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Abstract: In many machine learning applications, there are many scenarios when performance is not
satisfactory by single classifiers. In this case, an ensemble classification is constructed using several
weak base learners to achieve satisfactory performance. Unluckily, the construction of the ensemble
classification is empirical, i.e., to try an ensemble classification and if performance is not satisfactory
then discard it. In this paper, a challenging analytical problem of the estimation of ensemble classifica-
tion using the prediction performance of the base learners is considered. The proposed formulation is
aimed at estimating the performance of ensemble classification without physically developing it, and
it is derived from the perspective of probability theory by manipulating the decision probabilities of
the base learners. For this purpose, the output of a base learner (which is either true positive, true
negative, false positive, or false negative) is considered as a random variable. Then, the effects of
logical disjunction-based and majority voting-based decision combination strategies are analyzed
from the perspective of conditional joint probability. To evaluate the forecasted performance of
ensemble classifier by the proposed methodology, publicly available standard datasets have been
employed. The results show the effectiveness of the derived formulations to estimate the perfor-
mance of ensemble classification. In addition to this, the theoretical and experimental results show
that the logical disjunction-based decision outperforms majority voting in imbalanced datasets and
cost-sensitive scenarios.

Keywords: machine learning; probability theory; ensemble classification; cost-sensitive learning;
binary classification

MSC: 00A71; 03B48; 68T10

1. Introduction

In many classification scenarios and datasets, achieving satisfactory detection perfor-
mance is a critical problem [1]. In such scenarios, machine learning experts naturally move
to the ensemble classification to combine multiple base classifiers (learners) to achieve
satisfactory accurate decisions. In ensemble classification, majority voting has gained
significant attention from the research community because of its effectiveness, simplicity,
and democratic style of combining the population decisions [2]. Unluckily, the construc-
tion of ensemble classification has been empirical, i.e., first, an ensemble classification is
constructed and if its performance is not satisfactory then it is discarded. Contrary to the
empirical approach, there is an analytical approach which is deductive. In the analytical
approach, firstly a mathematical model is formulated, and then an ensemble classifier
constructed accordingly. Contrary to the objectiveless, directionless, random style, and
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luck-driven efforts in empirical construction, the analytical approach is purposeful, goal-
oriented, and systematic. Additionally, once an analytical model is built, it is useful as it can
be employed to construct future models, which is not possible in an empirical approach [3].

In many applications related to video surveillance, driving assistance, pedestrian
detection, and disease diagnostics, there are some additional challenges because of their
cost-sensitive nature. For instance, in surveillance of human-prohibited areas, a false nega-
tive (missing a human detection) has the worst cost compared to false positive. Similarly,
cancer diagnosis is also critical in which missing a cancer tumor can result in severe damage,
even death of the patient. Whereas, falsely detecting a cancer tumor in a healthy person
costs only some money, which can be further identified as a normal person in further
tests. Likewise, in automatic driving and pedestrian detection systems, missing a human
may result in serious injury or death. Consequently, for such tasks, there is a need for a
cost-sensitive detection system to meet the required objectives [4,5].

In imbalanced machine learning datasets, the number of positive and negative samples
differs significantly. This results in the bias of classification decisions towards the majority
class samples [6,7]. Unfortunately, many datasets from cost-sensitive applications are
significantly imbalanced. Even more, the number of positive samples in these datasets is
critically lesser than negative samples, which results in higher false negative rates, which
has a higher penalty in cost-sensitive applications [8].

There are some cost-sensitive classification techniques available in the literature. Un-
luckily, these contributions mainly focus on either classification technique [9,10] or data
sampling [6,11]. For example, Zadrozny et al. [12] associated some weight with class
learning examples to achieve cost-sensitive learning. Likewise, Krawczyk et al. [13] uses
cost-sensitive analysis for breast thermography. Whereas, Nguyen et al. [6] fixed the classi-
fier tendency to overwhelm in favor of the majority class because of imbalanced datasets
by comparing many data resampling techniques and optimizing the cost ratio. Similarly,
Singh et al. [14] employed transfer learning for imbalanced breast cancer classification, but
a dedicated component to handle imbalanced classification is missing in their methodology.
Likewise is the work of Saleeman IV et al. [15], in which they employed Spark for multiclass
imbalanced classification. In addition to these conventional learning techniques, there are
few deep learning-based techniques also present in the literature. For example, Almarshdi
et al. [16] proposed a hybrid deep learning solution for imbalanced classification, but
unluckily, the innovation in how to tackle imbalanced data is missing.

Contrary to using a single classifier [6,12,13], Liangyuan et al. [17] employed a cost-
sensitive ensemble learning method using majority voting. Fan et al. [18] proposed a
pruning mechanism of base classifiers, to minimize the computational cost of ensemble
base cost-sensitive ensemble learning. However, these techniques do not consider the role
of imbalance datasets towards the bias of the classifier [17–19].

In this line of research, some machine learning scientists focused on the role of im-
balanced datasets in the designing of ensemble learning models [20]. For example, Zhang
et al. [8] have proposed an ensemble method for class-imbalanced datasets by splitting
the majority class dataset into various subsets and then training different base learners on
minority class samples and each subset of majority class samples. Similarly, Yuan et al. [21]
oversampled the dataset, used standard AdaBoost [22], and then applied genetic algorithm
(GA) to optimize the weights of the base classifiers. Ali et al. [23] proposed a GentleBoost
ensemble for breast cancer by oversampling the minority samples. Their work consid-
ers the probability of occurrence of each training sample to incorporate the cost effects.
Hou et al. [24] employed dynamic classifier selection [25] to propose a computationally
extensive dynamic ensemble classification META-DESKNN-MI. Their model uses SMOTE
to fix the class imbalance in the training set. Although Xu and Chetia [26] proposed an
efficient implementation of dynamic ensemble classification, unluckily, these are empirical
ensemble, and additionally, ensemble selection and class imbalance are treated differently.

Unfortunately, these approaches are empirical, and thereby, they require the construc-
tion of an ensemble classifier, and if its performance is not satisfactory then discard it to
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try another ensemble classifier strategy. There is a significant deficiency in the literature
for analytical analysis prior to the construction of ensemble classification. In this research,
the problem of designing an empirical model to estimate and predict the performance of
ensemble classification such as majority voting and logical disjunction is considered. For
this design, the formulations are derived using the concepts of conditional joint probability.
For this, the output label of a base learner has been considered as random variables with
different probabilistic values for true negative (TN), false negative (FN), true positive
(TP), and false positive (FP). This is an important, major, and main aspect of this research.
Although, the nature of these formulations and derivations is generic, but we consider
the cost-sensitive and imbalanced datasets to evaluate the forecasted performance of the
ensemble classification using the derived formulations. In experiments, it is analyzed
using an analytical model and experimental observations that in imbalanced datasets with
cost-sensitive scenarios, logical disjunction outperforms the contemporary majority voting
ensemble classification, thus providing a simple and alternative way in such scenarios.

2. The Formulation to Predict the Performance of Ensemble Classification

In classification, a training dataset is used to learn feature space. After the training
process is completed, a test sample is fed into the classifier and it predicts its output label.
The output belongs to true positive (TP), true negative (TN), false positive (FP), or false
negative (FN). It is to note that the nature of this output is random since giving a number
of testing samples generates a random sequence from the set {TP, TN, FP, FN}, and thus,
this set acts as sample space of this random experiment [27,28]. Using this concept, the
methodology used for the derivations of the probability of true positive for ensemble
classification and logical disjunction is presented in Figure 1.
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Figure 1. Analytical methodologies employed to derive the formulation of true positive probabilities
for (a) majority voting based upon three base learners, α, β, and γ. The first layer just represents the
presence of three base learners. The next layer represents the four possibilities in which majority

voting gives true positive, i.e., each base learner decision is true positive
(

TPα, TPβ, TPγ

)
or any

two of three base learner decisions are true positive
(
∼ TPα, TPβ, TPγ

)
,
(

TPα, ∼ TPβ, TPγ

)
, or(

TPα, TPβ, ∼ TPγ

)
. The next layer represents the probabilities of these possibilities to be computed.

The next layer uses the formula of joint probability P(x, y, z) = P(x|y, z)P(y|z)P(z), The next layer
computes probabilities using confusion matrix (b) logical disjunction based upon two base learners α

and β. In logical disjunction, the output decision is true positive if any base learner output is true
positive. This is because, in logical disjunction, the output is positive if any base learner predicts that
it is a positive sample. The description of the other layers is similar to majority voting.

2.1. Probability Perspective of Classifier Outputs

This methodology is presented for binary classification problems, wherein the output de-
cision belongs to four categories, i.e., TP, TN, FN, and FP. Thus, the set {TP, TN, FP, FN}
is the sample space. Considering the output as a random variable, the probabilities (relative
frequencies) of the events are in fact the classification performance measures (TPR, TNR,
FPR, FNR) [29], as follows in Equation (1):

p(TP) = TPR = NTP
N

p(TN) = TNR = NTN
N

p(FP) = FPR = NFP
N

p(FN) = FNR = NFN
N

(1)
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2.2. Ensemble Classifiers

In machine learning, the majority voting ensemble classification technique has gained
the attention of the research community because of its effectiveness and simplicity. The en-
hanced accuracies of ensemble classification are explained by Condorcet’s jury theorem [30],
which states (for binary classification):

• “If individual base classifiers have probabilities greater than 0.5 to correctly classify,
then increasing the number of base classifiers, the probability of correct classification
in majority voting is increased and it approaches to 1.

• If individual base classifiers have probabilities less than 0.5 to correctly classify, then
increasing the number of base classifiers, the probability of correct classification in
majority voting is decreased and it approaches to 0”

In addition to majority voting, this research formulates an analytical model for logical
disjunction-based decision aggregation. Although, the nature of derivation is generic, con-
sidering the number of base three for majority voting (MV) and two for logical disjunction
(LD) just for the sake of simplicity.

2.3. Mutual Dependency

It is to note that since the output of a classifier from the sample space {TP, TN, FP, FN}
is considered as a random variable, there is mutual dependence among the base learners.
For example, if a base learner prediction is true positive, then the other base learner’s
prediction is either true positive or false negative. This is because, if one base learner’s
prediction is true positive, then it is sure that the sample is positive, and thus, the other
base learner predictions are neither true negative nor false positive. Thereby, the output
predictions of the base learners are not mutually independent. This important mutual
dependency has to be considered while formulating conditional probability distribution
for both ensemble classifications.

Consider x, y, and z as the random variables associated with the outputs of the base
classifiers α, β, and γ, respectively. Thereby, if z = TP, then y|z (y given z) is either TP or
FN. Similarly, if z = TP and y is either TP or FN, then x|y, z is also either TP or FN. These
mutual dependencies are summarized in Table 1 as follows:

Table 1. Mutual dependencies of the base learner outputs. The first row represents that if prediction
z of the first classifier is TP, then y given z ( y|z ) can either be TP or FN. Similarly, x|y, z can also be
either TP or FN in this case.

Sr. # z y|z x|y,z

1 TP {TP, FN} {TP, FN}
2 FN {TP, FN} {TP, FN}
3 FP {FP, TN} {FP, TN}
4 TN {FP, TN} {FP, TN}

Considering Xi, Yi, and Zi; i ∈ {TP, TN, FP, FN} as the number of observations for
the base classifiers α, β, and γ, respectively, as summarized in Table 2.

Table 2. Symbolic representation of the number of true positives, false negatives, false positives, and
true negatives for the base learners.

True Positive False Negative False Positive True Negative Total

classifiers α XTP XFN XFP XTN X = XTP + XFN + XFP + XTN

classifiers β YTP YFN YFP YTN Y = YTP + YFN + YFP + YTN

classifiers γ ZTP ZFN ZFP ZTN Z = ZTP + ZFN + ZFP + ZTN
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2.4. Formulation

In majority voting of three base learners α, β, and γ, the ensemble decision is true
positive if at least two base learner decisions are true positive. Thereby, in this majority
voting, true positive is when either all of the three base learner outputs are true positive
or any two of three base learner outputs are true positive. Considering pα(x), pβ(y), and
pγ(z) as the probabilities mass functions of three individual classifiers outputs x, y, z ∈
{TP, FN, FP, TN}, the probability of majority voting to give true positive pMV(TP) is
derived using the concept joint conditional probability distribution. In this equation,
pαβγ

(
TPα, TPβ, TPγ

)
means the joint probability of the event TPα (base learner α gives

TP), TPβ (β gives TP), and TPγ (γ gives TP). In these derivations, the formula of joint
probability for three events P(x, y, z) = P(x|y, z)P(y|z)P(z) is to be kept in mind. It is to
note that if the output of the base learners β and γ is true positive, then surely one thing
is clear, that it is a positive sample. Thus, if a sample is positive, then base learner α has
only two options as output, i.e., either to declare it as true positive or false negative. Thus,
pα

(
TPα

∣∣TPβ, TPγ

)
= XTP

XTP+XFN
and in the similar fashion pβ

(
TPβ

∣∣TPγ

)
= YTP

YTP+YFN
and

pγ(TPγ) =
ZTP

Z . Using these formulations, pαβγ

(
TPα, TPβ, TPγ

)
is to be computed as in

Equation (2).

pαβγ

(
TPα, TPβ, TPγ

)
= pα

(
TPα

∣∣TPβ, TPγ

)
pβ

(
TPβ

∣∣TPγ

)
pγ(TPγ)

pαβγ

(
TPα, TPβ, TPγ

)
=

(
XTP

XTP+XFN

)(
YTP

YTP+YFN

)
ZTP

Z
(2)

Similarly, by computing pαβγ

(
∼ TPα, TPβ, TPγ

)
, pαβγ

(
TPα, ∼ TPβ, TPγ

)
, and

pαβγ

(
TPα, TPβ, ∼ TPγ

)
, the probability of majority voting to give true positive pMV(TP)

is to be computed as in Equation (3). Figure 1a is additionally helpful in this derivation.

pMV(TP) = pαβγ

(
TPα, TPβ, TPγ

)
+ pαβγ

(
∼ TPα, TPβ, TPγ

)
+ pαβγ

(
TPα, ∼ TPβ, TPγ

)
+pαβγ

(
TPα, TPβ, ∼ TPγ

)
pMV(TP) = pα

(
TPα

∣∣TPβ, TPγ

)
pβ

(
TPβ

∣∣TPγ

)
pγ(TPγ)

+pα

(
∼ TPα

∣∣TPβ, TPγ

)
pβ

(
TPβ

∣∣TPγ

)
pγ(TPγ)

+pα

(
TPα

∣∣∼ TPβ, TPγ

)
pβ

(
∼ TPβ

∣∣TPγ

)
pγ(TPγ)

+pα

(
TPα

∣∣TPβ, ∼ TPγ

)
pβ

(
TPβ

∣∣∼ TPγ

)
pγ(∼ TPγ)

pMV(TP) =
(

XTP
XTP+XFN

)(
YTP

YTP+YFN

)
ZTP

Z +
(

XFN
XTP+XFN

)(
YTP

YTP+YFN

)
ZTP

Z

+
(

XTP
XTP+XFN

)(
YFN

YTP+YFN

)
ZTP

Z

+
(

XTP
XTP+XFN

)(
YTP

YTP+YFN

)(
ZFN

ZFN+ZFP+ZTN

)(
1 − ZTP

Z

)

(3)

In logical disjunction of two base learners α and β, the ensemble decision is true
positive if at least one base learner decision is true positive. Thereby, in this logical
disjunction, true positive is when either both base learner outputs are true positive or any
base learner output is true positive. Thus, the probability of logical disjunction to give true
positive pLD(TP) is to be computed as in Equation (4).

pLD(TP) = pαβ

(
TPα, TPβ

)
+ pαβ

(
∼ TPα, TPβ

)
+ pαβ

(
TPα, ∼ TPβ

)
pLD(TP) = pα

(
TPα

∣∣TPβ

)
pβ

(
TPβ

)
+ pα

(
∼ TPα

∣∣TPβ

)
pβ

(
TPβ

)
+pα

(
TPα| ∼ TPβ

)
pβ

(
∼ TPβ

)
pLD(TP) =

(
XTP

XTP+XFN

)
YTP

Y +
(

XFN
XTP+XFN

)
YTP

Y

+
(

XTP
XTP+XFN

)(
YTN

YFN+YFP+YTN

)(
1 − YTP

Y

)
(4)

In majority voting of three base learners α, β, and γ, the ensemble decision is false
negative if at least two base learner decisions are false negative. Thereby, in this majority
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voting, false negative is when either all base learner outputs are false negative or any two
base learner outputs are false negative. Thus, the probability of majority voting to give
false negative pMV(FN) is to be computed as in Equation (5).

pMV(FN) = pαβγ

(
FNα, FNβ, FNγ

)
+ pαβγ

(
∼ FNα, FNβ, FNγ

)
+pαβγ

(
FNα, ∼ FNβ, FNγ

)
+ pαβγ

(
FNα, FNβ,∼ FNγ

)
pMV(FN) = pα

(
FNα

∣∣FNβ, FNγ

)
pβ

(
FNβ

∣∣FNγ

)
pγ(FNγ)

+pα

(
∼ FNα

∣∣FNβ, FNγ

)
pβ

(
FNβ

∣∣FNγ

)
pγ(FNγ)

+pα

(
FNα

∣∣∼ FNβ, FNγ

)
pβ

(
∼ FNβ

∣∣FNγ

)
pγ(FNγ)

+pα

(
FNα

∣∣FNβ,∼ FNγ

)
pβ

(
FNβ

∣∣∼ FNγ

)
pγ(∼ FNγ)

pMV(FN) =
(

XFN
XTP+XFN

)(
YFN

YTP+YFN

)
ZFN
Z +

(
XTP

XTP+XFN

)(
YFN

YTP+YFN

)
ZFN

Z

+
(

XFN
XTP+XFN

)(
YTP

YTP+YFN

)
ZFN

Z

+
(

XFN
XTP+XFN

)(
YFN

YTP+YFN

)(
ZTP

ZTP+ZFP+ZFN

)(
1 − ZFN

Z

)

(5)

In logical disjunction of two base learners α and β, the ensemble decision is false
negative if both base learner decisions are false negative. Thus, the probability of logical
disjunction to give false negative pLD(FN) is to be computed as in Equation (6).

pLD(FN) =pαβ

(
FNα, FNβ

)
= pα

(
FNα

∣∣FNβ

)
pβ

(
FNβ

)
pLD(FN) =

(
XFN

XTP + XFN

)
YFN

Y
(6)

In majority voting of three base learners α, β, and γ, the ensemble decision is false
positive if at least two base learner decisions are false positive. Thereby, in this majority
voting, false positive is when either all base learner outputs are false positive or any two
of three base learner outputs are false positive. Thus, the probability of majority voting to
give false positive pMV(FP) is to be computed as in Equation (7).

pMV(FP) = pαβγ

(
FPα, FPβ, FPγ

)
+ pαβγ

(
∼ FPα, FPβ, FPγ

)
+pαβγ

(
FPα,∼ FPβ, FPγ

)
+pαβγ

(
FPα, FPβ, ∼ FPγ

)
pMV(FP) = pα

(
FPα

∣∣FPβ, FPγ

)
pβ

(
FPβ

∣∣FPγ

)
pγ(FPγ)

+pα

(
∼ FPα

∣∣FPβ, FPγ

)
pβ

(
FPβ

∣∣FPγ

)
pγ(FPγ)

+pα

(
FPα

∣∣∼ FPβ, FPγ

)
pβ

(
∼ FPβ

∣∣FPγ

)
pγ(FPγ)

+pα

(
FPα

∣∣ FPβ, ∼ FPγ

)
pβ

(
FPβ

∣∣∼ FPγ

)
pγ(∼ FPγ)

pMV(FP) =
(

XFP
XFP+XTN

)(
YFP

YFP+YTN

)
ZFP

Z +
(

XTN
XFP+XTN

)(
YFP

YFP+YTN

)
ZFP

Z

+
(

XTP
XFP+XTN

)(
YTN

YFP+YTN

)
ZFP

Z

+
(

XTP
XFP+XTN

)(
YTP

YFP+YTN

)(
ZTN

ZTP+ZFN+ZFP

)(
1 − ZFP

Z

)

(7)

In logical disjunction of two base learners α and β, the ensemble decision is false
positive if any base learner decision is false positive. Thereby, in this logical disjunction,
false positive is when either both base learner outputs are false positive or any base learner
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output is false positive. Thus, the probability of logical disjunction to give false positive
pLD(FP) is to be computed as in Equation (8).

pLD(FP) = pαβ

(
FPα, FPβ

)
+ pαβ

(
∼ FPα, FPβ

)
+ pαβ

(
FPα,∼ FPβ

)
pLD(FP) = pα

(
FPα, FPβ

)
pβ

(
FPβ

)
+ pα

(
∼ FPα

∣∣FPβ

)
pβ

(
FPβ

)
+pα

(
FPα

∣∣∼ FPβ

)
pβ

(
∼ FPβ

)
pLD(FP) =

(
XFP

XFP+XTN

)
YFP
Y +

(
XTN

XFP+XTN

)
YFP
Y

+
(

XFP
XFP+XTN

)(
YTN

YTP+YFN+YTN

)(
1 − YFP

Y

)
(8)

In majority voting of three base learners α, β, and γ, the ensemble decision is true
negative if at least two base learner decisions are true negative. Thereby, in this majority
voting, true negative is when either all base learner outputs are true negative or any two
base learner outputs are true negative. Thus, the probability of majority voting to give true
negative pMV(TN) is to be computed as in Equation (9).

pMV(TN) = pαβγ

(
TNα, TNβ, TNγ

)
+ pαβγ

(
∼ TNα, TNβ, TNγ

)
+ pαβγ

(
TNα, ∼ TNβ, TNγ

)
+pαβγ

(
TNα, TNβ,∼ TNγ

)
pMV(TN) = pα

(
TNα

∣∣TNβ, TNγ

)
pβ

(
TNβ

∣∣TNγ

)
pγ(TNγ) + pα

(
∼ TNα

∣∣TNβ, TNγ

)
pβ

(
TNβ

∣∣TNγ

)
pγ(TNγ)

+pα

(
TNα

∣∣∼ TNβ, TNγ

)
pβ

(
∼ TNβ

∣∣TNγ

)
pγ(TNγ)

+pα

(
TNα

∣∣TNβ,∼ TNγ

)
pβ

(
TNβ

∣∣∼ TNγ

)
pγ(∼ TNγ)

pMV(TN) =
(

XTN
XFP+XTN

)(
YTN

YFP+YTN

)
ZTN

Z +
(

XFP
XFP+XTN

)(
YTN

YFP+YTN

)
ZTN

Z +
(

XTN
XFP+XTN

)(
YFP

YFP+YTN

)
ZTN

Z

+
(

XTN
XFP+XTN

)(
YTN

YFP+YTN

)(
ZFP

ZTP+ZFN+ZFP

)(
1 − ZTN

Z

)
(9)

In logical disjunction of two base learners α and β, the ensemble decision is true
negative if both base learner decisions are true negative. Thus, the probability of logical
disjunction to give true negative pLD(FN) is to be computed as in Equation (10).

pLD(TN) =pαβ

(
TNα, TNβ

)
= pα

(
TNα

∣∣TNβ

)
pβ

(
TNβ

)
pLD(TN) =

(
XTN

XFP + XTN

)
YTN

Y
(10)

3. Experiments and Results

To evaluate the proposed analytical formulations to predict the performance of en-
semble classification, UCI machine learning repository has been considered. To establish
another interesting fact of these proposed analytical formulations, imbalanced datasets
have been considered. In addition to the significant difference between the number of
samples for each class, these datasets are also cost-sensitive, i.e., there is a different cost
of falsely predicting a positive (minority class) or negative (majority) sample, since neg-
ative samples are in the majority, as shown in Table 3. Thereby, the base learners have a
tendency to predict more towards negative class as compared to positive class and thus
pFN > pFP. In addition to this, the cost of false negative is greater than false positive
cFN > cFP, where negative means being healthy and positive means being diseased. In this
regard, these datasets create the intensified scenario of cost-sensitive imbalanced classifi-
cation cFN pFN > cFP pFP. From this perspective, the proposed analytical formulations are
evaluated on four different datasets, as in the following subsections.
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Table 3. Distribution (number of samples) of the considered UCI datasets.

Sr. # Dataset +ve Samples −ve Samples Total

1 Breast Cancer 85 201 286

2 Wilt 74 4265 4339

3 Haberman’s Survival 81 225 306

4 Thoracic Surgery 70 400 470

3.1. Breast Cancer Dataset

This dataset is generated by the institute of oncology, university medical center Ljubl-
jana, Yugoslavia. This binary dataset is described by 9 medical attributes, and it includes
85 positive (recurrence-events) and 201 negative (no-recurrence-events) instances of cancer
patients [31]. The observed confusion matrices of the individual and ensemble classifiers
are shown in Table 4, where the positive class means a person has breast cancer, whereas
the negative class means a person is normal. Using these confusion matrices, the observed
probabilities are compared with the predicted probabilities computed from the proposed
formulations and are shown in Table 5.

Table 4. Observed confusion matrices of the base learners, logical disjunction, and majority voting
base ensemble classification, where the positive class means a person has breast cancer, whereas the
negative class means a person is normal in Breast Cancer Dataset.
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Table 5. Performance (probabilities) comparison of the base learners with the predicted and observed
performances of logical disjunction and majority voting for Breast Cancer Dataset.

Technique pTP pFN pFP pTN Sum

Bayes 0.1364 0.1608 0.1154 0.5874 1

Decision Stamp 0.1573 0.1399 0.1399 0.5629 1

Naïve Bayes 0.1294 0.1678 0.1049 0.5979 1

Logical Disjunction (Predicted) 0.2215 0.0757 0.2323 0.4705 1

Logical Disjunction (Observed) 0.1888 0.1084 0.1993 0.5035 1

Majority Voting (Predicted) 0.1372 0.1600 0.0542 0.6486 1

Majority Voting (Observed) 0.1399 0.1573 0.1119 0.5909 1

3.2. Wilt Dataset

This dataset was generated from a remote sensing study for detecting diseased trees
using Quickbird (a satellite) imagery. This is a highly imbalanced class containing 74
positive (diseased trees) and 4265 negative (normal) instances [32]. The observed confusion
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matrices of the individual and ensemble classifiers are shown in Table 6, where the positive
class means a tree is diseased, whereas the negative class means the tree is normal. Using
these confusion matrices, the observed probabilities are compared with the predicted
probabilities computed from the proposed formulations and are shown in Table 7.

Table 6. Observed confusion matrices of the base learners, logical disjunction, and majority voting
base ensemble classification, where the positive class means a tree is diseased, whereas the negative
class means the tree is normal in Wilt Dataset.
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Table 7. Performance (probabilities) comparison of the base learners with the predicted and observed
performances of logical disjunction and majority voting for Wilt Dataset.

Technique pTP pFN pFP pTN Sum
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3.3. Haberman’s Survival Dataset

This dataset is about the survival of the patients of Billings Hospital Chicago who
underwent breast surgery because of cancer. This dataset is described by three features, and
it includes 81 positive (the patient died within 5 years after the surgery) and 225 negative
(the patient survived 5 years or longer after the surgery) instances [33]. The observed
confusion matrices of the individual and ensemble classifiers are shown in Table 8, where
the positive class means a patient will survive after treatment, whereas the negative class
means the patient will not survive after treatment. Using these confusion matrices, the
observed probabilities are compared with the predicted probabilities computed from the
proposed formulations and are shown in Table 9.
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Table 8. Observed confusion matrices of the base learners, logical disjunction and majority voting
base ensemble classification, where the positive class means a patient will survive after treatment,
whereas the negative class means the patient will not survive after treatment in Haberman’s Survival
Dataset.
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Table 9. Performance (probabilities) comparison of the base learners with the predicted and observed
performances of logical disjunction and majority voting for Haberman’s Survival Dataset.

Technique pTP pFN pFP pTN Sum

JRip 0.0948 0.1699 0.0817 0.6536 1

Logit Boost 0.1144 0.1503 0.1111 0.6242 1

Naïve Bayes Multi-nominal 0.1177 0.1471 0.1177 0.6177 1

Logical Disjunction (Predicted) 0.1812 0.0835 0.2110 0.5243 1

Logical Disjunction (Observed) 0.1144 0.1503 0.1111 0.6242 1

Majority Voting (Predicted) 0.0975 0.1672 0.0392 0.6960 1

Majority Voting (Observed) 0.1111 0.1536 0.0882 0.6471 1

3.4. Thoracic Surgery Dataset

This dataset is about the survival of the patients of the Wroclaw Thoracic Surgery
Center who underwent major lung resections because of primary lung cancer. This dataset
contains 70 positive (patient died within 1 year after the surgery) and 400 negative (patients
survived 1 year or longer after the surgery) instances. The observed confusion matrices
of the individual and ensemble classifiers are shown in Table 10, where the positive class
means a patient will survive after treatment, whereas the negative class means the patient
will not survive after treatment. Using these confusion matrices, the observed probabilities
are compared with the predicted probabilities computed from the proposed formulations
and are shown in Table 11.
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Table 10. Observed confusion matrices of the base learners, logical disjunction and majority voting
base ensemble classification, where the positive class means a patient will survive after treatment,
whereas the negative class means the patient will not survive after treatment in Thoracic Surgery
Dataset.
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Table 11. Performance (probabilities) comparison of the base learners with the predicted and observed
performances of logical disjunction and majority voting for Thoracic Surgery Dataset.

Technique pTP pFN pFP pTN Sum

Multilayer Perceptron 0.0319 0.1170 0.0915 0.7596 1

Naïve Bayes 0.0234 0.1255 0.0894 0.7617 1

IBK 0.0213 0.1277 0.1000 0.7511 1

Logical Disjunction (Predicted) 0.0503 0.0986 0.1713 0.6798 1

Logical Disjunction (Observed) 0.0404 0.1085 0.1553 0.6957 1

Majority Voting (Predicted) 0.0115 0.1375 0.0286 0.8225 1

Majority Voting (Observed) 0.0128 0.1362 0.0617 0.7894 1

3.5. Discussion & Analysis

The experimental results in Tables 5, 7, 9 and 11 are described as graphs in Figure 2
to facilitate the comparison. From these tables and figure, it is to note that the predicted
performances (pFN , pFP, pFN , and pTN) of the ensemble classifications match with the
observed performance. These observations are quite encouraging and validate the effective-
ness of the proposed formulations for analytical analysis prior to the actual development of
ensemble classification. Thus, the proposed analytical analysis is quite helpful for deciding
which base learners to be chosen and the number of base learners. The wise and early
decision in this regard is useful in saving time, contrary to the empirical approach in which
a model is first constructed and then continued to be discarded if not satisfactory. This is
an important, major, and main aspect of the proposed formulations.

Understanding the nature of logical disjunction and majority voting base ensemble
classifications, in Equations (3)–(10), it is to note that logical disjunction classifies a positive
sample if any base learner classifies it as a positive sample. This is contrary to ensemble
classification, which needs the majority of base learner decisions to label it as a positive
sample. Thereby, it results in a decrease in the false negative rate with a tradeoff of an
increase in the false positive rate, as in Tables 5–11 and Figure 2. Understanding the cost of
false negatives as compared to false positives in disease diagnosis, this increase is quite
useful. In these datasets, there is the scenario of cFN pFN > cFP pFP, and thereby, logical
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disjunction has been beneficial. If there is a contrary scenario of cFN pFN < cFP pFP, then
logical conjunction is beneficial.
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Figure 2. Graphical comparison of the predicted and the observed performance of majority voting
and logical disjunction-based ensemble classification techniques for the (a) Breast Cancer Dataset, (b)
Wilt Dataset, (c) Haberman’s Survival Dataset, and (d) Thoracic Surgery Dataset.

3.6. Conclusions

This research initiates from the consideration of true positive rate, false negative rate,
false positive rate, and true negative rate as probabilities of base learners. Using this infor-
mation, the concept of conditional joint probability has been applied to derive the analytical
model to predict the performance of ensemble classification techniques such as majority
voting and logical disjunction. The derivation of the analytical model shows that the perfor-
mance of such ensemble classification can be predicted even before its actual construction
using the individual performances of the base learners. The experimental observations
justify the prediction of this performance. This analytical approach is useful for purposeful
efforts in the construction of an appropriate ensemble classifier, contrary to the empirical
approach which is a trial-based mechanism. Additionally, in the analysis and comparison
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of the predicted and observed performances, it is observed that for highly imbalanced
datasets, the choice of logical disjunction is more appropriate as compared to the conven-
tional majority voting for ensemble classification. Furthermore, in the case of cost-sensitive
classification with highly imbalanced datasets, logical disjunction is even more appropriate
as compared to majority voting. This study also shows that unwanted classification effects
from highly imbalanced datasets can also be fixed using logical disjunction-based ensemble
classification, contrary to the conventional under-sampling and over-sampling solutions.
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