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ABSTRACT
Time delay and velocity estimation methods have been widely studied subjects in the context of signal processing, with applications in many
different fields of physics. The velocity of waves or coherent fluctuation structures is commonly estimated as the distance between two mea-
surement points divided by the time lag that maximizes the cross correlation function between the measured signals, but this is demonstrated
to result in erroneous estimates for two spatial dimensions. We present an improved method to accurately estimate both components of the
velocity vector, relying on three non-aligned measurement points. We introduce a stochastic process describing the fluctuations as a super-
position of uncorrelated pulses moving in two dimensions. Using this model, we show that the three-point velocity estimation method, using
time delays calculated through cross correlations, yields the exact velocity components when all pulses have the same velocity. The two- and
three-point methods are tested on synthetic data generated from realizations of such processes for which the underlying velocity components
are known. The results reveal the superiority of the three-point technique. Finally, we demonstrate the applicability of the velocity estima-
tion on gas puff imaging data of strongly intermittent plasma fluctuations due to the radial motion of coherent, blob-like structures at the
boundary of the Alcator C-Mod tokamak.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0197251

I. INTRODUCTION

Velocity estimation plays a crucial role in a wide range of scien-
tific and technological fields. Its applications extend from analyzing
turbulent systems, such as atmospheric phenomena1 and magne-
tized plasmas, to clinical ultrasound scanning,2 and to exploring
disciplines such as astrophysics and space sciences.3 Moreover, it
plays a key role in enhancing the effectiveness of radar systems
and improving communication technologies.4 Many different tech-
niques have been studied, conditioned by the field of application
and the experimental setup. In this contribution, we are addressing
the problem of estimating the velocity of localized structures in an
intensity field recorded in a two-dimensional plane.

One particular example of such a system is fluctuations due
to field-aligned filaments at the boundary of magnetically con-
fined plasmas. These are high-pressure structures that are localized
in the plane perpendicular to the magnetic field, thus commonly
referred to as blobs. In many experimental setups, a gas-puff imag-
ing diagnostic measures light emission from these coherent struc-
tures, which move radially out of the plasma column.5–7 Different
approaches have been employed for velocity estimation in this setup.
Most commonly, the velocity is inferred from time-delay estima-
tion (TDE) from the measured signals. TDE methods range from
cross correlation techniques8–18 to wavelet methods19 and dynamic
programming.20–24 Alternative approaches to velocity estimation,
not relying on cross correlations, encompass Fourier analysis,25–29
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optical flow continuity,30,31 blob tracking,32–35 and machine learning
based algorithms.36–39

In its simplest form, the standard method estimates the velocity
of propagation between two measurement points based on the
distance between those points and the time delay between the sig-
nals recorded. In fluctuating media, this time delay is commonly
estimated as the time lag that maximizes the cross correlation func-
tion between the signals. In the following, we will refer to this as
the two-point method. This method is inaccurate if the velocity
of propagation is not aligned with the measurement points or
when the propagating structures are tilted.28,29,40 The commonly
used Fourier analysis methods are subject to the same limitations
as this two-point estimation method.14,26–28 Improved methods for
velocity estimation have been developed using spatial cross cor-
relation functions, but these are limited to high image resolution
diagnostics.17,30,41–43

The key idea underlying the method lies in the realization that
the estimated time delay between two measurement points is not
determined solely by the component of the velocity vector in the
direction of those two points. Instead, it depends on both com-
ponents of the velocity vector. This phenomenon was previously
observed, particularly in Ref. 28, where synthetic data were used to
estimate velocities using a two-point approach. It was found that the
input velocities were off by a factor that could be corrected using
the perpendicular component of the velocity; however, this observa-
tion was not further developed into a velocity estimation method.
In Ref. 29, similar relations were obtained in the case of propa-
gating wave-like structures and were applied to develop a velocity
estimation method based on cross-phase analysis. In this work, we
rigorously demonstrate that the same principles can be applied to the
propagation of localized pulses and that the results are valid for any
distribution of pulse amplitudes and density of pulses. In addition,
we benchmark the method against synthetic data to confirm that it
accurately determines velocities for any direction and to explore its
applicability dependence on spatial resolution.

In Sec. II, we present an improved three-point method to
estimate the velocity of fluctuation structures moving in a two-
dimensional plane from simple geometric considerations. In Sec. III,
a stochastic model describing the fluctuations as a superposi-
tion of Gaussian pulses moving with constant velocities in the
two-dimensional plane is introduced. This demonstrates that the
three-point method can be used with the time delays estimated from
cross correlation functions and that it is independent of the distri-
bution of pulse amplitudes as well as the density of pulses. This is
verified by the analysis of synthetic data from realizations of this
process in Sec. IV. In Sec. V, the three-point method is applied
to measurement data from gas puff imaging experiments at the
boundary of the Alcator C-Mod tokamak. A discussion of the
TDE method and conclusions of these investigations are presented
in Sec. VI. Finally, Python implementations of both the velocity
estimation methods and the synthetic data generation described in
this paper are openly available on GitHub.44,45

II. TIME DELAY ESTIMATION
Consider a front propagating along its normal in a two-

dimensional plane with horizontal velocity component v along the
x-axis and vertical velocity component w along the y-axis. The

FIG. 1. A structure moving with velocity components (v, w) is recorded at fixed
measurement points P0, Px , and Py . Px is separated a horizontal distance △x

from P0, and Py is separated a vertical distance△y from P0.

perturbation is measured at three spatially separated points P0, Px,
and Py as illustrated in Fig. 1. In this arrangement, Px is horizontally
separated from P0 by a distance △x, while Py is vertically separated
from P0 by a distance△y. We denote the velocity vector angle from
the horizontal axis by α.

The objective is to estimate the velocity components v and
w from the signals measured at P0, Px, and Py. Consider first the
recordings at P0 and Px. Let τx be the time delay between the mea-
surements of the front at these positions. In the standard two-point
TDE method, this time lag is interpreted as the time taken for the
pulse to traverse horizontally the distance △x between points P0
and Px, that is, τx =△x/v. From this, the two-point estimate for the
horizontal velocity component v is given by

v̂2 =
△x

τx
, (1a)

where we used the subscript 2 to denote the two-point estimate and
added a hat symbol ⋅̂ to indicate that this relation is meant as an
estimate of the velocity component. Similarly, by estimating the time
lag τy between the signals measured at P0 and Py, the vertical velocity
component is estimated as

ŵ2 =
△y

τy
. (1b)

This is the standard two-point velocity estimation method, which is
essentially a one-dimensional treatment of the problem.

However, this interpretation of the time lags τx and τy is obvi-
ously flawed.28,29,40 To illustrate this, consider the special case of a
horizontal front that moves strictly vertically, rendering v = 0. Such
a pulse passes through the measurement points P0 and Px simulta-
neously, resulting in a time lag τx = 0. This would then lead to an
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infinitely large estimated horizontal velocity component v̂2. More
generally, if the pulse moves at a slight angle to any coordinate
axis, the two-point method will give a severe overestimate of the
corresponding velocity component.

With three non-aligned measurement points P0, Px, and Py,
it is straightforward to give correct estimates of the two velocity
components. As the pulse moves, it will first be measured at P0
and some time later at Px, as seen in Fig. 1. The structure will have
traveled a distance △x cos α = v△x/(v2 + w2)1/2 along its direction
of motion between its arrivals at P0 and Px. The time lag τx corre-
sponds then to the time △x cos α/u it takes for the pulse to travel
this distance,

τx =
v△x

v2 + w2 . (2a)

In order to estimate both velocity components, a third measurement
point that is vertically separated from P0 is required. A similar
geometrical consideration gives the distance the structure travels as
△y sin α = w△y/(v2 + w2)1/2, where △y is the vertical separation
of the measurement points. The resulting lag time is then given by
△y sin α/u, or in terms of the velocity components,

τy =
w△y

v2 + w2 . (2b)

The relations given by Eqs. (2a) and (2b) can be inverted with respect
to v and w, leading to the velocity component estimates,

v̂3 =
τx△x

τx
2 + τy

2△2
x/△2

y
, (3a)

ŵ3 =
τy△y

τy
2 + τx

2△2
y/△2

x
. (3b)

These estimates do not have the deficiency of the simple two-point
method when the pulse moves along one of the coordinate axes. In
particular, if the pulse arrives simultaneously at P0 and Px, the time
lag τx vanishes and so does the estimated horizontal velocity com-
ponent from Eq. (3a). A similar three-point method has previously
been discussed, recommending the use of the cross-phase from the
cross-power spectral density to estimate the time delays.29

Note that by dividing the numerator and denominator of
Eq. (3a) by △2

x and of Eq. (3b) by △2
y , it is possible to write these

estimates in terms of the simple two-point velocity estimates,

v̂3 =
v̂2

1 + (̂v2/ŵ2)2 , (4a)

ŵ3 =
ŵ2

1 + (ŵ2/̂v2)2 . (4b)

These equations have already been obtained in Ref. 28 by
comparing input velocities in synthetic data with the output veloc-
ities obtained with the two-point method. From these relations,
it follows that the two-point estimates are always greater than or
equal to the three-point estimates, v̂2 ≥ v̂3 and ŵ2 ≥ ŵ3. In particular,
when the horizontal and vertical velocity components are equal, the

simple two-point method overestimates both velocity components
by a factor of two. Moreover, the ratio of the two velocity compo-
nents is reversed for the two-point method since v̂3/ŵ3 = ŵ2/̂v2. In
particular, if v̂3 > ŵ3, then v̂2 < ŵ2 and vice versa.

These considerations demonstrate that the two velocity compo-
nents of a sharp front or a plane wave can be accurately estimated by
using three non-aligned measurement points. It is straightforward
to generalize this to a localized pulse that is symmetric with respect
to its direction of motion, which gives the same expressions for the
velocity components. However, in this case, the distance between the
measurement points must be smaller than the structure size. More-
over, in turbulent flows, there can be an overlap of structures and
a distribution of amplitudes, sizes, and velocities. This motivates a
statistical treatment, which is presented Sec. III.

III. STOCHASTIC MODELLING
It is generally anticipated that the TDE presented in Sec. II for

the case of a single front can be generalized to a fluctuating state
with multiple structures. For a statistically stationary process, the
time lags τx and τy are then typically taken as the correlation times
that maximize the cross correlation functions for measurements at
the positions P0, Px, and Py. In this section, it is demonstrated that
Eq. (3), indeed, gives exact results in the case of a superposition of
uncorrelated Gaussian pulses having all the same size and velocity
components. The derivation provided here will be schematic, with
a more detailed and comprehensive study presented in a separate
publication.

Consider a stochastic process given by a superposition of K
uncorrelated pulses,

ΦK(x, y, t) =
K(T,L)

∑
k=1

akφ(x − v(t − tk)
ℓx

,
(y − yk) − w(t − tk)

ℓy
), (5)

where each pulse with amplitude ak arrives at x = 0 and y = yk at
time t = tk, and where yk and tk are uniformly distributed random
variables. The process has duration T, and the vertical domain size
is L. The pulses move with velocity components (v, w) and have
horizontal and vertical sizes ℓx and ℓy, respectively. All pulses are
taken to have the same functional form φ, which is here assumed to
be Gaussian,

φ(θx, θy) =
1

2π
exp(−θ2

x + θ2
y

2
). (6)

This process is temporally stationary and spatially homogeneous. A
straightforward average over all random variables gives the mean
value of the process,46–51

⟨Φ⟩ = ⟨a⟩ ℓx

vτw

ℓy

L
, (7)

where the angular brackets ⟨⋅⟩ represent an average over all random
variables, ⟨a⟩ is the average pulse amplitude, and τw = T/⟨K⟩ is the
average waiting time between pulses. The factor ℓx/vτw is the ratio
of the radial transit time ℓx/v to the average waiting time and, there-
fore, determines the degree of temporal pulse overlap. Similarly, ℓy/L
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determines the degree of spatial pulse overlap in the vertical direc-
tion. It can furthermore be shown that the variance of the process is
given by

Φ2
rms =

⟨a2⟩
2π

ℓx

vτw

ℓy

L
, (8)

showing that the relative fluctuation level Φrms/⟨Φ⟩ becomes large
when there is little overlap of pulses.46–51

The cross correlation function of this process is defined as

RΦ(△x,△y,△t) = ⟨ΦK(x, y, t)ΦK(x +△x, y +△y, t +△t)⟩, (9)

where △x, △y, and △t are lags in space and time. Performing this
average using the Gaussian pulse shape leads to the following cross
correlation function:

RΦ(△x,△y,△t)

= ⟨Φ⟩2 +Φ2
rms exp

⎛
⎝
−1

2
(△x − v△t

ℓx
)

2
− 1

2
(△y − w△t

ℓy
)

2⎞
⎠

.

(10)

The time lag△t maximizing RΦ in Eq. (10) for fixed spatial lags△x
and△y is given by

τmax RΦ =
v△x/ℓ2

x + w△y/ℓ2
y

(v/ℓx)2 + (w/ℓy)2 . (11)

It can be demonstrated that if the pulses are tilted such that they are
aligned with their direction of motion, the size dependence drops
out and the time of maximum cross correlation simplifies to

τmax RΦ =
v△x + w△y

v2 + w2 . (12)

If the process is recorded at three measurement points as illustrated
in Fig. 1, the time lags τx and τy maximizing the cross correlation
functions at the fixed spatial lags of the given setup can be estimated.
In particular, for△y = 0, the cross correlation function is maximum
for time lag τx = v△x /(v2 + w2), while for △x = 0, the cross cor-
relation function is maximum for time lag τy = w△y /(v2 + w2).
This is identical to the results in Eq. (3) obtained by geometrical
considerations, thus leading to the same expressions for the velocity
components. It is also straightforward to obtain velocity estimates
from any two time delay estimates, meaning that the three points
used by the method need not be orthogonal or aligned with the
coordinate grid. Finally, it is straightforward to show that the time
of maximum cross correlation given by Eq. (12) agrees with the
cross-phase TDE suggested in Ref. 29.

The results from this stochastic modeling cannot be overem-
phasized. First, it shows that the three-point calculation of pulse
velocities obtained from simple geometric considerations is exact in
the case of a superposition of uncorrelated Gaussian pulses which all
have the same size and velocity. Second, this estimate is independent
of the distribution of pulse amplitudes as well as the degree of pulse
overlap or the density of pulses. Finally, it confirms that the cross
correlation function can, indeed, be used for TDE.

IV. NUMERICAL SIMULATIONS
In order to confirm the theoretical predictions above, we

performed numerical realizations of the stochastic process. The
Gaussian pulses are taken to be symmetric, ℓx = ℓy = ℓ, and the total
speed u = (v2 + w2)1/2 is fixed while the ratio of the velocity com-
ponents v/w varies between realizations. The vertical domain size is
set to L = 10ℓ, and periodic vertical boundary conditions are imple-
mented. The amplitude is, for simplicity, taken to be the same for
all pulses, and the total duration of the process is uT/ℓ = 103 with
K = 103 pulses in total. The resulting fluctuations are measured
at a fixed reference point P0, and two auxiliary points Px and Py
separated by a pulse size ℓ in the x-direction and in the y-direction,
respectively. The sampling time is 10−2ℓ/u, thus representing
typical experimental conditions with high temporal sampling rates
but relatively coarse-grained spatial resolution of the measurements,
as detailed in Sec. V.

Simulations are carried out for various combinations of input
velocities v and w. For each case, the estimated velocities v̂ and ŵ
are computed using either the two- or the three-point method as
described by Eqs. (1) and (3), respectively. In both cases, the time
lags are obtained from the cross correlation functions. The results of
the velocity estimation are presented in Fig. 2, where the estimates
resulting from the two- and three-point methods are shown with
crosses and filled circles, respectively.

As suggested by the stochastic model in Sec. III, the three-point
method gives correct estimates for both velocity components in all
cases, despite a likely marginal spatial resolution for the measure-
ment points, which are separated by a pulse size ℓ in the numerical
simulations. However, the two-point method fails as expected from
the discussion in Sec. III. When the pulse velocity vector is nearly
parallel to one of the coordinate axes, the error for the opposite
velocity component can be arbitrarily large. Indeed, the two-point
estimate of the velocity vector can, according to Eq. (2), be written as
(̂v2/u, ŵ2/u) = (u/v, u/w), which is represented by the dashed lines

FIG. 2. Estimated horizontal v and vertical w velocity components from a super-
position of uncorrelated Gaussian pulses using the two-point (crosses) and
three-point (circles) methods and TDE from cross correlation functions. Indepen-
dent realizations of the process are performed for different ratios of the horizontal
and vertical velocities at a fixed total velocity u. The unit circle is the exact velocity,
while the dashed lines show the erroneous two-point estimate from Eq. (4).
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in Fig. 2. This is an excellent description of the simulation results
and demonstrates the failure of the two-point method when one of
the velocity components is much smaller than the other.

In order to quantify this, consider the case where we want to
ensure that the relative error from the two-point estimate of the
vertical velocity component ŵ2 remains below a value p. According
to Eq. (2b), this means that ŵ2/w = 1 + v2/w2 < 1 + p. It follows that
the ratio of the horizontal to vertical velocity components is given
by v2/w2 < p, that is, when the error on the estimate of the vertical
component is small, p≪ 1, the horizontal velocity component is
significantly smaller than the vertical component. From Eq. (2a),
it furthermore follows that the relative error for the horizontal
velocity component is v̂/v = 1 + w2/v2 = 1 + 1/p. So, for a 10%
relative error on the vertical component, p = 10−1, the error for
the horizontal velocity component is an order of magnitude larger,
v̂2/v = 11, when using the two-point estimates. Of course, in prac-
tical applications, the true velocity components are unknown and
there is no way to infer the relative error from the two-point
method.

To further test the robustness of the method with respect
to the spatial resolution, we make independent realizations of the
process with fixed velocities v = w and varying spatial sampling
distances△x =△y =△. Moreover, additive temporally and spatially
uncorrelated white noise has been added to simulate measurement
noise.52 The results of the three-point velocity estimation method
are presented in Fig. 3, where the squared error is defined by

E2 = (̂v3 − v)2 + (ŵ3 − w)2

v2 + w2 . (13)

For the cases with a high signal-to-noise ratio, the errors are small
(E < 0.1) for spatial resolutions in the range 10−2 <△/ℓ < 5. When
△/ℓ < 5 × 10−2, the time maximizing the cross correlation between
the signals at different points is of the order or the sampling time
dt = 10−2ℓ/u, which leads to errors in its estimation even though the
cross correlation function is interpolated in time. A possible way to
solve this is to use more distant measurement points if those exist.
On the other hand, when △/ℓ > 5, a pulse detected at one point

FIG. 3. Error in three-point velocity estimation for independent realizations of the
process performed for different spatial resolutions △x =△y =△ and v = w for
cases with no noise (blue dots), signal-to-noise ratio of 50 (black down triangles),
and signal-to-noise ratio of 1 (black up triangles). uT/ℓ = 104 and K = 104.

might not be detected at the other measurement points, meaning
that the signals at different points become uncorrelated and it is
not possible to accurately estimate the cross correlation maximum,
and hence, we obtain the order unity error shown in Fig. 3 for these
cases.

A comprehensive numerical simulation study has been per-
formed, testing the three-point method for velocity estimation for
various pulse functions and distributions of pulse amplitudes, sizes,
and velocities as well as sampling rates and density of pulses. It is
generally found to give accurate estimates of the average velocity
components, while the two-point method consistently fails to
reliably estimate both components. The details of this study will be
presented in a separate report.

V. EXPERIMENTAL MEASUREMENTS
Alcator C-Mod is a compact, high-field tokamak with major

radius R0 = 0.68 m and minor radius r0 = 0.21 m.53–55 The device
is equipped with a gas puff imaging diagnostic, which consists of
a 9 × 10 array of in-vessel optical fibers with toroidally viewing,
horizontal lines of sight, as shown in Fig. 4.7,26 The plasma emission
collected in the views is filtered for He I line emission (587 nm)
that is locally enhanced in the object plane by an extended He
gas puff from a nearby nozzle. Because the helium neutral density
changes relatively slowly in space and time, rapid fluctuations in
He I emission are caused by local electron density and temperature
fluctuations. The GPI intensity signals are, therefore, taken as a
proxy for the plasma density.5,7

The optical fibers are coupled to high-sensitivity avalanche
photodiodes, and the signals are digitized at a rate of 2 × 106 f/s. The
viewing area covers the major radius from 88.00 to 91.08 cm and ver-
tical coordinate from −4.51 to −1.08 cm with an in-focus spot size of
3.8 mm for each of the 90 individual channels. The measurements
presented here were done during the last operational year of Alcator

FIG. 4. Toroidal and poloidal cross section views of the Alcator C-Mod tokamak,
showing the closed magnetic flux surfaces in the center of the device (closed cyan
curves), the magnetic separatrix and X-point at the lower part of the machine
(red curve), and field lines intersecting material surfaces in the scrape-off layer
(green curves). The boxes along the plasma boundary show the actual tiles on the
divertor and main chamber wall as well as the limiter structures that protect wave
antenna and diagnostic systems. Also shown is the location of the gas puff imaging
diagnostic system comprised by the 9 × 10 avalanche photodiode view channels,
whose intensity signals are amplified by neutral gas puff from a nearby nozzle.
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FIG. 5. Fluctuation time series recorded using the gas puff imaging diagnostic
on Alcator C-Mod at different radial positions, revealing radial motion of large-
amplitude bursts. Each time series is normalized so as to have vanishing mean
and unit standard deviation.

FIG. 6. Starting from a reference pixel P, the cross correlation function is computed
with respect to all four neighbors. Maximization of these functions leads to time
delays τi,j with respect to each neighbor. Then, each combination of horizontal and
vertical neighbors leads to a velocity estimate (̂v (h), ŵ (h)

), with h = 1, . . . , 4.
The resulting velocity estimate at P is taken to be the average of all these velocity
estimates. If any neighbor pixel is dead, it is not taken into account, and only good
pixels lead to velocity estimates that enter in the final average.

C-Mod. Numerous diodes were broken, leading to a lack of data for
several channels in the 9 × 10 array of measurement points.

The experiment analyzed here was a deuterium fueled plasma
in a lower single null divertor configuration with only Ohmic heat-
ing. We present an analysis of the plasma fluctuations recorded using
the gas puff imaging system for discharge number 1 160 629 026 in
the time frame from 1.22 to 1.50 s. This discharge had a plasma
current of Ip = 1.1 MA, an axial magnetic field of B0 = 5.4 T, and
a Greenwald fraction of line-averaged density ne/nG = 0.27, where
the Greenwald density is given by nG = (Ip/πr2

0)1020 m−3 with Ip in
units of MA and r0 in units of meters.56 Analysis of some of these
measurement data has previously been reported in Refs. 57 and 58
with a focus on the fluctuation statistics in the far scrape-off layer.

Cross-field particle transport at the boundary of magnetically
confined plasmas is generally attributed to localized blob-like
filaments moving radially outward toward the main chamber wall,
resulting in intermittent and large-amplitude fluctuations in the
plasma parameters.57–66 Such radial motion is evident from the
raw measurement data time series at different radial positions,
presented in Fig. 5. Here, we show the measured line intensity
signals at Z = −2.2 cm, where each time series Φ(t) is normalized
so as to have vanishing mean value and unit standard deviation,
Φ̃ = (Φ − ⟨Φ⟩)/Φrms. Here, the mean value ⟨Φ⟩ and the standard
deviation Φrms are calculated by a running mean over ∼1 ms in order
to remove low-frequency trends in the time series. In Fig. 5, several
large-amplitude events propagate radially outward with velocities of
the order of 1000 m/s.

The velocity of these fluctuations has been estimated with both
the two- and three-point TDE methods described above, using the
lag times that maximize the cross correlation function for radial and
vertical displacements. For each diode view position, the velocity
components are estimated based on correlations with all nearest
neighbor diode view positions and averaged radially and vertically,
as depicted in Fig. 6. The estimated velocities with these two methods
are presented in Fig. 7. The crosses correspond to the location of
broken diode view positions. No velocity is assigned if either the
cross correlation function is not unimodal or the time of maximum
cross correlation is less than the sampling time△t = 5 × 10−7 s.

FIG. 7. Time delay velocity estimation using the cross correlation function for the two-point method to the left and the three-point method to the right for gas puff imaging
measurements on the Alcator C-Mod tokamak.
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The gray shaded vertical stripe in Fig. 7 between the major
radii of 88.8 and 89.2 cm is the location of the last closed magnetic
flux surface according to magnetic equilibrium reconstruction. This
vertical line separates the confined plasma column to the left and the
scrape-off layer to the right of this region. The dotted line at ∼91 cm
is the location of limiter structures mapped to the gas puff imaging
view position.

The results from the two-point method, shown to the left in
Fig. 7, suggest predominantly vertical motion through the edge
and scrape-off layer regions. However, as anticipated from the
theoretical considerations and numerical simulation studies pre-
sented above, the results from the three-point method, shown to
the right in Fig. 7, reveal that the motion is mainly radial with
velocities up to 750 m/s. The two-point method reverses the domi-
nant velocity components and is obviously wrong, as also indicated
by the raw data in Fig. 5, which reveals the radial motion of the
pulses. The results from the three-point method presented here
qualitatively agree with previous analysis of Phantom camera data,
which has a much higher spatial resolution and therefore allows
more sophisticated correlation analysis and time delay estimation
methods.67

VI. DISCUSSION AND CONCLUSIONS
In this study, we have proposed and evaluated an improved

method for estimating the velocity components of fluctuation struc-
tures that move in two spatial dimensions. The method utilizes cross
correlation functions obtained from recordings of a scalar intensity
field at three non-aligned measurement points, self-consistently
taking into account the two-dimensional nature of the problem.
This is demonstrated to give an exact expression for the fluctuation
velocity components in a stochastic model given by a superposition
of uncorrelated Gaussian pulses. This analytical calculation mani-
fests that the cross correlation function can be used for the TDE
estimation and that the results hold for any distribution of pulse
amplitudes and density of pulses. The accuracy of the method is
further demonstrated by application to numerical realizations of
the process, supporting its usefulness also in the case of random
distributions of pulse parameters.

The results from the improved three-point method presented
here are compared to a standard two-point method. The latter essen-
tially describes the problem as one-dimensional and only gives an
accurate estimate of the velocity when the two measurement points
are perfectly aligned with the direction of motion of the pulses. If the
pulses move at a slight angle to any coordinate axis, the two-point
method will give a severe overestimate of the corresponding veloc-
ity component. Moreover, the two-point method always overesti-
mates both velocity components. This tendency for overestimation
has previously been observed in turbulence simulations where the
velocity field is known.68 Even in that case, only the velocity com-
ponent in the direction of the two measurement points is correctly
estimated, while the perpendicular component would artificially be
estimated as infinity. Commonly used Fourier methods with wave
number-frequency spectra for one spatial dimension suffer from the
same shortcomings as the two-point method.14,26,28

Applying the two velocity estimation methods to experimental
measurement data from the avalanche photodiode gas puff imag-
ing diagnostic on Alcator C-Mod reveals a striking difference. The

two-point method suggests a dominantly vertical motion of the
fluctuation structures, while the three-point method demonstrates
that the motion is mainly radial as can also be inferred from the raw
data time series. The two-point method gives inherently erroneous
results, overestimating the horizontal and vertical velocity compo-
nents and reversing their ratio. The improved three-point method
is, therefore, likely to give results that are consistent with other anal-
ysis methods and diagnostics. In future work, this improved velocity
estimate method will be used to investigate how fluctuations in
the boundary region change with experimental control parameters,
improved confinement modes, the role of auxiliary heating, and
differences between the far scrape-off layer dominated by the motion
of blob-like filaments and the closed field line region where wave
dynamics is expected to prevail.

The three-point method presented here has been derived for
the case that the pulses are symmetric, ℓx = ℓy, in which case tilt-
ing has no effect, or for the case that ℓx ≠ ℓy but the pulses are tilted
in such a way that its motion is parallel to one of its axes. In the
cases that ℓx ≠ ℓy and the pulses are tilted in any other direction, the
presented method will have a biased error. This error is equivalent to
the so-called barberpole effect.18,69,70 A more technical study of the
method, which will be published in a separate contribution, shows
that the error made by this simplification will be small if ℓx/ℓy does
not deviate much from 1 or if the tilting angle is small. In either
case, the error will be much smaller than that made by a two-point
approach.

In conclusion, this study presents a valuable approach for esti-
mating velocity components in imaging data or stochastic processes
characterized by waves or superposed and localized pulses. By esti-
mating two temporal cross correlation functions in perpendicular
directions, the method offers a reliable technique that surpasses the
constraints of the standard two-point methods extensively used in
previous studies. The improved three-point TDE should, therefore,
be added to the list of useful methods to analyze imaging data, in
general, and gas puff imaging of magnetically confined plasmas, in
particular.39 As a final note, it is remarked that the same method-
ology may be applied with conditional averaging instead of cross
correlation estimation for the time delays. This will be particu-
larly useful for investigating flows associated with large-amplitude
fluctuations.
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