fig. A.2 we compare convergence of volume between different
numbers of dimensions 𝑘 of the spaces 𝜀 ⊆ R𝑘. For this plot, we
use the ‘‘maximal-centre-then-facets’’ direction generation method and
approximated the near-optimal spaces for the weather year 2020, but
use different dimension reduction maps 𝜎. The final approximated
volumes are all normalised to 1. We see that 3- and especially 2-
dimensional spaces are quickly approximated, while the convergence
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Fig. A.1. Performance of the different direction generation methods in terms of volume and Chebyshev radius convergence. We selected three years (among those, the years with
the highest and lowest optimal costs) and approximated their near-optimal spaces with 2000 iterations. For each of the years the plotted volumes and radii have been normalised
by the largest volume and radius obtained by any method for that year. The dotted lines mark 150 iterations.

Fig. A.2. The convergence of volume in approximating the near-optimal space for the weather year 2020, reduced to different numbers of dimensions. The direction generation
method is ‘‘maximal-centre-then-facets’’. The vertical dotted lines marks 150 iterations. The volume is normalised for each of the dimensions individually.

is slower for higher dimensional spaces. However, we do not find a
significant difference in convergence between 4, 5, 6 or 7 dimensions.

The results in this section can be used to inform a termination crite-
rion for Algorithm 1. The simplest option is to terminate the algorithm
after a fixed number of iterations. Alternatively, the algorithm may
be terminated after the volume or Chebyshev radius of 𝐻𝑖 have not
changed more than 𝛿 percent between successive iterations for the last
𝑁conv iterations. In this case, we advise that 𝑁conv be chosen as large
as possible, since we can see from Fig. A.1 that the convergence on
volume and especially radius is often somewhat erratic.

Appendix B. Data

B.1. Load data

In this article we use load data based on two regressions that were
trained on hourly country-level ENTSO-E data from 2010 to 2014

from ENTSO-E (2022).16 The aim is to infer country-level synthetic load
data for each weather year between 1980 and 2020, whose profiles re-
late to weather patterns but are otherwise directly comparable. In other
words, we disregard long-term changes in demand due to demographic
and technological developments.

First we infer weekly load profiles (at an hourly resolution) for
each country; for the purpose of this regression we treat holidays
for each country as Sundays (using the Python package python-
holidays Montel, 2022). Specifically, for each country 𝑐, we first
divide the hourly demand values by the daily average value. On these
normalised values, we conduct a regression based on the following
model formulation:

𝐷norm
𝑐 (𝑡) = 𝛼𝑐 ⋅ 𝑡 + 𝛼𝑐, 𝑡 mod 168, (B.1)

16 Due to inconsistencies for Swiss ENTSO-E data, we additionally used data
from the Swiss transmission operator (Swissgrid, 2022).
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Fig. B.1. Weekly load profile for Norway, based on the regression described in Eq. (B.1).

Fig. B.2. Load data (here for Norway in February 2010) split into base load and temperature-driven load. The underlying temperature data are daily, country-wide averages from
ERA5 reanalysis. Base load and temperature-driven load are derived from the regression described in Appendix B.

Fig. B.3. Variability of annual hydropower generation (1980–2020) based on EIA data (Administration, 2022), normalised by the reported hydropower capacities from 2020.

where 𝛼𝑐 is an annual linear trend component, and the parameters
𝛼𝑐,𝑡 mod 168 describe the weekly profile (see an example of this in
Fig. B.1).

Afterwards we use the concept of heating and cooling degree days
(HDD and CDD resp.) as in Benth et al. (2008) to find temperature-
independent daily demand and demand driven by heating or cooling
demand. For simplicity we only use one threshold for both HDD and
CDD, which we set to be 15.5 ◦C as (Spinoni et al., 2015) use for HDD:

CDD𝑐 (𝑑) = max{𝑇𝑐 (𝑑) − 15.5, 0},
HDD𝑐 (𝑑) = max{15.5 − 𝑇𝑐 (𝑑), 0},

where 𝑇𝑐 (𝑑) is daily average temperature in country 𝑐 during day 𝑑.
Note that by using the daily averages we represent smoothing effects

of thermal inertia on heating and cooling demand (compare Fig. B.2).
The country-wide temperatures are computed from ERA5 reanalysis
data (Hersbach et al., 2018) via the open-source tool Atlite (Hofmann
et al., 2021). We now conduct a regression on the daily average
load, 𝐷𝑐 (𝑑), with dummy variables for each weekday (where national
holidays are classified as Sundays), and exogenous variables given by
heating degrees and cooling degrees:

𝐷𝑐 (𝑑) = 𝛽𝑐,weekday(𝑑) + 𝛽cooling
𝑐 ⋅ CDD𝑐 (𝑑) + 𝛽heating

𝑐 ⋅ HDD𝑐 (𝑑). (B.2)

For both regressions, we test the parameters for statistical significance;
in some cases we thus set the trend parameter 𝛼𝑐 and the cooling
parameter 𝛽cooling

𝑐 to 0.



Energy Economics 118 (2023) 106496

17

A. Grochowicz et al.

Fig. C.1. Comparison of cost-minimal designs under a 100% emission reduction based on optimisations over individual years compared to the annualised costs of robust designs
(exact, mean, conservative and baseline, respectively) and an optimisation with all 41 years (‘‘41y’’).

Fig. C.2. For 100% emission reduction, annual average generation mixes for the optimal solutions for each single weather year, the optimal solution with all weather years (‘‘41y’’)
and the robust allocations.

With these regressions and the temperatures for 1980–2020 from
ERA5, we can compute the artificial load for each hour as follows:

�̃�𝑐 (𝑡) = 𝛼𝑐,𝑡 mod 168 ⋅
[
𝛼𝑐 ⋅ (𝑡 mod 8760) + 𝛽𝑐,weekday(𝑡) + 𝛽cooling

𝑐 ⋅ CDD𝑐 (𝑡)

+𝛽heating
𝑐 ⋅ HDD𝑐 (𝑡)

]
, (B.3)

where the index 𝑐 is over countries, 𝑡 is the time in hours, 𝛼𝑐,𝑖 the
regression parameter for the 𝑖th hour of the week, 𝛼𝑐 is the annual trend
component, 𝛽𝑐,𝑗 the regression parameter for weekday 𝑗, and 𝛽cooling

𝑐 ,
𝛽heating
𝑐 are the regression parameters for one degree of cooling/heating

demand for country 𝑐. We abuse notation slightly by writing CDD𝑐 (𝑡) to
mean CDD𝑐 (𝑑) where 𝑑 is the day containing 𝑡 (and likewise for HDD).
For an example, see Fig. B.2.

We validate the regression on hourly ENTSO-E load data on the
country level for 2015, and show it to be a good fit — more information
about this can be found in the GitHub repository.17

17 https://github.com/aleks-g/multidecade-data/tree/v1.0.
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Fig. C.3. Projections of the near-optimal spaces for different weather years and their intersection under 100% emission reduction. All values are annualised total investment costs
per technology. For illustrative purposes, we only plot the near-optimal spaces for 6 out of 41 weather years (in different hues of blue). The intersection of all 41 near-optimal
spaces is filled in yellow and the Chebyshev centre is marked with a cross.

In accordance with load projections for 2030 by the European
commission18 we increased the demand in each country by 13%.

B.2. Hydropower data

For hydropower data we follow the approach in PyPSA-Eur which
uses ERA5 reanalysis data to generate inflow profiles (using Atlite)
that are then scaled by historical country-level hydro generation data
from the US Energy Information Administration (EIA) (Administration,
2022). We have extended the default dataset in PyPSA-Eur to cover
the entire period of 1980 to 2020, and we have also normalised EIA’s
production data to EIA’s capacity levels of 202017:

gen𝑐 (𝑦) = nom_gen(𝑦) ⋅
cap𝑐 (2020)

cap𝑐 (𝑦)
,

18 https://ec.europa.eu/clima/document/download/ec1acac9-10fe-4eeb-
915f-cad388990e0f_en, Fig. 44 (accessed 23/06/2022).

where gen𝑐 (𝑦) and nom_gen𝑐 (𝑦) are the normalised and reported hy-
dropower generation for country 𝑐 in year 𝑦 respectively, and cap𝑐 (𝑦)
is the reported hydropower capacity for country 𝑐 in year 𝑦.

This allows a comparison throughout different years without any
trends in infrastructure development. To avoid anachronisms, we have
distributed generation and capacities of former countries onto the
current states (based on the first year of current borders, e.g. 1993 for
Czechia and Slovakia, or the sum of West and East Germany)17.

The historical generation data ensure that the inflow profiles are
scaled to reasonable values (see the general approach in Schlachtberger
et al. (2017) and in particular Fig. 4 in Liu et al. (2019)); we are inter-
ested in variability and not trends, therefore we want fixed capacities
to have comparable weather years (see Fig. B.3).

Appendix C. Additional results of a 100% emission reduction

We showcase the impact of a 100% emission reduction (as opposed
to the 95% reduction studied in the main text) on the results we
present in this paper. As the other assumptions remain unchanged and
gas turbines are the only sources of CO2 emissions in our model, this
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Fig. C.4. For 100% emission reduction, a comparison of total investments for selected technologies in the optimal solutions for each weather year and the optimal solution with
all weather years (‘‘41y’’) to the robust point 𝑦ch. Positive values mean greater investment in the given technology by the robust solution.

corresponds to replacing gas as a generation technology with carbon-
neutral alternatives. The results sharpen the uncertainty that weather
variability introduces to renewable power systems. We investigate a
different reduced near-optimal feasible space than before (replacing
the gas investment dimension by two new dimensions, investment in
battery and hydrogen storage). This means that the Chebyshev centre
under this new reduction is additionally robust to changes in invest-
ment in battery and hydrogen storage, which is not the case for the
results in the main text.

Without gas as a dispatchable generation technology, the costs of
the now carbon-neutral power systems increase by 15 to 40 billion
EUR/a, depending on the weather year. The last percentage points of
emission reductions are thus overproportionally costly (as also shown
in Neumann and Brown (2021)), in particular in ‘‘more difficult’’ years.
Wind power in combination with storage technologies see an increase

in investment (see Fig. C.1), most pronounced in the 1985, the year
with the highest optimal costs.

Fig. C.2 shows that the different optimal power systems are also
mostly driven by (onshore) wind power, as in the 95% reduction case.
Additionally, it depicts a strengthening of battery and hydrogen stor-
age, which previously did not appear in the optimal solutions, although
their shares of generation vary throughout the years. Similarly, the op-
timal share of nuclear generation becomes more volatile and decreases
not only in the robust allocations (which are characterised by higher
renewable investment by design), but also in the 41-year optimisation.
As nuclear power has higher variable costs than renewable generators,
the existing capacities are not fully used, indicating the competitiveness
of newly installed renewable capacities.

As with the 95% emission reduction, significant investment in both
onshore wind power and solar power is necessary for a power system
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that can withstand weather variability. Figs. C.1 and C.3 show addi-
tionally the need for investment in hydrogen storage and additional
transmission capacities. In comparison to optimal solutions for different
weather years, additional investment in wind power and hydrogen
strengthens robustness against weather variability (see Fig. C.4). The
full decarbonisation increases the value of offshore wind power which
did not feature prominently in the robust solution under 95% emission
reduction (see Fig. 5). Finally, it should be noted that there is a
significant amount of investment flexibility for onshore wind, offshore
wind and solar among the robust solutions for all 41 weather years.
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Supplementary material

A Direction generation
We give a more detailed overview on how to explore the near-optimal space 𝒜𝜀 (here in the
original sense as a reduced near-optimal space and not the intersection), using the notation
from Section 2. Recall that we can compute an approximation of𝒜𝜀 by finding a number of
its vertices (or rather, extreme points), and each such point is obtained by solving the linear
program inEquation (7)with some different objective (direction) 𝑑. As described inAlgorithm1,
we first optimise over 𝒜𝜀 ⊆ ℝ𝑘 in each of the cardinal directions (positive and negative) in
order to obtain a first full 𝑘-dimensional approximation. Each of these optimisations can be
performed in parallel. Thereafter, in which direction 𝑑 we choose to optimise over 𝒜𝜀 has a
significant effect on how well 𝒜𝜀 can be approximated in a limited number of optimisations.
We investigate and compare three methods that generate directions in which to optimise over𝒜𝜀. The first method is the simplest and consists of choosing directions uniformly at random.
For the remaining two methods, the idea is to compute the convex hull of the points obtained
so far after every optimisation, say 𝐻𝑖, and use the geometric properties of 𝐻𝑖 in some way
to generate the “next” direction 𝑑𝑖+1. The convex hull is computed using the program qhull
[BDH96]. The three methods are as follows:

1. “random-uniform”: Choose a random vector from the uniform distribution on the sphere
in ℝ𝑘.

2. “facets”: Choose the normal vector to the facet of𝐻𝑖 with the largest volume.
3. “maximal-centre-then-facets”: Compute the Chebyshev centre 𝑦ch of𝐻𝑖 and the ball of

maximal radius around it by solving Equation (12). Of all facets of𝐻𝑖 tangential to this
ball, choose the one with the largest associated dual variable in Equation (12) and take its
normal vector. If already used, take the normal vector to the facet of𝐻𝑖 with the largest
volume.

With all these methods, we also use a filtering procedure: we discard vectors that have already
been used. For each method, it is clear how to generate another direction if the first was
discarded: for example for the “facets” method we choose the normal of the facet with the
second-largest volume if the first direction was discarded. For the “maximal-centre-then-facets”
methods we fall back on the “facets” method when all normals to facets tangantial to the
Chebyshev ball have already been used.

In the filtering procedure, we employ an angle threshold 𝜃 such that a potential direction𝑑 is discarded if it is within 𝜃 degrees of any previously used direction. If the filter discards
all possible directions, we reduce the angle threshold 𝜃 by 20%. This is repeated every time
a method “runs out of directions”, until 𝜃 falls below a pre-defined minimum angle 𝜃𝑚𝑖𝑛, at
which point the whole algorithm is terminated.

Note that the approximation of𝒜𝜀 can be parallelised effectively for any of the three direction
generation methods, in the sense that multiple optimisations in different directions can be run
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Figure A.1: Performance of the different direction generation methods in terms of volume
and Chebyshev radius convergence. We selected three years (among those, the years with
the highest and lowest optimal costs) and approximated their near-optimal spaces with 2000
iterations. For each of the years the plotted volumes and radii have been normalised by the
largest volume and radius obtained by any method for that year. The dotted lines mark 150
iterations.

in parallel. For the latter two methods, this means that the convex hull 𝐻𝑖−𝑃 must be used in
the calculation of the 𝑖-th direction when there are 𝑃 parallel optimisations. When 𝑃 is large,
this means some of the generated direction could be slightly inferior (being generated with an
older hull𝐻𝑖−𝑃).
We compare the performance of different methods in Figure A.1. The plots show that the
three different direction generation methods have different characteristics, but also that their
performance varies substantially between different spaces (different weather years). Generally
speaking, we see that the “random-uniform”method attains the largest volume in the long term,
while the “facets” and “maximal-centre-then-facets” methods attain similar volumes and have
a stronger performance initially. In terms of radius, the “random-uniform” method performs
worse, while the “maximal-centre-then-facets’ method converges the quickest initially.

We see that a large number of iterations is needed to converge in terms of volume, with the
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weather year 2020, reduced to different numbers of dimensions. The direction generation
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“random-uniform” attaining the highest volume, but still not converging after 2000 iterations.
Meanwhile, the other two methods based on facet normals make large strides initially, but
display a false convergence below the actual volume after about 1000 iterations. Convergence in
terms of the radius is better (especially for the “maximal-centre-then-facets” method), but can
be more erratic than the convergence of volume. 150 iterations with the “maximal-centre-then-
facest” method were chosen as a compromise between accuracy and computational demand
for this paper.

In Figure A.2 we compare convergence of volume between different numbers of dimensions𝑘 of the spaces 𝒜𝜀 ⊆ ℝ𝑘. For this plot, we use the “maximal-centre-then-facets” direction
generation method and approximated the near-optimal spaces for the weather year 2020, but
use different dimension reduction maps 𝜎. The final approximated volumes are all normalised
to 1. We see that 3- and especially 2-dimensional spaces are quickly approximated, while the
convergence is slower for higher dimensional spaces. However, we do not find a significant
difference in convergence between 4, 5, 6 or 7 dimensions.

The results in this section can be used to inform a termination criterion for Algorithm 1. The
simplest option is to terminate the algorithm after a fixed number of iterations. Alternatively,
the algorithmmay be terminated after the volume or Chebyshev radius of𝐻𝑖 have not changed
more than 𝛿 percent between successive iterations for the last 𝑁conv iterations. In this case,
we advise that 𝑁conv be chosen as large as possible, since we can see from Figure A.1 that the
convergence on volume and especially radius is often somewhat erratic.
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B Data
B.1 Load data
In this article we use load data based on two regressions that were trained on hourly country-
level ENTSO-E data from 2010 to 2014 from [ENT22]15. The aim is to infer country-level
synthetic load data for each weather year between 1980 and 2020, whose profiles relate to
weather patterns but are otherwise directly comparable. In other words, we disregard long-term
changes in demand due to demographic and technological developments.

First we infer weekly load profiles (at an hourly resolution) for each country; for the purpose
of this regression we treat holidays for each country as Sundays (using the Python package
python-holidays [Mon22]). Specifically, for each country 𝑐, we first divide the hourly demand
values by the daily average value. On these normalised values, we conduct a regression based
on the following model formulation:𝐷norm𝑐 (𝑡) = 𝛼𝑐 ⋅ 𝑡 + 𝛼𝑐, 𝑡 mod 168, (16)

where 𝛼𝑐 is an annual linear trend component, and the parameters 𝛼𝑐,𝑡 mod 168 describe the
weekly profile (see an example of this in Figure B.1).

Afterwards we use the concept of heating and cooling degree days (HDD and CDD resp.) as
in [BBK08] to find temperature-independent daily demand and demand driven by heating or
cooling demand. For simplicity we only use one threshold for both HDD and CDD, which we
set to be 15.5◦C as [SVB15] use for HDD:

CDD𝑐(𝑑) = max{𝑇𝑐(𝑑) − 15.5, 0},
HDD𝑐(𝑑) = max{15.5 − 𝑇𝑐(𝑑), 0},

where 𝑇𝑐(𝑑) is daily average temperature in country 𝑐 during day 𝑑. Note that by using the daily
averages we represent smoothing effects of thermal inertia on heating and cooling demand
(compare Figure B.2). The country-wide temperatures are computed from ERA5 reanalysis
data [era5-data] via the open-source tool Atlite [Hof+21]. We now conduct a regression on the
daily average load,𝐷𝑐(𝑑), with dummy variables for each weekday (where national holidays are
classified as Sundays), and exogenous variables given by heating degrees and cooling degrees:𝐷𝑐(𝑑) = 𝛽𝑐,weekday(𝑑) + 𝛽cooling𝑐 ⋅ CDD𝑐(𝑑) + 𝛽heating𝑐 ⋅HDD𝑐(𝑑). (17)

For both regressions, we test the parameters for statistical significance; in some cases we thus
set the trend parameter 𝛼𝑐 and the cooling parameter 𝛽cooling𝑐 to 0.

With these regressions and the temperatures for 1980–2020 from ERA5, we can compute the
artificial load for each hour as follows:�̃�𝑐(𝑡) = 𝛼𝑐,𝑡 mod 168⋅[𝛼𝑐 ⋅ (𝑡 mod 8760) + 𝛽𝑐,weekday(𝑡) + 𝛽cooling𝑐 ⋅ CDD𝑐(𝑡) + 𝛽heating𝑐 ⋅HDD𝑐(𝑡)] ,

(18)
15Due to inconsistencies for Swiss ENTSO-E data, we additionally used data from the Swiss transmission operator

[Swi22].
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Figure B.1: Weekly load profile for Norway, based on the regression described in Equation (16).

where the index 𝑐 is over countries, 𝑡 is the time in hours, 𝛼𝑐,𝑖 the regression parameter for
the 𝑖-th hour of the week, 𝛼𝑐 is the annual trend component, 𝛽𝑐,𝑗 the regression parameter for
weekday 𝑗, and 𝛽cooling𝑐 , 𝛽heating𝑐 are the regression parameters for one degree of cooling/heating
demand for country 𝑐. We abuse notation slightly by writing CDD𝑐(𝑡) to mean CDD𝑐(𝑑) where𝑑 is the day containing 𝑡 (and likewise for HDD). For an example, see Figure B.2.
We validate the regression on hourly ENTSO-E load data on the country level for 2015, and
show it to be a good fit —more information about this can be found in the GitHub repository16.

In accordance with load projections for 2030 by the European commission17 we increased the
demand in each country by 13%.

B.2 Hydropower data
For hydropower data we follow the approach in PyPSA-Eur which uses ERA5 reanalysis data
to generate inflow profiles (using Atlite) that are then scaled by historical country-level hydro
generation data from the US Energy Information Administration (EIA) [Adm22]. We have
extended the default dataset in PyPSA-Eur to cover the entire period of 1980 to 2020, and we
have also normalised EIA’s production data to EIA’s capacity levels of 202016:

gen𝑐(𝑦) = nom_gen(𝑦) ⋅ cap𝑐(2020)
cap𝑐(𝑦) ,

where gen𝑐(𝑦) and nom_gen𝑐(𝑦) are the normalised and reported hydropower generation for
country 𝑐 in year 𝑦 respectively, and cap𝑐(𝑦) is the reported hydropower capacity for country 𝑐
in year 𝑦.
This allows a comparison throughout different years without any trends in infrastructure
development. To avoid anachronisms, we have distributed generation and capacities of former

16https://github.com/aleks-g/multidecade-data/tree/v1.0
17https://ec.europa.eu/clima/document/download/ec1acac9-10fe-4eeb-915f-cad388990e0f_en,

Fig. 44 (accessed 23/06/2022)
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driven load. The underlying temperature data are daily, country-wide averages from ERA5
reanalysis. Base load and temperature-driven load are derived from the regression described in
Appendix B.

countries onto the current states (based on the first year of current borders, e.g. 1993 for
Czechia and Slovakia, or the sum of West and East Germany)16.

The historical generation data ensure that the inflow profiles are scaled to reasonable values
(see the general approach in [Sch+17] and in particular Fig. 4 in [Liu+19]); we are interested
in variability and not trends, therefore we want fixed capacities to have comparable weather
years.
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Figure B.3: Variability of annual hydropower generation (1980–2020) based on EIA data
[Adm22], normalised by the reported hydropower capacities from 2020.

C Additional results of a 100% emission reduction
We showcase the impact of a 100% emission reduction (as opposed to the 95% reduction
studied in the main text) on the results we present in this paper. As the other assumptions
remain unchanged and gas turbines are the only sources of CO2 emissions in our model, this
corresponds to replacing gas as a generation technology with carbon-neutral alternatives. The
results sharpen the uncertainty that weather variability introduces to renewable power systems.
We investigate a different reduced near-optimal feasible space than before (replacing the gas
investment dimension by two new dimensions, investment in battery and hydrogen storage).
This means that the Chebyshev centre under this new reduction is additionally robust to
changes in investment in battery and hydrogen storage, which is not the case for the results in
the main text.

Without gas as a dispatchable generation technology, the costs of the now carbon-neutral power
systems increase by 15 to 40 billion EUR/a, depending on the weather year. The last percentage
points of emission reductions are thus overproportionally costly (as also shown in [NB21]), in
particular in “more difficult” years. Wind power in combination with storage technologies see
an increase in investment (see Figure C.1), most pronounced in the 1985, the year with the
highest optimal costs.

Figure C.2 shows that the different optimal power systems are also mostly driven by (onshore)
wind power, as in the 95% reduction case. Additionally, it depicts a strengthening of battery
and hydrogen storage, which previously did not appear in the optimal solutions, although
their shares of generation vary throughout the years. Similarly, the optimal share of nuclear
generation becomes more volatile and decreases not only in the robust allocations (which are
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Figure C.1: Comparison of cost-minimal designs under a 100% emission reduction based on
optimisations over individual years compared to the annualised costs of robust designs (exact,
mean, conservative and baseline, respectively) and an optimisation with all 41 years (“41y”).

characterised by higher renewable investment by design), but also in the 41-year optimisation.
As nuclear power has higher variable costs than renewable generators, the existing capacities
are not fully used, indicating the competitiveness of newly installed renewable capacities.

As with the 95% emission reduction, significant investment in both onshore wind power and
solar power is necessary for a power system that can withstand weather variability. Figures C.1
and C.3 show additionally the need for investment in hydrogen storage and additional trans-
mission capacities. In comparison to optimal solutions for different weather years, additional
investment in wind power and hydrogen strengthens robustness against weather variability
(see Figure C.4). The full decarbonisation increases the value of offshore wind power which
did not feature prominently in the robust solution under 95% emission reduction (see Figure 5).
Finally, it should be noted that there is a significant amount of investment flexibility for onshore
wind, offshore wind and solar among the robust solutions for all 41 weather years.
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Figure C.2: For 100% emission reduction, annual average generation mixes for the optimal
solutions for each single weather year, the optimal solution with all weather years (“41y”) and
the robust allocations.
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Abstract
In highly renewable power systems the increased weather dependence can result in new resilience
challenges, such as renewable energy droughts, or a lack of sufficient renewable generation at times
of high demand. The weather conditions responsible for these challenges have been well-studied in
the literature. However, in reality multi-day resilience challenges are triggered by complex
interactions between high demand, low renewable availability, electricity transmission constraints
and storage dynamics. We show these challenges cannot be rigorously understood from an
exclusively power systems, or meteorological, perspective. We propose a new method that uses
electricity shadow prices—obtained by a European power system model based on 40 years of
reanalysis data—to identify the most difficult periods driving system investments. Such difficult
periods are driven by large-scale weather conditions such as low wind and cold temperature
periods of various lengths associated with stationary high pressure over Europe. However, purely
meteorological approaches fail to identify which events lead to the largest system stress over the
multi-decadal study period due to the influence of subtle transmission bottlenecks and storage
issues across multiple regions. These extreme events also do not relate strongly to traditional
weather patterns (such as Euro-Atlantic weather regimes or the North Atlantic Oscillation index).
We therefore compile a new set of weather patterns to define energy system stress events which
include the impacts of electricity storage and large-scale interconnection. Without interdisciplinary
studies combining state-of-the-art energy meteorology and modelling, further strive for adequate
renewable power systems will be hampered.

1. Introduction

As electricity grids reach ever higher levels of renew-
able penetration to meet net-zero emissions tar-
gets, their weather dependence increases. Weather
and climate variability therefore become increasingly
important for power system operations and planning
[1, 2]. However, traditional power system modelling
has relied on a ‘typical meteorological year’ which
may only include a few hourly time slices to rep-
resent demand and renewable variability. There has
been a large effort over recent years to incorporate

the impacts of climate variability into power sys-
tem modelling, and running multi-year hourly sim-
ulations is becoming more common [3–11] with
climate scientists now producing demand, wind
and solar inputs for national and continental-scale
modelling [12–16]. Particularly in systems contain-
ing large amounts of wind power generation, the
choice of simulation years can significantly impact
the operational adequacy of a system [3–5] and not
considering year-to-year climate variability can also
lead to failure to meet long-term decarbonisation
objectives [4].

© 2024 The Author(s). Published by IOP Publishing Ltd
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Multi-decadal climate simulations are also
important for characterising the most challenging
days for power system operation (e.g. days that might
lead to blackouts). These energy system stress events
can be investigated without a full power systemmod-
elling approach by looking at time series of demand
or demand–net-renewables (‘net load’) [17–21].
Although these events are commonly periods of peak
demand, they may include times of wind droughts
(prolonged low wind speeds) [22], solar droughts or
dunkelflauten (‘dark doldrums’).

In a renewables-based power system both electri-
city demand and generation are driven by weather
and cannot be considered independently; it is thus
becoming common practice to consider times of
energy system stress as compound events involving
a combination of near-surface temperatures, wind
speeds, irradiance and hydrological variables across
large geographic and temporal scales [10, 23, 24]. For
example, high pressure systems can cause compound
events [17, 25], affecting multiple countries simul-
taneously. While the basic mechanics of periods with
energy scarcity in Europe revolve around extremely
low near-surface temperatures (for demand) and
low near-surface wind speeds (for wind power pro-
duction), we still lack a detailed understanding of
the power system dynamics during these weather-
driven extremes, including electricity transmission
and storage.

The complicating factors of transmission and
storage motivate the use of a high-resolution power
system optimisation model to identify periods of
power system stress. Such models output shadow
prices, a proxy for nodal electricity prices, which have
been used successfully as a metric for strained sup-
ply situations in studies using dispatch optimisation
models [24, 26, 27]. With the shift towards power
systems dominated by variable renewable genera-
tion, where capital expenditure represents the major-
ity of total system costs instead of operational and
fuel costs, we propose using a capacity expansion
model instead. Thus, we co-optimise infrastructure
investments and dispatch decisions simultaneously
in order to generate cost-optimal, fully decarbon-
ised power system designs for Europe. In this setting,
high shadow prices primarily indicate system-defining
events triggering large investments. For the present
study, we use PyPSA-Eur [28, 29], an open optimisa-
tion model for the European power system.

The central questionwe address is that of identify-
ing energy system stress events for decarbonised sys-
tems, and classifying the weather regimes leading to
such events. We investigate events using three differ-
ent approaches over four decades of weather vari-
ability. Approach 1 is a baseline method rooted in
energy meteorology and assesses the difficulty of a
period by net load as is commonly done [17–19].
The main novelty lays in approach 2, where we fil-
ter system-defining eventswhose total electricity costs

explain large investments, based on the shadow prices
obtained by the capacity expansion model. Approach
3 is a validation using dispatch optimisations with
out-of-sample weather years and lost load as an
alternative metric to shadow prices.

Identifying the large-scale weather patterns lead-
ing to system-defining events is of central import-
ance for systems planning, operations and forecast-
ing. Whereas previous studies have compiled weather
patterns leading to high net load or compound events
[17, 18, 25], an analysis informed by the operation
of power systems including transmission and storage
into account is missing. We show that this additional
consideration can impact results significantly. While
both approach 2& 3 take power system dynamics into
account, we find that approach 2 is the more practical
and computationally less demanding of the two (as
approach 3 requires many additional optimisations),
while the outcomes of approach 2 & 3 are similar.

To summarise, the key aims of this paper are to:

• Filter out and delineate system-defining events
using shadow price outputs from a power system
optimisation model.

• Classify these events based on the prevailing
weather conditions, and determine the main
factors leading to continent-wide system stress.

• Construct a new set of weather patterns that define
European power system stress from both a climate
and power systems modelling perspective.

Section 2 describes the meteorological and model-
ling set-up and introduces the definition of system-
defining events. In section 3 we combine the insights
from the power systemmodel and meteorology to lay
out weather patterns underlying power system stress.
We put the results into context of the expansion of
renewables and conclude with section 4.

2. Data andmethods

In the spirit of Craig et al [2] we apply a trans-
disciplinary approach to identifying challenging
weather for power systems. First, we use outputs
from a power system optimisation model to filter out
system-defining events that drive investment in addi-
tional generator capacities. For these time periods,
we cluster the meteorological conditions into groups
such that we can identify weather patterns that drive
weather stress events. Then we analyse the effects in
the power system (model) during these time periods
to determine which components lead to difficulties
and are under stress.

2.1. Datasets and tools
The weather inputs to the meteorological analyses
and to the power system optimisation model are
based on ERA5 reanalysis data [30] and are described
in the following section. We represent the European
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power system by using the open-source energy system
optimisation model (ESOM) PyPSA-Eur (github.
com/PyPSA/PyPSA-Eur) [31] (version 0.6.1) with
small modifications; the modelling setup follows
thereafter.

2.1.1. Meteorological inputs and energy variables
We use gridded weather variables from the ERA5
reanalysis [30] from 1980 until 2021. 2m temperat-
ure, 10mwind speed and surface air pressure over the
region 34◦–72◦ N, 15◦–35◦ E) are used to investigate
the meteorological conditions at times of power sys-
tem stress.We use 500 hPa geopotential height anom-
alies over the Euro-Atlantic region (90◦ W–30◦ E,
20◦–80◦ N) to create European weather regimes (see
section 2.4).

Weather-dependent power systems time series
are mainly generated using the open-source software
Atlite [15]. In Atlite, 100m wind speeds from ERA5
are first extrapolated to turbine hub height using a
logarithm law and passed through a reference power
curve to obtain capacity factors (fraction of rated
power output that can be produced at the given wind
speed); we use the Vestas 112V 3MW turbine for our
calculations. PV capacity factors are computed from
ERA5 direct and diffuse shortwave radiation influx
data using a reference solar panel model, assuming
no tracking and a fixed 35◦ panel slope. Weather-
dependent electricity demand is generated based on
historical ENTSO-E data and adjusted for heating or
cooling demand using a heating/cooling degree days
approach as in [9, 23, 32].

2.1.2. Power system modelling set-up
PyPSA-Eur is configuredwith high spatial (181 gener-
ation and 90 network nodes [33]) and temporal resol-
ution (1-hourly), making it well-suited to investigat-
ing a highly renewable European electricity network
[9, 34–40]. The model is solved for forty individual
weather years (July 1980 – June 2020, preserving win-
ters). Although capable of a sector-coupled represent-
ation of the European energy system (e.g. including
the heat and transport sectors), we restrict PyPSA-Eur
to the optimisation of the power sector alone for clar-
ity. We minimise total system costs of the European
power system by optimising investment and dispatch
of electricity generation, storage, and transmission to
meet prescribed hourly national demand over a year.
Themodel performs a partial greenfield optimisation,
i.e. with existing transmission network (2019) and
capacities of hydropower and nuclear power (2022),
but without existing renewable capacities (see figure
S1 for a break-down of total system costs for the forty
different weather years). Our cost assumptions are
based on a modelling horizon of 2030 and we assume
a fully decarbonised power system; the available gen-
eration technologies are thus nuclear and renewables:
hydropower and biomass (non-expandable), solar,
onshore and offshore wind power (all expandable).

Transmission can be expanded (overnight) by 25%
compared to current levels (figure 6 in Hörsch and
Brown [28]), and electricity can be stored through
hydro reservoirs (non-expandable), battery storage
and hydrogen storage. This can be thought of as
modelling an ambitious, early decarbonisation of the
European electricity sector using current or near-
future technologies. The focus on the power sys-
tem enables a study of weather dependence providing
more evidence on transmission and storage before the
impacts of long-term climate change emerge.

We run capacity expansion optimisations for each
of the 40 weather years (July–June) separately, arriv-
ing at 40 different cost-optimal system designs. The
overall make-up the resulting designs is similar for all
weather yearswith total system costs being dominated
bywind, then solar investment expenditure.However,
there are significant variations in the magnitudes of
installed capacities, as well as in the investment in
hydrogen and battery storage; see figure S1. Running
separate optimisations allows for the identification
of system-defining events in each weather year, as
opposed to only a smaller number of events that are
defining over the entire 40 year period. The single-
year optimisations also allow for a high spatial and
temporal resolution, whereas 40 year optimisations
have only been accomplished at amoderate resolution
[9]. While basing the results on 40 different system
designs is a potential limitation (is a period identi-
fied as challenging for one design also challenging for
other designs?), cross-validation using load shedding
(Approach 3) shows that there is very good align-
ment between system-defining events in one year and
load shedding events for other designs operated on
the same year (see also section 2.6).

2.2. Dual variables and shadow prices
PyPSA-Eur is formulated as a linear program in order
to find investment- and operational decisions which
minimise the objective (total system costs) with linear
constraints ensuring feasibility of the model result.
An optimal solution to a linear program consists of
an optimal value for each decision variable, as well as
an optimal dual value for each linear constraint. These
dual values indicate howmuch the objective function
would decrease if the corresponding constraint was
relaxed by one unit, quantifying the ‘difficulty’ of sat-
isfying the given constraint.

The dual variables corresponding to the con-
straints ensuring that a fixed demand is met at
each network node n and timestep t are denoted
λn,t following [31]. These dual variables—also called
shadowprices of electricity—can be interpreted as the
modelled price of electricity (in EUR / MWh) at the
given node and time (see e.g. [26, 27] in the context
of dispatch optimisation). Note, however, that des-
pite this economic interpretation the shadow prices
are not comparable to electricity prices in the cur-
rent Europeanmarket, as the shadowprices are largely
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driven by the need for renewable expansion in the
model, not marginal operating costs.

Apart from these, other hourly and locational
dual variables corresponding to constraints on trans-
mission and storage can be used to reveal transmis-
sion congestion rents and values of stored energy in
the model, respectively (see supplementary mater-
ials A.2). Since transmission expansion costs are
recovered through congestion rents in the model, the
congestion rent time series can reveal which times
primarily triggered investment in transmission; the
same goes for storage.

2.3. Identifying system-defining events
In this paper a system-defining event is a period
where the incurred electricity costs surpass a specified
threshold within a limited time frame. We restrict the
duration of a system-defining event to a maximum of
twoweeks, and set theminimumcost threshold to 100
bn EUR.

An event starting at t0 and lasting for T hours is
considered system-defining if

∑

n

t0+T−1∑

t=t0

dn,t ·λn,t ⩾ C (1)

for C= 100 bn EUR and T⩽ 336 (the number of
hours in two weeks), where dn,t is the electricity
demand at node n and time step t, in MWh. A pri-
ori, many overlapping events of various lengths meet
the above criteria. For the purposes of this study, we
thus filter out overlapping events until only a non-
overlapping set of system-defining events remains; see
the supplementary materials for an exact description
of the filtering procedure.

By definition, relaxing either the length or cost
threshold can only lead to additional events being
classified as system-defining; we have chosen the
threshold values used in this study so as to produce
approximately one system-defining event per year.
The relative values of the thresholds can affect the
average duration of identified events; we chose the
cost threshold so as to obtain events averaging around
7 days—the discharge duration of hydrogen storage
included in our model. See also figure S2 for an over-
view of most costly periods of varying times across
the studied weather years. It should be stressed that
the thresholds can be freely adjusted in future studies
to fit the research questions at hand.

2.4. Traditional meteorological weather regimes
To understand the weather conditions present dur-
ing system-defining events we use a weather regimes
approach. Weather regimes are recurring large-scale
atmospheric circulation patterns that can be linked
to surface weather, and energy system impacts [14].
Previous work has shown weather regimes have
predictability for energy applications out to a few

weeks ahead [41], which is beneficial for energy
system planning. Weather regimes are calculated
from daily-mean October–March 500 hPa geopoten-
tial height (Z500) anomalies over the Euro-Atlantic
region (90◦ W–30◦ E, 20◦–80◦ N) following the
classification method of [42]. The first 14 empir-
ical orthogonal functions (EOFs) of the Z500 data
are computed [43], which capture 89% of total data
variance. The associated Principal Component time
series (PCs) are used as inputs for the k-means clus-
tering algorithm, with four clusters (which has pre-
viously been found to be the optimal number over
the region [42]). Using the PCs of the Z500 data
makes the problem significantly quicker to compute
without losing useful information about the large-
scale weather conditions. The four cluster centroids
are: the positive and negative phases of the North
Atlantic Oscillation (NAO), the Atlantic Ridge and
Scandinavian Blocking (see figures 6(c)–(f) for visu-
alisation of these). We then find the weather regime
present during each system-defining event. Previous
work has shown that although these patterns have
some useful sub-seasonal predictability for energy
applications, extreme events are not necessarily rep-
resented well by the cluster centroids [18]. Therefore,
apart from finding the regime number during each
extreme event, the pattern correlation between the
days’ Z500 anomaly, and the days’ cluster centroid is
also calculated.

2.5. K-means clustering of system-defining events
In addition to weather regimes defined in terms
of 500 hPa geopotential height anomaly represent-
ing mid-troposphere dynamics, we also study near-
surface weather data during extreme events. These
near-surface data better represent the weather con-
ditions present near the power system impacts. For
each system-defining event hourly gridded 2m tem-
perature and 10m wind speeds are taken for the
region described in section 2.1.1. This gives 5615
hours (∼233 days) of data. We then perform another
k-means clustering, similar to the method of [42]
and applied above to Z500 data (see section 2.4).
Temperatures and wind speeds are first normalised
by their 1980–2021 daily climatologies (by bothmean
and standard deviation, to allow both fields to be
comparable). The data are then converted into prin-
cipal components (the first 14 are kept, explaining
56% of the total variance). These principal com-
ponents are then grouped into four clusters using
the k-means algorithm. Four was identified as the
optimal number of clusters using the silhouette score
(commonly used to determine optimal cluster num-
ber for k-means algorithms). There was no obvi-
ous elbow present when using the elbow method
(not shown). The cluster centroids can then be ana-
lysed and compared to more traditional methods as
in section 2.4.
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2.6. Validation using load shedding as indicator for
difficulty
An alternative approach to capture the adequacy of
the power system is tomeasure load shedding (unmet
demand) in a fixed power system design. In the con-
text of net-zero scenarios, we can first obtain a power
system design from a capacity expansion model, and
then subject that design to a dispatch optimisation
with different inputs in order to measure potential
load shedding. In our case, we run a capacity expan-
sion model with one weather year y1, and perform a
dispatch optimisation over a different weather year
y2. Periods of system stress in weather year y2 can
then be recognised by high load shedding in this
dispatch optimisation. We perform this cross-year
dispatch optimisation for all 1600 combinations of
y1,y2 ∈ {1980/81, . . . ,2019/20} and average the load
shedding profiles for each weather year to obtain time
series comparable to those derived from electricity
shadow prices. Calculating the average load shedding
based on the out-of-sampleweather years relies on the
optimal networks (or some other network assump-
tions) and is computationally more expensive than
section 2.3.

3. Results

Traditionally, power grids and generation stock have
been designed around fossil fuels which could act
as dispatchable generators, especially during peak
demand. With increased reliance on variable renew-
ables and balancing via transmission and energy stor-
age, this paradigm breaks down. In particular, the
most critical events to system design extend bey-
ond a single hour or day, and identifying such peri-
ods no longer depends only on weather data but
also power system parameters including storage and
transmission [7, 20, 44, 45].

We propose a re-orientation to studying power
system stress through system-defining weather
events (see table 1 and figure 1). Electricity shadow
prices reveal which time periods cause additional
infrastructure investments (section 2.3) and determ-
ine an hourly total electricity cost (figure 2) whose
yearly sum is the total annual value of electricity
in the model. The total annual value of electricity
is closely linked to the total system cost (differing
only because of existing infrastructure), which is
dominated in this model by investment costs (espe-
cially as renewables are optimised from scratch—see
figure S1).

3.1. Characteristics of periods driving system
design
We find that on average across 40 weather years,
the single most expensive day in each year accounts
for 12.4% (6.6%–31.3%) of total yearly electricity
cost, whereas 19 weather years contain a three-week

Table 1. An overview over the three approaches we compare in
this study. Approach 1 is commonly used in the literature. We
introduce approach 2 in this study (also see sections 2.2 and 2.3)
and validate it with approach 3 (see section 2.6). Also see figure 1
for a visualisation of the workflow.

Approach Underlying method Description

1 Net load Energy
meteorology
inputs

Periods of
mismatch of load
and renewable
production.

2 Shadow prices Capacity
expansion

Periods that are
defining for
system design.

3 Load shedding Dispatch
optimisation

Periods of failure
to meet demand.

period accruing more than 50% of total electricity
cost (figure S2). This heterogeneity of events calls
into question the use of representative periods or
time slices in energy systems modelling. Moreover,
we find large variations between different weather
years, with the single most expensive week explain-
ing between 18% and 77% of total respective electri-
city costs. For context, the total yearly electricity costs
(that also include the value of existing infrastructure)
range from 216 to 330 billion EUR depending on the
weather year.

As introduced in section 2.3, we define a system-
defining event as accumulating costs exceeding 100
billion EUR in less than two weeks. We identify 32
such events which all happen between November and
February (see figure 2 and table S1). The events vary
in length considerably (2–13 days), being 7 days long
on average.

We find that meteorologically extreme single days
[18, 19, 46] do not reliably identify system-defining
events in individual weather years (figure S3). While
such extreme days almost always lead to high shadow
prices, these are not necessarily surrounded by a chal-
lenging enough period to have a large impact on sys-
tem design (e.g. see the events in 1997/98, 2011/12
and 2012/13 from Bloomfield et al [19], figures S3
and S4); the same also holds for week-long events
(figures 2 and S5–S8).

As opposed to methods considering only peak
load or net load, (i.e. peak mismatch between renew-
able generation and load) [17–20, 23], using power
system optimisation outputs to identify system-
defining events takes the complex interactions
between storage and transmission into account.
Moreover, we need not make assumptions about
the availability of storage and transmission in any
particular region.

3.2. Origins of power systems stress events
In line with previous research, we find that power sys-
tem stress occurs in the winter months when temper-
atures, wind and solar production are low in Europe
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Figure 1. An overview over the workflow and the three approaches we compare in this study. For a definition of the approaches,
see table 1.

Figure 2. An overview of all identified system-defining events in the context of daily system cost. Additionally the week with the
highest net load for each year is marked (approach 1 in table 1). Only winter months are shown as shadow prices are consistently
low during the summer. All costs are in 2013 EUR, but derive from model shadow prices, not actual market prices.

[19, 40, 45]. Power systems based on renewables are
primarily wind-dependent in the winter, especially
in the northern latitudes [47], making them prone
to ‘wind droughts’. Using standard cost projections,

we see annualised investments of 60.9 bn EUR in
wind power (onshore and offshore), 28.4 bn EUR
in solar power, 15.2 and 13.3 bn EUR in batteries
and hydrogen storage respectively, and 18.4 bn EUR
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Figure 3. A summary of key metrics compared to 40 year means. Each dot represents the mean value of the metric in question
over one system-defining event. From left to right: (a) renewable production deviation from 40 year mean at the time of each
event, (b) load deviation from 40 year mean at the time of each event, (c) mean shadow price of transmission congestion during
each event, (d) mean value of stored energy for each event. An overview over all events can be found in table S1.

in transmission expansion (mean over 40 individual
weather year optimisations—figure S1).

We find significant variations in the magnitude
and location of stress triggers over Europe across
the 32 system-defining events (e.g. figures S9 and
S10). Still, all but one identified events are consist-
ently driven by low wind power and high load anom-
alies (figures 3(a) and (b)) when aggregating over the
whole system. Moreover, we find that even though
the lowwind and high load anomalies during system-
defining events are concentrated over certain regions,
high shadow prices typically spread to the whole con-
tinent (figure 4). This is despite a modest maximum
allowed transmission investment of 25% compared to
the current-day grid value in the model. Only peri-
pheral regions (northern Scandinavia and, to a lesser
extent, the Iberian peninsula) have significantly lower
shadow prices during some of the events; even then
they are much higher than average.

3.3. Role of transmission and storage during
system-defining events
While system-defining events can be caused by vari-
ousmeteorological conditions, themost severe events
almost always impact the sizing of all power sys-
tem components. Figure 4 shows a representative
example of a week-long system-defining event dur-
ing December 2007. This period was caused by a high
pressure system over central Europe causing a period
of prolonged low wind as well as high heating load
(figures 4(a) and (b)). The event is identified as dif-
ficult by the spiking electricity shadow prices (shown
by region in figure 4(c) and over time in (d)).

To discern the roles of transmission and stor-
age during this event, we consider the dual vari-
ables of the line capacity constraints and inter-hour
storage energy level linking constraints respectively

(see section 2.2 and supplementary materials for
details).While we see in figure 3 that the 40 yearmean
shadow price of congestion µl,t across the network is
just below 2 EUR / MW, figure 4(c) shows that µl,t

reaches event-average values above 1000 EUR / MW
for individual lines. This demonstrates that the event
in question is a major factor in driving transmission
expansion—in fact some 39% of the total annual net-
work congestion rent for the 2007/08 network was
gained during the week in figure 4. There is signific-
ant congestion between continental Europe on one
hand and Scandinavia and the British Isles on the
other hand, with significant wind- and hydropower
supplied from these regions. The transmission grid is
well-connected enough to avoid extreme price spikes
in the affected regions.

The value of stored hydrogen energy around the
December 2007 event in figure 4(d) reaches a max-
imum during the event, but as the marginal elec-
tricity prices are higher still, the entire hydrogen
storage reserves in the network are discharged. This
particular system-defining event was preceded by a
week of already high prices and high values of stored
energy, during which not all hydrogen storage was
able to fill up in anticipation of the main event.
Other weather years containmeteorologically distinct
system-defining periods up to several weeks apart
that are nonetheless connected by sustained high val-
ues of storage in the interim. This underlines the
temporal interdependence of power system dynam-
ics when storage is included, meaning that periods of
system stress cannot be studied as isolated events.

3.4. Comparison to the traditional relationship
between climate and power systems
Composites of the normalised surface weather con-
ditions observed during each of the 32 events from
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Figure 4. System-defining events are the result of an interplay of low renewable availability, high load, storage constraints and
transmission congestion. Inputs in the top row, comparable to a usual meteorological approach (approach 1). System variables in
the bottom row. (a) Average weather in Europe over the example event. Note the wind speed anomalies over the North Sea region
and the temperature anomalies in Central Europe in figure S11. (b) Time series of wind power production and electricity load
around the highlighted event (smoothed with rolling averages of 24 hours). The dashed lines show seasonality deduced from the
period 1980–2020. (c) Network map of the European power system with the edge widths showing shadow prices of congestion
and the regions shaded with the average electricity price during the event. (d) Time series of electricity prices, value of hydrogen
storage (with logarithmic scales), and the hydrogen storage level around the highlighted event (all network averages). All costs are
in 2013 EUR.

approach 2 (table 1) are shown in figures 5(a) and
(b). The events are defined by high pressure systems
over Central Europe and the North Sea region (where
the capacity expansion model mainly builds wind
power), resulting in cold temperatures and low wind
speeds. This is similar to the synoptic situations [17,
18, 25] seen using approach 1.

Within figures 5(a) and (b) multiple surface
weather conditions are present. Performing K-means
clustering on the normalised hourly near-surface
temperature and wind speed fields over the 32
events to isolate key weather patterns of interest
(see section 2.5) gives the four clusters shown in
figures 5(c)–(j). All include high pressure centres over
parts of Europe and low winds over the North Sea.

However, each cluster has very different spatial pat-
terns of surface temperature anomalies, which are
not seen in studies neglecting transmission and stor-
age constraints [18, 19]. Future work will investig-
ate if these conditions are unique to system-defining
events, or if it is possible to also have these anomal-
ous weather conditions at times of low power system
stress.

If instead each day is assigned to a more tra-
ditional Euro-Atlantic weather regimes framework
from Cassou [42], we see a high frequency of
Scandinavian blocking (54%) which is over double
the 25% seen climatologically. We also see over four
times fewer instances of NAO+ (figure 6). Generally
the pattern correlation between each day’s weather
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Figure 5.Meteorological conditions during system-defining events (a) and (b). For all 32 events, (c)–(j) are the four extracted
clusters of events.

and the assigned cluster is low (figure 6), particu-
larly when a day is assigned to NAO+ or the Atlantic
ridge. Figure 6(g) shows the 500 hPa geopotential
height composite for all of the system defining events.
This explains the higher prevalence of Scandinavian
blocking events (figure 6(d)) but importantly, the

system defining events resemble a fusion between
the high pressure centre from the Scandinavian
blocking pattern, and low pressure region from the
NAO− pattern.

Figure 7 shows the temporal evolution of the
weather regime categorisation from figure 6 over each
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Figure 6. (a) Frequency of occurrence of Euro-Atlantic weather regimes as defined in [42] during system-defining events (with
the solid dot marking the overall 40 year relative frequency of each regime), (b) pattern correlation between the daily 500 hPa
geopotential height anomaly from the 32 system-defining events and the four Euro-Atlantic weather regimes, (c)–(f) 500 hPa
geopotential height (Z500) anomaly composites for the Euro-Atlantic weather regime cluster centroids, (g) Z500 anomaly
composite during the 32 system-defining events.

event. The figure is centred around the peak day of
each event, which is the day containing the single
most expensive hour of the event. It is interesting to
note that the peak day can be at any point during the
extreme event, and that the weather regime present
during an extreme event is often quite persistent. Both
of these are interesting points for future work. The
results in this section motivate the need for more
bespoke approaches to extreme energy days [48, 49].

When considering seasonal extremes, previous
studies have shown strong correlations between
the NAO and national demand and wind power

generation [17, 50–52]. Winters with a negative
NAO index have weaker surface pressure gradients
across Europe, leading to colder, stiller conditions and
higher seasonal demands. Figure 8(a) shows positive
correlation between the October-March NAO index
and European mean wind capacity factor (R= 0.52),
with similarly strong negative correlations seen for
NAO index and European mean load (Figure 8(b)).
Significant correlation is also found when costs of
electricity (between October and March) are con-
sidered (R=−0.42). Winters with a negative NAO
index generally exhibit higher costs (figure 8(c)).
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Figure 7. Daily evolution of the predominant weather regime during each system-defining event (see table S1). The events are
centred around the peak day, which is the day containing the single most expensive hour of the event. If the association of a day to
a weather regime is not statistically significant, it is shown with high transparency.

However, there are times where a high cost can hap-
pen in a mild winter. For instance, January 1997
(figures S12 and S13) experienced a low-wind-cold-
snap driving high system costs; a very anomalous
event compared to the rest of the season.

Fully modelling transmission and storage con-
straints can lead to a different characterisation of the
most challenging winters for power system operation
than seen in studies entirely based on meteorological
input variables. This is particularly important when
considering the sub-seasonal to seasonal prediction of
extreme energy events.

3.5. Validation of system-defining events
We validate our approach through load shedding (or
lost load) which is a commonly used tool to meas-
ure power system adequacy [9, 49, 53, 54]. Load
shedding can be measured in dispatch optimisa-
tions of fixed power system designs, whereas capa-
city expansion models avoid any load shedding
by design.

To validate whether system-defining events align
with periods of high load shedding, we calculate
for each weather year yi the hourly average load
shedding in the dispatch optimisations of the power
system designs obtained from weather years yj, j ∈
{1980/81, . . . ,2019/20} operating over year yi (a
total of 40 dispatch optimisations per weather year).
See section 2.6 and supplementary materials for
details. We find that all but one system-defining
events overlap with the week-long periods of highest
load shedding in the weather year they occurred in.

In any year, system-defining events tend to be
those with high load shedding; either method can be
used to identify power system stress. Crucially, both
shadow prices and load shedding agree on extreme
events that are different than those from approach 1
(table 1) based only on net load (figures S14–S17).
This highlights yet again the importance of detailed
power systems modelling (also required for com-
puting load shedding) in identifying weather stress
events.

11



Environ. Res. Lett. 19 (2024) 054038 A Grochowicz et al

Figure 8. The relationship between October–March mean North Atlantic Oscillation (NAO) index and October–March (a)
European mean onshore wind capacity factor, (b) total European net load, and (c) total costs of electricity (all between October
and March). The year with the highest costs accrued between October and March (1996/97) is marked with green in (a)–(c). R
values show the Pearson correlation coefficient between variables. Similar results are seen for individual countries (not shown).

Arriving at load shedding data takes an additional
step (possibly on top of approach 2): first obtaining
one or several system designs and then running them
in dispatch mode to reveal load shedding. The latter
approach also entails additional assumptions: one has
to choose which input scenarios to use for capacity
expansion steps and dispatch steps respectively.

4. Discussion & conclusions

In this study we investigate difficult weather events
for power systems through an integrated approach
combining meteorology with power systems model-
ling. To improve resilience against weather extremes,
we show that it is not enough to look at meteorolo-
gical variables alone (Approach 1), but we also need
to include a detailed representation of future, to-be-
designed energy systems (Approaches 2 and 3). We
propose identifying system-defining weather periods
as those being the main drivers of investments; such
periods are defined by high electricity shadow prices
in a power systems model. As this approach builds
directly on modelling outputs, it is free of assump-
tions on specific characteristics of extreme events.

We find that risk factors like persistent low tem-
peratures and low wind align well with previous
literature [21, 22, 55], however, conventional meteor-
ological analysis does not reliably identify the most
severe difficult periods for future power systems.
In particular, challenging periods for the integrated
European network vary in duration and are charac-
terised by transmission and storage interactions over
time, not only extreme weather. We see that isol-
ated regional studies are not good enough, as the vast
majority of the continent experiences uniformly high
shadow prices during all system-defining events. To
reliably predict future energy system stress events tra-
ditional meteorological classifications [18, 42, 55] are
not enough, and more detailed knowledge on surface
weather impacts on power systems is needed [14, 49].

Since our approach is based on single-year optim-
isations resulting in different system designs for

different weather years, electricity shadow prices and
thus severity of events are not directly comparable
across weather years. This limitation can be addressed
by using load shedding (approach 3 in table 1) instead
of electricity shadowprices to identify extreme events.
However, our validation shows that the load shed-
ding and shadow price approaches agree on the
most severe events in each individual weather year.
Computing load shedding is also more computation-
ally expensive and involvesmore assumptions, requir-
ing a two-step process.

Restricting our analysis to events shorter than two
weeks, we capture significant fractions of total electri-
city cost, but do not capture the full chain of cascading
compound events. A complete understanding of how
seasonal weather relates to total annual system cost
(beyond the partial correlation with the NAO index)
is still elusive. Perfect foresight also limits the ability
of our model to react realistically to multi-week or
longer events. On the other hand, our analysis also
does not focus on very brief events. Further analysis
over a variety of event length, both longer and shorter,
would be beneficial.

An interesting extension of this study would be
the inclusion of sector coupling: electrification of
heating strengthens the impacts of heating load and
the inclusion of more sectors could lead to differ-
ent dynamics than in the power sector alone. Still,
low wind generation will be key in years to come
due to higher penetration of renewable technologies.
With ever-improving climate models, these methods
could be applied to climate model projections, as sys-
tem insights based on weather from the 1980s might
not necessarily be transferable to mid-century sys-
tems under climate change.

The question of pinning down what makes cer-
tain weather years difficult (in terms of system costs)
remains complicated and computationally expens-
ive; the main part of investments throughout the
years is driven by a few short-lived and severe events.
Our classification can help meteorologists, transmis-
sion system operators and long-term system planners
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to develop early warning systems and resilience
strategies for these events. It is worth remembering
that current systems usually struggle with high load,
but that these risks and coping mechanisms will shift
towards supply issues when renewable production
dominates. A good understanding of the anatomy of
such events will help in risk assessments including fre-
quency and severity under climate change, crucial for
ensuring system adequacy.

Our flexible approach can be applied to other
contexts beyond this European case study and shows
that rigid assumption-based analyses within one dis-
cipline do not suffice for challenges the world is
facing. Our approach exploits inherent information
from existing models and unites perspectives from
linear optimisation, energy modelling, and meteoro-
logy to enhance the understanding on howmore resi-
lient future energy systems can be planned. Without
interdisciplinary studies with state-of-the-art power
system models and meteorological data, progress in
researching and implementing renewable energy sys-
tems cannot be made.
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A Additional methodological details

A.1 Energy system optimisation models and dual variables
Many energy system optimisation models (such as PyPSA-Eur) are formulated as a linear program, which means they have
a linear objective and linear constraints: min𝑥∈ℝ𝑁 𝑐𝑇 ⋅ 𝑥 s.t. 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0𝐴 ∈ ℝ𝑀×𝑁 , 𝑏 ∈ ℝ𝑀 , 𝑐 ∈ ℝ𝑁 , for𝑀,𝑁 ∈ ℕ.
This formulation gives rise to a dual problem max𝑦∈ℝ𝑀 𝑏𝑇 ⋅ 𝑦 s.t. 𝐴𝑇𝑦 ≥ 𝑐, 𝑦 ≥ 0𝐴 ∈ ℝ𝑀×𝑁 , 𝑏 ∈ ℝ𝑀 , 𝑐 ∈ ℝ𝑁 , for𝑀,𝑁 ∈ ℕ.
We are interested in the dual variables that stem from the nodal energy balance constraints for every time step 𝑡 and node𝑛; equation (12) in Brown et al. [1]. These constraints ensure that supply meets a given inelastic electricity demand at each
hour and node, and following Brown et al. [1] we denote their respective dual variables 𝜆𝑛,𝑡 (also known as marginal or
shadow prices). By definition, 𝜆𝑛,𝑡 is the rate of change of the objective function, here total system costs, with respect to
demand at node 𝑛 and time 𝑡. More usefully, 𝜆𝑛,𝑡 (given in EUR /MWh) can be interpreted as the marginal electricity price
at each node and time step. Letting 𝑑𝑛,𝑡 be electricity demand, 𝑑𝑛,𝑡 ⋅ 𝜆𝑛,𝑡 is the cost of satisfying electricity load at node 𝑛
and hour 𝑡. It follows that∑𝑛,𝑡 𝑑𝑛,𝑡 ⋅ 𝜆𝑛,𝑡 is the total cost of electricity over the entire modelling horizon.
It should be noted that the marginal prices 𝜆𝑛,𝑡 typically do not follow the same profile as real electricity market prices; this
is due to the inclusion of capacity expansion in our model. This leads 𝜆𝑛,𝑡 to not only be driven by marginal operating costs
of power plants, as in free electricity markets, but mainly by conditions triggering investments. Thus, the shadow prices𝜆𝑛,𝑡 typically stay very low most of the type, and increase drastically during periods necessitating additional investment in
generation, storage and transmission capacity. Nonetheless,

∑𝑛,𝑡 𝑑𝑛,𝑡𝜆𝑛,𝑡∕∑𝑛,𝑡 𝑑𝑛,𝑡 gives a good indication of the system-
average electricity price resulting from the model.

In a simple greenfield capacity expansion model, with no included existing infrastructure, the total cost of electricity∑𝑛,𝑡 𝑑𝑛,𝑡𝜆𝑛,𝑡 (plus the shadow cost of emissions in case of a global emission constraint) is equal to the objective value of
the optimisation problem; this following from strong duality for linear programs. Since our model includes existing trans-
mission, hydropower, nuclear and biomass generation infrastructure whose costs are not included in the objective function,
the objective value is lower than the total electricity cost. Still,

∑𝑛,𝑡 𝑑𝑛,𝑡 is a good indicator for total system cost.

A.2 Transmission congestion and value of stored energy
For each transmission line 𝑙, the electricity flow𝑓𝑙,𝑡 over that line at time 𝑡 is subject to the constraints𝑓𝑙,𝑡 ≥ −𝐹𝑙 and𝑓𝑙,𝑡 ≤ 𝐹𝑙
where 𝐹𝑙 is the capacity of the line in MW and the sign determines the direction of the flow. The dual variables 𝜇lower𝑙,𝑡 and𝜇upper𝑙,𝑡 to these constraints are called the shadow prices of congestion. The capacity-weighted sum

∑𝑙(𝜇lower𝑙,𝑡 + 𝜇upper𝑙,𝑡 )𝐹𝑙 is
the congestion rent of the network, and equal to the surplus gained by the transmission grid at time 𝑡 [2]. This way we can
judge whether certain periods are determining in the transmission expansion decisions.

Similarly, constraints preserving the state of charge from one hour to the next give rise to dual variables which can be
interpreted as the marginal value of stored energy, with each storage unit discharging if and only if its value of stored
energy is below the marginal price of electricity at the network node it is connected to [3, 4]. It should be noted that these
considerations can be a useful indicator for locating crucial regions.

A.3 Selection of system-defining events
Recall that an event starting at 𝑡0 and lasting for 𝑇 hours is considered system-defining if∑𝑛 𝑡0+𝑇−1∑𝑡=𝑡0 𝑑𝑛,𝑡 ⋅ 𝜆𝑛,𝑡 ≥ 𝐶 (1)

for 𝐶 = 100 bn EUR and 𝑇 ≤ 336 (the number of hours in two weeks).
A priori, many overlapping time periods of the same or different lengths can attain the above thresholds. For example,
if the period [𝑡0, 𝑡1] is system-defining and strictly shorter than two weeks, then [𝑡0, 𝑡1 + 1] is also system-defining. For
the purposes of this study, we select a disjoint subset of all system-defining events. In particular, we build up the subset
iteratively by going through system-defining events from shorter to longer events (and in decreasing order of total electricity
cost for events of the same length), and only adding each event to the selected subset if it does not overlap with previously
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selected events. This corresponds to imposing a partial order on all system-defining events by defining 𝑒1 < 𝑒2 if and only
if 𝑒1 and 𝑒2 overlap and 𝑒1 is shorter than 𝑒2 or, if of the same length, is more expensive; our selected subset consists of the
minimal elements of the resulting partially ordered set.

As a final step, we extend the selected events on either side as long as this does not decrease event-average hourly electricity
cost. Thus, for the left side of each event, we extend from [𝑡0, 𝑡1] to [𝑡0 − 1, 𝑡1] as long as1𝑡1 − 𝑡0 ∑𝑛 𝑡1∑𝑡=𝑡0 𝑑𝑛,𝑡 ⋅ 𝜆𝑛,𝑡 ≤ 1𝑡1 − (𝑡0 − 1)∑𝑛 𝑡1∑𝑡=𝑡0−1𝑑𝑛,𝑡 ⋅ 𝜆𝑛,𝑡. (2)

The right side of the events is extended similarly.

A.4 Validation using load shedding
To compute load shedding profiles to compare to shadow prices, we fix system designs 𝐷𝑗 , each obtained by a capacity
expansion based on a weather year 𝑦𝑗 , 𝑗 ∈ {1980∕81,… , 2019∕20} (preserving winters from July – June), and optimise
the dispatch of 𝐷𝑗 year-by-year with all weather years 𝑦𝑖 , 𝑖 ∈ {1980∕81,… , 2019∕20}. The forty initial optimisations lead
to different electricity networks with large discrepancies in total system costs (as in Grochowicz et al. [5]) and are often
inadequate for weather conditions that are not represented in the inputs. Keeping the capacities of 𝐷𝑗 fixed, we add an
artificial generator at each node 𝑛which can supply electricity at very high variable (and no capital) costs if demand cannot
bemet any other way. The power supplied by this artificial generator, 𝑔𝑗𝑛,𝑡 can be interpreted as load shedding and quantifies
the extent and times during which the system fails to meet demand.

For each weather year 𝑦𝑖 , we compute the average load shedding 𝓁𝑡 across all 40 system designs 𝐷𝑗 (although 𝐷𝑖 cannot
have any load shedding for 𝑦𝑖 by the model formulation), thus obtaining values for each time step between July 1980 and
June 2020: 𝓁𝑡 = 140∑𝑗 ∑𝑛 𝑔𝑗𝑛,𝑡, (3)

where 𝑔𝑗𝑛,𝑡 is the load shedding at node 𝑛 when the system design 𝐷𝑗 is operated at time 𝑡.
One advantage of using load shedding over electricity shadow prices is that latter may suffer from “overshadowing” effects.
Since shadow prices indicate events triggering investment, one event might overshadow another in the same weather year
if one is slightly more severe than the other but similar otherwise, thus triggering investments (leading to high shadow
prices) that render the second event benign. We see limited evidence of this in Fig. S16 (comparing electricity shadow
prices and load shedding), but shadow prices and load shedding match well for the most severe events (Figs. S12–15).

B Additional figures

B.1 Inter-annual variability of investment decisions
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Figure S1: Annualised total system costs of optimal system designs across 40 different weather years after [5]. All costs are
in 2013 EUR.

B.2 Duration and cost of system-defining events
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Figure S2: Total electricity costs ofmost expensive contiguous periods as a function of period length across differentweather
years. For instance, the vertical slice of the graph at 𝑥 = 1 week shows that the single most expensive week ranges in cost
between about 40 and 200 bn EUR. The thick black line segment shows the cutoff that was used to identify system-defining
events: periods of at most 2 weeks having a total electricity cost of at least 100 bn EUR. The weather years without system-
defining events correspond to the curves that do not intersect the cutoff line. Note that the cutoff line on this graph cannot
be used to identify multiple system-defining events in the same weather year.
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B.3 System-defining events across different years
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Figure S3: An overview over all identified system-defining events in the context of daily system cost. Apart from the costs
we also plot average load shedding (as in Methods). The marked “difficult days” are from [6]. Only winter months are
shown as shadow prices are consistently low during the summer. All costs are in 2013 EUR.
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Figure S4: An overview over all identified system-defining events in the context of daily system cost. Apart from the costs
we also plot average load shedding (as inMethods). Additionally the week with the highest net load for each year is marked
(Approach 1 in Table 1). Only wintermonths are shown as shadow prices are consistently low during the summer. All costs
are in 2013 EUR.
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1
Figure S5: Hourly and accumulated electricity costs across the weather years 1980–1990. System-defining events are
marked along with two weather input-based filters: for each year the week with the highest electricity load (“Demand”)
and the week with the largest mismatch between electricity load and renewable production (“net load”). All values in bn
EUR (2013).
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1
Figure S6: Hourly and accumulated electricity costs across the weather years 1990–2000. System-defining events are
marked along with two weather input-based filters: for each year the week with the highest electricity load (“Demand”)
and the week with the largest mismatch between electricity load and renewable production (“net load”). All values in bn
EUR (2013).
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1
Figure S7: Hourly and accumulated electricity costs across the weather years 2000–2010. System-defining events are
marked along with two weather input-based filters: for each year the week with the highest electricity load (“Demand”)
and the week with the largest mismatch between electricity load and renewable production (“net load”). All values in bn
EUR (2013).
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1
Figure S8: Hourly and accumulated electricity costs across the weather years 2010–2020. System-defining events are
marked along with two weather input-based filters: for each year the week with the highest electricity load (“Demand”)
and the week with the largest mismatch between electricity load and renewable production (“net load”). All values in bn
EUR (2013).
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B.4 Key metrics for the system-defining events
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Figure S9: A summary of key metrics for the United Kingdom compared to 40-year means. Each dot represents the mean
value of the metric in question over one system-defining event. From left to right: (a) renewable production deviation from
40-year mean at the time of each event, (b) load deviation from 40-year mean at the time of each event.
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Figure S10: A summary of key metrics for Italy compared to 40-year means. Each dot represents the mean value of the
metric in question over one system-defining event. From left to right: (a) renewable production deviation from 40-year
mean at the time of each event, (b) load deviation from 40-year mean at the time of each event.

10



Start End Wind
anom.
[GW]

Solar
anom.
[GW]

Load
anom.
[GW]

Transmission
[EUR/MW]

Hydrogen
[EUR/MWh]

Battery
[EUR/MWh]

Hydro
[EUR/MWh]

1981-02-13 04:00 1981-02-21 08:00 -93.9 14.8 34.4 22.3 587.2 1102.1 18.2
1982-02-16 12:00 1982-02-25 10:00 -81.4 -3.5 26.5 31.3 359.5 983.0 15.6
1982-11-27 12:00 1982-12-03 23:00 -87.1 -5.1 21.9 36.5 390.1 1329.8 18.1
1985-01-07 16:00 1985-01-12 17:00 -138.4 25.2 78.7 48.5 610.0 1582.3 19.8
1985-11-19 16:00 1985-11-30 15:00 -100.2 -3.1 48.7 23.8 553.5 799.5 6.1
1987-01-19 16:00 1987-01-24 01:00 -137.6 9.6 52.2 49.7 707.4 1885.4 38.6
1987-11-26 15:00 1987-12-09 13:00 -54.1 -4.4 20.7 24.3 297.3 692.5 12.2
1989-12-31 06:00 1990-01-05 21:00 -109.7 18.9 8.9 52.7 545.9 1561.2 20.4
1990-12-14 04:00 1990-12-19 22:00 -132.3 11.3 28.7 48.9 702.5 1493.6 6.1
1991-01-27 16:00 1991-02-05 08:00 -121.3 18.6 36.4 23.6 597.3 1020.7 20.5
1992-12-21 02:00 1992-12-30 10:00 -76.5 7.3 -2.0 34.6 625.2 1003.7 28.3
1993-11-21 16:00 1993-11-30 06:00 -37.7 8.0 50.8 46.5 297.9 992.7 14.0
1994-12-15 16:00 1994-12-25 03:00 -25.9 1.7 10.4 65.9 218.1 822.4 15.2
1995-12-16 20:00 1995-12-21 21:00 -121.5 -8.6 17.8 62.5 391.6 1527.4 24.1
1997-01-05 16:00 1997-01-09 10:00 -122.8 -11.4 45.3 64.1 982.9 2121.7 19.1
1997-11-24 04:00 1997-12-05 23:00 -56.5 -8.7 20.8 45.3 444.8 689.2 15.1
1998-11-18 13:00 1998-11-25 23:00 -56.7 20.9 54.5 46.0 752.4 1083.4 16.2
2000-01-17 06:00 2000-01-27 09:00 10.3 10.5 23.5 37.4 122.6 706.4 5.0
2001-01-16 15:00 2001-01-19 20:00 -124.3 7.8 38.5 76.0 1333.8 2702.0 45.8
2003-02-06 17:00 2003-02-15 07:00 -91.1 9.5 18.8 24.5 304.5 991.8 3.9
2004-11-28 16:00 2004-12-03 09:00 -90.4 -18.8 20.9 60.1 868.4 1785.0 34.1
2004-12-08 16:00 2004-12-15 20:00 -71.0 26.0 14.9 71.2 683.1 1343.6 28.1
2006-01-26 15:00 2006-02-06 06:00 -112.6 8.2 18.0 26.2 188.2 740.4 33.5
2006-12-17 15:00 2006-12-26 09:00 -64.7 4.0 1.6 42.3 527.5 1065.7 18.8
2007-12-17 16:00 2007-12-24 08:00 -75.1 15.6 24.7 82.4 622.4 1383.0 29.5
2009-01-02 15:00 2009-01-10 08:00 -82.9 0.8 34.5 59.9 588.2 1217.3 20.7
2010-01-14 06:00 2010-01-26 21:00 -82.5 -3.6 14.1 31.0 379.0 680.3 12.8
2013-01-08 14:00 2013-01-16 23:00 -102.3 -6.3 16.3 50.0 562.6 905.4 19.5
2015-01-19 06:00 2015-01-22 09:00 -108.7 -11.1 30.6 89.2 1080.6 2386.3 42.9
2016-01-18 16:00 2016-01-20 17:00 -131.9 15.0 55.9 89.6 916.2 3591.0 12.1
2017-01-16 01:00 2017-01-25 10:00 -76.2 18.7 26.4 57.6 394.7 822.4 22.3
2019-01-20 15:00 2019-01-24 21:00 -85.5 0.6 37.1 100.7 970.2 1929.0 38.4

Table S1: Key metrics for all identified system-defining events. The anomalies (to the mean for 1980–2020) for wind power
production, solar production, and load are hourly averages in GW, and the values for transmission and the different storage
technologies are hourly averages for shadow prices of congestion (in EUR/MW) and value of stored energy (in EUR/MWh).
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B.5 Examples of a system-defining event
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Figure S11: Average weather in Europe over the example event in 2007. Note the temperature anomalies in Central Europe
and in particular wind speed anomalies over the North Sea region.
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Example: 1997-01-05 16:00:00 - 1997-01-09 10:00:00
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Figure S12: Inputs in the top row, comparable to a usual meteorological approach. System variables in the bottom row.
(a) Average weather in Europe over the example event. Note the wind speed anomalies over the North Sea region and
the temperature anomalies in Central Europe in Figure S11. (b) Time series of wind power production and electricity
load around the highlighted system-defining event (smoothed with rolling averages of 24 hours). The dashed lines show
seasonality deduced from the period 1980–2020. (c) Network map of the European power system with the edge widths
showing shadow prices of congestion and the regions shaded with the average electricity price during the event. (d) Time
series of electricity prices, value of hydrogen storage (with logarithmic scales), and the hydrogen storage level around the
highlighted system-defining event.

13



1002

1006

1006

1010

1010

1014

1014
1018

1018

1022

1002

1006

1006

1010

1010

1014

1014

1018

1018

1022

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Norm. 2m temperature anomaly

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Norm. 10m wind speed anomaly

1997-01-05 16:00:00 - 1997-01-09 10:00:00

1
Figure S13: Average weather in Europe over the example event in January 1997.
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B.6 Load shedding provides an alternative method to shadow prices

1
Figure S14: Average load shedding (across all networks) for the weather years 1980–1990. System-defining events are
marked.
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1
Figure S15: Average load shedding (across all networks) for the weather years 1990–2000. System-defining events are
marked.
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1
Figure S16: Average load shedding (across all networks) for the weather years 2000–2010. System-defining events are
marked.
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1
Figure S17: Average load shedding (across all networks) for the weather years 2010–2020. System-defining events are
marked.
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Abstract
European countries have many alternatives to reach carbon neutrality by 2050. We use novel
near-optimal modelling techniques illuminating trade-offs and interactions between national and
continental energy transitions under uncertainty. Our results reveal extensive and robust flexibility
at a regional level, few truly indispensable technologies (solar around the Adriatic and wind on
the British Isles and in Germany) and variance of energy balance around the North and Baltic
Seas beyond 1,000 TWh. Although most regions can refrain entirely from any particular form of
renewable generation, cost-effective systems in Europe need investment of at least 60 bn EUR/a in
either onshore wind or solar power. However, stronger commitment to solar in Southern Europe
and Germany (for instance) unlocks more design options for the remaining system. Quantifying
regional trade-offs in energy system planning is crucial in order to facilitate a more meaningful
policy discussion than is possible with cost-minimality paradigms.

The European energy system is gearing up for a massive trans-
formation towards net carbon neutralitywhichwill deeply change
the production and flow of energy both at the domestic and in-
ternational level. Having enshrined greenhouse gas neutrality by
2050 in the European Climate Law1, the EU plans to achieve the
transition through a mix of the European Green Deal2 and na-
tional policy. Modelling studies have shown that there is flexibility
in regional and national investment choices and have explored
the spatial diversity of potential carbon-neutral system designs3–6.
The regional dynamics of decision making are thus important for
investment planning7–9, but systematic studies delineating the
design spaces of individual regions embedded in a larger system
are missing.

Energy system optimisation models play an important role in
investigating how to best reach European and national climate
targets, but their strict focus on cost-optimality limits the per-
spectives and insights for policymakers. Large varieties of system

*Contributed equally
†Corresponding author, koen.v.greevenbroek@uit.no

designs can be described by the near-optimal space of an en-
ergy systemmodel10–13 where the geometrical description aids in
providing a systematic overview. Without such a complete over-
view, long-term planning can result in systems that lack resilience,
are socially unacceptable or operationally inadequate.

Going beyond cost-optimality, what are the characteristics of the
robust design spaces of regional European energy systems, and
how do they interact with the continental energy landscape? To
address this question, we use near-optimal methods with a sector-
coupled energy system optimisation model to conduct a rigorous
study of the effects of regional decision-making on the future
European energy system and vice versa. Using a diverse set of
scenarios to ensure robustness to uncertainty, we obtain results
for 7 similarly sized focus regions embedded in the European
energy system. This enables a comparison of regional design flex-
ibility, export potentials and minimum investment levels subject
to various system-wide investment decisions.

We find a strikingly large degree of design flexibility — on the
continental, but even more so on the regional level. If renew-
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able generation is sufficient, policymakers may make trade-offs
between different objectives among many cost-effective altern-
atives. Investment in certain technologies and regions affects
overall system design flexibility much more than others, with for
example solar power in Germany providing flexibility to the trans-
ition both domestically and system-wide. Wind and hydrogen
investment, meanwhile, can be geographically shifted relatively
freely, revealing investment opportunities for individual regions
to become renewable energy exporters or hydrogen powerhouses.
This significantly expands the understanding of design flexibility
within the renewable electricity13,14 or energy sector4 in Europe,
precisely describing the considerable trade-offs between solar,
onshore wind and offshore wind at a regional resolution.

Our innovation is to map out near-optimal spaces in a set of di-
mensions representing investment in key technologies both inside
and outside a given region. This allows us to quantify changes in
regional robust design spaces resulting from continental decision-
making and vice-versa. We concentrate on solar, onshore wind,
offshore wind and hydrogen infrastructure (production, storage,
conversion, transportation), resulting in a total of 8 dimensions
(4 inside, 4 outside). Approximations of the resulting joint near-
optimal design spaces13 are then computed for each of the 7
focus regions separately. Crucially, we ensure robustness of the
results against influential uncertainties such as technology costs,
land use restrictions, and weather variability by intersecting near-
optimal spaces. For the remainder of this work, we refer to the
intersection of near-optimal spaces as the robust design space, and
to points therein as robust solutions/designs. The intersection
technique has previously only been applied to weather years13;
our approach involving a variety of scenarios (Methods) provides
a novel blueprint for future studies of robust system design.

Results
Ample opportunities for regional energy supply
and exports
On the system-wide continental level and especially on the re-
gional level, there is significant flexibility in how investment can
be distributed onto the technologies explored in this study (solar,
on- and offshore wind, hydrogen infrastructure — see Methods).
Setting the present results apart from previous studies using near-
optimalmethods4,14 is that this flexibility holds evenwhile taking
into account uncertainties in costs, weather years and land use
restrictions. Indeed, we only consider so-called robust solutions

that are feasible and cost-effective under all considered scenarios
(Methods). Our results are given for a total system cost slack of𝜀 = 5%, but see Supplementary Table S1 for a sensitivity analysis
of key figures under different slack levels. Relatively speaking,
individual regions enjoy significantly more planning flexibility
than we see for the overall system (Figure 1).

We see that any robust European system design needs at least
around 60 bn EUR investment in onshore wind and solar power
each, amounting to∼500 GW and∼1250 GW of installed onshore
wind and solar capacity, versus 188 GW15 and 209 GW16 in EU-27
in 2022, respectively. This combination of wind (500 GW) and
solar power (1250 GW) is not enough; remaining investment (of
at least 340 bn EUR continent-wide) can be distributed in many
different ways (Figure 1 (a)–(c)). Details on technologies beyond
wind and solar are given in Supplementary Figure S1. All costs
are annualised with a 7% discount rate and given in 2023 EUR.

Wemodel for net zero CO2 emissions and limit CO2 sequestration
to 200 Mt/a (following Neumann et. al.17) — this slashes natural
gas use to 7% of 2021 levels18,19 and renders fossil oil obsolete
in the model (Supplementary information). Still, Europe overall
can fully supply all energy demand from the residential, services,
transportation and industry sectors using only local renewable
generation, existing nuclear power and marginal use of abated
natural gas. For comparison, in 2022 the fraction of imported
energy in the EU27 countries was 63%20 and the goal for 2040
lies at 26–34%21.

At a regional level, we observe a remarkable variety of robust
and cost-effective combinations of regional investments in solar
power and onshore wind (Figure 1 (d)–(j)). As a matter of fact,
most focus regions can get away entirely without any onshore
wind or without any solar power. Figure 2 shows that a number of
regions need a certainminimum investment in wind power of any
kind, but as wind resources tend to be more abundant in coastal
proximity, the balance between onshore and offshore wind can be
adjusted relatively freely. Locally reducing overall investment in
renewables is also possible, though for the purposes of this study
we enforce a net self-sufficiency level of 75% for every country
in the model (Methods; see the Supplementary information for
a sensitivity analysis). The minimum investment levels for any
kind of renewable seen in Figure 2 largely reflect this constraint.
Partial self-sufficiency does not drastically increase total system
cost but prevents the unnecessary exploration of systemdesigns in
which individual regions heavily rely on imports — we consider
such designs unlikely to be realised.
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Figure 1: Robust trade-offs between annualised onshore wind and solar investment in Europe, consistent with the net-zero emissions target for
2050. (a) shows the overall robust design space projected onto the onshore wind and solar dimensions, with the cost slack marked, as well as the
optima in all the individual scenarios marked. Note that the optima from individual scenarios are not necessarily robust (i.e. may not be feasible or
near-optimal in other scenarios). (b) – (c) show how the robust design spaces changes (in dashed lines) subject to various levels of investment in
offshore wind and hydrogen infrastructure respectively. For instance, investing only 20 bn EUR into offshore wind requires more investment in
solar and/or onshore wind. Note that as cost-optimal European-wide hydrogen infrastructure investment is on average 67 bn EUR, investment
beyond this level takes away cost slack from other technologies (here, solar and onshore wind) and forces their values closer to optimum, reducing
the extent of the design space. (d) – (j) show the trade-offs between investment in solar PV and onshore wind for the different focus regions and
display the vast opportunities of robust and cost-effective onshore wind-solar substitution.
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Figure 2: Comparison of minimal regional and European robust investment (in bn EUR, annualised) and average optimal investment across all
scenarios. We present the investment levels in the four key technologies required for all robust designs as well as minimal total investment in wind
power (on- and offshore wind) and in renewable generation (solar, onshore wind and offshore wind). The European investment values are the
minimum across all focus regions’ robust solutions (for the average optimal investments, they are the average across all scenarios and focus regions).
Only indispensable investments above 1 bn EUR are annotated. For example, across robust system designs Germany requires investment of at least
19.7 bn EUR in total renewable generation, 8.3 bn EUR of which in wind power. Neither of solar, onshore or offshore wind power on its own is
strictly necessary in Germany. Across the 12 scenarios (Methods), German optimal investment in renewable generation is on average 44.2 bn EUR.
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Although hydrogen infrastructure is crucial for decarbonisation
when carbon sequestration potential is limited and needs invest-
ment within Europe of at least 34 bn EUR in all robust designs,
any individual region can forego hydrogen infrastructure entirely.
Thanks to transportation at lower cost than electricity , we find
that every studied region can become a hydrogen powerhouse, ac-
cumulating tens of billions of hydrogen infrastructure investment
and reducing (but not eliminating) the need for hydrogen infra-
structure in the rest of the system. Across robust system designs,
we find total annual green hydrogen production in the range of
about 2800–3900 TWh (comparable to an EU+UK natural gas
consumption of around 4500 TWh in 202218,19). The variations
in total green hydrogen production reflect its potential (but not
indispensable) role as a provider of operational flexibility; system
cost slack levels above 5% further increase the range.

In a similar fashion, we find robust designs in which some re-
gions may choose to export energy in significant quantities even
as all other countries cover three quarters of their annual net
energy demand locally. A striking example is provided by the
Nordics, which have the potential for annual energy exports of
up to 2000 TWh based on annualised investment of over 230 bn
EUR (∼1800 GWof onshore wind compared to currently installed
30 GW). This is due to plentiful wind resources as well as large
availability of land area for wind power — even if the political
feasibility is doubtful. For comparison, the three regions of Po-
land and the Baltic countries, France and the British Isles are
each found to have the potential for 1200–1300 TWh of annual
exports. In contrast, Germany remains dependent on energy im-
ports from the European grid (as the national energy and climate
plan foresees for 205022). Because of its high energy demand,
Germany remains an energy net importer in any robust design,
being limited by conservative assumptions on land area available
for utility-scale solar PV. A complete overview over export/import
ranges is given in Supplementary Figure S6; the exact figures can
depend on total system cost slack as well as the self-sufficiency
constraint.

Some technologies and combinations are locally
indispensable
The 75% net energy self-sufficiency constraint we add to the
model means that some regions need certain minimum invest-
ment levels in renewables; other regions have sufficient existing
low-carbon power generation. The competitive edge due to high
capacity factors make solar energy in Southern Europe and wind

power particularly in the British Isles and Germany indispensable
(Figure 2). In the case of the UK and Germany, some (onshore)
wind investment is seen to be the only alternative in order to sup-
ply their significant energy demands, lacking other cost-effective
low-carbon alternatives.

As a specific example, Figure 3 (a) shows ranges of robust local in-
vestments in wind power in the British Isles. We see that neither
offshore wind nor onshore power are strictly speaking necessary;
policymakers can weigh the trade-offs between cheaper onshore
wind power against less visible capacities offshore. Low invest-
ment in hydrogen infrastructure allows vast ranges of investments
in the different wind technologies (also depending on solar invest-
ments, not shown). A strong commitment to hydrogen in the UK,
however, relies on higher investment in wind power (especially
onshore) and reduces the design space. This shows that the UK
could host a large hydrogen industry, which is only competitive in
the presence of abundant renewable energy and relies on energy
exports23. Overall, robust designs need at least 20 bn EUR of
annualised renewable investment in the UK and Ireland, and at
least 12.3 bn EUR in wind power — a tripling of today’s capacity
to about 100 GW15 (Figure 2).

The Nordics or France on the other hand, with significant existing
capacities of hydropower and/or nuclear power, can meet 75% of
their domestic demand with fewer additional renewables, and
without any single essential technology. This is in part due to elec-
trification (including a switch to heat pumps) and the resulting
reduction in primary energy demand. Furthermore, our imple-
mentation of the self-sufficiency constraint in terms of yearly net
balance, counting energy content in terms of lower heating value
for non-electricity carriers, allows e.g. France to export electricity
and import high grade synthetic fuels, essentially outsourcing
efficiency losses in hydrogen and derivative fuel production. The
observed minimal investment levels for France and Nordics (Fig-
ure 2), though robust and cost-effective from a system perspective,
are below current national targets for renewable expansion and
ambitions for energy exports26–31.

Regional policies can have an oversized effect on
the rest of the European energy system
While Europe’s net-zero transition must inevitably be upheld by
a patchwork of national strategies, we find that investment in
some regions and technologies has a much larger impact on the
success of the overall transition than others. On one hand, lack
of renewable generation in one region can lead to an inefficient
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Figure 3: Internal dynamics between wind power and hydrogen on the British Isles (a) and the effects of British wind power on continental
renewable investment (b). The left panel shows that low investment in wind power on the British Isles (of at least 12.3 bn EUR as by Figure 2) is
connected with low investment in hydrogen infrastructure, as sufficient affordable electricity for green hydrogen is lacking. The annotated 2030
target represents the sum of UK 23 and Irish 24 offshore wind goals amounting to 50 GW and 5 GW respectively. Existing onshore and offshore
capacities (at the end of 2023) are retrieved from IRENA 25 and sum to 20.3 GW of onshore wind and 14.8 GW of offshore wind. In both cases,
capacities in GW are converted to annualised investment in bn EUR using the capital cost assumptions also used elsewhere in the model. The
right panel shows the significant impact that British onshore wind has on robust invest levels in renewables in continental Europe. Renewable
investment outside the British Isles is decomposed into onshore + offshore wind (𝑥-axis) and solar (𝑦-axis); the full space of robust solutions is
shaded in turquoise. The dashed lines show how this design space changes depending on onshore wind investment on the British Isles. Very
low onshore wind investment in the British Isles reduces the overall design flexibility of the rest of the system: the 2 bn EUR level shows a much
smaller space. At the highest levels, on the other hand, the maximum viable wind investment in continental Europe is reduced.

overall system design, increasing the chance of continental cost
overruns. On the other hand, high regional investment can out-
compete similar investments elsewhere.

To start with an example, the British Isles have much potential
for onshore wind development; enough to significantly impact
minimum and maximum robust renewable investment in the
remainder of Europe. Figure 3 (b) shows that for robust, cost-
effective system design, lack of onshore wind power on the British
Isles forces continental Europe to compensate with additional
renewable power (either solar or wind).

Investment decisions in some regions can also significantly re-
strict or enable design flexibility in the rest of the continent,
leaving either many different or rather few robust options for
a European net-zero energy system by 2050. For example, Fig-
ure 4 shows how low renewable generation in Germany leaves
little room to manoeuvre among remaining cost-effective robust
solutions. Allocating an additional 35 bn EUR/a (4% of total
system costs) to onshore wind and solar in Germany, however,
frees up wide ranges of robust investment choices in the rest of
Europe — despite the decrease of capital available to the rest of

the system. Mapping our near-optimal spaces thus provides poli-
cymakers with useful information on the robustness of energy
system designs.

In order to systematically quantify the effect of regional choices
on the rest of the system, we introduce a system-wide design flex-
ibility indicator based on the size of the space of robust European
energy solutions subject to a given investment level in a particular
region and technology (Methods). A low score on this indicator
means that the given regional investment level leaves few robust
solutions for the rest of Europe, increasing the chance of energy
shortage or cost overruns. Figure 5 shows the system-wide flexib-
ility indicator across the robust investment ranges for different
technologies in our seven focus regions.

Solar in Iberia and in the Adriatic region stands out as a critical
piece in the European energy transition. Lacklustre solar power
expansion in either of these regions drastically reduces planning
flexibility for the whole rest of the continent. Other critical pieces
include solar power in Germany and, to a lesser extent, onshore
wind power in Poland and the Baltic countries, Germany and the
British Isles. The disproportional importance of solar in southern
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Figure 4: Left, the robust design space for solar and onshore wind inside Germany, with two particular designs / points marked as blue and yellow
dots. Current (April 2024) 32 and targeted capacities for 2040 22 are marked with crosses; these are converted from GW to bn EUR annualised
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located closer to the boundary of the robust design space, are significantly smaller (as in Figure 5). German as well as European policymakers have
an interest in ensuring large near-optimal feasible investment ranges (i.e. a large near-optimal space), as this translates to greater design robustness.
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Europe can be explained by its low cost (meaning that alternat-
ives are relatively expensive and not near-optimal) and limited
land availability (meaning that lacking solar power in one region
cannot easily be compensated for in another region).

Other regional renewable expansion has a remarkably low impact
on the rest of the system. Solar power anywhere in northern
Europe but notably also in France does not change the equation
much for the rest of the system— both low and high investment
in solar in these regions still leave plenty of different options for
the rest of the system. For onshore wind, we observe wide ranges
of robust regional investment that maintain high system-wide
flexibility.

European policy sets the limits for regional en-
ergy design space
Conversely, regional investment decisions are sometimes also
strongly impacted by policies in the rest of Europe. This in itself
is not surprising given the inter-connected nature of the energy
system. We generally see two distinct effects: in instances where
the rest of Europe invests heavily in (certain kinds of) renewables,
most — but not all — individual regions’ potential for becoming
major energy exporters is shrunk. If European investment is
weak, some regions must compensate to achieve a robust and
cost-effective system design.

Figure 6 illustrates both effects. The massive potential for wind
power development in both Poland and the Baltic countries as
well as in the Nordics decreases steadily with rising wind invest-
ment in the rest of Europe. At the same time, each of these two
regions is individually forced to compensate strongly if the respect-
ive rest of the system falters in wind power. This dynamic results
from low domestic demand but plentiful wind resources and
makes large-scale wind development generally export-dependent.
As outside developments determine what becomes over- or under-
investment, coordination of wind power expansion around the
North and Baltic seasmay be required in order to ensure adequate
and cost-effective system designs.

Elsewhere, regions with high domestic demand are less affected
by wind investment in the rest of the continent, which makes
wind power less susceptible to cost-inefficient lock-ins and over-
investment: the potential wind investments in France, Germany
and the British Isles remain stable even if wind power is expan-
ded continent-wide (Figure 6). Moreover, the British Isles and
especially Germany need wind investment to cover large shares

of domestic demand almost regardless of the wind development
in the rest of Europe. These regions stand apart as requiring the
highest minimum investment in wind power across any robust
system design (Figure 2). The British Isles also have the potential
to export wind power and this exposes local wind investment to
some competition, but these exports are never completely out-
competed by continental wind investment. Joint mapping of
regional and continental robust design spaces thus provides local
policymakers with a unique perspective on how exposed their
energy goals are to outside developments.

Discussion
Comparison to existing literature and policy
We demonstrate that within an integrated European energy sys-
tem, single countries or regions have large flexibility in designing
their contribution to joint cost-effective decarbonisation policies.
Trade-offs and broad ranges of options have been previously
shown for the European electricity11,14 and energy sector4, and
play out even stronger for individual regions. With only few ex-
ceptions, policymakers can cost-effectively substitute most single
technologies if, for instance, they face delays or controversy.

However, the design space of individual regions does not exist
in a vacuum but is strongly coupled with the surrounding sys-
tem. We consistently see that European energy integration is
only expected to deepen due to benefits of increased transmission
capacities33–36 as well as a hydrogen pipeline network17. For
the first time, we quantify the interaction between national and
continental policies laying out how both sides can increase or
decrease the extent of the design space of the other, respectively.
In general, investment in wind power and hydrogen infrastruc-
ture can be shifted geographically rather freely, but solar power
less so. From a system perspective, there is a vested interest to
pursue and coordinate regional long-term plans leading to larger
design spaces — the benefits being higher robustness (lower vul-
nerability to uncertainty) or more flexibility and adaptability. We
highlight particularly onshore and offshore wind power around
the North- and Baltic seas as an area that may need coordination
in order to prevent over- or under-investment: the Ostend Declar-
ation28 covering North Sea offshore wind and targeting at least
300 GW by 2050 is a step in the right direction.

This study reveals land use restrictions for solar power as a critical
factor which cuts down the number of robust solutions (when
including scenarios allowing 1% instead of 3% of available land);
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Figure 5: Effects of regional investment decisions on the design flexibility of the rest of the European system. The calculation of the flexibility
indicator (where 1 is maximally flexible) that is plotted is explained in the Methods. The levels of regional investment leading to maximal outside
flexibility are marked with black vertical bars. For instance, investment in solar in Poland and the Baltic countries has a positive effect on design
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maximising system-wide flexibility are not expected to change significantly under alternative slack levels. Supplementary Figure S8 shows an
alternative, more detailed version of this figure. Moreover, Supplementary Figure S7 shows the “converse” to this figure, with inside and outside
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previously, weather years have already been identified as having
a major impact on the energy system design space13. Moreover,
overall design flexibility is found to be uniquely sensitive to solar
investment in southern Europe and Germany, with for instance
the greatest benefits unlocked by around 400 GW of solar on the
Iberian peninsula — a quadrupling of the 2030 target of around
100 GW37,38. Germany is on a comparatively good track, already
targeting 400 GW of solar by 204022. By allotting enough land
area for utility solar power in southern Europe, policymakers can
lower the risk of energy supply shortage or cost overruns.

Moreover, we show the extent to which energy investment in indi-
vidual countries and regions, while flexible, is affected by the dir-
ection of the rest of the system. Any of the studied regions can be
energy net importers (or exporters, except for Germany), but not
all at the same time. The EU as well as individual countries have
come forward with hydrogen strategies in recent years27,39–41,
with domestic production and imports of 10 Mt each of green
hydrogen being the EU target for 2030— concrete targets for 2050
are outstanding. Our results point at the need for somewhere
around 100 Mt of green hydrogen by 2050, amounting to a min-
imum annualised investment of 34 bn EUR in overall hydrogen
sector; however, where these investments occur is very flexible.
All in all, neither individual countries nor the EU can plan the
transition to net-zero emissions without taking the tapestry of
energy strategies across the European continent into account.

Possible limitations and future research direc-
tions
We choose an approach based on intersecting near-optimal spaces
of different scenarios — as opposed to sensitivity analysis or
stochastic programming — as it allows us to account for uncer-
tainty both in inputs and outputs. This systematic mapping of
near-optimal spaces12,13 facilitates the use of other objectives
beyond cost minimality compared to more classical modelling-to-
generate-alternatives (MGA) like min/max-11 or hop-skip-jump
approaches10,42. The joint modelling of both each focus region
and the outside system allows the examination of regional dy-
namics while preserving global near-optimality. The extent of the
robust design space studied here does depend on the set of scen-
arios under which each design must be feasible, and our scenario
selection is more of a starting point than a canonical selection.

The approximation of the design spaces requires many model
optimisations (we use 450 for each region and scenario), which
is why we restrict ourselves to mapping out the design space in
only 8 key variables at a time. Moreover, robust design spaces
depend on the cost slack (𝜀) by definition; our sensitivity ana-
lysis shows that robust design spaces mainly increase in extent
with increasing slack but that their shapes remain similar. This
means the natures of revealed trade-offs generally hold across
different slack levels. The 5% cost slack throughout this analysis
remains a choice by themodellers and does not necessarily reflect
willingness-to-pay of stakeholders (where stated preferences can
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differ from realised ones43).

A number of important factors and assumptions have not been
explored through additional sensitivity or other methods for brev-
ity and for computational reasons. These include alternative
emissions targets, demand response, energy imports from outside
the modelled European system, technological learning, regional
differences in (static) technology costs, carbon sequestration po-
tential and alternative fossil fuel limitations among others.

Increasing the spatial resolution in each of the 7 focus regions
separately means that there may be slight variations in European-
wide modelling results between differently focused model in-
stances. This could be alleviated in future research by using
a uniformly high spatial resolution for the entire modelling re-
gion. While our analysis is restricted to overnight investments,
multi-horizon modelling could be of great value to policymakers.
Lastly, inviting policymakers and stakeholders to interact with
near-optimal modelling tools would be a major development in
participatory modelling.

Conclusions

The methods advanced in this article allow us to systematically
analyse more adaptable and acceptable solutions while achieving
cost-effective net-zero systems in which all countries cover 75%
of their annual demand. We present techniques that achieve
higher resilience by incorporating scenarios reflecting a mix of
meteorological, technological and societal impediments.

The vast planning flexibility we demonstrate underlines the
agency of single regions and countries in shaping energy policy:
if onshore wind is socially unacceptable, for example, many re-
gions can substitute it with other technologies. On a continent
with different transition speeds44 and levels of ambition45, al-
most all countries have the possibility to benefit from building up
new industries through electricity or hydrogen exports. However,
certain trade-offs between regions are unavoidable and must be
considered in light of social and political priorities that are dif-
ficult to quantify. To overcome opposition to climate mitigation
and strengthen a fair decarbonisation, accounting for diverging
interests in a panoply of transition alternatives is possible and
necessary.

Methods
Modelling framework
For this study, we use the open-source energy system model
PyPSA-Eur-Sec 0.6.033 (since merged into PyPSA-Eur) which rep-
resents the European energy system including the power, heating,
industry, transport and agricultural sectors. It includes a detailed
representation of the existing electricity transmission and gas net-
works, aswell as generation sites and spatially resolved demand of
different sectors. With the aim of a 100% 𝐶𝑂2 emission reduction
in the European power, heating, transportation and industrial
sectors, the model finds investment and operational decisions for
generation, transmission and storage in order to minimise total
annualised system costs and meet projected 2050 energy demand.
For a precise description of the model formulation see Brown et.
al.33 and the supplemental experimental procedures of Neumann
et. al.46.

Estimates of fixed and operational costs for 2050 are taken from
https://github.com/PyPSA/technology-data, a repository
collecting cost data and learning curves from various sources.
All capital costs are annualised with a discount rate of 7%; this
discount rate is chosen because it is the default in PyPSA-Eur,
hencemaking the results more directly comparable across studies.
While costs in the above repository are given in 2015 EUR, we
have converted all cost data to 2023 EUR for the purposes of this
study, using inflation data for the Euro area up to October 202347,
amounting to a 24.5% increase compared to technology-data.

The model is run with a partial greenfield approach, where exist-
ing transmission and gas networks (2019) as well as nuclear (ex-
cept for Germany), biomass, and hydropower generation (2022)
are included at today’s capacities. The above infrastructurewas in-
cluded because of its relatively long lifetime (including potential
lifetime extensions), making existing capacities likely to approx-
imately persist until 2050. The gas and transmission networks
may additionally be reinforced beyond today’s capacities in the
model; for transmission this is limited to 125% of current levels
(see sensitivity analysis in the Supplementary information). Nuc-
lear, biomass and hydropower generation, on the other hand,
are entirely fixed (i.e. not subject to optimisation) and are not
included in total system costs.

Themain technologieswhose expansion is optimised from scratch
include solar, onshore wind and offshore wind generation, gas
turbines, combined heat and power plants with and without car-
bon capture and storage (CCS), boilers, battery storage, hydrogen
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and heat storage, various power to X and other energy conversion
technologies (electrolysis, steam methane reformation, meth-
anation of hydrogen, ammonia and methonol production from
hydrogen, synthetic fuel generation, biogas), direct air capture
and carbon sequestration. The model includes all major potential
components of a European energy system anno 2050, including
the electricity, heating, transportation and industry sectors. See
the accompanying code and data as well as PyPSA-Eur document-
ation and a recent study on the potential of a European hydrogen
network17 for more details.

We choose a spatial resolution of 60 nodes for 33 European coun-
tries, however, the exact allocation of nodes varies between the
differently focused models (see below). In order to reduce the
computational burden further, we use a non-uniform, sequen-
tial time step aggregation48,49 setting in PyPSA-Eur with 1500
time segments (which we have tested to be more accurate than a
comparable 6-hourly time resolution).

For all countries represented, we impose a 75% net self-sufficiency
constraint for annual energy demand (see Supplementary Figure
S3 and sensitivity analysis in the Supplementary information). It
prevents the unnecessary exploration of technically robust sys-
tem designs where individual regions are heavily dependent on
imports — we consider such designs unlikely to be realised. At
the same time, it can be seen as a measure to strengthen energy
security and a more equal burden between different European
countries in the joint decarbonisation efforts. The implementa-
tion of such a self-sufficiency constraint is a novelty in the context
of sector-coupled energy system models for Europe; previously
this was merely implemented for the electricity-only version of
themodel (PyPSA-Eur). The constraint is implemented bounding
the ratio between total yearly local energy production and total
yearly energy imports. Following the notation used to originally
introduce PyPSA50, let 𝑔𝑛,𝑟,𝑡 be the operational decision variables
for generators (indexed by bus 𝑛, generator 𝑟 and time step 𝑡) and𝑓𝓁,𝑡 be the operation decision variables for branch components,
both passive (i.e. AC transmission lines) and active (DC trans-
mission as well as transfer of other quantities than electricity
between buses). Let 𝜇𝓁,𝑡 be the efficiency of each branch com-
ponent. All quantities tracked and transferred in a PyPSA-Eur
model are energy carriers (electricity, natural gas, hydrogen, oil,
etc.) except CO2; the unit for energy is always MWh, measured
in lower heating value for thermal energy carriers. For a country

𝐶, let
𝛼𝐶,𝓁,𝑡 =

⎧⎪⎪⎨⎪⎪⎩
−1, if branch 𝓁 starts inside 𝐶 and ends outside of 𝐶,

and the bus that 𝓁 ends at tracks an energy carrier,𝜇𝓁,𝑡 , if it start outside of 𝐶 and ends inside 𝐶,
and the bus that 𝓁 ends at tracks an energy carrier,0, otherwise.

Then the net yearly imports of country 𝐶 are measured by𝐼𝐶 =∑𝓁,𝑡 𝛼𝐶,𝓁,𝑡𝑓𝓁,𝑡. (1)

Letting

𝛿𝐶,𝑛 = {1, if bus 𝑛 is located inside country 𝐶0, otherwise.

be the indicator function of country 𝐶 for buses, the total yearly
amount of energy produced inside country 𝐶 is𝐿𝐶 = ∑𝑛,𝑟,𝑡 𝛿𝐶,𝑛𝑔𝑛,𝑟,𝑡. (2)

Then, a self-sufficiency degree of 𝛾 for country 𝐶 can be ensured
by adding the following linear constraint to the capacity expan-
sion formulation: 𝐼𝐶 ≤ 1 − 𝛾𝛾 𝐿𝐶 , (3)

provided 𝛾 > 0. The actual implementation used in this paper is
slightly complicated by the presence of multi-branch components
(i.e. links connecting more than two buses, controlled by a single
operational decision variable per time step), but equivalent to
the above. Apart from the self-sufficiency constraint, we refer to
the publication introducing PyPSA50 for an exact mathematical
formulation of the full optimisation problem.

Regional studies
Our results are based on studying the joint space of robust system
designs of the European energy system, reduced to total invest-
ment in four key technologies both inside and outside 7 selected
focus regions. For the approximations of these 7 robust design
spaces, we use the same model of the European energy system,
except that we distribute the spatial nodes of themodel differently
in order to allocate more spatial resolution to each respective fo-
cus region. Moreover, we also allocate slightly more nodes to
countries neighbouring each focus region. Our focus regions are
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• Poland and Baltic countries (EE, LT, LV, PL) with 20+25+15
nodes,

• Nordics (DK, FI, NO, SE) with 20+25+15 nodes,

• Adriatic (AL, BA, GR, HR, IT, MT) with 30+20+10 nodes,

• Germany (DE) with 20+25+15 nodes,

• France (FR) with 20+25+15 nodes,

• British Isles (IE, UK) with 15+25+20 nodes,

• Iberia (ES, PT) with 20+15+25 nodes,

with the corresponding number of nodes inside the region, for
neighbouring countries and for remaining countries (further re-
moved than distance 1), respectively, all adding up to 60 nodes.
The increased spatial resolution inside the focus region allows
us to capture renewable potential and effects like transmission
bottlenecks in better detail. See Supplementary Figure S12 for a
visual representation of the networks.

Scenario selection
For each focus region, we consider different scenarios across
input uncertainties that we deemparticularly impactful on energy
modelling results. For each of these scenarios (and for each focus
region), we approximate the corresponding near-optimal feasible
space using the methods introduced by Grochowicz et al.13. For
each focus region, then, we consider as robust design space the
intersection of the near-optimal spaces arising from the scenarios
under consideration (see below).

The factors we vary across scenarios and which we consider most
impactful to modelling results include weather years13,51, cost
assumptions14, and land use52 availability. Following Grochow-
icz et al.13, we select three difficult weather years (1985, 1987,
2010) and thus are particularly restrictive (and also significantly
more expensive than other weather years) and well-suited for
resilience considerations. We define three cost scenarios, one
“baseline” scenario with standard cost assumptions, and two scen-
arios with higher capital expenditure costs for solar PV (39%more
expensive) and wind power (24% more expensive) respectively;
these ranges are taken from cost projections by the Danish Energy
Agency53. Points in the robust design space (i.e. the intersection
of the near-optimal spaces arising from the different scenarios)
are defined in terms of investment levels in solar, onshore- &
offshore wind and hydrogen infrastructure. This means that a
single robust design with, say, 𝑥 bn EUR investment in solar,

would have different total solar capacities in GW in scenarios
where solar has different capital costs, since the same amount of
money will buy less capacity when solar is more expansive. Still,
by definition, the design being located in the intersection of the
near-optimal spaces means that the given investment levels are
feasible even in the scenario with higher capital costs and thus
lower total installed capacity.

Lastly, we restrict the available land area for utility solar PV in
comparison to the standard assumptions in PyPSA-Eur-Sec to one
third (from 3% to 1% of available land area after excluding unsuit-
able areas54). The restricted land availability scenario inhibits
expansion of solar PV significantly: for instance, Germany’s in-
stallation potential is capped at approximately 440 GW while the
German government is targeting installed capacities of 400 GW
until 204055.

All in all, this gives us 12 scenarios, as we pair the three different
weather years with the three cost scenarios and the restriction on
land use for utility solar (3 ⋅ (3 + 1) = 12).
Near-optimal spaces
The near-optimal space for each of the above scenarios and fo-
cus regions, consists of feasible, alternative solutions to a cost-
optimal solution which can be preferable over the cost optimum
for other reasons. Energy system optimisation models are usu-
ally formulated mathematically as linear programs of the formmin 𝑐𝑥 subject to 𝐴𝑥 ≤ 𝑏 in which case the design space, more
formally 𝜀-near-optimal feasible space10,11,13, is defined as ℱ𝜀 ={𝑥 ∈ ℝ𝑛 ∣ 𝐴𝑥 ≤ 𝑏 and 𝑐𝑥 ≤ (1 + 𝜀) ⋅ 𝑐∗} where 𝑐∗ is the optimal
objective (minimum cost) of the original linear program.

For the purposes of this study, we use a cost slack of 𝜀 = 5%. See
the Supplementary information for a sensitivity analysis on the
cost slack. However, for each focus region we compute a uniform
cost bound for all scenarios based on the optimum system cost
for the most expensive scenario (roughly following13). More
precisely, let 𝑟 be a region and 𝑆 a set of scenarios, such that we
get a linear program𝐴𝑟,𝑠𝑥 ≤ 𝑏𝑟,𝑠 with objective 𝑐∗𝑟,𝑠 for each 𝑠 ∈ 𝑆.
Then we define the near 𝜀-near-optimal space for scenario 𝑠 asℱ𝑟,𝑠𝜀 = {𝑥 ∈ ℝ𝑛 ∣ 𝐴𝑟,𝑠𝑥 ≤ 𝑏𝑟,𝑠 and 𝑐𝑟,𝑠𝑥 ≤ (1 + 𝜀) ⋅max𝑠′∈𝑆 𝑐∗𝑟,𝑠′ }
Defining near-optimal spaces for a set of scenarios as above allows
for more direct comparisons, since all spaces are defined with
respect to same absolute bound on total system costs.
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In models of similar size to PyPSA-Eur-Sec (with 𝑛 significantly
greater than 106), the near-optimal spaces which can be analysed
effectively are projections onto a few key dimensions from the
high-dimensional space ℱ𝑟,𝑠𝜀 . This is because an accurate ap-
proximation of such a near-optimal space is computationally de-
manding (one vertex is obtained through one optimisation of the
linear program) in high dimensions12,13. Following previously in-
troduced notation13, we consider the reduced, low-dimensional
near-optimal space 𝒜𝑟,𝑠𝜀 ⊂ ℝ𝑘; related to the full-dimensional
space by a linear map 𝜎∶ ℱ𝑟,𝑠𝜀 → 𝒜𝑟,𝑠𝜀 . In our case, we map
down to 𝑘 = 8 key dimensions: the total investments inside
and outside the focus region in utility solar, onshore wind, off-
shore wind, and hydrogen infrastructure. Hydrogen infrastruc-
ture investments consist of investment in electrolysis, fuel cells,
pipelines (both new and retrofitted from existing gas pipelines),
synthetic methane and fuel production from hydrogen (methana-
tion, Fischer-Tropsch process respectively) and steam methane
reforming plants (with or without carbon capture) as well as
hydrogen storage.

An accurate approximation of the near-optimal space geometry
can inform policymakers about trade-offs between regional and
continental investment, alternative technologies, and how much
flexibility can be gained through the introduction of a cost slack
of 𝜀. Solutions beyond it are no longer near-optimal, which can
mean that they are deemed infeasible by the model or no longer
cost-effective (but feasible). For a more detailed description of the
approximation methodology and validation see13; in this case,
we conduct 450 optimisations for a satisfying approximation of
each near-optimal space. See Supplementary Figures S13–S14 for
a visualisation of the individual near-optimal spaces as well as
their intersection for one of the focus regions.

Robust solutions
To find cost-effective solutions that are feasible (and near-optimal)
notwithstanding the uncertainties encoded in our selection of
scenarios, we look for investment decisions that lie in the near-
optimal space for each scenario. We formally define the space
of robust solutions (or robust design space) as points in ℝ𝑘 that
lay within the intersection of the reduced near-optimal spaces for
every scenario 𝑠 ∈ 𝑆 under consideration:ℐ𝑟𝜀 =⋂

𝑠∈𝑆𝒜𝑟,𝑠𝜀 .
We refer to13 for an extensive overview of the intersections of
near-optimal feasible spaces with all due details.

By considering the geometry of the space of robust solutions (as
in Figures 1 and 3, for example), we are able to study trade-offs
between investments in different technologies both inside a given
focus region and in the rest of Europe. One should keep in mind
that the formulation in terms of near-optimality adds a slack of
5% on top of the optimal total system costs which corresponds to
an additional investment of around 45 bn EUR (depending on the
focus region) which can be allocated in different ways in order
to enlarge the alternative robust options. (See Table S1 in the
Supplementary information for alternative figures for slack levels
of 2, 10 & 20%.) Note that monetary investments are robust across
scenarios, however they might translate to different capacities in
the scenarios with higher costs for solar PV or wind power.

The flexibility indicator
For Figure 5 we introduce a flexibility indicator based on the
mean width of the robust design space (defined in more detail
below). The mean width of the robust design space in the 4 out-
side investment dimensions is a simple metric for the variety of
robust solutions and serves as a quantification of design flexibility
of policymakers. The values between 0 and 1 for each regional
investment dimensions show which investment levels allow for
most robust solutions from a continental perspective. For in-
stance, investing ca. 5 bn EUR/a in onshore wind in the Adriatic
gives the rest of Europe the largest flexibility, whereas onshore
wind investment in the order of 40 bn EUR/a — while still being
robust— restricts the alternatives for the remainder of the system.
In the Supplementary information, we present additional figures
(S8–S9) for the derivative of mean width, which can identify at
which investment levels most flexibility can be gained or lost.

For a precise mathematical definition, consider the space of ro-
bust designs ℐ𝑟𝜀 for focus region 𝑟. Let 𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4} and𝐵 = {𝑏1, 𝑏2, 𝑏3, 𝑏4} be the sets of inside and outside key dimen-
sions, respectively, i.e. 𝑎1, 𝑎2, 𝑎3, 𝑎4 are investment in solar, on-
shorewind, offshorewind and hydrogen infrastructure in bn EUR
inside the focus region 𝑟, respectively (and similarly for 𝐵 outside
the focus region). Now, letℐ𝑟𝜖,𝑎𝑖=𝑐 = {𝑥 ∈ ℐ𝑟𝜀 ∣ 𝑎𝑖 = 𝑐} where 𝑥 = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑏1, 𝑏2, 𝑏3, 𝑏4)

(4)
be the subset of ℐ𝑟𝜀 for which 𝑎𝑖 equals a constant 𝑐. Then we
define themean width of ℐ𝑟𝜀 at 𝑎𝑖 = 𝑐 as𝑑𝑟𝑖 (𝑐) = 1|𝐵| ∑𝑏∈𝐵 (max{𝑏 ∣ 𝑥 ∈ ℐ𝑟𝜀,𝑎𝑖=𝑐} − min{𝑏 ∣ 𝑥 ∈ ℐ𝑟𝜀,𝑎𝑖=𝑐}) ,

(5)
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where we use the convention that min ∅ = max ∅ = 0. That is,𝑑𝑟𝑖 (𝑐) is the mean of the widths of ℐ𝑟𝜀,𝑎𝑖=𝑐 in each of the outside
dimensions 𝐵, and equals 0 when ℐ𝑟𝜀,𝑎𝑖=𝑐 = ∅. Finally, we define
the flexibility metric 𝑓𝑟𝑖 as the normalisation of 𝑑𝑟𝑖 , namely

𝑓𝑟𝑖 (𝑐) = 𝑑𝑟𝑖 (𝑐)max𝑐∈ℝ 𝑑𝑟𝑖 (𝑐) . (6)

This is what is plotted in Figure 5 for each combination of region𝑟 and inside dimension 𝑎𝑖; we cut the plots off where 𝑓𝑟𝑖 (𝑐) = 0.
The converse (the flexibility metric for regional investment based
on fixed continental investment) is presented in Figure S6.

Code and data availability
The code to reproduce the results of the present study, as well
as links to the data used, are available at https://github.com/
koen-vg/enabling-agency/tree/v0. All code is open source
(licensed under GPL v3.0 and MIT), and all data used are open
(various licenses).
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Supplementary Information

Total system cost distribution
Overall optimal system costs in our different focus models and scenarios (before near-optimal studies) have a range of734–880 bn EUR (not including existing transmission, nuclear and hydropower infrastructure; Methods). The plot below
shows a complete overview of total system costs in robust system designs considered in this study (i.e. those laying inside
the intersection of near-optimal spaces for different scenarios). For each category, the figure indicates the range between
the minimum and maximum system-wide cost in that category observed in any robust network (in this case coming from
the German-focused model). Comparable costs found in the baseline cost-optimal solutions (for weather years 1985, 1987,
2010) are shown with white stars. Note that these cost-optimal solutions are not necessarily robust; indeed this figure as
well as Figure 1 of the article show that e.g. solar investments in the cost optima are not feasible in all scenarios. The
top four categories represent the dimensions which have been explored explicitly — in this figure “inside” and “outside”
costs have been aggregated. The two starred categories, nuclear and hydro(power), have been included in this figure, but
represent capacities that are not subject to optimisation and rather included at today’s levels. There is nevertheless some
variation in nuclear costs since marginal costs in the form of uranium supply can vary depending on operations, which are
optimised, and included in the nuclear category.

The cost ranges in this plot have been calculated on the basis of optimisations of 300 robust system designs with total inside-
and outside solar, onshore wind, offshore wind and hydrogen investment fixed at random vertices on the boundary of the
robust design space. This is the same basis on which the export ranges in Figure 3 in the main text have been computed
(Experimental procedures).
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Figure S1: Ranges robust system costs by category.
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Representation of fossil fuels and the carbon cycle
Westrictly enforce net-zero emissions in allmodel runs. In order to achieve this, someuse of negative emissions is necessary.
However, optimal system design can depend strongly on assumed carbon sequestration potential. In this study, we assume
a yearly sequestration capacity of 200 Mt CO2, following [4]. This limit on sequestration effectively limits the use of fossil
fuels in the model.

Natural gas use in Europe amounted to approximately 5271 TWh in 2021, with 4417 TWh in the EU27 area [2] and 854
TWh in the UK [1] (using gross calorific values). In all robust model solutions, we see a total natural gas use of around 363
TWh in the modelling region (which includes Switzerland, Norway and the Balkan in addition to the EU and the UK). This
is about 6.9% of the EU+GB natural gas demand in 2021. The use of fossil oil is not found to be competitive in any robust
model solution.

Natural gas and oil as well as non-feedstock emissions are the only way for carbon to enter the modelled cycle, and sequest-
ration is the only way to leave the cycle. Since CO2 sequestration potential as well as non-feedstock emissions (mainly from
the cement industry) are fixed in the model, this also fixes the total amount of fossil gas and oil that may enter the system.
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Impacts of different slack levels/near-optimality constraints
In the present study, weuse a near-optimality constraint (slack level) of 5%on top of themost expensive of the 12 investigated
scenarios. We have conducted a sensitivity analysis for one of the focus regions (Germany) to capture how the robust design
spaces changes depending on the slack levels of 2%, 5%, 10%, and 20%. Table S1 presents an overview over how key results
depend on the slack level. Figure S2 shows that although the size of the robust design spaces increases, the shape of the
projections remains similar. This indicates that the trade-offs and insights presented in themain text are robust throughout
different slack levels. Note that with increasing slack, the nested intersections increase in size and therefore the quality of
the approximation decreases (as more than the constant 150 iterations would be needed to account for this). This explains
why the approximated robust design space based on 20% slack does not contain the other robust spaces fully — in theory,
it should.

European robust 2% slack 5% slack (default) 10% slack 20% slack
investment [bn EUR] (∼ 15.6 bn EUR) (∼ 39 bn EUR) (∼ 78 bn EUR) (∼ 156 bn EUR)
Solar 98.0 – 179.5 58.7 – 179.5 45.3 – 179.5 49.6 – 180.5
Onshore wind 64.9 – 374.5 57.6 – 315.7 59.7 – 523.4 68.3 – 604.0
Offshore wind 5.0 – 176.2 0.1 – 158.6 3.1 – 213.5 1.5 – 179.1
Hydrogen infrastructure 37.5 – 236.1 33.6 – 118.6 29.8 – 326.1 25.5 – 441.0
Wind investment 181.3 – 381.9 165.8 – 329.2 167.2 – 517.8 152.0 – 586.6
Renewable generation 353.5 – 521.1 337.6 – 461.0 336.3 – 612.3 325.7 – 686.5

Table S1: Sensitivities of European robust investment to chosen slack level. The robust investment consists of the invest-
ment inside and outside the focus region. Note that the values for 2%, 10%, and 20% are based on 150 iterations with
Germany as the focus region, whereas the 5% values are consistent with Figure 2 in the main text. The values in the ro-
bust range for 5% are minimal across all 7 focus regions and are based on 450 iterations. Note that as the slack level (and
therefore the robust design space) increases, the quality of the approximation decreases. This explains the counterintuitive
lower limits of solar and onshore wind and upper limit of offshore wind for 20% slack. If approximated in sufficient detail,
these spaces are nested, i.e. the robust space for 20% contains the one for 10%.
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(2%, 10%, 20% compared to the 5% we use in the study). All four intersections are based on 150 iterations per near-optimal
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Impacts of self-sufficiency constraint
In the present study we introduce for the first time a self-sufficiency constraint to PyPSA-Eur-Sec; this constraint having
originally only been implemented for PyPSA-Eur (the electricity-only version of the model). The self-sufficiency is accoun-
ted for on a yearly basis, that is, a self-sufficiency level of 𝑥%means that that total yearly energy production of every country
must equal at least 𝑥% of the total yearly energy demand of that country (see precise definition in the Experimental pro-
cedures). Below, we present a simple sensitivity analysis of total system cost with respect to given self-sufficiency levels.
We see that requiring self-sufficiency levels above 90% gets increasingly expensive; we choose a level of 75% for the present
study.
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Figure S3: Relative increase of total system costs of an optimal network depending on different levels of net self-sufficiency
(see Experimental procedures).

Furthermore, we have conducted a sensitivity analysis for one of the focus regions (Germany) to investigate the impact of
the self-sufficiency constraint (75%) on the robust design spaces. Note that the robust design spaces in Figure S4 are smaller
when dropping the self-sufficiency constraint: the total system costs are lower when the constraint is not enforced, which
reduces the upper bound on near-optimality from the definition of the design spaces (ℱ𝑟,𝑠𝜀 in Experimental procedures).
The reduction in available capital has a larger impact on the robust solution space than being able to rely more on imports.
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Figure S4: Projections of the intersection of near-optimal spaces for the German-focused model depending on whether the
self-sufficiency constraint is enforced. Note that with relaxing the self-sufficiency constraint the reduction of total system
costs makes less money available for near-optimal solutions, shrinking the robust design space. The intersections are based
on 150 iterations per near-optimal space (for the near-optimal spaces with 75% self-sufficiency we only took the first 150 of
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Sensitivity of transmission expansion limitations
The main results in the present study are based on optimisations in which we limit the transmission volume to 125% of
the currently existing transmission in Europe. Single transmission lines or links can still be expanded freely as long as the
total volume of transmission in the system adheres to the 125% constraint. We choose this conservative constraint, as most
benefits in the power system are reaped at this level (Fig. 6 in Hörsch & Brown [3]); still, hydrogen transportation can still
lead to significant energy transportation across the system.

We have conducted a sensitivity analysis for one of the focus regions (Germany) to investigate the impact of different trans-
mission constraints (150%, 200%, 300%, 400% compared to the default 125%) on the robust design spaces and key system
values (Table S2). Note that in Figure S5 the robust design spaces are smaller for higher transmission levels: the total sys-
tem costs are lower when transmission can be expandedmore, which reduces the upper bound on near-optimality from the
definition of the design spaces (ℱ𝑟,𝑠𝜀 in Experimental procedures). The reduction in available capital has a larger impact on
the robust solution space than being able to expand transmission more.

Optimal investment (bn EUR) 125% trans. (default) 150% trans. 200% trans. 300% trans. 400% trans.
Solar 182.7 178.6 172.6 167.6 167.6
Onshore wind 149.9 150.3 150.6 153.0 153.0
Offshore wind 28.5 28.9 30.1 29.7 29.7
Hydrogen infrastructure 67.8 63.1 56.8 54.6 54.6
Wind investment 178.5 179.2 180.6 182.8 182.8
Renewable generation 361.1 357.8 353.5 350.3 350.3
Total system costs 779.6 761 754.5 752.9 752.9

Table S2: Optimal investment in Europe (average across the 12 scenarios) depending on the upper limit of transmission
expansion: 125%, 150%, 200%, 300%, 400% compared to current levels. The sensitivity analysis is conducted with Germany
as the focus region. European investment is therefore the sum of inside (German) and outside (rest of the system) invest-
ments in solar, onshore and offshore wind and hydrogen infrastructure.
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Robust export ranges
Figure S6 shows robust ranges of exports/imports observed for the 7 different focus regions. To compute export potential,
we need a representative sample of full system designs (including operations) laying inside ℐ𝑟𝜀 for each region 𝑟 (Methods).
This is because the geometric shape of ℐ𝑟𝜀 , which we compute as an intersection of near-optimal spaces, only contains
information about total investment in solar, onshore wind, offshore wind and hydrogen (inside and outside 𝑟), but no total
export figures. Thus, for each 𝑟, we sample 300 points in ℐ𝑟𝜀 , and run model optimisations where total solar, onshore wind,
offshore wind and hydrogen investment are fixed to the coordinates of the 300 points. We can then calculate total imports
/ exports for each model and region; the results are shown in Figure S6. The 300 points are sampled randomly on the
boundary of ℐ𝑟𝜀 , except the first 24 which consist of those points which min- and maximise each individual of the 8 key
dimensions (16 total) and those that min- and maximise the system-wide solar, onshore wind, offshore wind and hydrogen
dimensions (8 total).
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Figure S6: Robust ranges of net annual energy balance per focus region. Specifically, the bars indicate the minimum and
maximum energy trade balances observed across a large sample of robust solutions. All regions can be net importers (while
adhering to the 75% self-sufficiency) and most can also be net exporters to various degrees. While the lower ends of the
ranges essentially reflect the imposed constraint of 75% self-sufficiency, the upper ends are determined by a combination
of competitive renewable generation potential and access to export destinations. The absolute values of maximum possible
exports may change with the system cost slack level (here 5%) where export potential is limited by profitability and not
land-use.
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Impact of regional/European investment on the near-optimal space
In Figure 7, we present the impact of regional investment on robust European investment through a flexibility indicator
(defined in the Experimental procedures). The flexibility indicator in this case is based on the mean width of the space of
robust designs (projected onto the 4 key dimensions of European investment), depending on (robust) investment levels for
each regional key dimension. In other words, for a given inside investment level (say, a 10 bn EUR investment in onshore
wind in theNordics), we compute outside design flexibility as themean of the differences betweenmaximumandminimum
outside investment in solar, onshore wind, offshore wind and hydrogen. The following plot shows the “converse”: the
impact of continental investment on regional design flexibility. The plot is analogous to Figure 7, but the roles of “inside”
and “outside” have been swapped.
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Figure S7: Effects of continental investment decisions on the design flexibility of the focus regions. The calculation of the
flexibility indicator (where 1 is maximally flexible) that is plotted is explained in the Experimental procedures. The levels of
continental investment leading to maximal regional flexibility are marked with black vertical bars. For instance, European
investment in onshore wind has a positive effect on design flexibility in Poland and the Baltic states from 40 and up to about
150 bn EUR, with only a marginal decrease in flexibility upon further investment. Related to Figure 7.

Related to this, it is possible to identify atwhat (regional or continental) investment levels the largest gains or losses of design
flexibility are realised: by taking the derivative of the mean width of the robust design space — formally the derivative
of the absolute (not relative as in Figure 7 and Figure S7) flexibility indicator. By varying technology investment levels
inside a focus region as in Figure S8 we capture the increasing or decreasing mean width of the projection onto European
investments outside the focus region. These increases and decreases of flexibility are shown as derivatives in Figure S8 and
for the converse (based on outside investment variations) in Figure S9.
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Figure S8: Derivative of mean width of focus region design space with respect to changes in investment outside the focus
region. The levels of outside investment leading to maximal regional flexibility (where the derivative is zero) are marked
with black vertical bars. On either side, the derivative of mean width of the robust design space of the given focus region,
with respect to outside investment in solar, onshore- and offshore wind and hydrogen, is indicated using a colour scale. A
positive derivative indicates that additional marginal investment in a given technology (outside a focus region) enlarges the
design space, thus the flexibility, of the focus region. For each region and technology, the mean derivatives up to maximum
flexibility and beyond this point (which are positive and negative respectively) are annotated. Related to Figure S7.
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Figure S9: Derivative of mean width of the design space outside the focus region with respect to changes in investment
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Related to Figure 7.
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Regional vs. continental investment
The following two plots are analogous to Figure 8 in the main text, but for utility solar and hydrogen investments respect-
ively.
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Figure S10: Minimum and maximum potential ranges of total solar power investment in different regions, as a function of
solar power investment outside the respective regions. Note that each subplot represents separate results from differently
focused models, hence the disagreement on maximum overall viable solar power investment. Related to Figure 8.
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Modelling regions
As described in the Experimental procedures section, we use different spatial layouts of the same model for our different
focus regions. This is in order to better represent spatial variability and transmission bottlenecks in the respective focus
regions, while reducing the overall spatial resolution of the model for computation reasons.

For each focus region, we “distribute” 60 nodes of spatial resolution by giving a certain number of nodes to each of the focus
region itself, the countries bordering the focus region, and the remaining countries. The exact numbers of nodes allocated
to each of these three categories depends on the focus region, and are listed in the Experimental procedures section of the
main text. Note that there may sometimes be fewer nodes than countries in the modelling area not bordering on the focus
region; in this case whole countries may be clustered together (e.g. Germany, Czechia and Poland in the Adriatic-focused
model).

Figure S12: Network topology for the various focus models. The plots only illustration spatial resolution: bus and line sizes
do not carry any significance in this plot.
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Near-optimal spaces
Below, we show projections onto each pair of the 8 dimensions{Solar,Onshore wind,Offshore wind,Hydrogen} × {inside, outside}
of the robust design space for theGerman-focusedmodel (Figure S13). Recall that this robust design space is the intersection
of near-optimal spaces arising from 12 different scenarios. In the next figure, Figure S14, we show projections of these 12
near-optimal spaces, this time aggregating the inside and outside dimensions.
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Green hydrogen is seen by the EU as a key technology in the energy transition; the
Commission has committed to domestic production and imports of 10Mt each by 2030.
Domestic production harnesses local renewable energy, but faces competition from
fossil fuels combined with carbon capture and storage (CCS). Earlier studies have
demonstrated the uncertainty in future development of green hydrogen. We show that
significantly larger ranges of European green hydrogen production are viable than
previously thought, based on allowing solutions that are marginally more expensive
than cost-optimal in any given scenario. Its domestic production can be eliminated
with little additional cost in most scenarios; only restrictions on CCS and green fuel
imports force green hydrogen production. The level of production, however, has a deep
impact on all surrounding sectors of the European energy system, meaning that an
early commitment to some green hydrogen strategy is crucial.

As Europe undergoes the transition to net-zero emissions
by 2050, hydrogen is seen as a key technology enabling a
shift away from fossil fuels. Green hydrogen, produced from
renewable electricity by water electrolysis, can be used as a
carrier for storing and transporting energy and act as a partial
substitute for fossil fuels in industry and transportation. It
can also act as the feedstock for the production of other fuels
such as ammonia, methanol and synthetic gas and oil. The
European Union has set a target of 10Mt (∼ 330TWh in lower
heating value) green hydrogen production and imports each
by 2030 [1].

The long-term future of green hydrogen is, however, nowhere
near set in stone. Various studies have projected European
green hydrogen production in 2050 at 75 Mt [2], 4 Mt [3],
0–120 Mt [4].

Hydrogen is notoriously difficult to represent correctly in
energy system models [5]; requirements include adequate
spatial and temporal resolution combined with a sufficient
representation of sector-coupling and demandflexibility. This
difficulty may explain some of large gap between different
hydrogen prognoses above. Regardless, we are also faced
with significant uncertainty around future technological de-
velopment and costs. These factors significantly impact the
competitiveness of hydrogen with alternative energy carri-
ers. Green hydrogen in particular competes with fossil fuels,
whose viability in a net-zero energy system in turn depends
on the successful deployment of large-scale carbon capture
and storage [6]. As such, small variations in costs and con-
straints can potentially lead to large swings in cost-optimal

*Corresponding author, koen.v.greevenbroek@uit.no

pathways for green hydrogen.

Indeed, in assessing reasonable pathways for scaling up green
hydrogen production, we posit that looking at cost-optimality
is not enough. Historically, energy systems have not de-
veloped in cost-optimal manners [7]. Recent work on near-
optimal modelling (also known as Modelling to Generate
Alternatives—MGA) has shown that considering systems
design even just 5% more expensive than cost-optimal opens
up a wealth of different options [8, 9, 10, 11, 12, 13], with
room for political compromise, investment in robustness and
other factors that are difficult to include in cost-optimisation
models outright.

We propose that the prospects for green hydrogen production
should similarly be considered from a near-optimal perspect-
ive. Only beyond strict cost-optimality is it possible to map
out the full ranges of options available to policy-makers. We
use a novel combination of MGA applied to European green
hydrogen production within a multi-horizon optimisation
framework in order to study possible pathways from 2025 to
2050. The results show vast ranges of near-optimal alternat-
ives, with green production production typically bottoming
out at 0 and or more than tippling compared to cost-optimal
solutions, all within a 5% total system cost slack.

In order to the investigate the effects of some of the most
important factors influencing green hydrogen production,
we conduct an extensive global sensitivity analysis over elec-
trolyser cost, carbon capture and storage cost and potential,
renewable land use restrictions and green fuel imports. All
scenarios conform to net-zero emissions by 2050. Our most
striking result is that green hydrogen production can be en-
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A B

Electrolysis Capital cost of electrolysers -50% Capital cost of electrolysers +50%

CCS
• Capital cost of carbon capture -10%
• CO2 sequestration =C15/tCO2

• CO2 sequestration potential 2000 MtCO2/a

• Capital cost of carbon capture +50%
• CO2 sequestration =C30/tCO2

• CO2 sequestration potential 400 MtCO2/a

Imports Green fuel imports disabled Green fuel imports enabled

Land use -50% available for renewables compared to baseline Baseline (maximum installable capacity of ∼8.3TW
onshore wind, ∼10.4TW solar in modelling region)

Weather year 2020 (easy) 1987 (hard)

Table 1: An overview over the scenarios used for this study. Near-optimal paths for green hydrogen production at 2%, 5% and 10% total
system cost slack levels were generated for each of the 25 = 32 different combinations of A/B settings. Note that the “cost of carbon
capture” technologies multipliers are applied to the full capital cost of any technology incorporating carbon capture, such as industrial
processes or combined heat and power plants. The factor of -10% brings these costs down to nearly the same level as the corresponding
alternatives without carbon capture.

tirely eliminated at low cost in most scenarios under consid-
eration. This is primarily due to competition with fossil fuels,
and secondarily green fuel imports. Only in scenarios where
the use of both fossil fuels and imports is restricted, is green
hydrogen production essential. The surprising part of this
result is not that green hydrogen production can be avoided,
but that it can be avoided at only very modest increases of
total system cost of 2–5%.

Mapping out green hydrogen production pathways

The subsequent results are based on large number of energy
systemmodel optimisations covering the period of 2025–2050
in 5-year steps. In order to fully capture the potential roles
played by hydrogen, thismodel (based on PyPSA-Eur [14, 15])
includes representations of the electricity, gas, heating, trans-
portation and industry sectors, and is run at high spatial and
temporal resolution (Methods). We repeat the optimisations
for 32 scenarios, representing all possible combinations of
A/B settings in five categories shown in Table 1. The scenarios
have been chosen to represent a broad range of future uncer-
tainty, focusing on factors closely related to green hydrogen
production. As illustrated in Figure 1, green hydrogen pro-
duction is minimised and maximised subject to total system
cost increase limits of 2%, 5% and 10% at each time horizon
and for each scenario separately.

Large ranges of cost-effective European green hydrogen

Figure 2 shows the extent of feasible and near-optimal path-
ways for green hydrogen production from 2030 to 2050. While
the hatched green area, representing the range of cost-optimal
pathways, already shows annual production ranging from 0 to
54Mt (∼1780TWh in lower heating value) by 2050, the range
becomesmuch larger when allowing for slight deviation from
cost optimality. At a 2% total system cost slack, this ranges in-
creases to 0–83Mt; the maximum amount of green hydrogen
production over all scenarios at 10% cost slack is 122Mt.

Total annualised system costs across the scenarios range from

736–798 bn EUR (2030) to 679–888 bn EUR (2050), meaning
that a 5% total system cost slack amounts to 37–44 bn EUR
depending on the time-horizon and scenario. For the green
hydrogenmaximisations, the dual variable of the total system
cost constraint (as shown in Figure 1) indicated how much
more green hydrogen could be produced if the cost constraint
was relaxed by one unit; from this was can derive the im-
plied green hydrogen subsidy which would induce the upper
ranges of green hydrogen production. This subsidy is at 1.21
EUR/kgH2 on average over the whole time horizon and all
scenarios (with a standard deviation of 0.31), decreasing from1.55 to 1.03 EUR/kgH2 from 2030 to 2050. Thus, by 2050, a
total subsidy of 1 bn EUR could be expected to induce the pro-
duction of approximation 1Mt of additional green hydrogen.
Subsidies carry diminishing marginal returns, however, with
the required subsidy level to produce more green hydrogen
rising from 0.81 through 1.01 to 1.27 EUR/kgH2 at system
cost slack levels of 2%, 5% and 10%, respectively.

The future of fossil fuels is intertwined with green hy-
drogen

Looking at four specific examples (Figure 3), we see the sub-
stantial direct and indirect impacts of different green hydro-
gen production pathways. The figure shows the outcomes
of green hydrogen minimisation and maximisation in two
different scenarios at the 2050 time horizon: one with pess-
imistic CCS assumptions (top row) and one with optimistic
CCS assumptions (bottom row). Mainly by limiting the CO2-
sequestration potential, the models in the pessimistic CCS
scenarios can only use a limited amount of fossil fuels; here,
the 400Mt limit on CO2-sequestration leads to a maximum
possible combined use of oil and natural gas equivalent to∼1300 TWh. However, we see that the balance between
oil and natural gas is diametrically opposite between the
min- and maximisation of green hydrogen production. When
green hydrogen production is encouraged, a significant frac-
tion is used as a feedstock for synthetic fuel production by the
Fischer-Tropsch process (represented in Figure 3 as the link
from “Hydrogen” to “Oil”). Under green hydrogen minimisa-
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Figure 1: Illustration of model layout and the sequences of optimisations used to obtain ranges of green hydrogen production. In
the middle, the cost-optimal pathway, consisting of a sequence of cost-optimisations at 5-year intervals, where capacities from each
optimisation are carried over to the next (minus capacities that are phased out). Blue and red arrows illustrate the minimisations and
maximisations (respectively) of green hydrogen at each time horizon; total system costs are not allowed to exceed (1 + 𝜀) times the
optimal system cost for each time horizon. This sequence of optimisations is repeated for each of the 32 considered scenarios, and with𝜀 = 2%, 5%, 10%.
tion, almost all oil demand switches to fossil instead of syn-
thetic, with hydrogen prioritised for essential (exogenously
specified) demand in ammonia and methanol production. In
this case, natural gas is almost eliminated from the system,
with batteries supplying a significant amount of operational
flexibility.

In the optimistic CCS scenario, green hydrogen production
similarly displaces fossil oil. However, the effect on natural
gas is reversed: minimal green hydrogen production (in this
case, zero) is complemented with more natural gas use. In
this scenario, fossil fuel use more than doubles from green
hydrogen maximisation to minimisation; the ratio of renew-
ables to fossil primary energy goes from about 4 ∶ 1 to about1 ∶ 1. The use of fossil fuels is compensated for by generous
use of carbon capture and storage.

While synthetic fuel production is most heavily affected
by changes in green hydrogen production, other demand
changes as well. In model runs with maximal green hydro-
gen production, we consistently see some switching from
batteries to hydrogen fuel cells in the transportation sector.
Hydrogen is used to some degree for heating as well. Of the
examples in Figure 3, only in the case of green hydrogen pro-
duction with pessimistic CCS assumptions do we see any use
of grid-connected fuel cells to deliver backup generation us-
ing hydrogen as an energy storage medium. Green hydrogen
thus mainly provides flexibility to the system indirectly, with
electrolysers operating when renewable energy is available,
and serving as a feedstock for synthetic fuel, ammonia and
methanol which are cheap to store and transport.

We see that green hydrogen production, fossil oil and fossil

gas are tightly intertwined in a decarbonised energy system
consistent with the 2050 time horizon. The use of any one
of these could approach (or stay at) zero by 2050 within a
narrow range of total cost. Without any commitment to a
combined hydrogen / gas / oil strategy, this could lead to great
uncertainty in the European energy sector.

Fossil fuel limitations most consequential for viable
green hydrogen levels

By performing a multi-variable linear regression on green hy-
drogen production in 2050 as a function of scenario settings
(Table 1), we can quantify which scenario categories have
the most impact on green hydrogen. Figure 4 (a) shows that
assumptions on carbon capture and storage have the largest
impact by some margin, though allowing imports is nearly as
impactful for green hydrogen minimisation. The difference
between settings A and B for the CCS category amount to a
30-35Mt difference in optimal and maximum green hydro-
gen production. Optimal and even more so maximum green
hydrogen production levels are also impacted significantly by
electrolyser costs, with the ±50% difference in captital cost
assumption leading to 10-20Mt of additional production on
average.

As seen in Table 1, the difference between optimistic and pess-
imistic CCS assumptions comprises three different factors:
the capital cost of carbon capture infrastructure (i.e. the cost
of installing carbon capture technology in power plants, in-
dustry, cement production, etc.), the marginal cost of CO2
sequestration and the total annual potential for CO2 sequest-
ration. Figure 4 unpacks the sensitivities of green production
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Figure 2: The range of pathways for European green hydrogen production across the scenarios studied. Shown are the cost-optimal
trajectories (green, hatched) as well as trajectories under green hydrogen minimisation (blue) and maximisation (red). The solid lines
show the mean, while the bands show the minimum and maximum across scenarios. The box plot on the right shows the distribution of
green hydrogen production at the 2050 planning horizon, with the whiskers indicating the extreme ranges (0th and 100th percentile).
Means are shown with dotted lines. For the min- and maximisations, the ranges are shown for 2%, 5% and 10% total system cost slack
levels.

to these individual categories, as well as the additional factor
of natural gas price. The CO2 sequestration potential clearly
has the largest impact, with sequestration cost and carbon
capture capital cost nearly insignificant in comparison.

Figure 5 zooms in on near-optimal feasible ranges of green hy-
drogen production across the two most significant categories
for minimal green hydrogen production: CCS and imports.
The CCS setting (orange vs. pink) has an increasing effect on
both minimal, optimal and maximum production starting
in 2035; green fuel imports only have an impact on optimal
pathways in 2045 and especially 2050. Looking at minimum
green hydrogen production specifically, we see that the com-
bination of pessimistic CCS assumption and no green fuel
imports allowed (the rightmost bar) is the only case where
any green hydrogen production is necessary. In all other cases,
green hydrogen production can be kept at 0 even within the
2% total system cost bound.

Robust corridors of green hydrogen production

Some green hydrogen production levels are near-optimal for
all included scenarios, depending the total system cost slack
level. Figure 6 shows these robust “corridors” for three dif-
ferent slack levels. Notably, there is no single level which
is within 2% of cost-optimal for all scenarios by 2050; the
optimal pathways in different scenarios have diverged too
much by then. The 2%-corridor is already narrow in 2040-
45, rising between 10 and 20Mt — the 2030 EU target for
10Mt is on the high side for 2030. A much wider range is ro-
bustly near-optimal within 5% and 10%, however. Our results
indicate that ∼30Mt or more of European green hydrogen
production would be a sensible target for 2050. It should be

noted that, as per Figure 4, the lower ranges of the robust
corridors are highly sensitive to the potential for imports and
CO2 sequestration.

Discussion & Conclusions

There is no real agreement in the literature on the “right” tar-
get for European green hydrogen production going forward[2,
3, 4]; to some extent this depends on uncertain and unknow-
able factors. This work demonstrates that while there may
have been disagreement around cost-optimal pathways,much
of the disagreement could be explained by the fact that large
ranges of alternatives are near-optimal.

The European energy system could be powered by almost
exclusively renewable power and green hydrogen by 2050, or
keep relying on significant fractions of fossil fuels. We show
that these different directions, and different roles for green
hydrogen, can be realised at surprisingly similar total system
cost. This similarity, however, betrays the far-reaching dif-
ferences in energy flow, with flexibility services, the heating
sector and synthetic oil production being particularly volatile.
Given the lead time of over-turning energy infrastructure,
this uncertainty presents a significant challenge to the energy
transition.

In many scenarios, we see that European green hydrogen
production can be entirely eliminated even while achieving
net-zero emissions. However, a target of an annual domestic
production around 30Mt would hedge against failing CCS
efforts and lack of import options. Amuch higher production
could also be feasible and would improve European energy
self-sufficiency, but requires more renewable power which
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Figure 3: Comparison of energy flows in two different scenarios (top and bottom) under minimisation and maximisation of green
hydrogen production (left and right, respectively). This figure displays energy flows at the 2050 planning horizon, with a 5% total system
cost slack for green hydrogen min/maximisation. Total energy input to each node is displayed in TWh, rounded to the nearest multiple of
10. Green hydrogen production amounts to approximately 25 Mt (a), 95 Mt (b), 0 Mt (c) and 70 Mt (d) in the respective panels (converting
from TWh to Mt in terms of lower heating value); note that (c) includes about 24 Mt of blue hydrogen production from natural gas, but no
green hydrogen production. Note that energy losses are not explicitly shown or annotated here, resulting in slight discrepancies between
energy input and output. Moreover, total demand is slightly different in the different panels because part of the demand is endogenous
and can change between optimisations, such as direct air capture technology.
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(a) Sensitivity of green hydrogen production in 2050 to the scen-
arios in Table 1. For the purposes of this sensitivity analysis, a
multivariate linear regression was used to determine the impact
of toggling each scenario category between A and B on minimum,
optimum and maximum green hydrogen production. Since “A”
and “B” were treated as 0 and 1 in this regression, the sensitiv-
ity coefficient can be interpreted as the amount by which min-
imum/optimum/maximum green hydrogen production changes
between settings A and B (in Mt) for each category. For example,
enabling imports reduces minimum green hydrogen production
by just over 10Mt as predicted by the multi-linear regression.
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(b) Sensitivity of green hydrogen production in 2050 to more fine-
grained parameters affecting use of CCS, i.e. the category high-
lighted in (a). The first three parameters (sequestration potential
and cost, carbon capture cost) are set jointly for settings A and B
of the CCS scenario (Table 1). The fourth parameter (natural gas
cost) is not varied at all in the main scenarios, but included in this
fine-grained sensitivity analysis for comparison.

Figure 4: Sensitivity of green hydrogen production in 2050 to scenarios and CCS-related parameters.
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Figure 5: The ranges of pathways for European green hydrogen production under a combination of CCS and green fuel imports scenarios.
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minimisation to maximisation of green hydrogen production), as well as the range of cost-optimal results. Orange and pink indicate
scenarios with high and low CCS potential, respectively, while the hatched pattern indicates the availability of green fuel imports. In the
zoomed-in portion, blue crosses mark the minimised green hydrogen production levels at 2% total system cost slack. We see that only in
the scenarios with low CCS potential and no green fuel imports, are substantial volumes of green hydrogen production required.
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Figure 6: Corridors of green hydrogen production that are feasible and near-optimal in all scenarios. These robust corridors are shown
at 2%, 5% and 10% total system cost slack levels. For example, 20Mt of green hydrogen production in 2040 is feasible and within 5% of
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beyond 2045 means that any green hydrogen production level is both below the minimum near-optimal level (at 2% cost slack) for some
scenarios and above the maximum near-optimal level for other scenarios. This corresponds to overlap between the spread of minimum
and maximum levels in Figure 2.

could face challenges related to land-use and social accept-
ance. On the other hand, continued use of fossil fuels will
require extensive use of CCS technology in order to reach
climate target.

The methodology used in this study has a few limitations,
one of which is incomplete representation of technological
learning; instead, costs of some technologies are assumed
exogenously to fall in line with expect estimates. In reality,
heavier initial investment in e.g. electrolysers could drive
down costs faster. Imports are represented in limited detail; in
particular, different import origins, seasonally varying prices
and imports of other energy-related goods apart from fossil-
and green fuels are not considered.

A clear European strategy for green hydrogen beyond 2030
is currently lacking. The same goes for oil- and gas use. Our
work shows that the roles of fossil fuels and green hydrogen
are so intertwined that they respective evolutions towards
2050 should be planned jointly and in a consistent manner.
While the market-based Emissions Trading Scheme is effect-
ive at reducing emissions, an overarching vision for the bal-
ance between hydrogen and fossil fuels could provide predict-
ability and stability to the energy transition.

Code and data availability

The code to reproduce the results of the present study, as
well as links to the data used, are available at https://
github.com/koen-vg/eu-hydrogen/tree/v0. All code is
open source (licensed under GPL v3.0 and MIT), and all data
used are open (various licenses).
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Methods
Model set-up
We use the capacity expansion model PyPSA-Eur [14, 15] (version
0.10 with slight modifications) to generate feasible energy system
designs at planning horizons𝑌 = 2025, 2030, 2035, 2040, 2045, 2050.
The model includes representations of the electricity, heating, trans-
portation and industrial sectors, maintaining energy balances across
electricity, hydrogen, natural/synthetic gas, fossil/synthetic oil, bio-
mass, ammonia and methanol. Energy demand is retrieved from
Eurostat at 2019 levels and largely kept fixed over time; see the
PyPSA-Eur documentation* for more details. The electricity, heat,
hydrogen and gas energy carriers are spatially resolved; oil, biomass,
ammonia and methanol are not. The model is configured with a
spatial scale of 60 nodes (see Figure 1 to represent the modelling re-
gion, which consists of the EU excluding Cyprus, Luxembourg and

*https://pypsa-eur.readthedocs.io/en/latest/supply_
demand.html
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Malta but including Norway, Switzerland and the United Kingdom;𝑘-means clustering is used to cluster smaller regions corresponding
to transmission substations down to 60 regions based renewable
energy capacity factor and electricity load time series. In the tem-
poral dimension, we aggregated hourly time-steps (8760 over one
year) down to 2000 time-steps using a segmentation approach [17],
which is known to bemore accurate than the equivalent∼4.4-hourly
uniform aggregation [18].

The model is solved several times in sequence to obtain system
designs for the planning horizons under consideration; optimised
and existing capacities from one planning horizon are carried over
to the next, except for components which have reached the end
of their lifetime by the next planning horizon. This approach is
called “myopic foresight optimisation” in the context of PyPSA-Eur;
“myopic” refers to capacity expansion only being done one time
horizon at a time. Operationally, the model has perfect foresight
over one year for each optimisation. At the first planning horizon of
2025, currently existing infrastructure, including renewable, nuclear,
gas and coal power plants (except those reaching the end of their
lifetime by 2025) are included in a brownfield optimisation. Solar,
wind (onshore, bottom-fixed offshore, floating offshore), nuclear
and gas power plants are expandable at each planning horizon;
coal and hydro power plants are not. Infrastructure related to the
production, storage, transportation and use of hydrogen (green as
well as blue and grey) is expandable at each horizon. The same
goes for the capture, storage / sequestration and utilisation of CO2,
including direct air capture and geological storage. Expansion of
the transmission grid is capped 50% over the current grid on a global
basis (individual lines may be reinforced more).

CO2 emissions are capped at 65% of 1990 levels for the first mod-
elling horizon of 2025 (compared to recorded emissions at 70.8%
of 1990 levels in 2022 [19]). Thereafter the cap is reduced to 45%,
10% and 0% of 1990 levels at the 2030, 2040 and 2050 planning ho-
rizons in accordance with committed EU policy. Caps are linearly
interpolated at the 2035 and 2045 planning horizons.

Costs are given in 2023 EUR; investment costs are annualised with
a discount rate of 7%. Technology costs are parameters are retrieved
from the technology-data repository†, version 0.6.2. They are not
modified beyond the scenario parameters in Table 1.

Near-optimal modelling
In order to explore different options for green hydrogen production,
we exploit near-optimal solutions. Near-optimal modelling was
first applied to energy systems modelling by DeCaroris [9] in 2011
under the nameModelling to Generate Alternatives (MGA) and has
subsequently been applied in various contexts [8, 11, 12, 20, 21]
to reveal the range of options that are available for energy system
designs when cost-optimality is relaxed slightly.

We develop a novel methodology to apply the near-optimal perspect-
ive to sequential optimisation over multiple planning horizons (“my-
opic foresight multi-horizon optimisation”). Following Grochowicz
et. al. [12], letℱ𝜀 = {𝑥 ∈ ℝ𝑛 ∣ 𝐴𝑥 ≤ 𝑏 and (1+ 𝜀)𝑐 ⋅𝑥 ≤ 𝑐∗} be the 𝜀-
near-optimal space of an energy system model defined by the linear
programmin 𝑐 ⋅ 𝑥 s.t. 𝐴𝑥 ≤ 𝑏 with optimal value 𝑐∗. For multiple
planning horizons with capacities carried over from one to the next,
let 𝑥∗1 , 𝑥∗2 ,… be cost-optimal solutions at planning horizons 1, 2,… ,
and let 𝑥∗0 be the state of the current energy infrastructure before
the first planning horizon. Then the capacity expansion problem
at horizon 𝑖 depends on 𝑥∗𝑖−1; letmin 𝑐𝑖𝑥𝑖 s.t. 𝐴𝑖∣𝑥∗𝑖−1𝑥𝑖 ≤ 𝑏𝑖∣𝑥∗𝑖−1 be the

†https://github.com/PyPSA/technology-data

corresponding linear program. We define the 𝜀-near-optimal space
at the 𝑖th planning horizon asℱ(𝑖)𝜀 = {𝑥𝑖 ∈ ℝ𝑛 ∣ ∃𝑥𝑖−1 ∈ ℱ(𝑖−1)𝜀 s.t. 𝐴𝑖∣𝑥𝑖−1𝑥𝑖 ≤ 𝑏𝑖∣𝑥𝑖−1

and (1 + 𝜀)𝑐𝑖 ⋅ 𝑥𝑖 ≤ 𝑐∗𝑖 𝑏} . (1)

That is, each element in ℱ(𝑖)𝜀 must be near-optimal with respect
to optimal sequence of solutions 𝑥∗1 , 𝑥∗2 ,… (hence the constraint(1 + 𝜀)𝑐𝑖 ⋅ 𝑥𝑖 ≤ 𝑐∗𝑖 𝑏), and must be feasible in the linear program𝐴𝑖∣𝑥𝑖−1𝑥𝑖 ≤ 𝑏𝑖∣𝑥𝑖−1 based on some solution 𝑥𝑖−1 in the near-optimal
space ℱ(𝑖−1)𝜀 from previous horizon.

Instead of working with the full-dimensional spacesℱ(𝑖)𝜀 , we project
down to the single variable of interest: the annual sum of green
hydrogen production (specifically, the sum of hydrogen production
from electrolysis) across the entire model. Under this projection,
the image of ℱ(𝑖)𝜀 is a line segment. The extreme points of this line
segment can be found by minimising and maximising the sum of
green hydrogen production, respectively. In this study, we further-
more assume that minimum/maximum green hydrogen production
at horizon 𝑖 is obtained by starting with the optimised capacities
from a green hydrogen minimisation/maximisation at horizon 𝑖 − 1.
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A B S T R A C T

Can Norway be an important hydrogen exporter to the European Union (EU) by 2030? We explore three sce-
narios in which Norway’s hydrogen export market may develop: A Business-as-usual, B Moderate Onshore, C 
Accelerated Offshore. Applying a sector-coupled energy system model, we examine the techno-economic 
viability, spatial and socio-economic considerations for blue and green hydrogen export in the form of 
ammonia by ship. Our results estimate the costs of low-carbon hydrogen to be 3.5–7.3€/kg hydrogen. While 
Norway may be cost-competitive in blue hydrogen exports to the EU, its sustainability is limited by the reliance 
on natural gas and the nascent infrastructure for carbon transport and storage. For green hydrogen exports, 
Norway may leverage its strong relations with the EU, but is less cost-competitive than countries like Chile and 
Morocco, which benefit from cheaper solar power. For all scenarios, significant land use is needed to generate 
enough renewable energy. Developing a green hydrogen-based export market requires policy support and 
strategic investments in technology, infrastructure and stakeholder engagement, ensuring a more equitable 
distribution of renewable installations across Norway and national security in the north. Using carbon capture 
and storage technologies and offshore wind to decarbonise the offshore platforms is a win-win solution that 
would leave more electricity for developing new industries and demonstrate the economic viability of these 
technologies. Finally, for Norway to become a key hydrogen exporter to the EU will require a balanced approach 
that emphasises public acceptance and careful land use management to avoid costly consequences.

Abbreviations

CCS Carbon Capture and Storage
DENA German Energy Agency
EU European Union
H2 Hydrogen
HHV Higher Heating Value
LCOE Levelised costs of electricity
LCOH Levelised costs of hydrogen
LHV Lower Heating Value
Mt Million tonnes
NVE Norwegian Water Resources and Energy Directorate (Norges vassdrags- 

og energidirektorat)
PEM Proton-Exchange Membrane
PyPSA- 

Eur
Python for Power System Analysis — European energy system

SMR Steam Methane Reforming

1. Introduction

The European Union has the ambition to be climate-neutral by 2050 
[1]. As an intermediate goal to bolster its energy security and reduce its 
dependence on Russian natural gas (hereinafter gas) imports, the EU 
plans to replace parts of its gas consumption with 20 million tons (Mt) of 
green hydrogen by 2030, of which half will be produced domestically 
and half will be imported [2]. As the EU transitions away from fossil fuel 
imports, countries that depend on petroleum exports to the former will 
need to find a new market to tap into. One such country is Norway, 
whose petroleum exports represent 73% of the total country’s exports 
value in 2022. Of this volume, 67% was exported to the EU [3]. In terms 
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of availability of natural resources, political stability and regulatory 
status, economic resources, industrial know-how and adaptability, 
Norway is ranked as one of the top ten potentially most competitive 
hydrogen exporters in the world [4]. Should Norway succeed in realising 
this potential, it would be able to maintain its economic growth despite a 
transition away from fossil fuel exports [5]. However, this would require 
abundant renewable electricity to ensure minimal greenhouse gas 
emissions and price-competitiveness [5,6]. Yet, the power surplus of 
around 13 TW h (TWh) that Norway has been enjoying averagely in the 
last decade [7] could turn into a deficit by 2030 if the increased elec-
tricity demand resulting from the electrification of sectors is not fol-
lowed by a proportionate expansion of the domestic renewable 
electricity capacity [8]. As pointed out by Cheng [6], timing is important 
in taking advantage of the window of opportunity for an energy tran-
sition. The point of departure of this work is that Norway should aim to 
become an important EU hydrogen supplier by 2030 and the main 
objective of this work is to evaluate this potential. This is measured by 
the cost-competitiveness against other non-EU hydrogen exporters, the 
environmental impacts on land use and the associated social 
implications.

Several techno-economic studies on the potential for low-carbon 
hydrogen export to the EU focused solely on the production costs. 
However, this could be misleading as the transportation costs could 
affect the overall cost-competitiveness of the exports, as highlighted by 
Refs. [9–11]. The transportation costs may vary due to the travelling 
distance and the form in which the hydrogen is being transported. In 
contrast, a value chain approach that includes the costs implicated in the 
transportation of hydrogen export would provide a better overview of 
the cost-attractiveness of hydrogen as an export commodity [11]. This 
approach has been adopted by Galimova et al., Roos, Seiti et al., 
Okunlola et al., Wietschel and Hasenauer for the export of blue and 
green hydrogen from non-EU countries in North and South America, 
Africa, Northern Europe to Europe, including Germany [11–14]. Addi-
tionally, three studies concern the export of blue or green hydrogen from 
Norway to Germany. Andressen et al. [15] evaluated the feasibility of 
exporting green liquid hydrogen from Norway (Glomfjørd) to German 
cities (Berlin, Munich, Magdeburg) via the ports of Hamburg, Bre-
merhaven or Rostock. Stiller et al. [16] compared the costs of exporting 
blue and green hydrogen from Southern and Northern Norway to 
Northern Germany (Hamburg) via eight different pathways, of which 
two considered production in Southern Norway before being trans-
ported through hydrogen pipelines, and two considered production in 
Northern Norway before being exported by liquid hydrogen ships. Ish-
imimoto et al. [17] compared the techno-economic cost of large-scale 
production and transport of blue liquid hydrogen and liquid ammonia 
from Northern Norway (Hammerfest) to Rotterdam and Tokyo.

The techno-economic assessments mentioned above were quantified 
based on static values on the electricity prices and capacity factors that 
are applied to renewable electricity technologies. While this provides a 
high-level view of the economic potential of hydrogen exports to the EU, 
the reality is that electricity prices and renewable energy generation can 
vary significantly from site to site [18]. To capture this reality, the en-
ergy system optimisation model, PyPSA-Eur, is used to derive the costs 
of hydrogen exports from Stavanger (Southern Norway), Trondheim 
(Central Norway) and Tromsø (Northern Norway), each representing 
different geographical points and electricity price zones in Norway. 
Further, it is critical to consider the volume of hydrogen exports targets, 
which impacts the amount of renewable energy required, and thereby 
demands the use of more natural resources like land. In Norway, the 
future renewable energy expansion is likely to rely on either onshore or 
offshore wind [8]. By allowing the expansion of renewable energy ca-
pacity in the model, it is possible to calculate the amount of land or sea 
area needed for the production of hydrogen. For hydrogen exports to be 
a viable alternative for Norway’s post-petroleum future, we assume that 
Norway should aim to secure the same market share as its gas exports as 
its hydrogen exports, that is 20% market share of the EU’s hydrogen 

import demand in 2030. This equates to an export of 2 Mt hydrogen, and 
aligns well with the assumption taken by Espegren et al. [5] on the role 
of hydrogen exports in Norway to transition away from petroleum 
exports.

Given the joint-declaration by Norway and Germany to cooperate 
closely on developing a hydrogen value chain [19], this article focuses 
on the export route between the two countries. While the recent 
hydrogen value chain feasibility studies by DENA and Gassco on the 
construction of a hydrogen pipeline between Norway and Germany 
concluded that “no technical showstoppers have been identified”, there 
remain substantial barriers concerning costs, regulatory framework, 
environmental impacts and financing model [20, p. 24]. Considering the 
timeline to 2030, we opt to evaluate the export of hydrogen in the form 
of ammonia, which can be safely transported on existing chemical and 
semi-refrigerated liquefied petroleum gas tankers and can leverage an 
established intercontinental transmission and distribution network [21]. 
Furthermore, it is considered the most cost-attractive carrier for ship-
ping hydrogen [22]. The receiving terminal is assumed to be the port of 
Wilhelmshaven, where a new hydrogen pipeline could potentially be 
built in the vicinity and facilitate further distribution inland [20].

The novelty of this article builds on several pillars. (i) This article is 
the first study in Norway which models both blue and green hydrogen in 
a technology-open manner to study system-wide impacts of cost-optimal 
export pathways. (ii) The model allows for an analysis of the distribution 
of renewable energy and hydrogen from different regions of Norway and 
the discussion on the energy needs, land-use and associated social con-
sequences at a regional level. (iii) Further, our results build on a broad 
cost-sensitivity analysis addressing the fundamental uncertainty in 
future costs of technologies including carbon capture and storage, 
electrolysis and offshore wind turbines.

The key research question for this article is “What is the potential for 
Norway to be an important hydrogen supplier to the EU?”. Guiding the 
analysis are the following sub-questions:

1) How fast does Norway need to ramp up the expansion of its renew-
able energy capacity to meet the EU’s hydrogen import needs?

2) What are the economic and environmental trade-offs between blue 
and green hydrogen production in Norway, considering current 
infrastructure and future energy policy needs?

3) What are the socio-economic impacts of expanding onshore and 
offshore wind capacity in different regions of Norway, and how can 
policy address potential disparities?

These research questions are investigated through the lens of three 
different scenarios involving blue and green hydrogen as described in 
the Methods section. There, we dive into specifics of the foreseen 
hydrogen pathways, and then discuss how we adapted the PyPSA-Eur 
model for this article. In particular, we extend PyPSA-Eur with addi-
tional components and linear constraints forcing hydrogen exports; a 
relatively novel concept in the context of capacity expansion model. We 
further give an overview of relevant cost assumptions and present social 
and environmental concerns of hydrogen export pathways. The Results 
section then discusses the accruing costs in the different scenarios, de-
fines the needed willingness-to-pay to evade social acceptance issues, 
and marks down the land use needs and power system changes in Nor-
way following the different hydrogen export pathways and variations in 
costs. This paper is rounded up by a Discussion and Conclusion.

2. Methods

2.1. Hydrogen pathways

This article examines the potential for hydrogen exports based on 
three scenarios from Norway to Germany: “A Business-as-usual”, “B 
Moderate Onshore”, “C Accelerated Offshore”. We use an integrated 
energy system optimisation model to investigate a range of outcomes 
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(including hydrogen cost, land use and subsidy levels) in three different 
scenarios, see Table 1. At the basis of all scenarios lies the fixed target for 
Norway to supply 2 Mt of hydrogen (derivatives) annually to continental 
Europe. The scenarios and modelling assumptions are tailored to a 2030 
planning horizon.

Where the scenarios differ is in the methods and energy sources for 
hydrogen production. See Table 1 for a brief summary. Scenario A 
(Business-as-usual) explores the export of both blue and green hydrogen 
while allowing the expansion of the lowest-cost renewable energy. That 
is, hydrogen may be produced through the conventional method, steam 
methane reforming (SMR), combined with Carbon Capture and Storage 
(CCS) technology at 90% capture rate, as well as through water elec-
trolysis via Proton-Exchange Membrane (PEM) electrolysers that are 
powered by renewable energy. In practice, this leads the model to invest 
in SMR with CCS in most cases since this is significantly cheaper than 
electrolysis at baseline 2030 technology cost assumptions. In Scenario B 
(Moderate onshore), only green hydrogen production is allowed based on 
the potential for expansion of renewable energy generation in Norway. 
This leads the model to invest in a significant variable renewable port-
folio in Norway in order to supply the electrolysis; renewable investment 
is dominated by onshore wind in this case. Given the low social accep-
tance towards onshore wind installations in Norway [23], Scenario C 
(Accelerated offshore) assumes the same but the production of green 
hydrogen relies on an accelerated roll-out of offshore wind turbines in 
Norway. In this scenario, we add the constraint that offshore wind power 
(as opposed to onshore wind and solar) must supply all the electricity for 
electrolysis; this is however only accounted for on a net yearly basis. For 
all scenarios, we assume high prioritisation of energy security in Norway 
in that it may not become an electricity importer on a net yearly basis. 
Fig. 1 illustrates the value chain of ammonia exports considered in the 
scenarios, from the energy sources in Norway to the transport of 
ammonia to the receiving terminal in Germany.

As mentioned above, this article considers marine shipping of 
ammonia from Norway to continental Europe. We model power re-
quirements and losses in the production of ammonia, but do not consider 
ammonia cracking to convert the exports back to hydrogen; rather, we 
model the exports of an amount of ammonia having the energy content 
(measured in lower heating value) of 2 Mt of hydrogen, being 66.7 TWh. 
We disregard ammonia cracking due to the large uncertainty in final 
end-use of imported green hydrogen. A recent projection of green 
hydrogen demand by 2030 in Germany [24] notes that there is already a 
1 Mt hydrogen demand (currently grey) in the chemical industry for the 
production of ammonia; demand from the transportation and shipping 
sectors may also be in the form of ammonia or other synthetic fuels. 
Including conversion losses in ammonia cracking would overestimate 
costs if the resulting green hydrogen is to be converted back to a liquid 
fuel. Given the nascent stage of the use of ammonia as a fuel in ships, we 
assume that the transport of ammonia will be by container ships running 
on conventional fuel in 2030.1 Hydrogen pipelines are excluded in the 
scenarios due to potential delays in funding and approval processes for 
the constructions, (despite being considered as technically possible by 

2030 [25]).
In the model, the export pathways are modelled as three separate 

corridors characterised by having a capital investment cost (represent-
ing the cost of an ammonia production plant), efficiency losses (repre-
senting imperfect conversion from hydrogen to ammonia), a running 
power requirement (representing the electricity required to run the 
ammonia production plant) and a marginal export cost (representing the 
cost of shipping ammonia; dependant on the shipping distance). While 
we have based these parameters on ammonia as an energy carrier (see 
Table 2 for the parameters used in the present study), the model 
formulation itself would be equivalent to an alternative carrier such as 
liquid hydrogen. As discussed below, the modelling results are not 
particularly sensitive to shipping costs.

2.2. Choice of modelling framework

In order to generate plausible system solutions in each of our three 
scenarios, we employ an energy system optimisation model covering the 
electricity, transportation, heating and industrial sectors. The specific 
tool we use is PyPSA-Eur, an open-source sector-coupled model for the 
European energy system [26,27]. At the core, this is a capacity expan-
sion model; a type of optimisation model where both investment and 
operation decisions are subject to optimisation. The model is equipped 
with an objective function representing total system cost (as a sum of 
annualised investment costs and yearly operating costs). Investment 
variables subject to optimisation include onshore and offshore wind 
capacities, solar capacities, conventional natural gas and nuclear power 
generation, energy storage capacities (batteries, hydrogen storage, hot 
water storage), transmission expansion, heating infrastructure (com-
bined heat and power plants, gas boilers, heat pumps, resistance heaters) 
and power-to-X capacities including electrolysis, ammonia and meth-
anol synthesis and fischer-tropsch liquid fuel production. The model also 
includes existing capacities of the above technologies with lifetimes 
beyond 2030. Existing hydro, coal and oil power plants are similarly 
included, but with fixed capacities that cannot be expanded. For a 
complete overview of the technologies included and optimised in the 
model, see the official PyPSA-Eur documentation.2

In a typical capacity expansion model such as PyPSA-Eur, the ade-
quacy of feasible model solutions is ensured by including in the model 
formulation a simulation of system operations over one full year at sub- 
daily time resolution. Demand for electricity and other energy carriers is 
fixed in advance for each node and time step in the model; dispatch and 
optimal power flow problems for each time step are included in the 
overall problem formulation. Thus, both operational and investment 
decision variables are subject to optimisation jointly. PyPSA-Eur (as well 
as many other capacity expansion models) is formulated as a linear 
program, meaning that both constraints and the objective function are 
linear in the decision variables. This entails simplifications of non-linear 
real-world effects but makes the optimisation model tractable to solve at 
high spatial and temporal resolution.

Table 1 
Description of scenarios and their implementation in the energy system model.

Scenario Model implementation Description

A: Business-as-usual No restriction to baseline model. Aligns with current policies where only blue hydrogen is 
produced for export.

B: Moderate 
onshore

Steam methane reforming (SMR) not allowed. Green hydrogen export using the cost-effective renewable 
electricity source.

C: Accelerated 
offshore

SMR not allowed, total yearly offshore wind power production must be at least the total yearly 
electrolysis demand in Norway.

Green hydrogen export using offshore wind power.

1 Note that shipping costs (see Fig. 4) only play a minor role in final exported 
hydrogen costs, meaning that shipping fuel choice is unlikely to have a large 
effect on our results. 2 https://pypsa-eur.readthedocs.io/en/latest/introduction.html.
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2.3. Modelling setup

We restrict PyPSA-Eur to the countries around Norway and the North 
Sea, namely Norway, Sweden, Denmark, Finland, the UK, the 
Netherlands and Germany. We choose a 20-node spatial resolution at the 
transmission and demand level, but allocate only one node per syn-
chronous zone and country for Denmark, the UK, the Netherlands and 
Germany, while modelling Sweden with 2 nodes and Norway with the 
remaining 11 nodes (see Fig. 2). This ensures adequate representation of 
transmission bottlenecks in and around Norway. In order to better 
capture variations in renewable energy availability, we model renew-
able generation at a spatial resolution of 60 different regions; each re-
gion being connected to the closest of the 20 transmission nodes. We 
obtain the desired network resolution using the built-in hierarchical 
clustering function of PyPSA-Eur [28] based on onshore wind capacity 
factor profiles — starting from small initial regions, nearby nodes with 
similar onshore wind capacity factors are successively merged. 
Furthermore, the temporal resolution of the model is reduced using the 
segmentation approach introduced in Ref. [29] to a total of 1000 time 
steps. The model is run over the single weather year of 2013 [30] — this 
weather year is close to average in terms of total system costs compared 
to the 1980–2020 period and is the default in PyPSA-Eur, making the 
results easier to compare to other studies. Total yearly CO2 emissions 
over the entire modelling region are subject to a 55% reduction 
compared to 1990 levels in accordance with the EU and Norway’s 
climate target for 2030. This reduction is implemented as a constraint on 
total model-wide CO2 emissions; the model then finds the most 
cost-effective solution to meet this constraint while satisfying the given 
energy demand. Following the PyPSA-Eur default [31], renewable 
expansion is restricted to a selection of CORINE land use types [32].

We add a number of new components and linear constraints to 
PyPSA-Eur in order to model our hydrogen export scenarios. These are 
as follows:

1. A new network bus with attached store/stockpile representing con-
tinental hydrogen demand, and three links from the Norwegian 
export hubs to this bus, as described above.

2. A constraint forcing the hydrogen demand stockpile to be filled with 
the equivalent of 2 Mt of hydrogen (amounting to 66.7 TWh of 
ammonia in our case) by the end of the year.

3. A constraint forcing Norway to remain a net electricity exporter on a 
yearly basis. Specifically, the total net electricity exports (i.e. the 
difference between total yearly exports and imports) is constrained 
to be greater than 0. This constraint maintains the current status quo 
of Norway’s role as an electricity exporter, but also crucially prevents 
the import of electricity only for this to be used in electrolysis and 
exported again as green hydrogen.

4. In Scenario C, a constraint is added forcing total yearly Norwegian 
offshore wind production to match total yearly electrolysis elec-
tricity consumption.

Thus, our scenarios are based on using an optimisation model to 
explore cost-optimal solutions for exporting hydrogen from Norway, 
without making assumptions about exactly where and when this 
hydrogen is produced, or with which power (except for Scenario C, 
forcing the use of offshore wind).

2.4. Technology costs and sensitivity analysis

Table 2 shows the complete overview of the baseline cost assump-
tions in our model. All costs are given in 2023 euros, and technology 
costs and efficiencies are given for 2030, wherever possible. When 
necessary, we convert between NOK and EUR based on an average 2023 
exchange rate of 1 EUR = 11.302 NOK [33]. It is noteworthy that e.g. 
PEM electrolysis efficiency is forecasted to increase by at least 5%-points 
in the decades beyond 2030 [34] (subject to uncertainty), which would 
decrease the Levelised Cost of Hydrogen (LCOH) for model runs set in 
later years than 2030. In the model, capital investment costs are 

Fig. 1. Simplified ammonia export value chain from Norway to Germany in 20301 

1Clipart source: flaticon.com.
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annualised with a 7% discount rate. Since all costs under consideration 
are subject to considerable uncertainty, we perform an extensive global 
sensitivity analysis in order to determine both which costs are most 
important for final hydrogen prices as well as to determine likely ranges 
of prices and system configurations across many cost combinations. In 
particular, our global sensitivity analysis consists of taking intervals of 
± 20% around each baseline cost (listed in Table 2), and randomly 
sampling 500 points in the resulting parameter space. Then, we run the 
model for each of these 500 combinations of cost assumptions and each 
scenario. The resulting 1500 model solutions are used throughout the 
results section.

3. Results

The key results are summarised in Table 3; in the following sections 
we go into more detail.

3.1. Competitiveness of Norwegian hydrogen

Fig. 3 shows the distributions of Norwegian Levelised Cost of 
Hydrogen (LCOH) observed for each scenario across the 500 model 
optimisations, following the sensitivity analysis as described above. 
Under Scenario A (business-as-usual), only blue ammonia is being 

exported from Norway to Germany due to the cheaper cost associated 
with the production method, SMR and CCS, entailing the capture and 
storage of about 23 Mt of CO₂ annually.3 Consequently, the cost of 
producing hydrogen and exporting it in the form of ammonia is the 
cheapest among the three scenarios, with a median cost (between 
5th–95th percentiles) of €3.87 (3.50–4.27)/kgH₂ in 2030. Limiting the 
production to only green hydrogen, the cost of hydrogen export becomes 
around 34% higher in Scenario B (moderate onshore) at €5.18 
(4.61–5.72)/kgH₂ and 65% higher in Scenario C (accelerated offshore) at 
€6.39 (5.54–7.25)/kgH₂. The cost uncertainty is found to be greater for 
green hydrogen, especially in Scenario C, which is completely reliant on 
offshore wind power. These costs include both production, ammonia 
synthesis (with resulting efficiency losses) and transportation. Note that 
we report costs in €/kgH2-equivalent in terms of lower heating value 
energy content even though exports are modelled as using ammonia. 
Without ammonia synthesis and transportation, we find hydrogen pro-
duction costs of €2.34 (2.05–2.63), €3.43 (2.95–3.83) and €4.51 
(3.78–5.17) for Scenarios A, B & C respectively.

Fig. 4 shows the sensitivities of the final Norwegian LCOH to the 
various parameters subject to variation in the global sensitivity analysis. 
It should be highlighted that the first parameter relates to the efficiency 
rate of electrolysers, while the rest of the parameters relate to the 
different cost components in the supply chain. Although the electrolyser 
efficiencies have the same baseline value of 65% in both Scenarios B 
(moderate onshore) and C (accelerated offshore), the effects on the cost of 
hydrogen are higher in the latter due to the higher cost of electricity. A 

Table 2 
Overview of baseline cost assumptions for hydrogen production and trans-
portation chain. All costs are given in 2023 euros; older cost data are converted 
using the Eurostat Harmonised Index of Consumer Prices.

Technology Baseline assumption Range Source

Onshore wind investment €1413/kW ±20% [35]
Bottom-fixed offshore wind 

investment (excluding 
connection)

€2921/kW ±20% [35]

Floating offshore wind investment 
(excluding connection)

€5269/kW ±20% [35]

Steam-methane reformation with 
90% carbon capture rate

€728/kWCH₄ ±20% [36]

Steam-methane reformation 
conversion efficiencya

69% fixed [37]

Natural gas €30/MWhth ±20% [38]
CO₂ sequestrationb €36.50/tCO₂ ±20% [39]
PEM electrolysis €429/kWe ±20% [40]
PEM electrolysis efficiencyc 65% 61%– 

69%
[34]

Ammonia synthesisd €1570/kWth ±20% [36]
Ammonia synthesis hydrogen 

consumptione
1.15 MWhH2 /MWhNH3 fixed [41]

Ammonia synthesis electricity 
consumptionf

0.25 MWhel/MWhNH3 fixed [41]

Ammonia shipping €1.47/MWhth/1000 
km

±20% [42]

a Efficiency is given in terms of LHV, and is lower than the reference value of 
76% for non-CC SMR from the same source due to the additional energy 
requirement for the carbon capture process.

b Sequestration cost includes the levelised cost of both transportation of CO2 
and injection into depleted gas fields, but not the cost of capturing CO2 (which is 
included in the capital cost of SMR plants with carbon capture).

c Efficiency is given in terms of LHV; this value corresponds to an efficiency of 
77% in terms of high heating value (HHV). The range of efficiencies tested 
corresponds to 72%–82% in terms of HHV.

d Capital cost includes the air-separation unit needed for N2 feedstock. The 
cost is per kW of hydrogen input capacity.

e Using lower heating values and assuming 178 kg H2 input per 1000 kg NH3 
output.

f Using the lower heating value for ammonia, not including the electricity 
needed for the air-separation unit.

Fig. 2. The spatial layout of the model used in this study. The distinct model 
regions are shown, with the connecting lines indicating transmission grid 
connections. The thick blue lines illustrate the export corridors from Tromsø, 
Trondheim and Stavanger, marked with red dots. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.)

3 See Section 4.1 for a more detailed discussion of CO2 capture and storage in 
Scenario A.
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drop of 1% in electrolyser efficiency could lead to an average cost in-
crease of €0.042/kgH2 in Scenario B whereas the increase in hydrogen 
cost is €0.052/kgH2 in Scenario C. Natural gas cost is the single main 
factor determining the cost of hydrogen production in Scenario A 
(business-as-usual), where an 1% increase in natural gas prices may lead 
to an average increase of €0.016/kgH2. The next two important factors 
are the capital cost for SMR installation and CO2 sequestration cost 
(including transportation). In Scenario B, the cost of hydrogen produc-
tion is highly dependent on the capital cost of onshore wind, where an 
increase of 1% leads to an average increase of €0.045/kgH2. The export 
capital costs refer to the cost of converting hydrogen into the exportable 
ammonia.

The model differentiates between bottom-fixed and floating offshore 
wind, and the final LCOH is highly sensitive to the cost of floating 
offshore wind in Scenario C (accelerated offshore). The reliance on 
floating offshore wind is explained by the relatively low potential for 
bottom-fixed offshore wind by the Norwegian coast, with only about 55 
GW of maximum installable capacity available along the entire Nor-
wegian coastline (based on a maximum depth of 60 m and density of 2 
MW/km2 for bottom-fixed offshore wind), less than a third of which is 
located below 62◦N — the preferred location for offshore wind in the 
model (see Fig. 6).

Table 4 summarises the production and shipping costs of hydrogen 
and its derivatives in the existing literature to Germany. The cost of blue 
hydrogen production in Norway is higher than in Canada, which could 
be due partly to the slightly lower carbon capture rate (85% instead of 
90%) and gas prices assumed in the latter countries (roughly half of the 
value assumed in our model). This may be attributed to the fact that the 
studies were conducted before the recent energy crisis triggered by the 

Russian invasion of Ukraine and did not take into account the after- 
effects of the ongoing war. Adjusting for these effects, Norway’s total 
export cost for blue ammonia is likely to be cheaper than that of Canada.

As for green hydrogen production cost, Norway’s cost ranges in 
Scenarios B (moderate onshore) and C (accelerated offshore) are higher 
than those of other countries including Morocco, Argentina, Chile and 
Australia. This could be attributed to the type of renewable energy 
technologies used to produce renewable electricity as well as market 
effects. The Levelised Cost of Electricity (LCOE) of solar PV is lower than 
onshore and offshore wind, which results in lower electricity costs. 
Given the high sensitivity of hydrogen production cost to electricity 
prices, it is not surprising that Morocco, Argentina and particularly Chile 
could have a cost advantage over Norway for green hydrogen produc-
tion. Further, we assume the use of proton exchange membrane (PEM) 
electrolysers in our study as they allow for a modular scale-up of the 
operation — being able to start with small units and scale up later can 
reduce investment risk. Nevertheless, as shown in Fig. 4, the impact on 
the overall cost contributed by the electrolyser capital cost is small 
compared to that of the electrolysis efficiency rate. Moreover, Norwe-
gian electricity prices, though falling from 2023-levels, are still affected 
by high prices in neighbouring countries (see also Table 6); such effects 
are not taken into account in the studies considered in Table 4. Overall, 
green ammonia exports from Norway in both Scenarios B and C are less 
cost-competitive than the considered alternatives.

3.2. How fast do we need to ramp up renewable energy expansion?

Diving into the green hydrogen scenarios, Fig. 5 shows the installed 
capacities of onshore and offshore wind required in Norway across the 
three different scenarios. Scenario A (business-as-usual) requires a total 
installed renewable capacity of 21 GW on average across the sensitivity 
analysis, of which 8–25 GW (5th–95th percentiles) is onshore wind, 
depending on the volume of offshore wind installations (0–9 GW, 
5th–95th percentiles). The additional electricity generated is used 
mostly for the decarbonisation of various sectors in Norway, but also 

Table 3 
Summary of key results. All ranges indicate the 5th and 95th percentiles over the 
sensitivity analysis. The production-only LCOH is taken as the average locational 
marginal price of hydrogen in Norway, whereas the LCOH including conversion 
and export is taken as the average locational marginal price of ammonia (given 
in kgH2-equivalent units in terms of energy content) in the model node repre-
senting continental hydrogen demand. The total electricity requirement includes 
the electricity requirement for ammonia synthesis (16.3 TWh in total) and, in 
Scenarios B and C, the electricity requirement for hydrogen electrolysis. The 
average electricity cost represents a demand-weighted average of the locational 
marginal prices of electricity in the Norwegian model nodes.

Scenario A 
(Business-as- 
usual)

Scenario B 
(Moderate 
onshore)

Scenario C 
(Accelerated 
offshore)

Norwegian LCOH 
(production only) 
[€/kgH2]

2.05–2.63 2.95–3.83 3.78–5.17

Norwegian LCOH (incl. 
conversion to ammonia 
and export) [€/kgH2- 
equivalent]

3.50–4.27 4.61–5.72 5.54–7.25

Total electricity 
requirement for exports 
[TWh]

16.3 126 126

Average electricity cost 
(Norway) [€/MWh]

48.9–62.0 56.5–71.2 51.5–65.9

Onshore wind capacity, 
Norway [GW]

8.4–25.4 34.5–62.7 12.6–19.9

Offshore wind capacity, 
Norway [GW]

0–8.8 0–13.0 27.9–33.5

Bottom-fixed [GW] 0–8.8 0–9.9 0–19.7
Floating [GW] 0–4.1 0–4.1 10.6–32.5
Onshore wind land area 
demand [km2]

979–2959 4007–7291 1462–2309

% of open land areas in 
Norwaya [44]

0.9–2.6% 3.6–6.5% 1.3–2.1%

a Open land areas in 2023, defined as undeveloped areas excluding forest, 
marshland, permanent snow, ice and glacier areas, as well as bodies of water 
[43].

Fig. 3. Distributions of levelised costs of Norwegian hydrogen seen across 500 
model runs in each of the three scenarios. These include production, conversion 
to ammonia and transportation and correspond to the figures in the second row 
of Table 3. The median costs are marked in white, and the 75th and 95th 
percentiles are marked with thick and thin black lines respectively. The col-
oured areas show kernel density estimations for the probability distributions of 
the costs.
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ammonia synthesis (16.3 TWh annually). The electricity for blue 
hydrogen production is assumed to be generated using natural gas and 
thus will not impact the current electricity grid. Nevertheless, the need 

for renewable electricity expansion is significant, compared to the cur-
rent onshore wind capacity of 5 GW [46]. Without offshore wind in-
stallations, the deployment of onshore wind turbines would need to be 

Fig. 4. Sensitivities of Norwegian H₂ export costs in Scenarios A, B & C to variations in technological parameters. The sensitivities are calculated as the coefficients of 
the parameters in a multi-dimensional linear regression model fitting parameters to H₂ cost. The combination of parameters predicts hydrogen cost linearly with R2 

values of 0.997, 0.981 and 0.998 for the three scenarios respectively. The coefficients are expressed in LCOH (€/kgH2) per percentage point (p.p.) change in 
respective technological parameters. For example, the figure shows that in Scenario B (light green), a cost increase in onshore wind of 1% would increase H₂ costs by 
€0.024/kg on average. For more details on the technological parameters, see Table 2. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)

Table 4 
Comparison of LCOH at production and delivery between the present study and other comparable studies. All figures are inflation-adjusted to 2023 EUR where 
necessary. Cost ranges arise from sensitivity analyses performed in the cited studies where applicable. All studies assume Hamburg, Germany to be the European port of 
delivery. “Electrolysis” is shortened to “Elec.”.

Origin Transport medium Production method Hydrogen Production cost [€/kgH2] Cost of delivered hydrogen [€/kgH2]

Norwaya Ammonia Scenario A: SMR + CCS (90%) 2.05–2.63 3.50–4.27
Ammonia Scenario B: Elec. 2.95–3.83 4.61–5.72
Ammonia Scenario C: Elec. (offshore wind) 3.78–5.17 5.54–7.25

Western Canadab [12] Ammonia SMR + CCS (85%) 1.85 5.56
Ammonia Elec. (onshore wind) 2.68 6.39

Morocco [11] H2 pipeline Elec. (onshore wind & solar) 1.59–3.07 3.54–5.71
Chile [11] Liquid H2 Elec. (onshore wind & solar) 1.29–2.53 2.67–4.47
Argentina [45] c Ammonia Elec. (on- and offshore wind & solar) – 2.72–4.02
Australia [45] Ammonia Elec. (on- and offshore wind & solar) – 3.32–4.93

a Present study. Note that conversion of ammonia to hydrogen upon delivery is not included; cost is in kgH2-equivalent in terms of energy content.
b Based on 2020 conversion rate 1 EUR = 1.53 CAD (https://www.ecb.europa.eu/).
c The numbers given for this study likewise do not include conversion of ammonia to hydrogen at destination.

Table 5 
Land use requirement for onshore wind installations in different scenarios by region, following the results presented in Fig. 6. We assume 8.6 km2/MW to calculate the 
area. The regions are defined as in Fig. 6.

2023 Scenario A (business-as-usual) Scenario B (moderate onshore) Scenario C (accelerated offshore)

GW Area [km2] GW Area [km2] GW Area [km2] GW Area [km2]

North 0.7 82 5.6 659 8.9 1035 7.4 860
Central 1.8 204 0.9 101 2.8 326 0.9 105
South 2.5 296 13.1 1528 40.6 4721 8.1 942

Total 5.0 582 19.6 2278 52.3 6082 16.4 1907
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increased by 2030 by 5 times compared to the installations done in the 
last 6 years, during which 925 wind turbines with a total capacity of 3.8 
GW were installed [46].

To meet the demand for green hydrogen exports in Scenario B 
(moderate onshore), the total installed renewable energy capacity needs 
to increase more significantly than in Scenario A as this requires the 
generation of additional electricity for the electrolysis process (around 
109 TWh a year). This entails an increase in the onshore wind capacities 
to at least 27 GW with some offshore wind installations, or to as high as 
64 GW without any offshore wind installation (see Fig. 5). Although 
offshore wind installations are permitted in Scenario B, the model 
consistently proposed higher proportions of onshore wind installations 
than offshore wind installations as the former has a lower LCOE. On the 
other hand, Scenario C is constrained to only use power from offshore 
wind plants to produce the green hydrogen and sees a minimum offshore 
wind capacity of 28 GW. This is almost the same as the national ambition 
of 30 GW for offshore wind installations for 2040 [47] — the present 
study, however, targets 2030.

Fig. 6 shows the mean deployment of onshore wind and offshore 
wind in each of the model regions in Norway. In all the scenarios, the 
model proposed that the majority of the additional RES capacity should 
be installed in southern Norway. As good wind conditions can be found 
in the North and South, and marginal export costs (which are higher for 
exports from the North) are relatively insignificant for final LCOH, the 
preference for wind power in Southern Norway is likely due to a stronger 
transmission grid and greater hydropower capacity making it easy to 
maintain a high capacity factor for electrolysis, as well as avoiding wind 
power curtailment in periods of high wind power production.

Note that despite the lower demand for electricity in Scenario A, 
where the energy for blue hydrogen production is assumed to be 
generated from natural gas, there is still an average of 13 GW of onshore 
wind power in Southern Norway and about 6 GW in Northern Norway. 
This is mainly attributed to an increase in renewable electricity demand 
due to the constraint to meet a 55% reduction in CO2 emissions. 
Increased Norwegian wind power production in Scenario A mostly feeds 
into a combination of partial electrification of transportation and in-
dustry. Today’s installed onshore wind capacities in Southern Norway 
and Northern Norway stand at around 2.2 GW and 1.1 GW respectively 
[46]. This means that decarbonisation is expected to lead to a 6-fold 
increase in onshore wind power from a cost-minimisation perspective.

To produce green hydrogen, electrolysis plant capacity in both Sce-
narios B and C needs to reach around 14 GW. Thanks to the abundance 
of existing hydropower plants in Norway, the electrolysers can leverage 
the flexibility of hydropower and run at a high capacity factor of around 
0.97 to balance the intermittent energy production inherent to variable 
renewable energy technologies. This flexibility, also including the 
transmission grid (including cross-border connections to the UK and 
continental Europe) is one of the reasons for the model preference for 
both onshore and offshore wind capacities primarily in Southern Nor-
way, as seen in Fig. 6. In addition, the modelling results include an 

average of 7.5 GW and 1.2 GW of solar installation in Scenarios B and C 
respectively, which is not shown in Fig. 6.

3.3. Social and environmental impacts

3.3.1. Land use requirement for onshore wind farms
The land area in Norway excluding Svalbard measures about 

324,000 km2, of which 42.5% (equivalent to 138,000 km2) was classi-
fied as “undeveloped open land”4 in the National Land Resource Map in 
2021 [48], a first approximation of which areas could be perceived as 
suitable for wind power development. Breaking this down by region 
(using the latitude-based definition from Fig. 6), the open land areas in 
Southern Norway, Central Norway and Northern Norway are around 58, 
000 km2, 25,000 km2 and 55,000 km2 respectively. The deployment of 
renewable energy technologies requires more land areas than fossil fuel. 
According to the Norwegian Water Resources and Energy Directorate 
(NVE), the directly affected area (“direkte påvirket areal”) of onshore 
wind installation is estimated to be around 8.6 MW/km2 [49]. In a study 
by the same, a country-wide total area of 16,705 km2 was identified as 
potentially suitable for wind power development based on a number of 
exclusion criteria [50].

Based on the average onshore wind capacity needed for ammonia 
production, the land area required for the installation of the turbines in 
each of the Scenarios is shown in Table 5. The results show regional 
differences in the land impacts from renewable energy expansion and 
electricity impacts on the local communities in Norway, where Southern 
Norway is expected to be more affected than Northern Norway. In 
Scenario A (business-as-usual), the average of 20 GW of wind in-
stallations necessitates around 2278 km2 of land area, equating to 
around 2.6% of open land area in Southern Norway and 1.2% in 
Northern Norway. Scenario B (moderate onshore) requires a significant 
amount of land area that represents about 8.2% of open land in Southern 
Norway and 1.9% in Northern Norway; the total land use amounts to 
36% of the area identified as potentially suitable for wind development 
by a 2019 NVE report [50]. Scenario C (accelerated offshore) shows an 

Table 6 
Average electricity prices by region in different scenarios compared to 2023. 5th 
to 95th percentile ranges across the sensitivity analysis are shown in brackets. 
The regions “North”, “Central’’ and “South” are defined in Fig. 6 for Scenarios 
A–C, whereas they correspond to the respective (group of) Nordpool pricing 
zones for 2023 prices.

€/MWh 2023 Scenario A 
(business-as- 
usual)

Scenario B 
(moderate 
onshore)

Scenario C 
(accelerated 
offshore)

North 30 56 (50–62) 64 (56–70) 59 (52–66)
Central 49 56 (49–62) 67 (58–74) 59 (51–66)
South 90 56 (49–63) 64 (56–71) 59 (52–66)
Overall 

average
70 56 (50–63) 64 (56–71) 59 (52–66)

Fig. 5. Installed onshore and offshore wind capacities in Norway across Sce-
narios A, B & C. The plotted ranges indicate all observed capacities in the 
sensitivity analysis over 400 model runs.

4 Also known as “snaumark”, area code 50 in the National Land Resource 
Map, corresponding to classes 18 (open firm ground) and 20 (bare rock, gravel 
and blockfields) in Ref. [44]. This includes areas used for reindeer husbandry. 
The total of 138,000 km2 is based on the author’s own calculations using the 
AR250 dataset.
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equal distribution of onshore wind between the South and the North, 
which represents about 1.6% of open land in each region.

To put things in perspective, the biggest city of Norway, Oslo, 
measures 454 km2 in land area. The amount of land needed for reducing 
Norway’s carbon emissions to be in line with its 2030 climate goal 
would require about 1907 km2 (as shown in Scenario C), approximately 
about 4–5 times the size of Oslo. Achieving Scenario B would required a 
land area of 6082 km2, that is more than 13 times the size of Oslo. Of 
this, the green hydrogen export industry requires 4175 km2, equivalent 
to 9 times the size of Oslo.

3.3.2. Electricity prices for the local communities
The electricity prices in Norway are divided into 5 pricing zones: 

NO1 (South-east), NO2 (South), NO5 (South-west), NO3 (Central) and 

NO4 (North). Historically, NO1, NO2 and NO5 tend to share similar 
electricity prices due to the strong flows of electricity between the zones, 
but higher than in NO3 and NO4, due to the close connection with the 
grid in Continental Europe. In 2023, the average electricity price in 
Southern Norway (NO1, NO2 and NO5) was around €89.77/MWh, 
whereas the average electricity prices in Central Norway and Northern 
Norway were €48.54/MWh and €30.24/MWh respectively [51]. Note 
that the electricity prices include taxes except for Northern Norway 
where the electricity tax of 25% is exempted.

Electricity prices can be extracted from energy system optimisation 
models as the shadow prices of the set of constraints enforcing that 
electricity demand is met; these are optimisation outputs similar to 
electricity market prices. The results can indicate general trends but 
don’t necessarily capture all market dynamics governing current-day 

Fig. 6. Spatial distribution of onshore wind (dark blue) and offshore wind (light blue) capacities in Norway (in GW) between the different scenarios. The values 
shown are averagely over the 500 model runs used for sensitivity analysis. The bar in the top left is shown for scale. The capacities are given for Southern, Central and 
Northern Norway respectively; the regions correspond to groups of model nodes (as shown in Fig. 2) located south of, between and north of the 63◦N and 67◦N 
parallels. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 7. Yearly mean electricity prices observed in the different scenarios by model region in Norway. These are the average prices observed across all sensitivity 
analysis model runs for each region. Note that prices are shown for model regions/nodes, not Nordpool pricing zones. See Table 6 for price ranges observed across the 
sensitivity analysis, presented by aggregated regions.
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electricity prices (see also Limitations). Fig. 7 shows that in all scenarios, 
the regional differences in electricity prices become less prominent in 
2030 compared to the average electricity prices in 2023. At the national 
level, the overall mean electricity prices for all scenarios are lower than 
in 2023. However, the implications for each region vary. Taking the 
mean value of the electricity prices calculated in Scenario A (business-as- 
usual), the increase in renewable energy installations in the south is 
expected to lead to a drop in the average electricity prices by − 38% 
versus 2023, whereas the electricity prices in Central Norway are likely 
to increase by around 14% (refer to Table 6). Across all the scenarios, 
Northern Norway’s electricity prices are expected to almost double the 
electricity prices in 2023.

The large increase in electrolysis-induced electricity demand in 
Scenario B (moderate onshore) leads average Norwegian electricity prices 
to jump from 50 to 63 €/MWh to 56–71 €/MWh compared to Scenario A. 
Even then, Southern Norway’s electricity prices in 2030 are expected to 
be lower than in 2023 in Scenario B. Both Central and Northern Norway 
are expected to face higher electricity prices compared to 2023 prices 
and Scenario A. Green hydrogen exports are thus seen to have an 
equalising effect on electricity prices, with any low-price regions being 
exploited for exports by the model until the price matches other regions. 
Some of the price equalisation may however also be due to limitations in 
modelling transmission bottlenecks.

Shifting electricity production to offshore wind (Scenario C) is shown 
to be feasible, but necessitates total annual subsidies for offshore wind of 
€3.2 billion on average, equivalent to subsidising each kg of H₂ by €1.62, 
or a feed-in tariff of €27.9/MWh for offshore wind.5 The subsidy leads to 
lower electricity prices in Scenario C than in Scenario B, even if the total 
system cost (and LCOH) is significantly higher. The total required sub-
sidy could be compared with the willingness to pay around €22.4 (NOK 
253) per household per month to shift wind production from onshore to 
offshore shown in Ref. [52], which would amount to a total annual 
subsidy of approximately €6,99 billion (counting 2.6 million households 
in Norway). However, the same study notes a comparable willingness to 
pay to ensure that wind development serves local or national needs but 
is not used for export purposes. Ensuring local/national ownership in-
duces an even higher willingness to pay.

3.3.3. Alternative Scenario B for more onshore wind expansion in Northern 
Norway

In Section 3.3.1, the modelling results of Scenario B proposed a 
significant number of onshore wind turbines to be installed in Southern 
Norway, based on a cost-minimisation principle. To explore alternatives, 
we imposed a sequence of limitations on the onshore wind capacity in 
the Southern half of Norway (here defined as south of 65◦N): 5, 10, 20, 
30, 40, 50 and 60 GW (Fig. 8). The results show that southern onshore 
wind can be replaced by a combination of onshore wind in the North as 
well as offshore wind in the South; the balance between the two is 
relatively sensitive to technology costs. This shift, however, results in a 
higher LCOH on average, rising by €0.57/kgH2 from the least to most 
restrictive case and further threatening the profitability of Norwegian 
green hydrogen.

3.4. Limitations

Our model is based on a single weather year (2013) rather than 
multiple weather years. Previous research has shown that total system 
costs resulting from a capacity expansion model as in this study can vary 
significantly between weather years [30], meaning that the present 
study is likely to underestimate weather-induced variations in green 
hydrogen price. Moreover, the impacts of climate change are not re-
flected in our results. The aggregated nature of our model means that 
transmission bottlenecks may be imperfectly captured. The geographical 
scope is limited to Norway and neighbouring countries, meaning that 
the energy sectors of neighbouring countries themselves (and especially 
energy trade outside the model region, e.g. with France) is not perfectly 
modelled. Our model has perfect foresight over the entire year of op-
erations, meaning that especially hydropower may be operated in a 
more optimal than realistic fashion. Moreover, our model does not 
include real-life time-dependent constraints on hydropower reservoir 
levels and downstream river flow, meaning that reservoir hydropower in 
the model can operate more flexibly than in real life. These factors 
combined could induce systematic biases in total system cost, electricity 
prices and LCOH.

Some assumptions regarding the choice of hydrogen pathway to 
model are open to uncertainty and could not all be subjected to sensi-
tivity analysis. We choose to disregard the cost of and losses involved in 
ammonia cracking to produce hydrogen at the destination port; as 
explained in Section 2.1 this is because green hydrogen is often expected 
to be used as a feedstock for the production of liquid fuels such as 
ammonia. Still, this choice may cause final costs to be underestimated. 
On the other hand, we limit our analysis to ammonia shipping as the 
hydrogen transportation vector; hydrogen exports costs would improve 
once a pipeline is in place. These systematic effects are not considered in 
the determination of likely cost ranges based on sensitivity analysis.

Energy demands of various sorts (electricity, gas, heat, oil) in Nor-
way and neighbouring countries are estimated for 2030 in this study 
using the sector-coupled version of PyPSA-Eur but left unchanged save 
for the additional 2 Mt hydrogen demand. This projection is, however, 
subject to uncertainty; a specific uncertainty pertaining to Norway is the 
degree of electrification of the offshore oil and gas industry. This un-
certainty has not been specifically investigated in the present study but 
could impact especially the results on minimum onshore/offshore wind 
capacities required in Norway while meeting climate targets and not 
becoming a net electricity importer.

4. Discussion

4.1. Norwegian cost-competitiveness as a blue hydrogen exporter

As a blue hydrogen exporter to the EU, the analysis shows that 
Norway has some price advantage over Canada, mainly due to the 
transportation cost. The cost of production of hydrogen in Canada in 
Ref. [12] was calculated based on half the value of the natural gas prices 
assumed in our model and a lower carbon capture rate of 85%. Given 
that natural gas prices represent 45–70 % of grey hydrogen production 
[53] and the sensitivity of hydrogen production cost to natural gas 
prices, adjusting for these prices could allow Norway to be even more 
cost-competitive in blue hydrogen exports to the EU. While the transport 
of the CO2 and sequestration in depleted fields is included in our model, 
this was computed as a fixed cost per ton of CO2 at around €36.50/tCO₂, 
due to the uncertainty of the distance between the source of CO2 and the 
potential CO2 storage site. This cost is comparable to that estimated by a 
recent pilot CCS study, where the shipping costs of CO2 in Norway by a 
CO2 ship over a distance of between 433 km and 600 km was between 
€18–42/tCO2 [54](€0.16–0.37/kgH2 based on 8.9 kgCO2/kgH2 [55]).

The SMR in Scenario A involves an annualised investment of €1.5 
billion, which is expected to capture about 23 Mt of CO₂ annually; 
almost half the total territorial GHG emissions in Norway in 2022 [56]. 

5 The offshore wind subsidy is calculated based on the dual variable of the 
model constraint that all electricity used for Norwegian hydrogen electrolysis 
comes from offshore wind on a net yearly basis (constraint 4 in Section 2.3); the 
value of this dual variable is €27.9/MWh on average across the cost sensitivity 
analysis. This is an output of the optimisation, and indicates how binding the 
offshore wind constraint is; it is equivalent to a subsidy in the sense that €27.9/ 
MWh is the feed-in-tariff for offshore wind power production which would 
make it cost-optimal to build enough offshore wind power to supply all elec-
trolysis demand, as per Scenario C. The value was multiplied by the total 
offshore wind power production figure to arrive at the total subsidy figure of 
€3.2 billion.

C. Cheng et al.                                                                                                                                                                                                                                   International Journal of Hydrogen Energy 85 (2024) 962–975 

971 



Despite a high CO₂ capturing rate of 90% at steam methane reformation 
plants, the blue hydrogen production would nevertheless result in 2.6 Mt 
of CO₂ emissions to the atmosphere. Based on an assumed carbon tax of 
€200/tCO2 in 2030 [57], p. 14], the total carbon tax per year amounts to 
a hefty €4.6 billion. For reference, the shadow price of CO2 in our model6

is €85.6/tCO2 in Scenarios B & C, and €89.1/tCO2 in Scenario A — this is 
the model-wide carbon tax that would be required to lower emissions by 
55% in the model.

Moreover, the feasibility of blue hydrogen export is contingent on 
the infrastructure for CO2 transport from mainland Norway to potential 
CO2 storage sites, which do not exist with the storage volumes required 
for this study today. The transport and storage of CO2 in subsea reser-
voirs in Norway is subject to the Storage regulations of 5 December 2014 
No. 1517 [58]. In 2022, two exploration licences for CO2 storage were 
awarded, one in the North Sea, (outside of Bergen in the South) and one 
in the Barents Sea (outside of Hammerfest in the North) [59]. The 
exploration licences awarded are valid for four and three years respec-
tively, and can be extended up to a maximum of ten years [58]. An 
exploitation licence may subsequently be granted before any installation 
of the necessary infrastructure can begin. When this will happen will 
depend on the results of the exploration licences, which are expected to 
expire in 2025 and 2026.

4.2. Norwegian cost-competitiveness as a green hydrogen exporter

Norway has historically enjoyed relatively cheaper electricity prices 

than continental Europe and this is expected to remain so in 2030 [60]. 
This implies that green hydrogen imported from Norway could be 
cheaper than that produced in continental Europe. Furthermore, the 
demand for hydrogen in Germany is higher than can be produced 
domestically, which makes Norway’s green hydrogen export attractive. 
However, compared to other potential green hydrogen exporters like 
Chile, Morocco, Australia and Argentina, Norway is less cost competi-
tive, mainly due to the electricity generation from solar PV, whose LCOE 
is known to be lower than onshore and offshore wind, as well as possibly 
electricity market effects.

Nevertheless, Norway has a long-standing relationship with the EU 
as an important strategic trading partner and the joint-statement on 
hydrogen cooperation between Norway and Germany indicates that this 
will likely remain unchanged [19]. Therefore, Norway could still be an 
important green hydrogen exporter for the EU, but the size of the market 
share depends highly on the amount of renewable energy Norway can 
generate in the next 6 years.

4.3. Energy policy implications

With fast-depleting petroleum resources [61], Norway needs to 
explore new avenues to secure a post-petroleum future. Given the 
dependence on gas to produce blue hydrogen, it is destined to play a 
temporal role in the low-carbon energy future. In the long-run, the EU 
plans to reduce its dependence on fossil fuel, which makes green 
hydrogen a better market to tap into. As the results in Section 3.3.1
show, substantial amount of land is needed to develop an export market 
based on green hydrogen using onshore wind. Careful planning and 
allocation of resources is required to ensure efficient use of land which 
provides long-term benefits to the communities in Norway that can last 
beyond the petroleum future. According to Norway’s power system 

Fig. 8. Alternatives for the distribution mix of renewable energy capacity expansion for Scenario B. For the purpose of this figure, cost-optimisations for Scenario B 
(moderate onshore) are run with various caps on the total allowed onshore wind capacity in the southern half of Norway (south of 65 N), from 5 GW to 60 GW. The bar 
chart shows the resulting distribution of onshore wind and offshore wind installed south and north of 65 N, showing that onshore wind investment could be shifted to 
the north of Norway to some extent. The error bars show the 5th–95th percentile ranges over a cost-sensitivity analysis as described in Section 2.4. The first of the 
bottom two rows of the figure indicates the tax level on the onshore wind in the southern half of Norway required to make the given distribution profitable. These 
figures are derived from the shadow prices of the regional capacity constraints; outputs of the optimisations which indicate (in €/MW) how much the total system cost 
would be reduced if one additional MW of onshore wind were allowed in the south of Norway. The shadow price is also equivalent to the additional tax on onshore 
wind in the south (in €/MW) which would make the given total capacity cost-optimal. Dividing this number by the assumed capital cost of onshore wind (Table 2) 
gives a relative figure. The second row displays the resulting mean LCOH.

6 The shadow price of CO2 is an optimisation output, being the dual variable 
of the global CO2 emissions constraint. Its level indicates the marginal cost of 
reducing total CO2 emissions by one tonne.
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operator, Statnett, the electrification of petroleum offshore platforms 
requires about 20 TWh [62]. Based on an average wind capacity factor 
of 30%, this equates to about 7.6 GW onshore wind capacity (884 km2 of 
land area), accounting for almost half of the decarbonisation power 
needs assumed in our model for 2030. If this power demand can be 
supplied by either the use of gas with carbon capture or with offshore 
wind power, this would provide the petroleum industry the opportunity 
to demonstrate its leadership in both technologies. Meanwhile, the 
land-use impact of the green hydrogen export industry would be 
reduced. This would be a win-win solution for Norway to develop three 
potential markets in the post-petroleum future.

The expansion of renewable energy is needed to ensure that overall 
electricity prices will remain competitive in Norway for Norwegian end- 
users in spite of the production of green hydrogen exports. If the roll-out 
of renewable energy follows the cost-optimisation results, the electricity 
prices between the regions will be more homogeneous, which would 
benefit Southern Norway the most. Central Norway will see some in-
crease in electricity prices and Northern Norway would lose its long- 
time advantage of being the region with the lowest electricity prices. 
Overall, Norway will risk eroding its competitiveness as a potential 
hydrogen exporter, if the production of blue and green hydrogen for 
export is not followed by the expansion of renewable energy proposed 
by the model. This will also likely affect other energy-intensive in-
dustries in Norway which are dependent on cheap electricity prices to 
compete in the global market.

The lower electricity prices in Southern Norway in the scenarios may 
be due to the proposed installation of most of the onshore and offshore 
wind turbines in the South of Norway. Part of the reason is due to the 
weak transmission network in Northern Norway. However, concen-
trating the growth of new industries in Southern is likely to accentuate 
the problem of declining population in Northern Norway [63]. Main-
taining a permanent population in Northern Norway is crucial for Nor-
way’s national security due to its proximity to the Russian border, a 
concern that has intensified following the war in Ukraine. Therefore, it is 
essential to promote more equitable distribution of renewable energy 
development across Norway. This can be achieved by upgrading the 
existing transmission grid in the North and providing government grants 
and incentives to enhance economic viability of onshore and offshore 
wind parks in Northern Norway.

Historically, onshore wind parks were often built in windy and 
exposed, but scenic locations due primarily to political concerns for 
power supply and cost-effectiveness, rather than less cost-effective but 
visually less intrusive locations [64]. This fostered the perception that 
public opinion about nature conservation concerns were ignored, 
thereby fuelling popular resistance against onshore wind [64]. Part of 
the resistance may also be due to the perceived erosion of local 
self-determination rights, where national and/or international interests 
take precedence over local concerns [65]. A case in point is the Fosen 
Vind conflict with the Sámi reindeer herders, where the Supreme Court 
of Norway ruled that the concession of two wind parks of the former 
violated the rights of the former as indigenous people to conduct their 
cultural practices, reindeer husbandry [66]. This case proved that failing 
to address these concerns adequately could be costly for all stakeholders; 
the reindeer herders suffered a significant loss of reindeer winter grazing 
pastures [66]; the international credibility of the Norwegian govern-
ment as an environmental leader was tarnished, which could affect its 
prospects securing a market for its green products including green 
hydrogen; the financial compensation to the former will cost Fosen Vind 
millions of kroner [67]. The ruling further implies that future wind 
power expansion in Central and Northern Norway will face a permanent 
constraint from the spatial sovereignty claims of the indigenous com-
munity [65], making it more difficult to realise all three scenarios in 
these regions.

Nevertheless, while the public opinion towards onshore wind still 
trends negatively, it has improved slightly since the war in Ukraine [68,
69]. This may be because of the perceived need for greater energy 

security following the energy crisis in Europe resulting from the war. 
The reverse trend in public opinion demonstrates that it is not static and 
could evolve depending on people’s perceptions of the need for 
renewable energy expansion. Future energy policies may thus have 
better success in expanding renewable energy if the locals’ needs and 
concerns are identified and addressed adequately prior to 
implementation.

Compared to onshore wind, offshore wind is more well-received by 
the public across all the regions in Norway, with more than 70% positive 
responses in a national survey on opinions about offshore wind [23,52]. 
Although bottom-fixed offshore wind is assumed to cost almost half of 
that of floating offshore wind (see Table 2), the modelling results sug-
gested significantly more installations of the latter. The reason is due to 
the limited amount of suitable area (sea beds of less than 60 m deep) for 
bottom-fixed offshore wind installations. In any case, floating offshore 
wind is socially and politically more popular, not least due to less visual 
impact on the seascape and lower negative environmental impacts [70]. 
Floating offshore wind technologies are seen as more compatible with 
the existing Norwegian energy political paradigm thanks to the trans-
ferable competences and knowledge from the petroleum and maritime 
industries [70]. The distribution of offshore wind installations suggested 
in the model is similar to that of the allocated areas for offshore wind 
installations in Southern Norway [71] and the potential areas identified 
as technically feasible with minimal risk of conflicts with other sea users 
by NVE [72], where thirteen out of twenty are in Southern Norway. The 
results show that subsidies amounting to €27.9/MWh would be needed 
to make Norwegian offshore wind competitive with onshore wind. This 
is double the amount of subsidies that is allocated to the recently 
auctioned 1500 MW floating offshore wind project Sørlige Nordsjøen II, 
that has a lifetime cap of 23 billion NOK [73] which translates to an 
expected €13.9/MWh (assuming a lifetime of 20 years and capacity 
factor of 0.559 [74]). The development of a green hydrogen-based 
export market in Norway depends on both onshore and offshore wind 
expansion. To accelerate the development of the offshore wind, thereby 
securing its market share as an important supplier of green hydrogen 
export to the EU, more financial support is needed from the Norwegian 
government.

5. Conclusion

The modelling results show that all the scenarios are technically and 
economically feasible. However, each scenario requires some trade-offs 
between the short-term and long-term costs and benefits. While Norway 
seems to have a cost advantage over its competitors for blue hydrogen 
exports, this entails the continued dependence of natural gas, which is 
fast-depleting in Norway. To secure a post-petroleum future, Norway 
needs to leverage its technological competencies and other resources to 
accelerate the development of new industries. As leaders in both CCS 
and offshore wind technologies, the Norwegian petroleum industry is 
well-positioned to decarbonise its offshore platforms and produce both 
blue and green hydrogen at large scale, without significant need for 
electricity from the mainland grid. Succeeding in the feat would allow 
the industry to demonstrate the viability of both technologies and gain a 
foothold in exporting those technologies globally.

If the annual power from Norway’s mainland grid meant for decar-
bonising offshore platforms (20 TWh) is used for developing new in-
dustries like green hydrogen export, the amount of land area required 
for onshore wind expansion will be reduced by 884 km2 (about twice the 
size of Oslo). Nonetheless, a significant expansion of onshore wind in-
stallations will be necessary until offshore wind technology is mature, to 
maintain relatively low electricity prices for both existing and new 
energy-intensive industries, such as green hydrogen export. While the 
model favours the installation of onshore wind turbines in Southern 
Norway based on cost-optimisation principles, developing new in-
dustries in Northern Norway may help address the problem of declining 
population and enhance Norway’s national security in the North, which 
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shares the border with Russia. Therefore, it is critical to promote a more 
equitable distribution of renewable energy development across Norway. 
This may be achieved through upgrading the existing transmission 
infrastructure and providing government support schemes to enhance 
the economic viability of onshore wind turbines in the North. Further, 
the development of renewable energy capacity should proceed with 
adequate care and attention to locals’ needs and concerns as failure to do 
so can be very costly for all stakeholders.

Lastly, if Norway wants to gain a foothold as an important green 
hydrogen exporter to the EU, it is essential to advance the technological 
maturity of offshore wind, particularly floating offshore wind. Our re-
sults show that the current subsidies of ~€14/MWh for the offshore 
wind industry is insufficient. A doubling of the subsidies is needed to 
make Norwegian offshore wind competitive with onshore wind.
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