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BACKGROUND: Resistance to chemotherapy, combined with heterogeneity among resistant tumors, represents a significant
challenge in the clinical management of triple negative breast cancer (TNBC). By dissecting molecular pathways associated with
treatment resistance, we sought to define patient sub-groups and actionable targets for next-line treatment.
METHODS: Bulk RNA sequencing and reverse phase protein array profiling were performed on isogenic patient-derived xenografts
(PDX) representing paclitaxel-sensitive and -resistant tumors. Pathways identified as upregulated in the resistant model were
further explored as targets in PDX explants. Their clinical relevance was assessed in two distinct patient cohorts (NeoAva and
MET500).
RESULTS: Increased activity in signaling pathways involving SRC-family kinases (SFKs)- and MAPK/ERK was found in treatment
resistant PDX, with targeted inhibitors being significantly more potent in resistant tumors. Up-regulation of SFKs- and MAPK/ERK-
pathways was also detected in a sub-group of chemoresistant patients after neoadjuvant treatment. Furthermore, High SFK
expression (of either SRC, FYN and/or YES1) was detected in metastatic lesions of TNBC patients with fast progressing disease
(median disease-free interval 27 vs 105 months).
CONCLUSIONS: Upregulation of SFK-signaling is found in a subset of chemoresistant tumors and is persistent in metastatic lesions.
Based on pre-clinical results, these patients may respond favorably to treatment targeting SFKs.
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BACKGROUND
Triple negative breast cancer (TNBC) accounts for 15-20% of all
breast cancers (BC) and represents the subgroup with the least
favorable outcome [1]. Compared to other subgroups, TNBC has
higher risk of early relapse, increased likelihood of distant
metastasis and shorter overall survival [2]. Chemotherapy has
until recently been the only treatment option [1], in which
anthracycline/taxane-based regimens, preferentially as neoadju-
vant treatment (NAT), has been a standard approach for patients
with primary TNBC [3]. With recent improvements in the regimens
used, approximately half of the treated patients show pathological
complete response (pCR), which is associated with prolonged
survival [4, 5]. However, patients with residual disease experience
increased likelihood of recurrence and the development of distant
metastases [6, 7]. Thus, resistance to chemotherapy and sub-
sequent relapse represents a significant challenge in the clinical

management of TNBC in both the curative and metastatic setting,
and emphasize the need for new therapeutic opportunities [8].
Despite being grouped as a single disease, TNBC is biologically

and clinically highly heterogeneous, which creates additional
challenge when searching for better therapeutic options. Con-
siderable efforts have been made over the last decade to sub-
classify TNBC based on molecular profiling [9–11]. Lehmann et al.
[9, 12]. identified initially six, later revised to four, subtypes with
characteristic molecular patterns, distinct prognosis, and differ-
ential response to standard-of-care chemotherapy. A number of
analogous studies attempted to sub-classify TNBC combining
various -omics approaches [10, 13, 14], and despite overlap, a
large variability in classification has been observed. Based on the
distinct molecular features, subtype-specific actionable targets
have been proposed for individualized therapy [14–16]. Further-
more, it has been observed that TNBC patients with residual
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disease after NAT, frequently experience a change in the
molecular subtype [17]. This suggests that treatment-associated
molecular alterations in patients without pCR might have
implications for the optimal choice of adjuvant therapy.
The extensive inter-tumoral heterogeneity in TNBC per se, and

in response to treatment, makes identification of actionable
molecular patterns challenging in clinical cohorts. Pairs of tumors
with the same genetic background but distinct chemo-sensitivity
can facilitate detection of resistance-associated molecular traits.
Such pairs can be generated in patient-derived xenografts (PDXs)
that are established by implanting patient tumor pieces into
immunocompromised mice and represent useful tools for
precision oncology, including investigation of biomarker-driven
treatment options [18]. PDXs generally retain fidelity to the
originating tumors both with respect to the main genomic
aberrations and gene expression profiles, recapitulating intrinsic
subtypes of BC [19, 20]. By exposing PDXs to clinically relevant
treatments, tumors with features of resistance can be generated
[21]. In the current study, we use an isogenic pair of PDXs
consisting of paclitaxel-sensitive and -resistant variants. It enables
identification of molecular traits linked with chemoresistance,
which in turn can aid in sub-grouping TNBC patients and
pinpointing candidates for next-line treatment.

METHODS
PDXs maintenance and treatment in vivo
All in vivo experiments were performed using female Hsd: Athymic Nude-
Foxn1nu mice, locally bred at the Department of Comparative Medicine at
the Norwegian Radium Hospital, Oslo University Hospital (OUH, Oslo,
Norway). MAS98.12 PDX was established in-house as described previously
[22] and maintained by serial passaging, implanting 2–3mm3 pieces of the
tumor under the skin above the thoracic mammary glands of 6-8 week-old
mice. Tumor growth was followed by measuring their size (length, L and
width, W) using a caliper, and the tumor volume was calculated as W2 × L × 0.5.
Implanted tumors with no growth at treatment initiation were excluded.
Only tumors that reached a priori decided volume i.e. palpable (on average
40–60mm3) and less than 200mm3, were included. Treatment was
initiated when tumor volume reached 60–200mm3. All treatments were
given in a volume corresponding to 10 µl/g body weight, and for all
treatment groups at least five animals were included based on previous
experience with the MAS98.12 model [23, 24]. Animals sacrificed due to
off-treatment effects, thus not receiving a full treatment regimen, were
excluded. Animals were randomized into distinct groups to ensure average
tumor volume to be similar across treatment groups at the start of
treatment. To minimize potential confounders, the order of treatment and
animal/cage location was random, and data analyst was not aware of
grouping until experiments had been finalized. All tumors receiving
treatment were included in the analyzes. Relative tumor volume was
calculated by normalizing to the volume at the day when treatment was
started. Assessment of the treatment effect on tumor growth was
performed by calculating area under the curve (AUC) for each tumor by
using GraphPad Prism and calculating relative AUC with respect to the
untreated controls. Treatment toxicity was monitored by following body
weight and body condition. At experimental endpoint, the mice were
sacrificed by cervical dislocation. Tumors were excised and snap frozen in
liquid nitrogen for subsequent molecular analyzes.
The following drugs were used for treatment in vivo: paclitaxel (Mylan

Laboratories Inc/Viatris), eribulin (Eisai AB, Sweden), docetaxel (Eurasia’s
Chemicals and API, Mumbai, India), cabazitaxel (Biochempartner Co. Ltd.,
China) and carboplatin, doxorubicin, capecitabine (all from Accord Health
Care, Solna, Sweden). Paclitaxel, eribulin, carboplatin and doxorubicin were
diluted in 0.9% saline, docetaxel and cabazitaxel were diluted in 0.9%
saline w/0.6% ethanol, while capecitabine tablets (150mg) were dissolved
in 40mM citric-buffer w/5% Acacia gummi. All taxanes and doxorubicin
were given intravenously, carboplatin was given intraperitoneally, while
capecitabine was applied per oral.

PDX tissue cultures (PDXC) and treatment ex vivo
Resected tumors were processed and cultured as described previously [25].
Briefly, the minced tumors were digested with 2mg/mL collagenase IV and
100 µg/mL DNase (both from Sigma-Aldrich, St.Louis, MO, USA) for 30min

on rotation. After multiple centrifugations, the pellet containing the tissue
fragments was re-suspended in BC organoid medium (OM+ , specified in
Supplementary Table S1) and plated in low adhesion plates. After 2–3 days,
the tissue suspension was filtered through a 100 µm cell strainer and left to
sediment for 2–5min. The fragment-enriched pellet was resuspended in
OM+ to a concentration of 7 - 9 fragments/µL. After addition of 30%
Matrigel (Corning, New York, USA), droplets of 10 µL fragment/Matrigel mix
were added to 96-well plates. The domes were allowed to solidify at 37 °C
for 30min before addition of 90 µL of OM+ . The next day, 100 µL of OM+
with the desired concentration of the drug was added. The following drugs
were used: saracatinib (AZD0530), dasatinib, cobimetinib (GDC-0973) and
capivasertib (AZD5363) (all from Selleckchem, Houston, TX). After six days
of treatment, the effect was scored by measuring metabolic activity in the
PDXCs by CellTiter-Glo3D assay (Promega, Madison, WI, USA) following the
manufacturer’s protocol.

RNA sequencing
RNA isolation and sequencing. Total RNA was isolated from snap frozen
tissue samples dissolved in 600 µl RLT Plus buffer w/2mM DTT (Qiagen,
Hilden, Germany) using TissueLyser LT (Qiagen) for 2×4minutes at 30 Hz.
Homogenized lysate was passed through a QIAshredder (Qiagen) spin
column at 20.000 g for 30 seconds to remove debris, before total RNA was
extracted by QIAcube Connect (Qiagen) with an AllPrep® DNA/RNA/miRNA
Universal kit (Qiagen) according to manufacturer’s protocol. Finally, RNA
was quantified on a Quibit Fluorometer (Thermo Fisher Scientific, Waltham,
MA, USA) with the QubitTM RNA High Sensitivity Assay kit (Thermo Fisher
Scientific), and RNA integrity number (RIN) determined on a 2100
Bioanalyzer (Agilent, Santa Clara, CA, USA) with the Agilent RNA 6000
Pico Kit (Agilent).
Sequencing libraries were prepared with KAPA RNA HyperPrep Kit

(Roche, Basel, Switzerland) followed by Twist Human Comprehensive
Exome (Twist Bioscience, South San Francisco, CA, USA) for mRNA capture,
according to the respective manufacturer’s protocol. Samples were
sequenced with Illumina NovaSeq6000 reagent kit v1.5 (Illumina, San
Diego, CA, USA) on Illumina NovaSeq6000 or Illumina NextSeq500 with
Illumina NextSeq500/550 reagent kit v2.5 at the Genomics Core Facility,
Institute for Cancer Research, OUH, generating pair-end reads between
75–151 bp read length.
RNAseq data processing and analyzes are given in detail in Supple-

mentary methods.

Protein-protein interaction networks
Protein-protein interaction (PPI) networks were generated by selecting the
400 genes with highest absolute log2 fold change (LFC), among significant
genes (padj < 0.05) from the bulk RNAseq differentially expressed gene (DEG)
analyzes. This list of genes was uploaded to STRING (v11.5; https://version-11-
5.string-db.org/ [26]) where protein–protein interactions were determined
with the highest confidence setting (0.9). Networks were exported to
Cytoscape [27], where genes with >2 edges were kept for the final
interaction map.

Preparation of protein lysates
For PDX, mechanically minced cryopreserved tissue (approximately 30mg)
was placed in 750 µL ice-cold lysis buffer (1% Triton X-100, 50mM HEPES
pH 7.4, 150mM NaCl, 1.5 mM MgCl2, 1 mM EGTA, 100mM NaF, 10 mM Na
pyrophosphate, 1 mM Na3VO4, 10% glycerol) and 1 × pStop/cOmplete
(Roche Applied Science, Mannheim, Germany), then lysed using Precellys
lysing kit and Precellys tissue homogenizer (Bertin Technology, Montigny-
le-Bretonneux, France). For the lysates used in the RPPA analysis, protein
concentration was adjusted to 1.5 µg/mL, mixed with 4xSDS Sample Buffer
(40% Glycerol, 8% SDS, 0.25 M Tris-HCl, pH 6.8) and denatured for 5 min at
95 oC.

Proteomic analyzes by Reverse-Phase Protein Array (RPPA)
The RPPA profiling was performed at the RPPA core facility of MD
Anderson Cancer Center (Houston, TX) as previously described [28].
Briefly, serial diluted protein lysates were arrayed onto nitrocellulose-
coated slides (Grace Bio-labs, Bend, OR, USA) using an Aushon 2470
Arrayer (Aushon BioSystems, Billerica, MA, USA), including the spots
corresponding to positive and negative controls prepared from mixed-
cell lysates and dilution buffer, respectively. Each slide was probed with
a validated primary antibody plus a biotin-conjugated secondary
antibody.
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Prior to data normalization, mouse antibodies were removed to avoid
unspecific signal, thus, 429 proteins, including 92 phosphorylated proteins,
were included for normalization. Level 3 data were obtained for downstream
analyzes by first log2 transforming raw data quantified with RPPA SPACE [29],
before bidirectional normalization by median-centering first by antibody
then by sample. Differential expressions were determined by the R package
limma, by fitting multiple linear regression model with the function lmFit.
Pathway activity score (PAS) was defined for each sample as the sum of

the protein expression levels of positive regulators minus that of negative
regulators in a particular pathway and was calculated as previously
described [30]. The proteins predictive for MAPK/ERK and PI3K/AKT
pathway activity were predefined [30], while the proteins used to calculate
the SRC-Family Kinases (SFKs) PAS were defined based on literature search
(specified in Supplementary Table S2).

Simple Western Immunoassay (SWI)
Proteins of interest were analyzed by SWI using a PeggySueTM instrument
(ProteinSimple, San Jose, CA). Protein lysate concentration was adjusted to
0.8 µg/µL, and protein separation was performed by using 12–230 kDa size
separation master kit (SM-S001; ProteinSimple) according to the manu-
facturer’s instructions. Primary antibody incubation time was set to 60min,
while other settings were kept on default. The Compass software (Protein
Simple) was used to control the instrument and analyze the data. The
antibodies and their dilutions are specified in Supplementary Table S3. For
all proteins of interest, the expression (area under the curve) was
normalized to the expression of the loading controls (GAPDH or β-ACTIN)
in each sample. Detection curves for all samples used in this study are
given in Supplementary Fig. S11-S13).

Clinical cohorts
NeoAva. From the NeoAva phase II clinical trial (NCT00773695), TNBC
samples collected before NAT at screening (NASC) and post-NAT at surgery
(NA25) for patients without pCR were analyzed for gene and protein
expression as described previously in [31] and [32], respectively. All
transcriptomics data was retrieved from Silwal-Pandit et al. [31]. RPPA protein
expression data at NASC was obtained from Haugen et al. [32], while the data
at NA25 was retrieved from an ongoing study and normalized together with
the NASC data using the method described by Haugen et al. [32].

MET500. Transcriptomics data from metastatic lesions in the MET500
cohort of solid cancers [33], was retrieved from https://xenabrowser.net,
while clinical data was taken from Supplementary Table S1 in Robinson
et al. [33]. The unique TNBC samples (n= 40) and the corresponding TNBC
subtypes determined for these samples by Lehmann et al. [16], were used
in this study. Gene expression data was prepared by log2-transforming
fkpm values, and either used directly for survival analyzes, or median
centered for use in heatmaps. Immune fraction generated by xCell [34]
were retrieved from Supplementary Table S2 in Lehman et al. [16].

Survival analyzes
Survival analyzes were performed in R with functions survfit and ggsurvplot,
from packages survival (v3.5-7) and survminer (v0.4.9), respectively. P-values
were calculated for each curve by the log-rank method.

Presentation and statistics
Data processing, analyzes and figure generation were done in R (v4.3.1)
programming language with RStudio (2023.09.0+ 463). Figures are
generated with the R package ggplot2 (v3.4.4) unless indicated otherwise.
Statistics were performed using rstatix (v0.7.2), while Pearson correlation
was done with base R functions cor and cor_test. Pairwise comparisons were
performed for relevant groups as indicated using a two-sided t-test with
Welch’s correction of unequal variance. If data was determined not to be
normally distributed by the Shapiro-Wilks test, a two-sided Mann–Whitney
U test was used instead. For both tests, a p < 0.05 was considered
statistically significant, and labeled with an asterisk (*) in figures.

RESULTS
Generation of an isogenic PDX pair with distinct sensitivity to
taxanes
MAS98.12 PDX has been established in-house, and as shown
previously, recapitulates the main histological and genomic

features of the parental patient tumor [22]. Whole exome
sequencing (Supplementary Table S4) validated the presence of
TP53 mutation in codon 120, also detected in the patient tumor
biopsy [22].
MAS98.12 PDX showed high sensitivity to paclitaxel, a

microtubule-targeting agent used as standard treatment for
patients with TNBC. After three weeks on-treatment, all nineteen
tumors decreased in size (Fig. 1a and Supplementary Fig. S1A).
However, after ten weeks, five tumors relapsed, with one not
responding to the repeated treatment with paclitaxel (Fig. 1a and
Supplementary Fig. S1A). This non-responding tumor was the
origin of the paclitaxel-resistant sub-line MAS98.12PR, which also
at later generations showed complete insensitivity to paclitaxel
(Fig. 1b and Supplementary Fig. S1B). Furthermore, MAS98.12PR
also showed lack of sensitivity to other microtubule-targeting
agents, docetaxel and eribulin, but not cabazitaxel, which
inhibited tumor growth similarly to what was observed in
MAS98.12 (Fig. 1b and Supplementary Fig. S1B,C). Compared to
MAS98.12, MAS98.12PR showed no difference in sensitivity to the
DNA-targeting chemotherapeutics, carboplatin and doxorubicin
(Fig. 1c,d), which reduced the tumor growth by approximately
50% (Fig. 1e). MAS98.12PR, however, displayed a slightly better
response to capecitabine, a precursor of 5-FU (Fig. 1c,d), which
induced approximately 70% reduction in tumor growth compared
to 50% in MAS98.12 (Fig. 1e). In subsequent figures, MAS98.12 and
MAS98.12PR are abbreviated as PS (paclitaxel-sensitive) and PR
(paclitaxel-resistant), respectively.
Immunohistochemical comparison of MAS98.12PR with

MAS98.12 (Supplementary Fig. S2) revealed equally high positivity
in the epithelial markers (EPCAM, CK19 and E-CADHERIN), slightly
stronger staining for the mesenchymal marker (VIMENTIN) and a
slightly weaker staining for the proliferation marker Ki-67. In
contrast to MAS98.12, MAS98.12PR stained positive for the
multidrug resistance protein 1 (MDR1), a well described mediator
of paclitaxel resistance [35].
A comparison of genomic aberrations (point mutations and

short insertions/deletions) in MAS98.12PR versus MAS98.12
revealed a slight increase in overall mutational burden (Supple-
mentary Fig. S2A) and several aberrations specific to MAS98.12PR
(Supplementary Table S5). While most variants were of uncertain
significance (VUS), ATRX (alpha-thalassemia mental retardation X-
linked) was predicted as likely oncogenic, though at low allelic
fraction (VAF) (Supplementary Fig. S2B). Notably, ATRX is a tumor
suppressor that functions as a “guardian” of genome stability [36],
and inactivation of its function due to mutations may potentially
explain the observed increase in mutational burden in
MAS98.12PR.
In conclusion, we have generated a paclitaxel-resistant PDX,

which together with the sensitive counterpart constitutes an
isogenic pair for studies on molecular alterations associated with
resistance.

Large transcriptional changes are associated with acquisition
of chemoresistance
To map the molecular traits distinguishing MAS98.12PR from
MAS98.12, transcriptome profiles were generated by bulk RNAseq.
Principal component analysis (PCA) of the 500 genes with highest
variation in the RNAseq data, revealed strong separation between
the MAS98.12 and the MAS98.12PR samples (Fig. 2a), illustrating
that acquired resistance is accompanied by global changes in the
transcriptome. In line with this observation, differential expression
analyzes revealed more than 4000 genes to be significantly
altered between the models. While approximately the same
number of genes were found to be up- and down-regulated, a
general stronger induction of the up-regulated genes was
observed (738 genes with LFC > 1 versus 259 with LFC <−1). The
ABCB1 transcript encoding MDR1 showed the highest induction
with approximately 15 LFC (Fig. 2b). Clustering of the 200 genes
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with the highest variation across all samples identified three
distinct clusters, characterized by genes involved in EMT, Cell
organization, Cell adhesion and Inflammatory signaling (Fig. 2c).
Similarly, GSEA on genes ranked by LFC was performed to identify
biological pathways significantly altered in the resistant tumors. By
applying GSEA to the Hallmark gene sets, immunity-related
processes (inflammatory response, IL2-STAT5 signaling, comple-
ment) as well as EMT and KRAS signaling were identified among
enriched pathways in the resistant tumors (Fig. 2d). Down-
regulated pathways were dominated by cell cycle associated
processes (G2M checkpoint, Mitotic spindle, and E2F-targets), in
line with the well characterized effects of taxanes. Similar trends
were observed when applying GSEA to the KEGG and GO
Biological Pathway databases (Supplementary Fig. S4A,B). Alto-
gether, this indicates that multiple biological processes were
affected upon acquisition of paclitaxel resistance.
To determine central molecules in the resistant phenotype,

predicted protein-protein interaction (PPI) networks, based on the
400 most significant differentially expressed genes, was gener-
ated. By choosing a stringent confidence (0.9 in the STRING
database) only well-established PPIs were assessed. By defining
hubs of genes as having >2 interactions (edges) with other genes
in the list, FYN (LFC 3.5; padj < 2.11 × 10−20) was detected as a
central hub in the network (Fig. 2e). FYN is one of eight members

in the SRC-Family Kinases (SFKs), which share similar funtions in
transducing multiple oncogenic signals [37, 38].

Proteome analyzes reveal candidate targets in
chemoresistant tumors
To further explore whether paclitaxel resistant tumors have
activated SFK-signaling, proteomic analysis by RPPA was per-
formed. By comparing MAS98.12PR to MAS98.12, SRC pY527,
which leads to autoinhibition of the pathway [37], was noted
among the most down-regulated proteins (Fig. 3a, Supplementary
Fig. S5A and Supplementary Table S6). To validate the activation
of the SFK pathway, multiple SFKs (SRC, FYN and LYN), and the
activating phosphorylations (SFK pY416 and LYN pY397), were
analyzed by SWI. In line with the RPPA data, higher levels of these
proteins were detected in the MAS98.12PR tumors (Fig. 3b),
although intra-tumoral heterogeneity, as revealed by SFK pY416
IHC, was observed (Supplementary Fig. S5B). In addition, the
overall activity of the SFK pathway in both PDX models was
calculated using RPPA pathway activity score (PAS) as described
by Akbani et al. [30]. The difference in SFK-PAS indicated that SFK-
signaling was significantly more active in MAS98.12PR compared
to MAS98.12 (Fig. 3c).
The RPPA analysis combined with SWI-validation also uncov-

ered significant up-regulation of MAPK/ERK pT202/Y204 in
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MAS98.12PR (Fig. 3d,e, Supplementary Fig. S5A and Supplemen-
tary Table S6), suggesting activation of the MAPK/ERK signaling.
This was further supported by the significantly higher MAPK/ERK-
PAS in MAS98.12PR compared to MAS98.12 (Fig. 3f).
Furthermore, the RPPA and SWI data revealed significantly higher

levels of pan-AKT and pan-AKT pT308 in MAS98.12PR (Fig. 3g,h and
Supplementary Table S6), although the levels of the two main
isoforms, AKT1 or AKT2, showed relatively small changes (Fig. 3g).
When the level of the third isoform, AKT3 (not present on RPPA)
was evaluated, its up-regulation in MAS98.12PR on both protein
and gene level was revealed (Fig. 3h and Supplementary Fig. S4C).
Despite elevation in AKT3, no significant difference in AKT-PAS
could be observed between MAS98.12PR and MAS98.12 (Fig. 3i).
In conclusion, enhanced activity in SFKs- and MAPK/ERK-

signaling were identified in paclitaxel-resistant tumors, suggesting
these pathways as potential targets for therapy.

Chemoresistant tumors are sensitive to SFK- and MAPK/ERK-
pathway inhibitors
The effect of targeting SFKs- and MAPK/ERK- signaling was
explored ex vivo using PDX cultures (PDXCs), which enable
maintenance of viable BC tissue and preserve its proliferative

capacity (Supplementary Fig. 6A) [25]. Previously, we [25] and
others [39] have demonstrated strong correlation between tissue
drug-sensitivity in PDXCs and the corresponding PDXs, arguing for
PDXCs as a possible substitute for in vivo models. PDXCs from
MAS98.12PR and MAS98.12 generally preserved the main
molecular differences detected in the PDXs i.e. up-regulation of
SFKs, MAPK/ERK pT202/204 and AKT3 in the resistant tumor tissue
(Supplementary Fig. 6B).
To explore whether targeting of the up-regulated pathways

affected tissue viability, the PDXCs were treated with the
respective inhibitors. Compared to MAS98.12, MAS98.12PR tissue
showed significantly higher sensitivity to the SFKs inhibitors,
saracatibin and dasatinib (Fig. 3j,k and Supplementary Fig. S6C–G).
Likewise, the MAS98.12PR tissue was more sensitive to the MAPK/
ERK pathway inhibitor cobimetinib, which targets MEK (Fig. 3j,k
and Supplementary Fig. S6H,I). In contrast, the MAS98.12PR tissue
was less sensitive to the AKT inhibitor, capivasertib (Fig. 3j,k and
Supplementary Fig. S5J). To confirm that saracatinib and
cobimetinib inhibitied the SFK- and MAPK/ERK-pathways in
PDXCs, the levels of the phosphorylated target proteins were
assessed. Saracatinib reduced SFK pY416 levels, and cobimetinib
diminished MAPK/ERK1/2 pT202/Y204 in both tissues
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(Supplementary Fig. S7), indicating a specific molecular response.
Altogether, this data validated the functional significance of SFKs
and MAPK/ERK pathways in paclitaxel-resistant tumors and
proposed these pathways as actionable targets.

SFK- and MAPK/ERK-signaling in chemoresistant patients
To assess the clinical relevance of the upregulated pathways, data
from the neoadjuvant clinical trial NeoAva was utilized. Long-
itudinal samples from the TNBC patients without pCR to
neoadjuvant chemotherapy were analyzed by RPPA. By compar-
ing SFK- and MAPK/ERK-PAS in biopsies taken at surgery versus at
screening, increased activity in both pathways was found for a
subset of the patients (6/10 and 7/10, respectively, Fig. 4a,b), and a
positive correlation in activation of the two pathways was
observed, though marginally not significant (Fig. 4c). NAT-

induced up-regulation in a subset of patients was also detected
at the transcriptional level (Supplementary Fig. S8). The majority of
tumors with up-regulated SFK-PAS upon NAT, also showed
elevation in expression of SFK genes, FYN and LYN (Fig. 4d &
Supplementary Fig. 8A), supporting the results from the protein
PAS analysis and suggesting that changes in SFK pathway could
potentially be predicted at the transcriptional level. In contrast, no
correlation between changes in MAPK/ERK-PAS and transcription
of associated genes was observed (Fig. 4e & Supplementary Fig.
S8B), indicating the necessity of (phospho)proteome data for
capturing alterations in MAPK/ERK signaling.
Altogether, this indicates NAT-associated elevation in SFK and

MAPK/ERK signaling in a subgroup of the resistant patients, and
that gene expression can be utilized to further explore SFK in
patient cohorts.
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Expression of SFKs in subgroups of metastatic TNBC
Since TNBC without pCR are prone to metastasize, we hypothe-
zised that the molecular traits disclosed in our chemoresistant
model, are more prominent in metastatic rather than primary
tumor lesions. To explore associations between SFKs and clinical
outcome, the MET500 cohort of metastatic solid tumors was used,
as this includes gene expression data from metastatic lesions and
information on interval between primary disease and metastasis
from 40 TNBC patients [33].
First, association between SFKs expression and TNBC subtypes

as defined by Lehmann et al. [9, 12] was assessed. We
hypothesized that the up-regulation of SFK-signaling could be a
trait of the subtype represented by our PDX model. When
MAS98.12 and MAS98.12PR PDX were classified according to
Lehmann’s TNBC subtypes, they showed strong correlation with
both BL1 and M subtypes, later referred to as BL1/M (Fig. 5a).
Further, expression of all eight members of SFKs (SRC-A sub-
family: SRC, FYN, YES, FGR; and SRC-B sub-family: LYN, BLK, HCK,
LCK) were assessed according to the TNBC subtypes. The BL1/M
tumors did not differ significantly from other subtypes with
respect to expression of SRC, FYN and LYN, but showed a trend
towards lower expression of FGR and the remaining members of
the SRC-B sub-family (Fig. 5b). Next, hierarchical clustering
defined three distinct clusters of SFK expression pattern (Fig. 5c).
Cluster 1 and 2 included the majority of tumors correlating with
BL1 and M. Cluster 3, on the other hand, included most of the BL2
tumors, and showed elevated levels of FGR and the SRC-B sub-
family. Cluster 3 also displayed high immune fraction as inferred
by xCell. Accordingly, and in line with the literature [40], strong
correlation was found between the relative immune fraction and
the levels of FGR and the SRC-B sub-family (except LYN) (Fig. 5d),
suggesting their expression to be associated with the tumor
immune microenvironment. In contrast, low/no correlation with
immune fraction was found for either SRC, FYN, YES1 or LYN,
suggesting tumor intrinsic roles for these kinases. Despite the
observed associations, there was no difference in disease-free
interval between the tumors of BL1/M versus the other TNBC
subtypes or the distinct SFK-clusters (Fig. 5e,f). Collectively, this
suggested that SFK up-regulation is not limited to a particular
TNBC subtype, and SFK-signaling could be a potential therapeutic
target in metastatic TNBC irrespective of the subtype.

High SFK expression in metastatic lesions defines patients
with fast progressing disease
To assess whether expression of the individual SFK members
associates with disease-free interval in the MET500 cohort, High
expression groups were defined as tumors in the 75% percentile
for each of the SFKs. High expression of SFKs from the SRC-A
subfamily correlated with shorter disease-free interval, in parti-
cular for SRC, but also FYN and YES1 showed similar, but not
significant, trends (Fig. 6a and Supplementary Fig. S9A). No such
correlation was seen for any of the SRC-B subfamily members
(Fig. 6b and Supplementary Fig. S9B). Therefore, stratification was
redefined to High expression of at least one of three ubiquitously
expressed SFKs i.e. SRC, FYN or YES1. This patient group (25/40)
showed significantly shorter disease-free interval (Fig. 6c; median
27 vs 105 months; p= 0.002; Hazard Ratio = 3.2). Including LYN as
a parameter for selecting tumors to the High group, did not
improve the significance level between the High and Low groups
(Supplementary Fig. S9C,D).
For comparison, no association was found between SFKs

expression and overall or disease-specific survival in primary
TNBC, when similar analysis was applied to the TCGA or METABRIC
cohorts (Supplementary Fig. S10).
Altogether, this indicated that high levels of at least one of the

three SFKs - SRC, FYN or YES1 - define a sub-group of aggressive
TNBC with fast metastatic progression.

DISCUSSION
In this study, we have revealed distinct molecular changes
associated with treatment-induced resistance to paclitaxel. By
using a patient-derived TNBC model we recapitulated recurrent
disease after standard chemotherapy and identified signaling
pathways that distinguish a sub-group of refractory tumors with
fast metastatic progression. Finally, we proposed SFKs as
candidate targets for next line treatment for this sub-group.
By -omics driven approaches, large overall changes were

identified in the paclitaxel-resistant PDX, where the most
significant alteration was up-regulation of the drug pump MDR1.
The fact that MAS98.12PR was also resistant to docetaxel and
eribulin (both can be transported by MDR1), but not cabazitaxel
(not a substrate for MDR1), argues for MDR1 up-regulation as a
major driver of paclitaxel-resistance in our model. Even though
MDR1 is a well-established mechanism of chemoresistance,
multiple attempts to exploit it as a therapeutic target have failed
[41].
On the other hand, molecular alterations that develop as an

adaptive response, along with development of chemoresistance,
may uncover alternative targets for next-line treatment. We
identified at least three SFKs (SRC, FYN and LYN) to be up-
regulated, and constituting a central hub, in the paclitaxel-
resistant PDX. This is in line with Kohale et al. [42], who detected
activation of SFKs in PDXs with reduced sensitivity to paclitaxel.
Up-regulation of SFKs was also found in a sub-group of resistant
TNBC patients in the NeoAva clinical trial. Furthermore, elevated
levels of SFKs were detected in the metastatic patients that
experienced short disease-free interval in the MET500 cohort.
Collectively, this suggests that up-regulated SFK-signaling is a
feature of a subgroup of chemoresistant tumors, which in turn
make them susceptible to SFK targeted therapy. In concordance,
we demonstrated that the paclitaxel-resistant tumor tissue was
more sensitive to the SFKs inhibitors, saracatinib and dasatinib.
Likewise, Kohale et al. observed a correlation between SFK activity
and sensitivity to dasatinib in vivo [42].
SFKs are well-established oncogenic kinases, which have

frequently been implicated in tumorigenesis and metastasis,
especially in BC [38]. In cohorts of primary TNBC (TCGA and
METABRIC) we found no association between SFK levels and
survival, while in metastatic TNBC from the MET500 cohort, a
strong association between high SFKs levels and short disease-free
interval was disclosed. This can be explained by the fact that the
prevalence of SFK High tumors is low among primary TNBC
without treatment [42] and that SFK up-regulation is provoked
under therapy pressure. In line with the latter, NAT-associated up-
regulation of SFKs in a sub-group of TNBC patients without pCR
was observed in the NeoAva cohort, suggesting an adaptive
response on-treatment. One could speculate whether a subset of
relapsed tumors retain SFKs up-regulation after treatment with-
drawal, to exploit this pathway for further progression into
metastatic disease. The latter is in line with Zhang et al. [43], who
demonstrated the significance of the activated SRC for BC
metastasis, in particular to the bone. High SFK in MET500,
however, is not strictly associated with bone metastasis as the
cohort includes mostly lesions from other sites. Collectively, this
suggests that SFKs are involved in multiple mechanisms promot-
ing metastatic progression, and that SFK-dependent tumors are
candidates for the targeted treatment irrespective of their TNBC
subtype.
Due to the oncogenic role of SFKs and the proposed potential

as a target, multiple clinical trials testing SFKs inhibitors have been
performed in patients with metastatic BC (reviewed in [38]).
However, SFK inhibitors, when used as single agents in unselected
patient populations, have failed to improve patient outcomes
[44, 45]. Combination of SFK inhibitors with other treatment
modalities in unselected metastatic BC has shown some, but
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limited, clinical benefit [46, 47]. These studies together with the
presented data and the study by Kohale et al. [42] emphasize the
need for biomarkers to select SFK-dependent tumors that might
benefit from the targeted treatment. Several attempts have been
made to stratify metastatic BC patients for dasatinib treatment
based on in vitro-derived SRC-gene signatures [48]. Unfortunately,
these efforts have been unsuccessful. One recent study suggested
that signature of tyrosine phosphorylation is a better predictor for
selecting SFK-driven, dasatinib-sensitive PDXs, than transcript-
derived signatures [42]. We have shown that high expression of at
least one of the SRC-A subfamily members - specifically SRC, FYN
or YES1 - in metastatic lesions identifies patients with a short
disease-free interval. It is tempting to speculate that this subgroup
might benefit from SFK-targeted treatment, which remains to be
validated in a relevant cohort. These three SFKs are known to be
ubiquitously expressed and might execute tumor-intrinsic activity
promoting metastasis and resistance (reviewed in [40, 49]). The

expression of the remaining SFKs was not associated with disease-
free interval but correlated with immune infiltration. This is in line
with their known association with the immune microenvironment
[40, 49].
Targeting SFKs has several challenges. One of them relates to

SFKs themselves, as the family includes multiple members sharing
similar structure and functions [37]. Based on our data, over-
expression of one of three members is sufficient to identify fast-
progressing, metastatic tumors, possibly due to hyper-activation
of the signaling. Therefore, targeting should be able to affect
multiple members of the family to avoid compensatory activation
of the pathway. Another challenge links to the targeted drugs as
clinically used SFK inhibitors (dasatinib, saracatinib, bosutinib) are
not specific and inhibit multiple kinases not restricted to SFKs
(reviewed in [38]). Of note, the recently developed selective SRC
inhibitor eCF506 shows increased anti-tumor activity in TNBC
models in vivo [50].
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The MAS98.12PR PDX model revealed several other molecular
alterations that could have therapeutic relevance. It was detected
up-regulation of MAPK/ERK signaling along with enhanced
sensitivity to the MEK inhibitor cobimetinib, suggesting the
functional significance of this pathway in chemoresistant tumors.
Elevation in MAPK/ERK pathway activity might be related to up-
regulation of SFKs, which are known to facilitate the downstream
signaling via MAPK/ERK [51]. In concordance with this, correlation
between NAT-mediated up-regulation of both pathways was
observed in a sub-group of the resistant NeoAva patients. Since
MAPK/ERK-related changes were detected primarily at the protein
level, their clinical relevance remains to be validated in cohorts
with proteome data available.
Paclitaxel-resistant tumors also showed distinct up-regulation of

AKT3, but with no indication of general activation of the PI3K/AKT
pathway and response to the pan-AKT inhibitor capivasertib.
Although we have not elucidated the mechanisms behind such an
effect, it has previously been reported that AKT3 is particularly
important for growth of TNBC, and that this isoform can confer
resistance to pan-AKT inhibitors [52].
In conclusion, we have identified that chemoresistant, meta-

static TNBC with fast-progressing disease demonstrate elevated
expression of SFKs. Data from the PDX models implies that such
tumors are sensitive to SFK targeting and motivate its further
evaluation. A potential strategy for future clinical trials involves
evaluating the expression of SRC-A sub-family members in post-
versus pre-NAT biopsies to identify tumors with up-regulation.
Subsequent ex vivo assessment of drug sensitivity in tumors with
upregulated SFK could then facilitate the selection of patients who
may benefit from targeted treatment.
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