
OR I G I N A L R E S E A R CH

Bilberry metabolomic and proteomic profiling during fruit
ripening reveals key dynamics affecting fruit quality

Nga Nguyen1 | Ulrich Bergmann2 | Laura Jaakola3,4 | Hely Häggman1 |

Soile Jokipii-Lukkari1 | Katalin Toth1,5

1Department of Ecology and Genetics,

University of Oulu, Oulu, Finland

2Biocenter Oulu, University of Oulu, Oulu,

Finland

3Climate laboratory Holt, Department of Arctic

and Marine Biology, UiT the Arctic University

of Norway, Tromsø, Norway

4Division of Food Production and Society,

Norwegian Institute of Bioeconomy Research

(NIBIO), Ås, Norway

5Inari Agriculture Nv, Ghent, Belgium

Correspondence

Soile Jokipii-Lukkari,

Email: soile.jokipii-lukkari@oulu.fi

Katalin Toth,

Email: katalintoth2005@gmail.com

Funding information

Otto A. Malm Lahjoitusrahasto; Department of

Ecology and Genetics, University of Oulu;

Alfred Kordelinin Säätiö; Jenny ja Antti

Wihurin Rahasto; Suomen Kulttuurirahasto;

European Regional Development Fund

through Interreg Baltic Sea Region Programme

(Novel Baltic Project)

Edited by A. Fernie

Abstract

Bilberry (Vaccinium myrtillus L.) is a wild berry species that is prevalent in northern

Europe. It is renowned and well-documented for its nutritional and bioactive proper-

ties, especially due to its anthocyanin content. However, an overview of biological

systems governing changes in other crucial quality traits, such as size, firmness, and

flavours, has received less attention. In the present study, we investigated detailed

metabolomic and proteomic profiles at four different ripening stages of bilberry to

provide a comprehensive understanding of overall quality during fruit ripening. By

integrating omics datasets, we revealed a novel global regulatory network of plant

hormones and physiological processes occurring during bilberry ripening. Key physio-

logical processes, such as energy and primary metabolism, strongly correlate with ele-

vated levels of gibberellic acids, jasmonic acid, and salicylic acid in unripe fruits. In

contrast, as the fruit ripened, processes including flavour formation, cell wall modifi-

cation, seed storage, and secondary metabolism became more prominent, and these

were associated with increased abscisic acid levels. An indication of the increase in

ethylene biosynthesis was detected during bilberry development, raising questions

about the classification of non-climacteric and climacteric fruits. Our findings extend

the current knowledge on the physiological and biochemical processes occurring dur-

ing fruit ripening, which can serve as a baseline for studies on both wild and commer-

cially grown berry species. Furthermore, our data may facilitate the optimization of

storage conditions and breeding programs, as well as the future exploration of bene-

ficial compounds in berries for new applications in food, cosmetics, and medicines.

1 | INTRODUCTION

Bilberry (Vaccinium myrtillus L.), also known as European blueberry, is

an economically important wild-harvested berry, notably in Northern

Europe, due to its significant abundance of anthocyanins and various

bioactive compounds (Pires et al., 2020). With a long history of tradi-

tional medicinal use and widespread industrial application, bilberries

are now increasingly recognized as one of the most demanded wild

fruits while also being a sustainable product (Pires et al., 2021). The

taste and nutritional value of bilberry fruits generally result from

the intricate processes of fruit ripening involving a combination of

changes in morphology, physiology, and biochemistry. However, a full

understanding of the developmental and ripening process of bilberry

remains incomplete, representing a crucial frontier for enhancing fruit

quality in post-harvest storage management and breeding program

innovations.

Received: 10 June 2024 Revised: 9 August 2024 Accepted: 3 September 2024

DOI: 10.1111/ppl.14534

Physiologia Plantarum

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2024 The Author(s). Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.

Physiologia Plantarum. 2024;176:e14534. wileyonlinelibrary.com/journal/ppl 1 of 15

https://doi.org/10.1111/ppl.14534

https://orcid.org/0000-0002-2332-0889
https://orcid.org/0000-0002-8684-9640
https://orcid.org/0000-0001-9379-0862
https://orcid.org/0000-0001-7381-1750
https://orcid.org/0000-0002-8935-1469
https://orcid.org/0000-0001-7422-2210
mailto:soile.jokipii-lukkari@oulu.fi
mailto:katalintoth2005@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/ppl
https://doi.org/10.1111/ppl.14534


Fruit development initiates following successful pollination and

fertilization and continues with cell division and expansion. The

growth process demands a high energy source from different meta-

bolic pathways processing carbohydrates, amino acids, and nucleic

acids (Bianco et al., 2009). Several studies on bilberry fruit ripening

have detected high abundances of proanthocyanidins (PAs), caroten-

oids, and triterpenoids in unripe fruits that subsequently decrease

during ripening (Karppinen et al., 2016; Suvanto et al., 2020; Trivedi

et al., 2021). The ripening process is marked by colour changes attrib-

uted to chlorophyll degradation and pigment accumulation. The blue

pigment of bilberries results from anthocyanin accumulation in both

the skin and flesh of the fruit. The role of anthocyanins in bilberry fruit

colouration has been studied intensively and is well understood

(Jaakola et al., 2002, 2010; Dare et al., 2022). By contrast, few studies

have been conducted on the changes related to bilberry flavour,

which is also one of the most important fruit quality traits. Fruit fla-

vour perception, including sweetness and aroma, is determined by

changes in sugar and organic acid ratios and the accumulation of vola-

tile compounds during ripening (Klee, 2010). Recent studies on bil-

berry ripening have shown that ripe berries have the highest content

of total soluble sugars, with fructose and glucose being the predomi-

nant sugars (Dare et al., 2022; Samkumar et al., 2022). Additionally,

Sater et al. (2020) reported that bilberry contains more individual vol-

atile compounds than other berries. A comprehensive knowledge of

flavour metabolomics and other physiological processes (e.g., cell wall

modification and seed maturation) during bilberry ripening could pro-

vide valuable insights into the improvement of flavour traits and other

characteristics of ripe fruits.

The regulation of fruit development and ripening by plant hor-

mones is well described. Auxin and gibberellin (GA) play essential roles

in fruit set and development, while ethylene and abscisic acid (ABA)

are major regulators of the ripening process (Fenn and

Giovannoni, 2021). Depending on whether a burst of respiration rate

and ethylene production at the onset of fruit ripening occurs or not,

fruits are classified as climacteric (e.g., tomato, apple, and banana) and

non-climacteric (e.g., strawberries, grapes, and cherries), respectively

(Paul et al., 2012). Bilberry has traditionally been categorized as a

non-climacteric fruit, in which the ripening process is regulated by

ABA. A previous study showed that ABA levels increased during bil-

berry ripening, corresponding with the expression of the key gene,

9-cis-epoxycarotenoid dioxygenase (NCED), involved in ABA biosyn-

thesis (Karppinen et al., 2013). A similar observation was reported in

the ripening of non-climacteric strawberry (Jia et al., 2011; Kim

et al., 2019). ABA was also shown to regulate anthocyanin biosynthe-

sis and cell wall modification (Karppinen et al., 2018; Samkumar

et al., 2021). Besides ABA, our previous study suggested that several

hormone-related transcription factors, including ABA insensitive,

ethylene-responsive transcription factors, and auxin-responsive factor

(ARF), may be involved in the ripening process of bilberry (Nguyen

et al., 2018). ARF and indole-3-acetic acid were reported to regulate

the accumulation and transport of auxin, causing its content to

decrease during the ripening of blueberry (Vaccinium corymbosum) (Liu

et al., 2022). Many studies have focused on analyzing the exogenous

or endogenous effects of plant hormones on fruit ripening (Jia

et al., 2016; Coelho et al., 2019; Li et al., 2019b; Fresno and Munné-

Bosch, 2021; Yang et al., 2023). For example, endogenous GA was

demonstrated to have a role in the development of strawberry recep-

tacles (Csukasi et al., 2011). Jasmonate (JA) and salicylic acid

(SA) concentrations were also analyzed in strawberry fruit ripening

(Kim et al., 2019). However, to our knowledge, there is very little

information on the dynamics of these hormones in bilberry ripening.

The aim of this study was to create a holistic understanding of bil-

berry fruit development and ripening. Therefore, we applied untar-

geted metabolomic and proteomic approaches to obtain new

knowledge of the whole process of bilberry ripening. Integrative anal-

ysis of metabolomic and proteomic datasets was conducted to investi-

gate the key regulatory networks associated with all physiological

processes occurring during fruit development and ripening, focusing

on the role of plant hormones, including ABA, GA, JA, and SA. The

expressions of hormone-related genes over four different ripening

stages of bilberry were analyzed based on our previous transcriptome

dataset (Nguyen et al., 2018; Wu et al., 2022). The study provides

new knowledge on the key factors affecting the ripening process of

bilberries, which is beneficial information for improving fruit quality

considering other wild and cultivated berries.

2 | MATERIALS AND METHODS

2.1 | Plant materials

Wild bilberry fruits (V. myrtillus L.) from the natural forest in Oulu,

Finland (65�03037.00 0N 25�28030.40 0E) were used in this study. Berries

from four stages (S2 - small green fruits, S3 - large green fruits, S4 -

purple fruits, S5 – ripe, blue fruits) (Figure 1A) were collected during

summer. The fruits were frozen immediately in liquid nitrogen and

stored at �80�C until further analyses.

2.2 | Metabolite extraction

The metabolite extraction was modified from the method described

by Salem et al. (2016). Three biological replicates for each ripening

stage were used in the analysis. First, berries were freeze-dried at

�51�C for two days, then ground into a fine powder in liquid nitrogen.

Freeze-dried berry powder (100 mg) was extracted with 1 mL of

methyl tert-butyl ether/methanol (3:1 v/v). The mixture was vortexed

for 30 s three times, incubated at 4�C for 45 min, and then sonicated

for 15 min. Next, 650 μL of water/methanol (3:1 v/v) were added to

each tube and vortexed for 30 s three times, followed by centrifuga-

tion at 20,000 g for 5 min at 4�C. After centrifugation, 500 μL of the

upper phase containing nonpolar compounds and 400 μL of the lower

phase containing polar compounds were transferred to new tubes and

dried at room temperature (RT). The dried polar and nonpolar samples

were resuspended in 100 μL of water/methanol (1:1 v/v) and acetoni-

trile/isopropanol (7:3 v/v), respectively, for ultra-performance liquid
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chromatography coupled to tandem mass spectrometry (UPLC–MS2)

analysis.

2.3 | Metabolite analysis

A Waters Acquity UPLC system (Waters) coupled to a Q-Exactive™

Plus Hybrid Quadrupole-Orbitrap™ Mass Spectrometer (Thermo

Fisher Scientific) was used to analyse polar and nonpolar metabolites.

The metabolites were separated with an ACQUITY™ PREMIER HSS

T3 1.8 μm column (dimension 100 � 2.1 mm, Waters). The sample

injection volume was 5 μL, and the flow rate was 0.4 mL min�1.

Buffers and gradient programs for polar and nonpolar metabolite ana-

lyses are described in Table S1. The UPLC-MS2 run was performed in

three technical replicates for each biological sample.

Mass spectra were acquired in both positive and negative ioniza-

tion modes and data-dependent scan mode, with a mass range of

135–1,200 m/z, NCE stepped 20–40-60. Raw MS2 data was pro-

cessed using Compound Discoverer (CD) v3.1 (Thermo Fisher

Scientific) with minimum peak intensity at 1,000,000 and mass toler-

ance at 5 ppm. The mass identification was searched against mass

libraries and databases provided by CD software, including

Chemspider, mzVault, and mzcloud. The high confidence of identified

metabolites was filtered with retention time ≥0.9 min, best match of

mzVault and mzCloud ≥60%. Relative abundance was represented by

normalized peak areas in UPLC-MS.

2.4 | Protein extraction, trypsin digestion, acetone
precipitation and C18 tip treatment

Proteins analyzed in this study were extracted from the pellet gener-

ated during metabolite extraction, according to Salem et al. (2016).

Briefly, the remaining pellets were washed with methanol and centri-

fuged at 20,000 g for 10 min at 4�C, four times. The washed pellets

were dried at RT and extracted with 500 μL protein extraction buffer

of 6 M urea, 2 M thiourea, 15 mM DTT, 2% CHAPS, 1% protease and

phosphatase inhibitors. The samples were then sonicated for 10 min

and incubated for 30 min at RT.

The protein concentration was determined using Roti®nano-

quant (Roth) following the manufacturer's instructions. 100 μg of

protein was digested with 500 ng μl�1 of Trypsin (Thermo Fisher

Scientific) at 37�C overnight. The digested proteins were precipi-

tated once with 100% cold acetone (1:4 v/v) at �20�C for 2 h.

Samples were centrifuged at 14,000 g for 30 min at 4�C. After

removing the supernatant, proteins were precipitated once in 80%

cold acetone at �20�C for 1 h, then centrifuged for 30 min at 4�C.

The pellets were digested once with 500 ng μl�1 of Trypsin over-

night at 37�C. The resultant peptides were purified using 100 μL

C18 Tips according to the manufacturer's instructions (Thermo

Fisher Scientific). The eluted peptides were dried at RT and re-

dissolved in 0.1% formic acid.

2.5 | Protein analysis

The peptide solutions (5 μL) were injected into a Thermo Easy-nLC

coupled to Orbitrap Fusion™ LUMOS™ system (Thermo Fisher

Scientific). Buffers and the gradient program for protein analysis are

described in Table S1. The UPLC-MS2 run was performed in three

technical replicates for each biological sample.

A full scan for detecting peptides was set at 375–1,500 m/z in

the Orbitrap at a resolution of 120,000. The peptides were detected

in ddMS2 mode with 30% HCD collision energy, and the first mass

was fixed at 110 m/z. The obtained raw data was processed by Pro-

tein Discoverer v2.2.038 (Thermo Fisher Scientific). Parameters used

for the analysis were as follows: enzyme was trypsin; two miss cleav-

age sites; mass tolerance of precursor ion was set at 10 ppm, and

mass tolerance of fragment ions was set at 0.6 Da; acetylation for

N-terminal modification, oxidation of methionine and deamidation of

asparagine and glutamine for dynamic modifications, and carbamido-

methyl for static modification.

The quality of proteins was ensured by removing contaminants,

filtering with at least two peptides, and removing outliers. High-

quality proteins were identified by searching against three-frame for-

ward translated protein sequences from the bilberry transcriptome

(Nguyen et al., 2018) and bilberry protein sequences obtained from a

recent study (Wu et al., 2022) (https://www.vaccinium.org/bio_data/

1085390). The functional classification of identified proteins was

assigned to KOALA (KEGG Orthology And Links Annotation) using

the BLASTKOALA tool (Kanehisa et al., 2016).

2.6 | Identification of hormone-related candidate
genes and gene expression analysis by qRT-PCR

To identify genes involved in the biosynthesis of ABA, GA, JA, and SA,

we searched for enzymes participating in these hormone pathways in

the bilberry transcriptome dataset (Nguyen et al., 2018). The genes

were searched for with reference protein sequences of other plant

species (National Centre for Biotechnology Information - NCBI) using

the BLASTX method, cutoff E-value <1e-5. Genes showing high

sequence similarity with references were chosen for further evalua-

tion of their expression levels over the four stages of bilberry using

real-time quantitative reverse transcription PCR (qRT-PCR) (Table S2).

For gene expression analysis, total RNA from the same berry sam-

ples used for the metabolite and protein analyses was extracted using

the method described by Jaakola et al. (2001). RNA was treated with

Turbo™ DNase (Thermo Fisher Scientific) and then converted to

cDNA using M-MLV Reverse Transcriptase (Promega) following the

manufacturer's instructions. The qRT-PCR analysis was performed as

described previously (Nguyen et al., 2018). Relative transcript levels

were normalized based on a stable expression of reference genes,

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and SAND. The

analysis was performed in technical duplicates. Primer sequences used

for qRT-PCR analysis are listed in Table S3.
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2.7 | Statistical analysis

Principal component analysis (PCA) was conducted to examine the

overall variance of all fruit samples. A heat map was done based on

the PCA score, and hierarchical cluster analysis was performed using

Canberra distance and average linkage agglomerative methods. Cor-

relation analysis between metabolites and proteins was carried out

using sparse partial least squares regression models, and the cutoff

value for establishing a strong correlation was set to 0.7. The corre-

lation network was performed and edited using Cytoscape v3.9.1.

The analyses were carried out in R v4.2 with the mixomics package

(Rohart et al., 2017). Datasets were scaled before analysis. Statisti-

cally significant differences in metabolites, proteins, and gene

expression over the four different stages were analyzed using a

one-way analysis of variance with an adjusted p-value of 5%. In the

gene expression analysis, data were presented as mean ± standard

error.

3 | RESULTS

3.1 | Changes in metabolite profiles during bilberry
fruit development and ripening

To gain a better insight into metabolic changes during bilberry fruit

ripening, berries from four different stages, i.e., S2, S3 (representing

the development process), S4 and S5 (representing the ripening pro-

cess) were collected for analyses (Figure 1A). A total of 1029 metabo-

lites were putatively annotated and grouped into 11 classes,

i.e., terpenoids, polyketides, phenylpropanoids, organic acids, nucleic

acids and derivatives, lipids, flavonoids, carbohydrates, amino acids

and derivatives, alkaloids, and others (Table S4). Based on the sum of

the relative abundance of each class, we observed changes in the

metabolite profiles throughout the development and ripening pro-

cesses (Figure 1A). Primary metabolites were found to be most abun-

dant in unripe berries (including lipids, nucleic acids, amino acids,

1
1

2

3

4

2 3 4

S2
_1

S2
_2

S2
_3

S3
_1

S3
_2

S3
_3

S4
_1

S4
_2

S4
_3

S5
_1

S5
_2

S5
_3

S3

S4

S5

(A) (B)

(D)(C)

F IGURE 1 Metabolite profiles of bilberry development and ripening. (A) Proportion of metabolite classes in bilberry during the fruit
development and ripening process. S2: small green fruit, S3: large green fruit, S4: purple ripening fruit, S5: dark blue ripe fruit. (B) PCA of all
identified metabolites of the four ripening stages. (C) Hierarchical clustering analysis and heat map of significantly different metabolites over the
four stages. (D) Proportion of metabolite classes during fruit development and ripening in each group. Data represents relative abundance of each
metabolite class and mean of three biological replicates.
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organic acids, and carbohydrates), while ripe fruits were dominated by

secondary metabolites such as phenolics (Figure 1A). PCA results of

all identified metabolites demonstrated a clear separation of bilberry

fruits in the developmental stages (S2 and S3) compared to fruits in

the ripening stages (S4 and S5) (PC1). The metabolic profiles of S2

and S3 fruits could be clearly distinguished while ripening stage S4

and S5 fruits were only slightly separated (PC2) (Figure 1B).

Furthermore, 706 identified metabolites resulted in significant

differences over the four stages, and the levels of which were clus-

tered into four groups 1, 2, 3, 4, with 96, 216, 140, 254 metabolites,

respectively (Figure 1C, Table S5). We observed that group 1 exhibited

an increase in metabolite abundance from S2 to S3 and peaked at S4

(Figure 1D). Lipids were the dominant class in this group with the

highest content of oleic acid, followed by octadecanoids, linoleic acid

derivative, and palmitic acid. Caffeic acid was found to be the second

most abundant metabolite in this group, its amount increased from S2

to S4 and then dramatically decreased in S5. Pavetannin B6 and a ter-

pene glucoside were also highly accumulated in S4 (Figure 1D,

Table S5).

In group 2, metabolites mainly accumulated during fruit develop-

ment and decreased during ripening (Figure 1D). The results revealed

various roles of these metabolites which can be divided into different

classes including flavonoids (catechin), amino acids (tryptophan, phe-

nylalanine), nucleic acids (adenosine, uridine, guanine, adenine), lipids

(13(S)-HpOTrE, 12-oxo-phytodienoic acid, 9-HpODE), organic acids

(benzoic acids, trans-cinnamic acid, ferulic acid, dihydrocaffeic acid),

phenylpropanoids (lariciresinol 4-O-glucoside), and terpenoids (GA3)

(Table S5).

Metabolites in group 3 notably increased in S5 and mostly

belonged to the flavonoid class (Figure 1D, Table S5). Among them,

cyanidin-3-O-beta-D-glucoside (anthocyanins) and tricin-5-O-β-D-

glucoside (flavone) were the most abundant compounds, followed by

flavonols (quercetin and quercetin glucosides, taxifolin, kaempferol-

3-O-arabinoside, myricetin) and flavones (homoplantaginin, luteolin,

diosmetin). Citric acid related to fruit flavour formation increased dur-

ing ripening and reached the highest level at S5. Other phenolic acids,

including gallic acid, vanillin, and gentisic acid, also increased from S2

to S5. We observed that sugar was accumulated during bilberry ripen-

ing, indicated by the highest abundance of glucose at S5 and the

increase in the level of maltose, a product of starch breakdown, from

S3 to S5 (Table S5, Figure S1). The amount of ABA significantly

increased during fruit ripening, peaking at S4.

Group 4 was present in high abundance at S2, and it continuously

decreased throughout the ripening process (Figure 1D). Organic acids

were the main class accumulated in this group with the highest level

of chlorogenic acid, followed by quinic acid, hydroxycinnamic acid and

melilotoside, coumaric acid, and 4-methoxycinnamic acid (Figure 1D,

Table S5). Flavonoids were the second most abundant class of group

4, including the highest level of PAs (epicatechin and epigallocatechin)

and quercetin-3-O-glucuronide. Medium-chain fatty acids (dodeca-

noic acids, JA), phenylpropanoids (coumarins, lignans), methionine,

and terpenoids (mono-, sesquiterpenoids, GA4) decreased from

S2 to S5.

3.2 | Protein profiling during bilberry fruit
development and ripening

In total, 1786 proteins were identified from all the fruit samples by

searching against the bilberry databases (Nguyen et al., 2018; Wu

et al., 2022) (Table S6), of which 1329, 1564, 1550, and 1458 proteins

were found in S2, S3, S4, S5, respectively (Figure 2A). Among these, a

high number of proteins (1078) were common to all the fruit samples

(Figure 2B). However, the PCA of all proteins still revealed a separa-

tion between four different stages (Figure 2C).

We examined significant changes in the protein profiles during

bilberry ripening that resulted in 1048 differentially expressed pro-

teins over four stages clustered into three groups (Figure 2D,

Table S7). Group 1 (359 proteins) and group 3 (444 proteins) were

observed to have significant abundance at the developmental stages,

S3 and S2, respectively. Group 2 indicated a high expression of

245 proteins at the ripening stages, S4 and S5 (Figure 2D). Moreover,

the functional classification of these groups was annotated by the

KEGG pathway database, which could provide an understanding of

the processes occurring during fruit development and ripening. There

were 255 proteins accounting for 71% of group 1, 144 proteins

(58.5%) of group 2, and 258 proteins (58.1%) of group 3 assigned to

211, 162, and 190 KEGG pathways, respectively (Table S8). Groups

1 and 2 had the largest proportion of proteins related to metabolism,

especially carbohydrate metabolism, indicating that the most essential

activities for fruit growth and ripening are the formation, breakdown,

and interconversion of carbohydrates (Figure 2E). The second largest

KEGG pathway was genetic information processing that was highest

present in group 3, indicating that transcription, translation, post-

translation, replication, and repair are most active at S2 (Figure 2E).

Proteins related to organismal systems and cellular processes were

assigned more in group 3 than in groups 1 and 2, suggesting that

activities at cellular and organismal levels are needed for the early

developmental stages. There were more proteins related to the bio-

synthesis of other secondary metabolites in group 2, whereas amino

acid and lipid metabolism-related proteins were higher in groups

1 and 3. The results were consistent with the accumulation of amino

acids and lipids at the developmental stages and the accumulation of

secondary metabolites (e.g., flavonoids) at the ripening stages in the

metabolite analysis. The number of proteins related to energy metab-

olism was slightly higher in groups 1 and 3 compared to group 2, which

could be explained by functional photosynthesis in the unripe berries

(Figure 2E).

3.3 | Hormonal regulatory network controlling
bilberry fruit ripening

To better understand the connections between plant hormones and

the physiological processes during bilberry ripening, we examined the

correlation between identified proteins and plant hormones, including

ABA, GAs, JA, and SA (Table S5). Auxin and ethylene were excluded

as they were not detected in the metabolite dataset; however, high
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abundances of their precursors (i.e., tryptophan and methionine,

respectively) were detected in the developmental stages (Table S5).

Thus, the estimation of the dynamics of ethylene metabolism was

made based on methionine metabolism.

The results showed that 628 proteins exhibited strong positive or

negative correlations to changes in ABA, GA3, GA4, JA, and SA

throughout fruit development and ripening (Figure 3A, Table S9). The

proteins associated with ABA exhibited opposite correlations with

other hormones. This is in line with the increase in accumulation of

ABA at S4 (Figure 3B) in contrast with the higher levels of GA4, JA,

and SA at S2 (Figures 3D-F) and GA3 at S3 (Figure 3C). Moreover, the

correlation network revealed numerous connections between GA4,

JA, and SA hormones, suggesting a collaborative role for these three

hormones in regulating bilberry fruit growth.

A high number of proteins had a positive correlation with GAs,

JA, and SA, indicating that most hormonally regulated physiological

processes are mainly active during the developmental stages

(Figure 3A, Table S9). The processes needed for the growing phase

are related to nutritional preparation and energy metabolism, tran-

scription, protein biosynthesis, cell proliferation, transport, and cell

wall biogenesis/degradation. Several proteins related to ABA, GA, and

auxin signalling pathways (e.g., chaperonin 20, bHLH164, and auxin

binding proteins, respectively) were also found in the developmental

stages. By contrast, there were fewer negative correlations with these

hormones during the developmental stages, including processes

related to gluconeogenesis, lignan biosynthesis, seed development,

seed storage proteins, cell adhesion, and two proteins related to ABA

and auxin signalling pathways, e.g., SAL1 phosphatase-like and

S5

S4

S2
_1

S2

S3
S2

_2
S2

_3
S3

_1
S3

_2
S3

_3
S4

_1
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_1
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_3
1

2

3

Cellular process

Human disease Metabolism Organismal system Unclassified

Environmental Informa�on Processing Gene�c Informa�on Processing

(E)(D)

(C)(B)(AAAAAA)

F IGURE 2 Proteomic profiles in bilberry fruits. (A) Total proteins identified in the four ripening stages. S2: small green fruit, S3: large green
fruit, S4: purple ripening fruit, S5: dark blue ripe fruit. (B) Venn diagram of all identified proteins in the four ripening stages. (C) PCA of 1078
identified proteins in the four ripening stages. (D) Hierarchical clustering analysis and heatmap of significantly different proteins over the four
stages S2, S3, S4, and S5. (E) KEGG analysis for each protein cluster.
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patelin-5, respectively. This indicates that these activities may be

involved in functions positively regulated by GAs, JA, and SA during

the ripening process of bilberry.

3.4 | Biosynthesis of hormones during bilberry
fruit development and ripening

A total of 20 genes involved in the biosynthetic pathways of ABA,

GAs, JA, and SA were selected for further gene expression analysis to

investigate the relationship between these hormones and bilberry

fruit development and ripening (Table S2). We analyzed the expres-

sion of five genes involved in the ABA biosynthetic pathway, namely

zeaxanthin epoxidase (ZEP), neoxanthin synthase (NYS, also called

ABA deficient 4 - ABA4), NCED, short-chain dehydrogenase/reductase

(SDR), and abscisic aldehyde oxidase (AAO) (Figure 4A, Table S2). The

expression of ZEP, which encodes the enzyme responsible for the first

step of the pathway converting zeaxanthin to violaxanthin, increased

during the development process from S2 to S3 and decreased during

the ripening process (Figure 4B). A similar expression trend was also

observed in the late structural pathway genes, SDR and AAO

(Figures 4E-F). By contrast, NYS and NCED showed significant upregu-

lation in the ripening stages (Figures 4C-D). The expressions of the

key genes NYS and NCED correspond to the increase in ABA level dur-

ing fruit ripening (Figure 3B).

The biosynthetic pathway of GAs starts from converting common

precursor Geranylgeranyl pyrophosphate to the intermediate

ent-kaurene catalyzed by ent-kaurene synthase (KS) and ent-kaurene

oxidase (KO) (Figure 5A). The expression of KS increased during fruit

ripening and was sharply upregulated at S5 (Figure 5B), while KO-like

was slightly downregulated at S4 (Figure 5C). However, no significant

differences in the expression of these two genes during fruit ripening

were observed. From the bilberry transcriptome, we only found two

genes of the GA 2-oxidases (GA2ox) family involved in GA catabolism

for regulating the concentration of bioactive GAs, named Ga2ox8-like

and Ga2ox1-like. The expression of Ga2ox8-like was upregulated, and

Ga2ox1-like was downregulated during the ripening process

(Figures 5D-E). Moreover, from the transcriptome dataset, we found
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F IGURE 3 (A) Correlation network analysis of plant hormones (yellow circles) including abscisic acid (ABA), gibberellic acids (GA3, GA4),
jasmonic acid (JA), and salicylic acid (SA) with significantly different proteins (green diamonds) during bilberry fruit development and ripening. The
strong correlation coefficient was set to a threshold of 0.7. Blue edge indicates strong negative correlations (< �0.7), red edge indicates strong
positive correlations (>0.7). Line charts represent the relative abundance of hormones (B) ABA, (C) GA3, (D) GA4, (E) JA, and (F) SA during bilberry

development and ripening. S2: small green fruit, S3: large green fruit, S4: purple ripening fruit, S5: dark blue ripe fruit.
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two genes related to GA signalling, GID1C-like and gibberellin-

regulated 1-like (GR1-like). The most prominent expression of GR1-like

showed in S3 and then dropped thereafter (Figure 5F), correlating

with the detection of two bioactive GAs (GA3 and GA4) in the devel-

opmental stages (S3 and S2, respectively) (Figures 3C-D).

In JA biosynthesis, we selected three genes carrying out the early

steps of JA biosynthesis, namely linoleate 13 s-lipoxygenase

2 (13-LOX2), allene oxide cyclase (AOC), 12-oxophytodienoate reduc-

tase 3 (OPR3), and one gene involved in the biosynthesis of JA deriva-

tive jamonoyl isoleucine (JA-Ile), namely jasmonic acid-amido

synthetase JAR1-like (JAR1-like) (Figure 6A, Table S2). The expression

of the key genes 13-LOX2 and OPR3 showed significant upregulation

during fruit development (Figures 6B,D), which is consistent with the

highest abundances of precursors α-linolenic acid (α-LA) and

12-oxophytodienoic acid at S3 (Figures 6F-G). AOC showed a slightly

higher expression level at S2 and was relatively stable throughout the

ripening process (Figure 6C). Even though we did not detect JA-Ile in

the metabolite dataset, the JAR1-like gene was found to be signifi-

cantly upregulated in S3 and then decreased in S4 (Figure 6E).

Another JA derivative, cis-Jasmone, was detected with a peak at S4

(Figure 6H), however, the genes related to its biosynthesis have not

been described and identified in our transcriptome dataset and there-

fore require further investigation.

SA is synthesized from chorismate via two different routes,

i.e., the isochorismate pathway in chloroplast and the phenylalanine

pathway in the cytosol (Figure 7A) (Lefevere et al., 2020). The expres-

sion of a gene encoding chorismate synthase (CS), responsible for the

biosynthesis of a common precursor chorismate, highly increased at

the onset of fruit ripening and decreased afterwards (Figure 7B). Com-

pared to the accumulation of shikimic acid (Figure 7G), a precursor of

MEP
pathway

β-Carotene

Zeaxanthin

Violaxanthin

Neoxanthin

9-cis-Neoxanthin 9-cis-Violaxanthin

Xanthoxin

ZEP

NCED
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Abscisic aldehyde
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SDR

Isomerase

Isomerase

AAO

NCED

(A) (((B)))

(((((((DDD)))))))

(((((((F)))))))

(((((((E)))))))

(((C)))

F IGURE 4 Abscisic acid (ABA) biosynthesis during the ripening process of bilberry. (A) Biosynthetic pathway of ABA. Yellow box indicates the
compound detected in the metabolite analysis. Bar charts represent the relative expression of genes encoding enzymes (red text) involved in the
biosynthesis of ABA during bilberry development and ripening: (B) ZEP: Zeaxanthin epoxidase, (C) NYS: neoxanthin synthase, (D) NCED: 9-cis-
epoxycarotenoid dioxygenase, (E) SDR: short chain dehydrogenase/reductase, and (F) AAO: abscisic aldehyde oxidase. S2: small green fruit, S3:
large green fruit, S4: purple ripening fruit, S5: dark blue ripe fruit. Asterisks indicate significant differences among ripening stages at level
*p < 0.05 using one-way ANOVA.

8 of 15 NGUYEN ET AL.
Physiologia Plantarum

 13993054, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ppl.14534 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [01/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fppl.14534&mode=


chorismite, the expression trend of the CS gene was different during

fruit development but similar during the ripening process. In the iso-

chorismate pathway, enhanced pseudomonas susceptibility 1 gene

(EPS1) encoding BAHD acyltransferase protein for synthesizing SA

from isochorismate, was significantly upregulated at S3 and downre-

gulated thereafter (Figure 7C). The expression of EPS1 correlates with

(A)
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F IGURE 5 Gibberellin (GA) biosynthesis during the ripening process of bilberry. (A) Biosynthetic pathway of GA. Yellow boxes indicate the
compounds detected in the metabolite analysis. Green box indicates bioactive forms of GAs. Dashed arrows indicate the GA catabolism pathway.
Bar charts represent the relative expression of genes encoding enzymes (red text) involved in the biosynthesis of GAs during bilberry
development and ripening: (B) KS: ent-kaurene synthase, (C) KO: ent-kaurene oxidase, (D) GA2ox1-like: GA 2 oxidase 1 like, (E) GA2ox8-like: GA
2 oxidase 8 like, (F) GR1-like: gibberellin-regulated 1 like, and (G) GID1C-like: gibberellin receptor GID1C. (H) Line chart represents the relative
abundance of trans geranylgeranyl pyrophosphate (GGPP) during bilberry development and ripening. S2: small green fruit, S3: large green fruit,
S4: purple ripening fruit, S5: dark blue ripe fruit. CPS: ent-copalyl diphosphate synthase, KAO: ent-kaurenoic acid oxidase, GA13ox: GA
13 oxidase, GA20ox: GA 20 oxidase, GA3ox: GA 3 oxidase. Asterisks indicate significant differences among ripening stages at level *p < 0.05
using one-way ANOVA.
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the level of SA from S3 to S5 (Figure 3F). In the phenylalanine path-

way, a gene encoding phenylalanine ammonia-lyase (PAL) showed the

highest peak at S4 (Figure 7D). However, not all the enzymes have

been described for these pathways. We observed that the levels of

benzoic acid, SA, and its derivative methyl salicylate (MeSA) decreased

throughout fruit development and ripening (Figures 3F, 7J,K). Interest-

ingly, we found genes in the transcriptome dataset encoding benzoate

carboxyl methyltransferase (BSMT-like) and salicylic acid binding pro-

tein (SABP2-like) for conversion of SA to MeSA and vice versa, respec-

tively, related to the SA homeostasis. These two genes showed similar

expression patterns, which were relatively constant from S2 to S4 and

were dramatically upregulated at S5 (Figures 7E-F).

Even though ethylene was not detected in the current study

using the LC-MS analysis method due to its gaseous nature, a prelimi-

nary finding involved in ethylene biosynthetic pathway in bilberry

(considered as a non-climacteric fruit) is reported by integrating

metabolite, protein, and transcriptome datasets (Figure S2, Table S10).

The abundances of precursor, methionine, and by-product, 50-

methylthioadenosine (MTA), decreased throughout fruit development

and ripening, while the enzymes and their related transcripts, i.e., s-

adenosyl-l-methionine synthase (SAMS), 1-aminocyclopropane-

1-carboxylic acid (ACC) synthase (ACS) and oxidase (ACO), showed

different expressions during the ripening process (Figure S2).

4 | DISCUSSION

Our study provides comprehensive metabolome and proteome data-

sets of wild bilberry during the development and ripening process,

which contribute to building database resources for future studies on

wild and commercially grown berries (e.g., cultivated blueberries).

Through data integration analysis, we revealed for the first time the
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F IGURE 6 Jasmonic acid (JA) biosynthesis during the ripening process of bilberry. (A) Biosynthetic pathway of JA. Yellow boxes indicate the
compounds detected in the metabolite analysis. Bar charts represent the relative expression of genes encoding enzymes (red text) involved in the
biosynthetic pathway of JA during bilberry development and ripening: (B) 13-LOX2: 13 s-lipoxygenase 2, (C) AOC: allene oxide cyclase, (D) OPR3:
12-oxophytodienoate reductase 3, and (E) JAR1-like: jasmonic acid-amido synthetase JAR1-like. Line charts represent the relative abundance of
JAs and intermediates throughout bilberry fruit development and ripening: (F) α-linolenic acid, (G) 12-oxophytodienoic acid, and (H) Jasmone. S2:
small green fruit, S3: large green fruit, S4: purple ripening fruit, S5: dark blue ripe fruit. Asterisks indicate significant differences among ripening
stages at level *p < 0.05 using one-way ANOVA.
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regulatory network of physiological processes associated with key

hormones, i.e., ABA, GA, JA, and SA, which control the bilberry devel-

opment and ripening process. In addition, we observed an increase in

ethylene-related metabolism during developmental stages. Our find-

ings serve as a valuable tool for identifying key requirements for fruit

quality improvement in post-harvest storage and new breeding pro-

gram strategies, such as aiming to enhance blue/red flesh and distinc-

tive flavor. The data also opens opportunities to discover novel

beneficial compounds in berry fruits with potential applications in

foods, cosmetics, and pharmaceutical industries.

The datasets revealed significant differences in metabolite and

protein profiles between and within bilberry developmental and ripen-

ing stages (S2 vs. S3 and S4 vs. S5) (Figures 1B, 2C), highlighting a

clear metabolic shift from primary to secondary metabolites during

ripening (Figures 1A, D). Indeed, primary metabolites serve as key pre-

cursors of various secondary metabolic pathways to fulfil adaptive

features, including nutritional value and palatability characteristics,

and plant defence system for ripe fruits and seed dispersal. For exam-

ple, fruit volatiles are derived from free amino acids

(e.g., phenylalanine, methionine, valine, leucine) and fatty acids (e.-

g., α-LA) (Pott et al., 2019). Methionine, tryptophan, and phenylalanine

are known to be crucial for fruit ripening by participating in the bio-

synthesis of plant hormones, i.e., ethylene, auxin, and SA, respectively

(Murch et al., 2000; Lefevere et al., 2020; Pattyn et al., 2021).

Phenylalanine also serves as a general precursor of the central phenyl-

propanoid pathway (Singh et al., 2010; Dare et al., 2022). From the

metabolite dataset, significant levels of several amino acids, including

tryptophan, phenylalanine, methionine, and glutamate, were found in

unripe berries, while tyrosine mostly accumulated at the onset of rip-

ening (Table S5). The results are consistent with previous reports on

bilberry (Dare et al., 2022) and other fruits (Diboun et al., 2015).

Moreover, the significant level of phenylalanine in S3 may be related

to the upregulation of the PAL gene encoding the first enzyme utilized

in the pathway (Table S5, Figures 7D,H). This indicates that phenylala-

nine is an important primary compound in bilberry ripening, aligning

with the fact that phenolics are the main metabolites in bilberry, with

flavonoids being the most abundant in ripe fruits (Figure 1D) (Pires

et al., 2020). We also observed a high level of 5’-S-Methyl-50-

thioadenosine (or 50-methylthioadenosine – MTA), in S2 (Table S5).

MTA is a by-product of ethylene synthesis (Figure S2) and serves as

an intermediate of the methionine salvage pathway/Yang cycle for

methionine recycling (Pattyn et al., 2021). This finding proposes the

important role of methionine in the developmental stages and implies

the biosynthesis of ethylene in bilberry.

The regulation of energy was also demonstrated for bilberry

development. For example, adenosine, a crucial precursor of energy

carriers, showed the highest level in S3 (Table S5), proposing the con-

tribution to energy metabolism or possibly related to signalling
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F IGURE 7 Salicylic acid (SA) biosynthesis during the ripening process of bilberry. (A) Biosynthetic pathway of SA. Yellow boxes indicate the
compounds detected in the metabolite analysis. Bar charts represent the relative expression of genes encoding enzymes (red text) involved in the
biosynthesis of SA during bilberry development and ripening: (B) CS: chorismate synthase, (C) EPS1: enhanced pseudomonas susceptibility
1, (D) PAL: phenylalanine ammonia-lyase, (E) BSMT-like: benzoate carboxyl methyltransferase, and (F) SABP2-like: salicylic acid binding protein.
Line charts represent the relative abundance of JAs and intermediates throughout bilberry fruit development and ripening: (G) Shikimic acid,
(H) L-phenylalanine, (I) trans-Cinnamic acid, (J) Benzoic acid, a (K) O-methylsalicylic acid. S2: small green fruit, S3: large green fruit, S4: purple
ripening fruit, S5: dark blue ripe fruit. Asterisks indicate significant differences among ripening stages at level *p < 0.05 using one-way ANOVA.
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required for fruit growth (Pietrowska-Borek et al., 2020). We also

observed that the primary processes occurring in the developmental

stages are related to photosynthesis, ATP synthesis, and carbohy-

drate/lipid metabolism (Table S9). Currently, photosynthesis in unripe

fruits and a decrease in its activity and chlorophyll contents during rip-

ening are poorly understood. In tomato, photosynthetic activity has

been considered essential for seed development (Lytovchenko

et al., 2011). A recent review has discussed the function of fruit pho-

tosynthesis, such as involvement in photoassimilate production

(e.g., sugar/starch) in the early developmental stages and in supplying

carbon sources in the later stages (Garrido et al., 2023). Concerning

other energy-rich compounds, lipid storage for ripe fruits was demon-

strated by their high abundances found in the developmental process

(S3) and in the onset of ripening (S4) (Table S5) in the present work.

This corresponds to the highly active processes related to lipid metab-

olism observed in S3 (Figure 3A, Table S9). High mono- and polyun-

saturated fatty acid levels detected in oil extracts from bilberry seeds

(Gustinelli et al., 2018) indicate that lipid biosynthesis may be priori-

tized for seed development. Elucidating the processes of nutrient

accumulation throughout fruit development and ripening could pro-

vide valuable insights into the factors governing the characteristics of

ripe fruits, facilitating improvements in fruit quality.

During development, fruit size increase is determined by cell divi-

sion and expansion (Karim et al., 2022). These activities are associated

with the formation and organization of the cell wall. In this study, the

proteins involved in cell wall biosynthesis, organization, and expansion

exhibit the highest level in the developmental stages and significantly

decrease thereafter, whereas enzymes associated with cell wall loos-

ening increase in the ripening stages (Table S9). This explains the

increase in fruit size and softening during bilberry ripening. Interest-

ingly, we found significant decreases in the levels of lignin derivatives

and its precursors, and proteins related to lignin biosynthesis through-

out the development and ripening process (Tables S5, S9). Lignin is

one of the important components of cell walls and plant fibers (Liu

et al., 2018), and therefore, the fruit firmness could also be affected

by the changes in the level of lignin and its related compounds.

The essential role of GA in promoting cell division and expansion

has been well documented (Fenn and Giovannoni, 2021). A high con-

tent of endogenous GAs was previously found in unripe strawberries

(Csukasi et al., 2011) and tomatoes (Li et al., 2019b). Moreover, the

application of exogenous GA delays fruit ripening and softening by

inhibiting cell wall degradation, aroma, and ethylene production in

postharvest kiwifruit (Yang et al., 2023), and tomatoes (Li

et al., 2019b). In our correlation analysis, we observed high levels of

GAs in the developmental stages have a positive correlation with dif-

ferent physiological processes, including cell wall modification

(Figures 3A,C-D). Additionally, GAs also exhibited a strong correlation

with JA and SA during development (Figure 3A). Several studies have

demonstrated that exogenous JA and SA delay the ripening process

(Valero et al., 2011; Jia et al., 2016; Kumar et al., 2021). Our study

detected that the levels of JA, SA, and their derivatives, as well as the

expression of related genes in bilberry, declined during the ripening

process (Figures 3E-F, 6, 7) similarly to those previously observed in

grape (Coelho et al., 2019) and sweet cherry (Fresno and Munné-

Bosch, 2021). These findings highlight the key roles and interplay of

GAs, JA, and SA in regulating the developmental process of bilberry.

Importantly, genes related to GA, JA, and SA homeostasis, which are

crucial for maintaining the balance between endogenous hormones in

the regulation of fruit ripening (Fenn and Giovannoni, 2021), were

identified in this study, particularly genes Ga2ox1-like and Ga2ox8-like

involved in GA catabolism (Figures 5D-E), JAR1-like related to synthe-

size JA-Ile (Figure 6E), and BSMT-like and SABP2-like controlling levels

of SA and MeSA (Figures 7E-F).

The changes in fruit flavour and colour that distinguish between

the development and ripening stages occur simultaneously with fruit

softening. In this study, we provide knowledge on different flavour-

related compounds in the developmental and ripening stages, which

have not been extensively studied in bilberry. Particularly, quinic acid,

courmarins, and benzoic acids represent key flavour compounds in

young bilberry, whereas citric acid, gallic acid, vanillin, and ascorbic acid

seem to mainly contribute to the flavouring of ripe bilberry (Table S5).

According to the flavour profiles in our study and previous studies on

bilberry (Suvanto et al., 2020; Dare et al., 2022), strawberry (Amil-Ruiz

et al., 2011) and apricot (García-Gómez et al., 2020) the sour, bitter,

and acrid taste of unripe berries could be related to the dominant levels

of PAs and chlorogenic acid. In contrast, the sweetness of bilberry is

determined by the content of fructose and glucose in ripe fruits (Dare

et al., 2022; Samkumar et al., 2022), which is also corroborated in this

study with the highest glucose level in S5 (Table S5). Regarding fruit

colour change during the ripening process, noticeable metabolites in

the ripe bilberry were flavonoids, with dominant levels of cyanidin-3-o-

beta-D-glucoside and high abundances of flavones and flavonols

(Table S5), in agreement with previous report (Dare et al., 2022).

The role of ABA in non-climacteric fruit ripening has been exten-

sively studied with a focus on the ABA level and the upregulation of

key biosynthetic gene, NCED, in the ripening stages, as demonstrated

in studies on strawberry (Kim et al., 2019), wolfberry (Li et al., 2019a),

and grape (Coelho et al., 2019), consistent with our results. Further-

more, ABA has also been shown to be involved in promoting anthocy-

anin pigment biosynthesis and inducing cell wall metabolism-related

genes during fruit ripening (Pilati et al., 2017; Karppinen et al., 2018;

Chung et al., 2019; Li et al., 2019a). Our observation in bilberry

reveals the positive correlation between ABA level and flavonoids,

sugars, and flavour compounds, as well as with processes related to

cell wall modification and seed storage proteins (Figure 3A, Table S9).

These results confirm the role of ABA in bilberry ripening and support

the assumption of bilberry classification into non-climacteric fruits.

Recently, Watanabe et al. (2021) have pointed out controversy in

the classification of blueberries as a non-climacteric or climacteric

type because some of the earlier studies since 1967 have detected

the ethylene peak during blueberry ripening (cf. Watanabe

et al., 2021), whereas some have not but have detected the increase

in ABA concentration instead (Zifkin et al., 2012; Chung et al., 2019).

To our knowledge, an ethylene peak has not been detected during bil-

berry ripening; however, our datasets indicate an activation of ethyl-

ene biosynthesis during bilberry development (Figure S2). Therefore, a
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similar question may be raised about the bilberry fruit type. Moreover,

a new perspective on fruit classification has recently emerged based

on starch metabolism during fruit ripening due to the occurrence of

both climacteric and non-climacteric types within the same species,

e.g., melons, Asian pears, and plums (Chervin, 2020). It has been pro-

posed that starch synthesis begins at the onset of ripening of climac-

teric fruits, while starch breakdown is found throughout the

developmental and ripening process of non-climacteric fruits. A similar

pattern of starch metabolism in non-climacteric types was observed in

bilberry fruit ripening (Figure S1, Table S4, Table S11). We suggest the

need to revisit the classification of climacteric and non-climacteric

fruits. If most of the fruits have activation of both ethylene and ABA

biosynthesis during fruit development, the borderlines on the levels of

these hormones at the onset of ripening and the dynamics of starch

contents should be explored and determined to clarify the classifica-

tion of climacteric and non-climacteric types. The new findings will

provide insights into the mechanism controlling the ripening process

of berry species.
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