Adding Mobility to Non-mobile Web Robots

Nils P. Sudmann and Dag Johansen
Department of Computer Science
University of Tromsg, Norway
nilss@cs.uit.no, dag@cs.uit.no

Abstract

In this paper we will show that it is possible to combine
mobile agent technol ogy with existing non-mobile data min-
ing applications. The motivation for this is the advantage
mobile agents offer in moving the computation closer to the
datain a distributed system. This can save bandwidth and
increase performance when the data is condensed as a re-
sult of data mining.

1 Introduction

Data mining traditionally involves huge data sets which
may be distributed over a large number of nodes in a het-
erogenous network. Data mining applications are tradition-
ally implemented as fixed clients pulling data from remote
servers and doing data mining locally at the client. Since
data mining algorithms seek to create a meta description of
the mined data which is more compact than the data itself,
there is a possible gain in executing these algorithms at the
servers themselves.

Mobile agents are able to relocate themselves to the
source of the data, and this can be a potential way to achieve
better performance by avoiding pulling data over the net-
work. Furthermore, this approach preserves bandwidth for
other uses.

Merging non-mobile data mining applications with the
technology of mobile agents, requires a new kind of agen-
t system. Specifically, the need to support existing data
mining applications with little or no modification, requires
that the agent system supports different implementation lan-
guages and mechanisms that enables agents to move non-
mobile software objects between sites.

The first mobile agent systems [14, 8, 3] preceded the
Java programming language. However, since its introduc-
tion, most, if not all new mobile agent systems have been
built using Java and its associated Java Virtual Machine
(JVM). Many systems of this kind are publicly known, but
in essence, they provide the same functionality; move a Ja-

va agent from one host to another. One advantage of us-
ing JVM is the potential portability, another is a matter of
deployment. A major disadvantage, however, is that many
design choices are now limited by the security and program-
ming model enforced by Java and JVM. As such, we have
kept a separate branch in the TAcOMA (Tromsg And COr-
nell Moving Agents) project focusing on mobile agent sys-
tems based on other languages than Java.

Another interesting aspect of the multitude of mobile a-
gent systems developed is the amount and variety of system
support included in these systems. The problem has been
to define the scope of functionality that should be offered in
agent systems. We will argue that agents should be able to
carry with them whatever system support they need, there-
by keeping the required functionality of the landing pad at
a bare minimum.

A second generation agent system has been built based
on more than 6 years of experience with mobile code [5, 7].
During this time we have applied mobile agents in a wide
specter of distributed application domains, including data
mining, distributed multi-media processing, software man-
agement, and distributed alarms [4]. In this paper, we will
present how a single, but very important lesson from ap-
plied mobile agents, have influenced the design of TAX 2.0
(TAcoma on uniX). Also, we will show how these design
choices have made it possible to encapsulate and move non-
mobile code.

The outline for the rest of this paper is as follows; in sec-
tion 2 we introduce one of the important lessons we have
drawn from the time we have worked on agent systems and
the impact it had on the design of the TAX 2.0 system. In
section 3 we briefly describe the TAX system. Then, in sec-
tion 4, we discuss the scope of system support in a mobile
agent system and the need for a mechanism that support-
s composite agents. A case study using the TAX concepts
and mechanisms introduced, is given in section 5. Finally,
section 6 concludes the paper.

2 Animportant lesson; language diver sity

The advantages of using Java as a basis for developing a
mobile agent system makes it a prime choice for this task.
Java provides a uniform execution environment (at least in
theory), security model, and safety properties across het-
erogenous platforms. The usefulness of these properties in
mobile agent systems can be said to have been proven in
concept when we observe the number of Java based agent
systems developed by both academia and more commercial
organizations®.

However, what is less clear is how well suited for ap-
plication development these agent systems are. It has been
argued that mobile agents are a useful paradigm in the de-
velopment of larger distributed applications. But, in our ex-
perience, larger distributed applications tend to consist of
interconnected modules from a wide variety of vendors.

One aspect of this is that modules, being a mobile agent
or not, are developed in the most suited programming lan-
guage. This comes in direct conflict with our previous ob-
servation, that most agent systems are Java based, and that
all mobile agents for these systems are restricted to Java
or byte-code which can run on a JVM. Thus, while a JVM
based agent system is perhaps the most easy to implemen-
t, the end product may not be as useful to the application
programmer.

One of the most important lessons we drew from agent
application development in TACOMA is that supporting mo-
bile agents written in different programming languagesis a
good thing. TACOMA has been language independent from
the very beginning, and application developers have aggres-
sively used this freedom and developed mobile agents writ-
ten in the most appropriate language for the task at hand.

For instance, one student project constructed a distribut-
ed pipeline to manipulate video streams in the MPEG for-
mat. This project used mobile agents written in C, a Perl
script as glue between the web server and TACOMA, and fi-
nally a Java applet to control the pipeline using a standard
web client.

However, we have also experienced that developing an
agent system supporting different languagesis hard. Each
language has to be integrated into the system model, even
though they have widely different security models, require-
ments on their execution environment, and safety proper-
ties. However, in our experience, it is worthwhile when we
look at the benefits for the developers using the system.

Another observation made by application developers was
that safety enforcement is not always needed nor desired.
This means that restricting agent systems to the security
model of a single programming language, usually end up

LList of known mobile agent systems, October 1999;
http://www.informatik.uni-stuttgart.de/
ipvr/vs/projekte/mole/mal/mal.html

e |20 |1 20 |H
AR

|
> N /I

Firewall

~

|
|
\ v

Operating system

Figure 1. TAX overview.

offering agents a severely restricted execution environmen-
t. This introduces additional overhead even if the agent is
working on behalf of a systems administrator and can be
trusted. If sufficient trust can be achieved, an agent should
have all the capabilities of a regular process.

3 TAX 20

We have employed our experience in the building of t-
WO new agent systems, one is an experimental system ad-
dressing the larger issues of an agent computing environ-
ment (TOS/ACE) [6], the other, which is the subject of this
paper, is a refinement of the original TACOMA system sup-
porting multiple languages.

TACOMA 2.0, or TAX, is the latest in a series of proto-
type agent systems developed for Unix dialects. The pro-
totypes have been evaluated by employing agents as part of
several projects and as a tool in a larger distributed setting
called StormCast [5].

TAX is an architecture (figure 1) which supports sever-
al different programming languages through the notion of
virtual machines (VMs). Different virtual machines run
as separate heavy weight processes and are protected from
each other through the memory protection of the operating
system. Communication between different virtual machines
goes through a local firewall. The firewall acts as a reference
monitor and mediates all local communication between a-
gents, and communication to remote firewalls and agents on
remote machines.

The TAX implementation consists of three major compo-
nents, a shared library offering the basic primitives to man-
age state and communicate, a firewall that acts as a commu-
nication broker between virtual machines (and consequent-
ly the virtual machines themselves).

3.1 Thelibrary

There is some common functionality needed by the d-
ifferent virtual machines in the system. Every VM has to
offer the ability to handle the state of the agent, commu-
nicate with other agents and submit an agent to the fire-
wall for transportation and deployment on a different VM.
Much like the API of an operating system, TAX gathers
these functions in a standard shared library. The advantages
of using a library is that this code can be reused by virtual
machines and the many programming languages that inter-
face with C libraries.

The TAX library offers primitives to operate on state that
the mobile agent collects and needs for future computation-
s [9]. Basically, the transportable state of a mobile agent
(code, arguments, results), is collected in a briefcase. A
briefcase is then a consistent snapshot of the executing a-
gent as it is transported between hosts. The mobile agent
will always have access to and can modify its own brief-
case, one side effect of this is that the agent is able to drop
state no longer needed. This minimizes the volume of data
that has to be transmitted over the network when the agent
moves. Briefcases are also the unit of exchange between
communicating agents. Each briefcase is essentially an as-
sociative array of folders, each containing an ordered lists
of elements. An element is an uninterpreted sequence of
bits and the most basic data type in TAX.

Furthermore, the library offers two basic communication
primitives, called beSend () and bcRecv (), which are
used by virtual machines to communicate with the firewall.
On top of these functions the library offers more complex
functions like activate (), await (), meet (), which
are used for synchronization and communication. Basical-
ly, activate () is equivalent to a send, await () is a
blocking receive, and meet () is a RPC [2]. Mobility is
covered by go () which moves the agent to another VM
and terminates the current instance if the move is success-
ful. spawn () does the same, except that it creates a new
agent with a different instance number, which is then re-
ported back to the calling agent. This resembles the Unix
fork () system call.

3.2 Thefirewall

Agents running on different virtual machines need to be
able to communicate. The basic TAX library and the brief-
cases produced by it assures that agents can send data and
receive data in a heterogenous environment. But, there is
also a need for a central object, a broker, on each machine
that has information on the agents running locally on the d-
ifferent virtual machines. Also, we need a local authority
which enforces access rights, based on first level authenti-
cation of the origin of the agent. These are the two most

tacomauri [tacoma://hostport/] agpath
hostport host [:port]

agpath [principal/] agentid

agentid name:instance |name| :instance
name alphanum [name]

instance hex [instance]

Examples:

tacoma://cl2.cs.uit.n0:27017//vm ¢:933821661
tacoma://cl2.cs.uit.no/tacoma@cl2.cs.uit.no/ag cron
tacomaproject/:933821661

Figure 2. EBNF notation for agent URI.

important tasks of the TAX firewall.

The firewall is a multi-threaded process, where each
thread guards a virtual machine. It manages communica-
tion between local virtual machines and communication to
remote firewalls, enforcing access rights as it does so. The
firewall also does an initial authentication, based on param-
eters such as the presence of a signed agent core or the p-
resence of an authenticated and trusted sender.

The second important function of the firewall is to pro-
vide some basic dispatching and routing functionality. Mes-
sages passing through the firewall are queued with a time-
out value if the receiving agent is not ready to receive, or
has not yet arrived at the site. The firewall also provides
basic matching functionality if the full name of the receiver
is unknown. An agent is addressed by host, port, principal,
name, and instance. Figure 3.2 shows the shorthand EBNF
notation for an agent-URI. If the optional remote part is left
out, the firewall will assume a local target. Furthermore, if
the principal is left out, only two principals are considered
as valid; the local system, or the principal of the mobile a-
gent. The last part can be given as either a name, an instance
number or both. Only supplying the name can be useful if
one wishes to establish communication with a broader class
of agents like service agents. The instance number may be
used if one wishes to make sure one continues to communi-
cate with the same entity.

Virtual machines need to be able to register and unreg-
ister agents running inside them with the firewall, in order
for the firewall to be able to locate them when communica-
tion is addressed to these agents. Furthermore, agents with
sufficient privileges need support for operations such as list-
ing running agents, determining their run time, and killing
or stopping agents. All this is achieved by addressing mes-
sages directly to the firewall.

3.3 Thevirtual machines

In TAX it is the responsibility of the various virtual ma-
chines to execute code in a safe and secure manner. Thus
some level of trust has to be established in that the agen-
t cannot act maliciously, before the VM executes the code.
There are generally two ways one can achieve this. The first
is to obtain sufficient trust in the code which is about to ex-
ecute, for instance through digital signatures. Second, the
virtual machine can achieve guarantees that the code does
not act maliciously, for instance by guaranteeing the neces-
sary safety features.

For instance, the trivial virtual machine vm bin exe-
cutes binaries directly on top of the operating system, pro-
vided the binary is signed by a trusted principal. In this way,
the virtual machine allows the agent to execute in an effi-
cient way once sufficient trust has been established. In gen-
eral, virtual machines may use any safety mechanism most
appropriate for the language it supports, like sand-boxing,
PCC [10], SFI [13], code signing, and so on.

The method in which this is achieved is left to the vir-
tual machine, the firewall simply trusts it to execute agent
code safely and correctly. Virtual machines may support ex-
ecution of several agents. In this case the virtual machines
may, for performance reasons, resolve internal communica-
tion without involving the firewall.

Furthermore, virtual machines are essential in that they
make TAX itself language independent. As mentioned, the
method used by the VM to facilitate execution of agent code
is left entirely up to the VM. This is not limited to security
and safety concerns, but includes the question of supporting
automatic state capturing.

The only other requirements placed on the virtual ma-
chines is that they issue briefcases for communication, since
a briefcase is the TACOMA data structure that is language
and architecture independent. Furthermore, VM must re-
spond to commands issued by the firewall. This is needed
to enable the firewall (or other agents having sufficient priv-
ileges) to control agents running on the VM.

VMs may manage some system resources by themselves,
like CPU and memory, subjected to constraints imposed
by the firewall. However, in order to manage arbitrary re-
sources properly, resources other than memory and CPU
time are handled by service agents. This allows resource al-
location mechanisms to handle requests regardless of which
VM the requesting agent is running on. For instance, to gain
access to the file-system, a mobile agent interacts with the
ag_fs or ag_ccabinet service agents.

3.4 Exampleexecution

As an example of the concepts introduced above, we will
examine more closely the steps an agent implemented in

Remote site

®
e

@gcc *.c -0 res

Operating system

Figure 3. TAX execution example of a C agent.

C goes through to become activated (see figure 3). First,
the briefcase containing the agent will be delivered to vm ¢
(step 1). vm_c activates ag_cc which extracts the code
(step 2) and then activates ag_exec (3) with the code and
the compiler as arguments. Ag_exec runs the compiler (4)
and stores the binary in the briefcase received from ag cc,
and returns it to ag_cc (5). Ag_cc then returns the binary
to vim_c (6) which uses vm bin (7) to activate the agent.
At this point the compiled C code contained in the briefcase
arriving at the top is executed.

Now, consider the C code in figure 4. If this is the
code carried by the agent in the previous paragraph, it will
when executed, display a message before removing the first
element from the list of elements contained in the folder
HOSTS. If this element is empty the agent terminates, else
it tries to relocate to the VM specified by the URI named in
the element, and the whole process repeats itself.

4 Supported functionality in agent systems

With more than 60 known mobile agent systems, one can
ask questions about the difference between them. Most mo-
bile agent system designers agree on the basic functionality;
move code and run it in a itinerant style. But, beyond this
their systems differ greatly in what they support. For in-
stance, a much disputed question in the mobile agent com-
munity is if automatic state capturing of a running agent is
essential or not.

Many also integrate solutions to more complex (but still
traditional) distributed problems, like; location independent
naming, group communication, directory services, support
for transactions, and fault tolerance through active or pas-
sive replication, and much more.

int agMain{briefcase bc} {
element e;
char next;

while (1) ({
displaySomehow (' ‘Hello world’’) ;

e = fRemove (bcIndex (bc, **HOSTS’ ") ,1);
if (le) {
exit (0) ;
1
next = eData(e) ;

if (go(next, bec)) {
displaySomehow (' ‘Unable to reach %s’’,
next) ;
}

} /* Never reaches this point */

}

Figure 4. A simple hello world agent

This leads us to our next observation; The scope of sys-
temsupport is difficult to determine, some agents are single-
hop and execute within the same administrative domain,
while others are multi-hop and execute in the hostile en-
vironment of the Internet. To illustrate this, we use an ex-
ample from data mining. A mobile agent in this application
domain can be launched from a client host on an itineran-
t path visiting a set of server hosts containing voluminous
data. On each host the mobile agent parses through a speci-
fied set of data, and brings along the (intermediate) result to
the next host. This way, the client does not have to pull all
the data from the remote data servers over the network for
local processing. The mobile agent will, at each host, filter
necessary data, and only bring back the reduced set of data
that is valuable for the application.

Agents of this class may need additional functionality
beyond the basic single hop agents. They may need stronger
fault-tolerance and security guarantees for the agent and
they may need combinations of streamed, group and/or lo-
cation independent communication.

One could strive for the ultimate mobile agent system
with an execution environment that supports everything we
have mentioned and possible some more. However, this
seems to be unpractical, a design like this makes the goal
of a language independent system an even more daunting
task and may even not be possible in systems tied to a par-
ticular programming language.

An important problem is where to put the needed func-
tionality of agent applications, how much do we put into the
agents, and how much should be offered by the host envi-
ronment. We have argued that the scope of this functionality
is difficult to determine. Also, putting this functionality in-
to the host environment becomes a never-ending project and

creates a management problem. The remaining option is to
somehow put all of the required functionality into the agent
itself, with the danger of creating applications with large,
unwielding agents. What seems to be needed is a way to
decompose agents into discrete interchangeable objects.

This in fact translates into the general problem and ap-
proach to a solution in how one should structure mid-
dleware, and resembles the conclusions reached by other
projects dealing with complex compositions of middleware
functionality, such as ISIS [1]. They faced the same prob-
lems with complexity and general bloatedness of the sys-
tem, and this lead the a stackable architecture in Horus [12],
and eventually Ensemble [11].

We suggest that agents should be constructed as a set of
modules (troops of agents), in which the communication is
stacked in some order. In this way, agents may carry with
them the special support they need, and modules may con-
ceptually be reused and interchangeable.

We decided to use wrappers to expand upon existing
functionality of agents, without modifying the agents them-
selves. Wrappers provide a way to compose applications
from different parts. We use the concept of wrappers in
TAX to let agents carry with them the specific system sup-
port they need, thereby making the required set of services
at each landing pad minimal.

For instance, a group communication wrapper can be
used to wrap an application agent. As the wrapper is in-
stantiated, it is given parameters such as group membership
(all agents sharing common class), and desired properties
of communication (casual, FIFO, atomic, etc). If the agents
are to move, one can add a location transparent wrapper
around the broadcast wrapper.

To make wrappers work one needs a well defined inter-
face to wrap. We designed TAX with this in mind and creat-
ed a minimal interface between agents. Agents can perform
only two actions that are observable to the system: Send-
ing a briefcase and receiving a briefcase. Sending a brief-
case is equivalent with a method RMI (remote method invo-
cation) in object oriented systems, but without static bind-
ing or any type checking. This is more error prone than a
strongly typed system, but is essential in order to be able
to interface different languages with a minimum of hassle
and maximum flexibility for the application programmer. It
is this interface a wrapper can observe and intercept mes-
sages to. Once a message is intercepted, the wrapper needs
to examine it to determine the actual action attempted.

Wrappers in TAX are treated by the system as a regular
agent. The system passes any briefcase from the agent to
the wrapper, and any briefcase addressed to the agent is sent
to the wrapper first. Wrappers may be stacked in arbitrary
depth by TAX, and may originate from the local system or
be part of the mobile agent itself.

The mobile agent

rwiWebbot

mwWebbot tacoma://

Local link validation <<
Webbot

Logging \J)
Remote link validation + log

Remote

Figure 5. A wrapped Webbot.

5 Casestudy; mining for dead links

As web sites grow, chances increase that these sites con-
tain references that are invalid. Such links must be detected
in order for them to be corrected, a non-trivial task when
a single host can contain thousands of links, and a large
organization can consist of tens of these hosts. One way
of traversing the structure of a web site and detecting bad
links is to use a software robot. A robot can start with one
or more reference pages and traverse all links in some or-
derly manner, gathering statistics. The problem with most
robots are that they are usually executed from a host differ-
ent from the web server. This induces an extra load on the
network, even if its only on a local network.

In this experiment we will demonstrate how the benefit-
s of wrappers and virtual machines enables us to construct
a mobile link validation agent, using a navigation wrapper
around a data mining core. We are able to achieve this by
reusing an existing freely available robot and without rely-
ing on special system support in the execution environmen-
t of the web server, beyond the basic TAX agent system.
This example demonstrates a general principle in which we
demonstrate that mobile agents can be used to add mobility
to a general class of stationary data mining applications that
need to be close to their data source.

The idea here is to take a stationary web robot and en-
capsulate it using a mobile agent wrapper. Different robots
are generally implemented in a wide variety of languages?;

thtp://info.webcrawler.com/mak/projects/—

Java, Perl, C, Tcl, MS Visual Basic, Lisp, and Python with
Perl and C (C++) being the most widespread choices. Here
we have the first benefit of a language independent agent
system, in that we freely are able to choose from already
existing robots.

Webbot is one such robot from the W3C organization?,
and the one we will use in our experiment. Webbot is im-
plemented in C and can be used to gather statistics on we-
b pages such as link validity, age, and type of web pages
encountered. Webbot gathers these statistics by following
links in depth first manner, subjected to certain constraints.
Constraints include depth of the search tree and restricting
URIs checked to those matching a specific prefix. We will
use this robot to check the validity of links on all pages lo-
cated on our local computer science department web server
(we assume that all pages can eventually be reached from
the topmost index page).

We use the restricted prefix of Webbot in our example
to keep the robot from straying off the CS department web
server. However, we are also interested in the validity of
links inside our CS web server pointing outside. As it turn-
s out, the Webbot also logs links not followed because of
constraints, and so we are able to check the links pointing
outside our CS department server in a separate step. Fur-
thermore, if we where to check all the servers at the univer-
sity campus (the whole uit.no domain) or need the supply
different base URIs, Webbot needs to be run several times,
and preferably relocated to a new host between each execu-
tion.

Our wrapper for Webbot does two things. First, it relo-
cates the Webbot binary to the web server we wish to ex-
amine and executes it at that server. Furthermore, it ex-
amines the URIs logged as rejected by Webbot, and looks
these URIs in a separate step. It then combines the URIs not
found to be valid with the invalid URIs logged by Webbot.
The resulting list of invalid URIs and the referring pages is
then transmitted back to the host of origin.

We used two TAX wrappers in this example (figure 5).
The first one, called mwWebbot, encapsulating the Webbot
by initially carrying it in its briefcase. It uses the ag_exec
service available at all TAX sites to execute the Webbot bi-
nary once it has relocated to the web server. Ag exec ex-
tracts the binary matching the architecture of the local ma-
chine (an agent may submit a list of binaries matching dif-
ferent architectures to ag_exec), and executes it with the
arguments called by mwWebbot. mwWebbot then collects
the results and executes step two of the task, namely check-
ing links rejected by the Webbot binary.

In order for us to monitor and keep control of the applica-
tion, we added another wrapper around mwWebbot, called
rwWebbot. This wrapper reports back to a monitoring tool

robots/active/html/ahoythehomepagefinder.html.
3http://www.w3v.org/Robot.

about the location of the agent it wraps (mwWebbot and
Webbot) and can be queried about the status of the compu-
tation.

In a test, the Webbot scanned 917 html pages contain-
ing 3 MBytes on our web-server. The web server contains
more information than this, but since Webbot became un-
stable with a search tree deeper than 4, we had to limit the
depth of the search tree. We found that executing a Webbot
scan for invalid links on our CS department server locally
is 16% faster than doing it over a 1L00MBit network. Critics
may claim that 16% is not much, but our testing environ-
ment is very advantageous to the remote case. If the client
and server is separated by a wide area network and the vol-
ume of data much greater, it is conceivable that the mobile
Webbot would be even faster than its stationary counterpart.

6 Concluding remarks

Combining existing non-mobile applications with mo-
bile agents require agent systems that are flexible and is
not restricted to a single language. Building a mobile agen-
t system supporting multiple languages and decomposition
of agents is hard, but gives additional flexibility in that a
wide variety of security and programming models can be
supported. The problem of the scope of functionality that
an agent system should offer, can be reduced by offering a
mechanism that allows agents to carry with them the system
support they need.

We demonstrated that this is possible by taking a piece
of COTS software, the W3C freely available Webbot, and
wrapping it with a mobility wrapper. This made it possible
to remotely deploy the Webbot on several sites, and saved
bandwidth and time in our attempt to find broken links at
our CS department web server.

We have a system that supports both multiple languages
and lets the agent carry with it the system support it needs.
TAX has been released into public domain®, and we are cur-
rently working on additional virtual machines, and a frame-
work for automatic generation of layers of wrappers.

In conclusion, the ultimate fate of the mobile agen-
t paradigm probably does not depend on the number of such
systems developed, but the usefulness of these systems in
developing real applications. However, we believe there ex-
ists such a usefulness.

Acknowledgments
We would like to thank Robbert van Renesse, Keith

Marzullo, Kjetil Jackobsen and Kare Lauvset for many
fruitful discussions on the TAX architecture.

4http://www.tacoma.cs.uit.no/index.html

References

[1] K. P. Birman. The process group approach to reliable
distributed computing. Communciations of the ACM,
36(12):36-53, December 1993.

[2] A.D.Birrell and B. J. Nelson. Implementing Remote Proce-
dure Calls. ACM Transactions on Computer Systems, 2:39—
59, February 1984.

[3] R.S.Gray. Agent Tcl: A transportable agent system. In Pro-
ceedings of the CIKM Workshop on Intelligent Information
Agents, Fourth International Conference on Information and
Knowledge Management (CIKM 95), Baltimore, Maryland,
December 1995.

[4] D. Johansen. Mobile agent applicability. In Proceedings
of the Mobile Agents 1998, Springer-Verlag LNCS series,
1998.

[5] D. Johansen, K. Jacobsen, N. P. Sudmann, K. J. Lauvset,
K. P. Birman, and W. Vogels. Using software design patterns
to build distributed environmental monitoring applications.
Technical Report TR97-1655, Department of Computer Sci-
ence, Cornell University, USA, December 1997.

[6] D. Johansen, K. Marzullo, and K. J. Lauvset. An approach
towards an agent computing environment. In ICDCS 99
Workshop on Middleware, 1999.

[7] D.Johansen, F. B. Schneider, and R. van Renesse. Mobility,
Mobile Agents and Process Migration - An edited Collec-
tion, chapter What TACOMA Taught Us. Addison Wesley
Publishing Company, 1998.

[8] D.Johansen, R. van Renesse, and F. B. Schneider. An Intro-
duction to the TACOMA Distributed System — \ersion 1.
Technial report TR-95-23, University of Tromsg, Norway,
June 1995.

[9] D.Johansen, R.van Renesse, and F. B. Schneider. Operating
System Support for Mobile Agents. In Proceedings of the
5th Workshop on Hot Topicsin Operating Systems (HOTOS
V), pages 42-45. IEEE Press, May 1995.

[10] G.C.Neculaand P. Lee. Safe kernel extensions without run-
time checking. In Proceedings of the Second USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI), Operating Systems Review, pages 229-243. ACM,
October 1996.

[11] R.van Renesse, K. P. Birman, M. Hayden, and A. V. D. A.
Karr. Building adaptive systems using ensemble. Software -
Practice and Experience, 28(9):963-979, July 1998.

[12] R. van Renesse, T. M. Hickey, and K. P. Birman. Design
and Performane of Horus: A Lightweight Group Communi-
ations System. Technical Report TR94-1442, Cornell Uni-
versity, August 1994,

[13] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Effi-
cient Software-Based Fault Isolation. In Proceedings of the
Fourteenth ACM Symposium on Operating System Princi-
ples, December 1993.

[14] J. E. White. Telescript technology: The foundation for the
electronic marketplace. General Magic white paper, General
Magic Inc., 1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

