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Cross‑modality sub‑image retrieval 
using contrastive multimodal 
image representations
Eva Breznik 1,2,4, Elisabeth Wetzer 1,3,4*, Joakim Lindblad 1 & Nataša Sladoje 1

In tissue characterization and cancer diagnostics, multimodal imaging has emerged as a powerful 
technique. Thanks to computational advances, large datasets can be exploited to discover patterns 
in pathologies and improve diagnosis. However, this requires efficient and scalable image retrieval 
methods. Cross-modality image retrieval is particularly challenging, since images of similar (or even 
the same) content captured by different modalities might share few common structures. We propose 
a new application-independent content-based image retrieval (CBIR) system for reverse (sub-)image 
search across modalities, which combines deep learning to generate representations (embedding the 
different modalities in a common space) with robust feature extraction and bag-of-words models for 
efficient and reliable retrieval. We illustrate its advantages through a replacement study, exploring a 
number of feature extractors and learned representations, as well as through comparison to recent 
(cross-modality) CBIR methods. For the task of (sub-)image retrieval on a (publicly available) dataset 
of brightfield and second harmonic generation microscopy images, the results show that our approach 
is superior to all tested alternatives. We discuss the shortcomings of the compared methods and 
observe the importance of equivariance and invariance properties of the learned representations and 
feature extractors in the CBIR pipeline. Code is available at: https://​github.​com/​MIDA-​group/​Cross​
Modal_​ImgRe​triev​al.

Content-based image retrieval (CBIR) systems are designed to search images in large databases based on content. 
Queries may be provided in various forms such as class labels, key words and images. The type of CBIR using 
images as queries is termed Reverse Image Search (RIS), also known as query-by-example. CBIR systems tradi-
tionally consist of a feature extraction method followed by matching based on a suitable similarity measure1,2. 
Following the advent of deep learning, feature extraction is often performed by convolutional neural networks 
(CNNs), sometimes using pretrained networks3–6. When only a small patch of an image is provided as a query, 
the CBIR is termed sub-image retrieval (s-CBIR).

Often local feature descriptors are accumulated into a bag-of-words (BoW)7–9, where the most descriptive 
features (words) form a vocabulary and each image is assigned a histogram of words. The retrieval step is then 
based on histogram comparison, typically using cosine similarity. In some approaches, global features are used 
in the first stage of image retrieval to find the most similar images within a dataset whereafter the top results are 
re-ranked using local features10.

CBIR systems have gained popularity in digital pathology11–13 due to the increased use of whole slide image 
(WSI) scanners which enable lowered storage costs of glass slides, simplified transportation of samples, training 
of new experts, spatial navigation of the sample14, and powerful computer-assisted sample analysis15. By support-
ing efficient searches through the huge datasets, CBIR techniques facilitate diagnostic decision-making through 
easy access to similar cases and potentially unravel patterns useful for early diagnosis of diseases such as cancer15.

WSI scanners generally capture a single modality, usually fluorescent or brightfield (BF) microscopy. Acquir-
ing additional images by different sensors may provide highly relevant complementary information. However, 
with the explicit aim to capture different types of information, the acquired images may have very different 
appearances and share few structures. For many medical diagnoses, in particular cancer diagnosis and grading, 
manual examination of tissue samples with a hematoxylin and eosin (H&E) stain using BF microscopy16 is the 
gold standard. In recent years, the label-free, non-linear imaging modality of second harmonic generation (SHG) 
proved to be useful for diagnostics for a variety of tissues, such as skin, ovaries and breast among others17. To 
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facilitate content understanding, SHG images are often inspected side by side with corresponding BF images. 
To fully exploit the advantages of such (large) multimodal datasets, the ability to query them across modalities 
can serve as a very important and useful tool to aid the diagnostic process. Furthermore, WSI scanners capture 
a large tissue area, often up to 100, 000×100, 000 px, while SHG imaging at the same scale can typically only 
cover smaller areas. Hence SHG images can be taken at various, chosen locations within the tissue sample and 
provide local samples of additional information to a WSI BF image. To match the locations of the complimentary 
imaging within the WSI, cross-modal sub-image retrieval methods can return the most likely sites of acquisition 
– thereby accelerating a very time-consuming task if it were done fully manually, taking a step towards automated 
imaging and multimodal image fusion.

Cross-modality image retrieval (CMIR), i.e. retrieval of images in one modality or visual domain provided 
a query in another, is also referred to as cross-domain image retrieval (CDIR) or cross-source image retrieval. A 
recent review on CDIR18 addresses work done in the field of near infrared & visible light retrieval used in person 
re-identification19,20, synthetic aperture radar & optical image as well as multispectral images & panchromatic 
images retrieval in remote sensing21–23, and sketch & natural image retrieval24–28. The methods used in these appli-
cations can be categorized into two types based on their approach to solving the domain gap problem18: feature 
space migration3,4,6,19,21,23 and image domain migration22,25–28. The first type extracts features of images in both 
modalities and attempts to find a mapping function (often through contrastive losses) to ensure feature similar-
ity of corresponding image pairs or classes. The second relies on generative networks to translate one modality 
into the other22,25,26,28. However, these methods often employ domain-specific steps (e.g. incorporation of edge 
information in sketch retrieval), or focus on category-level retrieval (assuming a query corresponds to more than 
one image in the repository, i.e. to all images of the same category) relying on class labels with multiple samples 
per class. Hence they are not applicable to very different domains such as microscopy images or instance-level 
retrieval (where each query has a single correct match in the repository) in general. Hashing-based methods, 
which have been successfully used for image retrieval within medical imaging29,30, have also been applied to 
cross-modality retrieval4,29, but they generally use class labels for training, assuming multiple instances per class.

In this paper, we study cross-modality image retrieval formulated as RIS on an instance level, i.e. the images 
are unlabelled and the aim is to retrieve the image of modality A corresponding to a given query image of modal-
ity B, where images of different modalities have a one-to-one correspondence. This may occur if one modality 
cannot be acquired for the entire sample due to long imaging acquistion times but is imaged at random to supply 
additional information about the sample. Furthermore, such matching challenges also arise in satellite imagery 
where the same location is imaged at different times, with different modalities and fields of view. We propose 
a data-independent three-stage s-CBIR system that uses representation learning to transform images of both 
modalities into a common space via contrastive multimodal image representations for registration (CoMIRs)31, 
followed by feature extraction and a BoW model to perform retrieval in this abstract representation space. Finally, 
we suggest re-ranking the top results to further improve the performance.

The proposed approach is evaluated on the very challenging task of (sub-)image retrieval across the BF and 
SHG modalities, since these two modalities are too different in their appearances to enable successful retrieval 
using existing monomodal RIS approaches.

While our method was developed for this particular application, we also evaluate it on a separate dataset of 
aerial images. First, we perform a replacement study with several viable alternatives for each stage of the proposed 
method to illustrate the advantages of our particular pipeline design. In addition, we evaluate our method against 
recent state-of-the-art methods in cross-modality and biomedical image retrieval.

Contributions: We propose a state-of-the-art cross-modality sub-image retrieval system for RIS, combining 
CoMIR representation learning and SURF feature extraction. We carry out a replacement study to demonstrate 
its efficacy. Our proposed approach outperforms state-of-the-art methods on the challenging task of image 
retrieval across BF an SHG modalities. Furthermore, we: (i) discuss the shortcomings of the I2I based approaches 
and highlight the necessity of rotationally equivariant representations for translating the multimodal task into a 
monomodal one; (ii) demonstrate the importance of rotational invariance of the feature extractor; and (iii) show 
that re-ranking can boost the retrieval performance significantly. We share the code as open source at https://​
github.​com/​MIDA-​group/​Cross​Modal_​ImgRe​triev​al.

Methods
Our aim is to match corresponding areas of two different modalities which may be hard to align even by human 
inspection31. The proposed pipeline is modular, with three main stages. The first stage uses representation learn-
ing to bridge between the modalities, the second stage consists of feature extraction, bag of words computation 
and match retrieval, followed by re-ranking in the third stage, in which a new BoW of the top retrieval results 
is computed, as depicted in Fig. 1.

Stage I: representation learning
We use representation learning to bridge the gap between the input modalities inspired by the success of other 
recent multimodal image retrieval approaches22,25–28. Our proposed pipeline does so by using contrastive learning 
(stage I in Fig. 1). Contrastive losses are used in a number of multimodal image retrieval tasks to learn feature 
embeddings which are similar for corresponding samples21,27. In the proposed method we use contrastive mul-
timodal image representations (called CoMIRs), which are image representations learned by training two CNNs 
in parallel with aligned image pairs of different modalities. Using a contrastive loss, the two networks produce 
representations of the input images, such that two CoMIRs resulting from corresponding areas in the two input 
modalities have maximum similarity w.r.t. a selected similarity measure. The networks are provided with ran-
domly chosen {0◦, 90◦, 180◦, 270◦}-rotated versions of the input images, which are aligned with the corresponding 
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input of the other modality in the second network before the contrastive loss is computed, thereby enforcing rota-
tionally equivariant properties of the representations. The representations preserve common structures, which 
makes them useful for multimodal image registration and hence suitable candidates for image retrieval. For more 
details on the method and implementation see Appendix A.1 , and the original paper, Pielawski & Wetzer et al.31.

Stage II: feature extraction and creation of BoW
This stage consists of extracting features from the CoMIR images and building a BoW model based on them. 
We employ Speeded Up Robust Features (SURF)32 (step (IIa) in Fig. 1) which are sparse, scale- and rotation 
invariant, hence they are expected to perform well even with rigidly transformed or cropped queries. The BoW 
is defined on the features extracted from the CoMIRs of all the images in the searchable repository, by K-means 
clustering using a suitable vocabulary (step (IIb) in Fig. 1). The features extracted from the CoMIR of the (rigidly 
transformed) query image are encoded using the created vocabulary, resulting in a histogram of features associ-
ated to the BoW. This histogram is then matched against the database using cosine similarity (steps (2c &2d) in 
Fig. 1) to retrieve the best matches.

Stage III: re‑ranking
To further improve the retrieval of our (s-)CBIR system, the best-ranked matches can be re-ranked. To do so, we 
take a predefined number of top retrieval matches (which are full images) and cut them into non-overlapping 
patches of the same size as the query. The resulting patches form a new database for which a new BoW model 
and (s-)CBIR ranking is computed, using the same configuration as the initial one (step (IIIb) in Fig. 1). For full-
image search, no cutting into patches is needed. Instead, the new retrieval ranking is computed directly on the 
image subset consisting of the (predefined number of) top-ranked matches. Re-ranking can be done in multiple 
ways, however a recent smaller-scale study33 supports our re-ranking strategy choice.

Evaluation
The aim is to retrieve a (transformed) query (sub-)image from a repository storing the other modality. A success-
ful match is defined as the retrieval of the image corresponding to the query of the other modality (instance-level 
retrieval). To thoroughly evaluate the proposed method we run a replacement study on its individual modules, 
as well as compare it against current state-of-the-art in CMIR. The evaluation is performed for both full-sized 
and small patch queries and done exhaustively, using all images in the (one-modality) dataset as queries. Experi-
ments are performed on two different datasets of microscopy (presented here) and aerial images (available in 
the Appendix A.2).
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Figure 1.   Illustration of the proposed three-stage s-CBIR pipeline. Stage I includes learning CoMIRs for 
the images in the repository and the query (either as a fullsized image or a patch), followed by sparse feature 
extraction in Stage II, which are binned into single descriptors for each image, building the vocabulary for a 
BoW. Matches are found using the cosine similarity. In Stage III, the Top-K matches are split into patches and a 
new BoW is computed on them for Re-Ranking.
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Dataset
Our evaluation dataset consists of 206 BF and SHG image pairs of size 834× 834 px, and is an openly available 
registration benchmark34 based on data collected at the University of Wisconsin-Madison and produced by Conk-
lin et al.35 after approval from the institutional review board. For each image pair, also its rigidly transformed 
version is provided. The transformations consist of a random rotation up to ±30◦ , and random translations up 
to ±100 px in x and y. Following Pielawski & Wetzer et al.31, 40 untransformed pairs are used for training, 134 
for testing, and the remaining 32 for validation. SHG images were preprocessed by a log-transform for the I2I 
and CoMIR generation. For evaluating the s-CBIR, patches of size 256× 256 px are cropped from the centres of 
the 834× 834 px images. An example pair is shown in Fig. 2.

Evaluation metric
As the evaluation metrics we use the top-k retrieval success, indicating for what fraction of queries a correct 
image was found in the first k matches (often denoted by Acc@k, accuracy at k). Formally, it can be defined as

where Ii,k is an indicator function of whether the correct match for query i was present among the first k retrieved 
images. The other commonly used metrics within retrieval such as precision@k and (m)AP@k ((mean) aver-
age precision at k) are less appropriate due to the one-to-one correspondence of images. (The precision@k for 
example degenerated a binary measure of either 0 of 1/k). For k = 1 however, all three metrics coincide in this 
case. Our choice of metric can be additionally motivated by the clinical background of our primary application 
(matching SHG and BF data). While finding the correct match as the first retrieved image is of course desirable, 
the most important and realistic contribution of an image retrieval method in such applications is in form a 
support tool; reliably identifying the correct match within a manageably small number of retrievals, enabling 
(lowering the load of) human/visual inspection.

Experimental settings for the proposed method
To learn 1-channel CoMIRs, two U-Nets36 sharing no weights are used under the same settings as in Pielawski 
& Wetzer et al.31 for registration, with mean squared error as a critic, manually tuned temperature τ = 0.5 and 
46 negative pairs in each iteration. The networks are trained on patches of size 128× 128 px randomly extracted 
from 40 aligned training pairs. For more details on CoMIR training and experimental details see Appendix, A.1. 
The SURF features are extracted for patch sizes 32, 64, 96,  and 128 on a grid with spacing (8, 8), using a descrip-
tor size of 64. The BoW is then defined on the features of the entire set of untransformed CoMIRs, using a large 
vocabulary of 20,000 words (based on empirical testing) on the 80% of the strongest features and the matching 
is done with cosine similarity. We do the final re-ranking among top-15 and top-30 matches. For s-CBIR, the 
image is cut into the minimal number of equidistantly placed query-sized patches s.t. the image is fully covered.

Replacement study
To confirm the design choices of our proposed pipeline, a replacement study is performed on stages I and II of 
the pipeline. Re-ranking is performed at the end, only where base results suggest its applicability (i.e. only within 
the proposed pipeline).

(1)Acc@k =
1

N

N∑

i=1

Ii,k

Figure 2.   Example image pair used in the CBIR experiments (BF on the left, SHG on the right). This image 
pair is shown aligned, without the rotations and translations used in the test set. In addition, the smaller image 
cutouts show patches used in the s-CBIR experiments, with the orange squares indicating how the patches were 
cropped.
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Stage I alternatives
For bridging the gap between modalities, CoMIR representations are compared against two generative adver-
sarial network (GAN)-based image-to-image translation (I2I)37,38 methods, used to translate BF images into 
SHG images, and vice versa.

GANs consist of a generator and a discriminator, competing in a zero-sum game. The generator learns to 
generate a representation in one modality given the input in the other modality; the discriminator classifies the 
representation as generated or real, thereby training the generator to produce representations indistinguishable 
from real images. The resulting so-called “fake” BF and SHG images can be used as queries, enabling search in 
near-monomodality.

Pix2pix37 uses a conditional GAN to learn a mapping from an input image to a representation using cor-
responding images of both modalities, i.e. requires supervision in form of aligned multimodal image pairs. 
CycleGAN38 differs from pix2pix by achieving this goal even in an unsupervised manner, through a cycle con-
sistency enforcing that the input image can be reconstructed from the representation that was produced based 
on it. CycleGAN-based domain adaptation has been used successfully in previous multimodal image retrieval 
tasks22,28. For both approaches, training parameters are used as in Pielawski & Wetzer et al. 31. The code is avail-
able at https://​github.​com/​junya​nz/​pytor​ch-​Cycle​GAN-​and-​pix2p​ix.

Stage II alternatives
For the second stage we compare our choice of SURF against two other commonly used feature extractors, 
SIFT39 and ResNet40. Regardless of the feature extractor choice, the BoW is defined on the features of the entire 
set of untransformed input images of one modality (or their learned representations such as CoMIRs), using a 
vocabulary of 20,000 words on the 80% of the strongest features and the matching is done with cosine similarity. 
In addition, we test replacing the entire stage II (feature extraction and BoW) with a recent RIS s-CBIR toolkit 
2DKD41, based on 2D Krawtchouk descriptors.

SIFT (Scale Invariant Feature Transform)39 is a well known feature extractor with similar properties as SURF, 
being sparse, scale and rotation invariant. In our evaluation the feature descriptor size is 4 samples per row and 
column, 8 bins per local histogram. The range of the scale octaves is [32, 512] px, with 4 steps per scale octave 
and an initial σ of each scale octave equal to 1.6. The descriptor size is 128. We explore ResNet40 as a dense feature 
extractor based on previous successes of using features extracted by neural networks for image retrieval13,42–44. As 
data used in this study is not required to have labels, we extract features by ResNet152, pretrained on ImageNet44 
(see https://​pytor​ch.​org/​vision/​stable/​models.​html). The features are extracted by removing the last fully con-
nected layer. To enable patch queries, an adaptive average pooling is added to produce features of size 8× 8 (64 
when flattened), independent of the input size. The number of extracted features is 2048 regardless of the input 
image size. For SHG, the image is copied into three channels. As opposed to using SIFT/SURF which extract 
an arbitrary number of features from every image, the amount of ResNet extracted features is the same for 
every image (or patch). 2DKD Toolkit41 is a recent RIS system which differs from the BoW approach in that it 
is performing a local sub-image search using a number of translation, rotation, and scaling invariant descrip-
tors per image. It relies on moment invariants based on Krawtchouk polynomials45, namely Two Dimensional 
Krawtchouk Descriptors, which outperform Hu invariants in retrieving subimages in cryo-electron microscopy 
images in a monomodal setting41. The authors point out the importance of using moment invariants that do not 
change by translation, rotation and scaling in digital pathology. In our evaluation, the number of pixels between 
two consecutive points of interest is set to 5 and local pixel intensity variance is used as a criterion to compare 
against global pixel density variance. The general experimental setup follows the one of DeVille et al.41.

Competing methods
Since methods for instance-level cross-modality retrieval (specifically applicable in the biomedical field) are 
scarce, we compare our method to (1) a recent CMIR method, Triplet Classification Network24 (TC-Net) which 
was developed primarily for retrieval across sketches and natural images but is not domain-specific in design and 
can be used for instance-level retrieval, and (2) a medical image retrieval system based on invariant moments, 
textural and deep features 5 (IMTDF), which has been developed for, and evaluated on, within-modality retrieval, 
but relies in part on a study suggesting cross-modal applicability4. While more recent CMIR methods exist, they 
are not applicable for our particular evaluation task.

TC-Net improves on the previous works46 in cross-modality sketch retrieval by circumventing the generation 
of edge maps, as their quality has a large effect on CBIR system performance. It uses a triplet Siamese network, 
and auxiliary classification losses. For the evaluation, we use the settings of the original paper24, however for 
a fairer comparison we train the network with BF anchors for retrieval within SHG database, and with SHG 
anchors for retrieval within BF database.

IMTDF relies on a combination of various invariant moments, classical texture features and CNN based 
features. It thereby follows other RIS methods in biomedical applications which rely on CNN features3,4 for both 
mono- and cross-modal retrieval, and their combination with classical features, as successfully used for cross-
modal retrieval of magnetic resonance imaging (MRI) and computed tomography (CT) images5. Based on the 
best performing features reported for IMTDF5, we use a combination of Chebyshev moments, Haralick texture 
features (made rotationally invariant), and ResNet50 features, selecting only the strongest 20% of the latter two 
by means of ReliefF. For more details and parameter settings see the original paper5.
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Results
Replacement study
Table 1a shows the results of the proposed CBIR using full sized query images. It reports the top-10 retrieval 
success in percentage using the multimodal originals, CoMIRs, and I2I representations produced by CycleGAN 
and pix2pix as searchable repositories and queries. Experiments were performed using SIFT, SURF and ResNet 
features to create the vocabulary of the BoW. Performance of 2DKD is evaluated on the multimodal original 
images as well as CoMIRs. For evaluation of sub-image retrieval in the s-CBIR setup, the same experiments are 
performed using central patches of 256× 256 px as query images. Results are shown in Table 1b. Retrieval results 
of I2I representations in combination with ResNet features and using 2DKD are omitted from the table, as they 
resulted in fewer retrieval matches than random selection.

In Table 1, red cells present the results of cross-modality retrieval of a transformed (rotated and translated) 
image in one modality among a set of untransformed images of the other modality, which is the main use-case tar-
geted by this study (denoted cross-modality, cross-transformations subsequently in Fig. 3 and Table 2a). Orange 
cells present the results of retrieving a transformed query image within the same modality of untransformed 
images. This gives insight into the invariance of the feature extraction, or the equivariance of the representa-
tions under these transformations (denoted within-modality, cross-transformations subsequently in Fig. 3 and 
Table 2a). Blue cells present the results of searching an untransformed query image within the same modality 
of untransformed images, which validates the CBIR setup. A near-perfect retrieval accuracy indicates that the 
features extracted to create the BoW and its vocabulary size are reasonable. White cells present the results of 
retrieving an untransformed query image among images of the other modality, which shows how well the learned 
representations are bridging the semantic gap between the modalities.

Figure 3 summarizes the results for full-sized and patch queries, with numbers from Table 1a, b averaged 
over retrieval directions (BF query within SHG and SHG query within BF).

Re-ranking Re-ranking is evaluated only as a part of the proposed pipeline: with using SURF on CoMIRs 
to create a BoW. In Table 2a, we see that re-ranking among the top-15 retrieval matches can boost the top-10 
retrieval performance for full-sized images, increasing retrieval accuracy to 62.0% (BF as query) and 66.4% 
(SHG as query); or 75.4% and 83.6% respectively for re-ranking among the top-30 matches. Table 2b shows 
that re-ranking among the top-15 retrieval matches can boost the top-10 retrieval performance also for patch 

Table 1.   Main results of the replacement study: success (in percentage) for top-10 match. BF and SHG 
represent the two original modalities, fake SHG and fake BF represent their corresponding I2I representations 
produced by CycleGAN or pix2pix, and (T) denotes randomly transformed (by rotation and translation) images. 
Best results for retrieval across modalities and transformations are marked in bold.

Query

BF BF(T) SHG SHG(T)

BF 100.0 100.0 9.7 11.2Originals

SHG 9.2 10 100.0 100.0

CoMIR(BF) CoMIR(BF(T)) CoMIR(SHG) CoMIR(SHG(T))

CoMIR(BF) 100.0 97 37.1 32.8CoMIR

CoMIR(SHG) 31.1 30.3 100.0 100.0

BF BF(T) Fake BF Fake BF(T)

BF 100.0 100.0 15.7 16.4

Fake BF 26.1 24.6 100.0 70.9

SHG SHG(T) Fake SHG Fake SHG(T)

SHG 100.0 100.0 14.2 13.4

CycleGAN

Fake SHG 15.7 18.7 100.0 48.5

BF BF(T) Fake BF Fake BF(T)

BF 100.0 100.0 14.2 21.6

Fake BF 20.9 22.4 100.0 20.2

SHG SHG(T) Fake SHG Fake SHG(T)

SHG 100.0 100.0 14.2 14.2

S
IF
T

Pix2Pix

Fake SHG 0.0 18.7 100.0 26.1

BF BF(T) SHG SHG(T)

BF 100.0 97.3 15.2 14.2Originals

SHG 10.9 10.7 100.0 97.5

CoMIR(BF) CoMIR(BF(T)) CoMIR(SHG) CoMIR(SHG(T))

CoMIR(BF) 100.0 93.8 71.4 61.2CoMIR

CoMIR(SHG) 76.1 59.0 100.0 92.1

BF BF(T) Fake BF Fake BF(T)

BF 100.0 98.9 21.6 17.2

Fake BF 35.8 23.9 100.0 78.4

SHG SHG(T) Fake SHG Fake SHG(T)

SHG 100.0 98.1 12.7 12.7

CycleGAN

Fake SHG 14.2 12.7 100.0 88.8

BF BF(T) Fake BF Fake BF(T)

BF 100.0 98.9 20.9 12.7

Fake BF 35.8 31.3 100.0 67.9

SHG SHG (T) Fake SHG Fake SHG(T)

SHG 100.0 98.1 26.1 19.4

S
U
R
F

Pix2Pix

Fake SHG 35.1 31.3 100.0 85.1

BF BF(T) SHG SHG(T)

BF 100.0 73.1 48.5 29.1Originals

SHG 46.3 23.1 100.0 70.1

CoMIR(BF) CoMIR(BF(T)) CoMIR(SHG) CoMIR(SHG(T))

CoMIR(BF) 100.0 61.6 50.8 20.9

S
ea
rc
h
ab
le
re
p
o
si
to
ry

R
es
N
et

CoMIR

CoMIR(SHG) 50.4 22.7 100.0 53.7

BF BF(T) SHG SHG(T)

BF 40.3 28.7 5.3 3.7Originals

SHG 5.2 6.0 24.6 31.3

CoMIR(BF) CoMIR(BF(T)) CoMIR(SHG) CoMIR(SHG(T))

CoMIR(BF) 24.6 13.4 11.2 6.0

2
D
K
D

CoMIR

CoMIR(SHG) 6.7 9.7 18.7 12.7

(a) Retrieval results for the full image search.

Query

BF BF(T) SHG SHG(T)

BF 97.5 97 8.7 8.2Originals

SHG 10.4 10 86.3 82.1

CoMIR(BF) CoMIR(BF(T)) CoMIR(SHG) CoMIR(SHG(T))

CoMIR(BF) 100 69.9 17.2 18.2CoMIR

CoMIR(SHG) 18.9 18.7 100 79.1

BF BF(T) Fake BF Fake BF(T)

BF 98.9 97.8 11.2 11.2

Fake BF 16.4 17.9 100 35.8

SHG SHG (T) Fake SHG Fake SHG(T)

SHG 87.7 85.8 14.2 11.9

CycleGAN

Fake SHG 14.2 15.7 91.0 24.6

BF BF(T) Fake BF Fake BF(T)

BF 98.9 97.8 14.2 21.6

Fake BF 18.7 23.1 98.5 21.6

SHG SHG(T) Fake SHG Fake SHG(T)

SHG 87.7 85.8 12.7 9.7

S
IF
T

Pix2Pix

Fake SHG 15.7 15.7 98.5 14.2

BF BF(T) SHG SHG(T)

BF 95.5 84.8 13.9 13.7Originals

SHG 10.9 10 95.8 88.6

CoMIR(BF) CoMIR(BF(T)) CoMIR(SHG) CoMIR(SHG(T))

CoMIR(BF) 100 76.6 46.3 44.8CoMIR

CoMIR(SHG) 52.2 35.8 100 73.6

BF BF(T) Fake BF Fake BF(T)

BF 96.3 88.5 17.9 13.4

Fake BF 26.1 21.6 98.5 60.5

SHG SHG(T) Fake SHG Fake SHG(T)

SHG 96.7 91.1 11.9 8.2

CycleGAN

Fake SHG 13.4 13.4 84.3 45.5

BF BF(T) Fake BF Fake BF(T)

BF 96.3 88.5 14.9 11.9

Fake BF 25.3 18.7 97.0 34.3

SHG SHG (T) Fake SHG Fake SHG(T)

SHG 96.7 91.1 16.4 19.4

S
U
R
F

Pix2Pix

Fake SHG 34.3 34.3 100 42.5

BF BF(T) SHG SHG(T)

BF 9.0 12.7 11.1 9.0Originals

SHG 11.1 8.2 11.9 10.5

CoMIR(BF) CoMIR(BF(T)) CoMIR(SHG) CoMIR(SHG(T))

CoMIR(BF) 10.5 12.3 4.1 7.1
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CoMIR

CoMIR(SHG) 8.2 10.1 14.1 13.8

BF BF(T) SHG SHG(T)

BF 26.1 23.8 11.2 6.0Originals

SHG 5.2 6.0 24.6 31.3

CoMIR(BF) CoMIR(BF(T)) CoMIR(SHG) CoMIR(SHG(T))

CoMIR(BF) 11.2 8.2 7.5 15.7
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D

CoMIR

CoMIR(SHG) 17.9 14.9 9.0 12.0

(b) Retrieval results for the image patch search.



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:18798  | https://doi.org/10.1038/s41598-024-68800-1

www.nature.com/scientificreports/

queries, increasing retrieval accuracy to 41.8% (BF as query) and 53.7% (SHG as query); or to 51.5% and 63.4% 
respectively for re-ranking among the top-30 matches.

Comparison with state‑of‑the‑art
Among the latest state-of-the-art methods in CMIR, few are applicable to instance-level retrieval between modali-
ties as different as the ones used in our evaluation dataset. IMTDF relies not only on ResNet features, but also on 

Figure 3.   Top-10 retrieval results without re-ranking, for full-sized image queries (left column) and patches 
(right column), averaged over retrieval directions (BF query within SHG and SHG query within BF, or their 
respective representations) for different combinations of images or their learned representations and feature 
extractors. Cross-modality (top row) and within-modality (bottom row).

Table 2.   Performance gain for full size (left) and patch queries (right) due to re-ranking among the top-15 and 
top-30 matches of the main pipeline using SURF features on CoMIRs.

Full sized

Cross-modality, cross-transformations

Top-1 Top-5 Top-10 Top-15

(a) Full size queries

 CoMIR(SHG)

query: CoMIR(BF(T))

No re-ranking 26.9 51.5 59.0 63.4

Re-Ranking 15 32.8 55.2 62.0 63.4

Re-Ranking 30 34.3 59.7 75.4 75.4

 CoMIR(BF)

query: CoMIR(SHG(T))

No re-ranking 21.6 45.5 61.2 69.4

Re-Ranking 15 42.5 57.5 66.4 69.4

Re-Ranking 30 45.5 64.9 83.6 83.6

 Patches

Cross-modality, cross-transformations

Top-1 Top-5 Top-10 Top-15

(b) Patch queries

 CoMIR(SHG)

query: CoMIR(BF(T))

No re-ranking 11.2 25.4 35.8 42.5

Re-Ranking 15 23.1 37.3 41.8 42.5

Re-Ranking 30 27.6 47.0 51.5 55.9

 CoMIR(BF)

query: CoMIR(SHG(T))

No re-ranking 10.4 32.8 44.8 53.7

Re-ranking 15 29.1 46.3 53.7 53.7

Re-ranking 30 29.1 53.7 63.4 67.2
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a number of handcrafted features that perform well for within-modality retrieval on medical images. As seen in 
Table 3 however, this combination of features does not perform well for cross-modality retrieval of BF and SHG 
images. TC-Net on the other hand has been previously evaluated on modalities very different from BF and SHG, 
but is generally not domain specific. It is based on a similar training mechanism as the representation learning 
stage in our proposed method and outperforms IMTDF on retrieval across BF and SHG (see Table 3). However, 
our proposed method outperforms both TC-Net and IMTDF, even without re-ranking.

Generalization to other datasets
To show that the proposed pipeline is modality-agnostic and not taking any biological knowledge into consid-
eration, additional experiments run on aerial images are available in the Appendix A.2. Our proposed method 
reaches 91.9% average top-1 retrieval accuracy, outperforming both competing methods and pipeline design 
variations.

Discussion
Our study demonstrates that out of all tested settings and methods, our proposed pipeline is the best-performing 
one for the task at hand, yielding a 61.2% top-10 success rate retrieving BF queries in a set of SHG images and 
59.0% retrieving SHG queries within the set of BF images. With re-ranking the first 30 matches, these results 
are further improved to 75.4% and 83.6% respectively. The strength of combining learning based CoMIRs with 
classic feature extractors such as SURF, merges the potential of CNNs to produce equivariant representations 
which can bridge between different modalities, and robust, sparse feature extractors that are rotationally and 
translationally invariant, and due to their speed qualify for creating (s-)CBIR systems for large datasets. Moreover, 
CoMIR and SURF are modality-independent, not incorporating any data-specific information, which makes 
the pipeline generally applicable, which is demonstrated by experiments on an aerial dataset in Appendix A.2.

As seen in Table 1a, performing within-modality full image retrieval on the original images with transformed 
queries has a 100% or close to 100% success rate when using the SURF or SIFT feature extractors, while using 
ResNet as a feature extractor results in a significant drop in retrieval success. This can be attributed to the lack 
of rotational invariance of ResNet as a feature extractor. While this high within-modality retrieval success is 
retained when using CoMIR embeddings (i.e. retrieving the CoMIR of a transformed image in modality A within 
the set of CoMIRs of untransformed images of modality A and vice versa), it drops significantly with the use 
of I2I approaches (i.e. retrieving the fake GAN image of a transformed image in modality A within the set of 
CoMIRs of untransformed images of modality A and vice versa) even when using SURF or SIFT features. Since 
SIFT and SURF are rotationally invariant by design, we argue that the reduced performance when using them 
in combination with I2I approaches is due to the GAN-generated images not preserving translational, and in 
particular rotational, equivariances in their representations. The reason behind this shortcoming of the GAN-
generated images is the absence of network architecture related enforcement (as there is with, e.g., steerable 
CNNs or group convolutions) in place for pix2pix or CycleGAN to relate rotated versions of the input with each 
other. As long as their generated fake images belong to the distribution of the target modality, the discrimina-
tor will accept them as reasonable output. Figure 4a shows an example from the test set illustrating this effect. 

Table 3.   Top-10 retrieval success (in percentage) of two state-of-the-art RIS methods on (sub-)image 
retrieval across BF &SHG modalities. Here reported retrieval success of our proposed pipeline includes top-30 
reranking.

Query

BF BF(T) SHG SHG(T)

(a) Full size queries

 Searchable repository

  Proposed
BF – – 89.6 83.6

SHG 86.6 75.4 – –

  TC–Net
BF – – 47.8 43.4

SHG 35.8 37.3 – –

  IMTDF
BF – – 9.7 11.9

SHG 12.7 11.2 – –

(b) Patch queries

 Searchable repository

  Proposed
BF – – 66.4 63.4

SHG 56.7 51.5 – –

  TC-Net
BF – – 22.4 20.1

SHG 12.7 16.4 – –

  IMTDF
BF – – 7.5 7.5

SHG 7.5 8.2  – –
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As seen by the cross-correlation of their (aligned) overlap, the fake representations of the untransformed and 
transformed images can differ significantly.

On the other hand, attempting cross-modality retrieval directly on the original images fails regardless of the 
choice of feature extractor, thus highlighting the need for bringing the two modalities closer together. While 
bridging the gap between SHG and BF modalities through CoMIRs delivers strongly improved cross-modality 
retrieval success when using SIFT or SURF, the I2I approaches are less advantageous. We notice that CycleGAN 
suffers from so-called mode-collapse. In Fig. 4b, three examples are shown for which the fake BF modalities 
(middle image in row 2,4 and 6) are extremely similar, independent of the input images. The structures in the 
original BF images are not preserved, instead texture was generated that is accepted by the discriminator as a 
reasonable BF tissue. While these fake BF images successfully encode the information required to reconstruct 
the SHG images, fulfilling the cycle consistency (third column in Fig. 4b), they failed to produce a representation 
similar to the real target BF image.

The rotationally equivariant CoMIRs together with invariant feature extractors like SIFT and SURF can 
handle the displacements between the images, and the representations suffice to bridge between the modalities 
of SHG and BF. The best results for cross-modality retrieval of transformed full-sized images are obtained by 
our porposed method, using CoMIRs to learn representations for both input modalities, in combination with 
SURF to extract features for the BoW.

Similar behaviour to full sized image retrieval can be seen also in Table 1b, when querying patches. However 
for s-CBIR, ResNet as a dense feature extractor is not able to compete with SIFT and SURF. It extracts the same 
number of features regardless of the input image size. Hence, the resulting feature descriptor is of the same 
dimension for both the full sized images in the searchable repository, as well as for the query image. The average 

fake BF by CycleGAN, cross correlation 0.58fake SHG by CycleGAN, cross correlation 0.57

CoMIR based on SHG, cross correlation 0.81

representation based on SHGrepresentation based on BF

CoMIR based on BF, cross correlation 0.84

fake SHG by pix2pix, cross correlation 0.18 fake BF by pix2pix, cross correlation 0.24

Figure 4.   Visual examples of the test set demonstrating the shortcomings of the I2I approaches to bridge 
the semantic gap between the modalities. a Translational and rotational equivariance is not preserved for I2I 
generated images, b the fake BF images (even rows, middle) do not preserve the structure and appearance of 
the corresponding real BF images, but appear similar, independent of the content of the SHG images they are 
generated from.
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pooling layer of the network blurs out the features which result from the common region of the full sized image 
and the patch. This highlights the advantage of sparse feature extractors like SIFT and SURF.

Comparing the use of BoW models to a recently introduced RIS toolkit 2DKD (originally developed for 
within modality search), shows that the performance of 2DKD for cross-modal retrieval is higher using CoMIRs 
than using the original images, but the results are still significantly worse than the BoW based approaches. Even 
the within-modality retrieval performance of 2DKD is low. This is likely due to 2DKD extracting descriptors 
based on Krawtchouk polynomials, which can be seen as shape descriptors. The BF images used in this study 
are dense and their content corresponds rather to texture than shape, whereas SHG images are sparse and lack 
concrete shapes.

Furthermore, the proposed method outperforms the recent CBIR successfully used in medical image retrieval 
IMTDF, and the recent cross-modal image retrieval method TC-Net (Table 3). Similarly to the representation 
learning of CoMIRs used in our method, TC-NET uses a contrastive loss (triplet loss), but learns the feature 
embeddings used for retrieval directly. However, it uses a siamese network, i.e. all weights are shared for the 
networks streams processing the different modalities. We suspect that the weight sharing is the reason behind 
the lower retrieval success of TC-Net, as it can degrade performance when the modalities are very different in 
structure.

Conclusion
We present a novel, data-independent approach for the challenging task of instance-level reverse image search 
across modalities without labels, and evaluate it on BF and SHG microscopy images used in histopathology. We 
combine the power of deep learning to generate representations for images of different modalities, with robust 
classical methods of feature extraction to create a BoW. Finally, we add re-ranking to further boost the retrieval 
success. Our proposed method outperforms two most recent approaches applicable to instance-level retrieval 
across BF and SHG modalities. Through a replacement study we confirm its efficacy and superiority over other 
design choices. We observe that using shape descriptors relying on Krawtchouk moments is inferior to BoW 
models for retrieval of BF and SHG images, and that in order to apply representation learning or I2I to bridge 
between modalities, it is essential that the learned representations are equivariant under the transformations 
between corresponding images. Furthermore, we show that it is crucial to use translation- and rotation-invariant 
feature extractors such as SIFT and SURF. Future work includes testing the pipeline on other modalities, and 
developing an improved feature selection and matching procedure tailored specifically for CoMIR type repre-
sentations. In addition, the interplay between the raw modalities and their CoMIRs can be further explored in 
particular for modalities which share many features that may be lost or blurred in the current representation 
learning approach, to assess if a fused utilization can yield further improvements.

Data availability
The datasets used in the study are freely accessible in the zenodo repository, https://​zenodo.​org/​record/​38743​62 
and https://​zenodo.​org/​record/​55575​68.
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