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Parasites in fish muscle present a significant problem for the seafood industry in terms of both quality 
and health and safety, but the low contrast between parasites and fish tissue makes them exceedingly 
difficult to detect. The traditional method to identify nematodes requires removing fillets from the 
production line for manual inspection on candling tables. This technique is slow, labor intensive and 
typically only finds about half the parasites present. The seafood industry has struggled for decades to 
develop a method that can improve the detection rate while being performed in a rapid, non-invasive 
manner. In this study, a newly developed solution uses deep neural networks to simultaneously 
analyze the spatial and spectral information of hyperspectral imaging data. The resulting technology 
can be directly integrated into existing industrial processing lines to rapidly identify nematodes at 
detection rates (73%) better than conventional manual inspection (50%).

Parasites in fish are a significant problem for seafood producers world-wide, presenting both quality and health 
concerns. For Atlantic Cod (Gadus morhua), there are two main species of nematodes that are typically found 
to infest the fish1. The first is the Pseuodoterranova decipiens, also known as the seal worm. These can grow to be 
up to 1 cm in diameter when curled and are often dark red or brown in color, particularly the larger specimens. 
P. decipiens nematodes can be found throughout the muscle tissue, including the loin and tail of the cod2. The 
second type of common nematode in cod is the Anisakis simplex, sometimes referred to as the herring worm. 
These nematodes tend to be smaller (up to 3-4 mm in diameter when curled), white or yellowish in color, and 
restricted to the belly area of the cod fillet2. Because of the nematode life cycle, infection tends to be worse for 
fish that reside near the coastal regions3,4.

Consumption of fish containing nematodes can lead to different types of health problems. If fish infected 
with nematodes is consumed raw or undercooked, this can lead to human infection by the nematode larva5,6. 
The larva burrow into the gastrointestinal walls, where they encapsulate and eventually die, leading to a painful 
syndrome referred to as intestinal anisakiasis7. In rare cases, individuals may have a potentially lethal allergic 
reaction to the Anisakis protein in cooked fish8–11.

Because of the strong disgust factor in finding nematodes in fish, the tolerance for parasites by seafood 
producers and purchasers is extremely low as it creates negative economic consequences from product rejection, 
decreased marketability of fish, and loss of consumer trust in seafood products12–16. These in turn can lead to 
both economic and job losses within the fishing industry. Therefore, seafood producers typically screen cod for 
nematode infection. The current state-of-the-art method for screening for parasites involves manual examination 
using an illuminated table, also known as a candling table. After the cod has been filleted, workers take the fillets 
from the conveyor belt, place them on a candling table, and quickly examine for parasites. The workers then 
trim away any nematodes that are discovered. The drawback of this technique is that it is time consuming and 
resource intensive, often accounting for up to 50% of the production costs of fillets17. Additionally, the method 
is subjective and there is often a significant percentage of nematodes that are not detected. Research indicates 
that only around 50% of nematodes are found under industrial screening conditions18,19. If the skin is still on the 
fillet, this drops to a 25% detection rate2.

Therefore, the development of an automated technology that could be installed along a conveyor belt to screen 
seafood for nematodes would have significant benefits in terms of improved product safety, quality, and lowered 
labor costs. However, detection of nematodes in tissue is a non-trivial problem. The low contrast between nematodes 
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and the surrounding tissue makes them exceedingly difficult to detect. Numerous technologies20,21 have been 
explored without success, such as ultrasound18,22, UV illumination14,23,24, conductivity22, electromagnetism25,26, 
and magnetometry27. Despite decades of research, even the most promising techniques have only produced 
marginal results. Magnetic resonance imaging, although promising in detecting nematodes, is too slow and 
expensive to use in an industrial setting28. Investigations involving x-ray techniques have struggled with low or 
non-existent contrast between the nematodes and surrounding tissue29. The most promising technology to date 
has been hyperspectral imaging. A normal camera measures three wavelengths in each pixel: one in the red, 
blue, and green regions of the visible light spectrum. A hyperspectral camera is similar but measures numerous 
wavelengths of light in each pixel, hence highly detailed information in both the spectral and spatial dimension. 
The spectrum in each pixel gives information on the chemical and physical structure of the sample in that 
location.

Hyperspectral imaging has long been investigated as a possible detection method of nematodes in seafood30–32. 
Initially, the technology was too slow and cumbersome to be used outside of a research setting. However, with 
technological advancements, hyperspectral equipment and the surrounding analysis have become cheaper and 
faster, such that the technology is now viable for screening seafood in an industrial setting. The hyperspectral 
imaging system used for this study, the Maritech Eye, is now commercially available to screen for several other 
quality defects in seafood33.

An early study using interactance hyperspectral imaging showed a good detection rate of nematodes 
compared to visible inspection34 but was not able to perform at the speed needed for industrial requirements. A 
follow-up study29 some years later with improvements to the equipment was able to measure rapidly enough for 
commercial application but produced worse detection rates. Xu et al. performed detection of nematodes in grass 
carp shashimi samples under laboratory conditions35. That work found that the difference in the spectra between 
nematodes and the fish flesh is very minor, highlighting the challenge in detecting nematodes on a spectral 
solution alone. A limitation of previous hyperspectral studies is that only the visible or spectral information 
could be used at one time given the available analysis tools. The advent of deep learning has opened up the ability 
to simultaneously use both spatial and spectral information in developing detection algorithms. Recent research 
has been carried out using deep learning techniques to integrate both the spatial and the spectral information 
from multispectral and hyperspectral imaging36,37. The current study uses hyperspectral images of cod fillets 
acquired under industrial conditions to create deep learning neural network models to detect parasites in fish 
tissue in real time.

Results
To evaluate the overall detection performance of nematodes by the models, we use the quality metrics of precision, 
recall, and F1 score. Precision is the ratio between the actual number of successfully detected nematodes and 
the total number of nematodes that the model flagged. High precision indicates an accurate detection of positive 
cases with a low number of false positives. The recall metric calculates the ratio of true positives (nematodes 
effectively identified by the model) against all positive cases in the dataset (all nematodes existing in the dataset). 
In our application, a high recall value points to an accurate nematode identification, with a reduced rate of false 
negatives. Finally, the F1 score is the harmonic mean of precision and recall and measures the overall quality of 
prediction. Unlike the overall accuracy, precision, recall, and F1 are not sensitive to unbalanced datasets.

These evaluation metrics rely on two different thresholds. The model outputs a value between 0 and 1 for each 
pixel in the hyperspectral image, indicating the probability of that pixel belonging to a nematode. The model 
threshold determines the probability level required to assign a pixel to the class nematode. The intersection-
of-union (IOU) metric measures the overlap between the pixels identified as nematode by the neural network 
model and the pixels marked as nematode by manual annotation of the images. The IOU threshold determines 
how much overlap is necessary to be considered a correct detection. The higher the IOU threshold, the higher 
the required overlap between the predictions and the annotated pixels to be considered a positive detection. The 
IOU threshold impacts the evaluation metrics as higher IOU thresholds require a higher match between the 
bounding boxes.

Table 1 shows the evaluation metrics for a model threshold of 0.5, which means that only pixels with more 
than 0.5 probability of belonging to a nematode are assigned to that class. The performance metrics for IOU 

Train Validation Test

IOU Precision Recall F1 Precision Recall F1 Precision Recall F1

0.1 0.892 (± 0.004) 0.757 (± 0.005) 0.819 (± 0.005) 0.889 (± 0.022) 0.735 (± 0.031) 0.804 (± 0.028) 0.902 (± 0.022) 0.775 (± 0.031) 0.833 (± 0.027)

0.2 0.892 (± 0.004) 0.757 (± 0.005) 0.819 (± 0.005) 0.889 (± 0.022) 0.735 (± 0.031) 0.804 (± 0.028) 0.9 (± 0.022) 0.761 (± 0.031) 0.824 (± 0.028)

0.3 0.89 (± 0.004) 0.743 (± 0.005) 0.81 (± 0.005) 0.889 (± 0.022) 0.735 (± 0.031) 0.804 (± 0.028) 0.9 (± 0.022) 0.761 (± 0.031) 0.824 (± 0.028)

0.4 0.886 (± 0.004) 0.711 (± 0.006) 0.789 (± 0.005) 0.882 (± 0.022) 0.684 (± 0.032) 0.77 (± 0.029) 0.898 (± 0.022) 0.746 (± 0.032) 0.815 (± 0.029)

0.5 0.878 (± 0.004) 0.659 (± 0.006) 0.753 (± 0.005) 0.873 (± 0.023) 0.633 (± 0.034) 0.734 (± 0.031) 0.897 (± 0.022) 0.732 (± 0.033) 0.806 (± 0.029)

0.6 0.863 (± 0.004) 0.578 (± 0.006) 0.693 (± 0.006) 0.85 (± 0.025) 0.52 (± 0.035) 0.646 (± 0.033) 0.878 (± 0.024) 0.606 (± 0.036) 0.717 (± 0.033)

0.7 0.817 (± 0.005) 0.411 (± 0.006) 0.547 (± 0.006) 0.809 (± 0.027) 0.388 (± 0.034) 0.524 (± 0.035) 0.857 (± 0.026) 0.507 (± 0.037) 0.637 (± 0.035)

0.8 0.694 (± 0.006) 0.208 (± 0.005) 0.32 (± 0.006) 0.71 (± 0.032) 0.224 (± 0.029) 0.341 (± 0.033) 0.769 (± 0.031) 0.282 (± 0.033) 0.412 (± 0.036)

0.9 0.443 (± 0.006) 0.073 (± 0.003) 0.125 (± 0.004) 0.55 (± 0.035) 0.112 (± 0.022) 0.186 (± 0.027) 0.684 (± 0.034) 0.183 (± 0.029) 0.289 (± 0.033)

Table 1.  Nematode detection performance depending on the IOU. “Significant values are in [bold]”
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threshold values ranging from 0.1 to 0.9 are presented. Higher IOU thresholds force a more precise alignment 
between the annotated data and the neural network model predictions, requiring a higher match in the position 
of the predicted nematodes and the actual position.

The evaluation metrics are similar for the training, validation, and test data, suggesting no overfitting. The 
results achieved on the test set are slightly more accurate than those for the training and validation sets. This can 
be caused by the random partition of the data, where the training and validation datasets could contain more 
challenging instances than the test set. The results also indicate that the model is characterized by high precision 
and moderate recall, which means that the number of false positives is low compared to the number of false 
negatives.

For the test set, the results for an IOU threshold ranging from 0.1 to 0.3 are similar, with values for precision, 
recall, and F1 score higher than 0.9, 0.76, and 0.82, respectively. The high precision indicates the model is able to 
identify nematodes with a high number of true positives and a low number of false positives. The value for recall 
suggests that the neural network model is able to detect 76% of the nematodes, while 24% of the nematodes 
are not detected (false negatives). Finally, the F1 score provides an average between precision and recall. For 
an IOU threshold of 0.5, the precision, recall, and F1 score for the test set are 0.89, 0.73, and 0.80, respectively. 
This means slightly worsened results but still very competitive. However, the evaluation metrics are negatively 
affected when the IOU threshold exceeds 0.5. The number of nematodes detected for IOU thresholds of 0.6 and 
0.7 decreased to 60% and 50%, respectively, and higher IOU thresholds downgraded the nematode detection 
rate to less than 30%. The interpretation of the results of varying the IOU threshold suggests the model is able to 
detect nematodes, but there arise some differences in the exact pixels predicted when compared to the manual 
annotation. At 0.5 IOU, which is selection to be considered the optimal threshold for the developed model, the 
detection rate (73%) was significantly better than the industrial rate (50%).

Figure 1 shows the graphical results of the nematode detection algorithm in examples from the test set. The 
images on the top row represent the position of the nematodes according to the manual annotations (yellow). 
The bottom row shows the predictions by the neural network model, where the segmentation of the nematodes 
is shown in red. Figure 1.a shows an example of a perfect detection, where all three nematodes in the samples 
were detected. Figure 1.b shows another successful outcome of the model, but this time in a nematode-free 
sample. Figure 1.c is an example of a non-detection of a nematode by the model, i.e., a false negative. However, 
the remaining two nematodes were successfully detected. Finally, Fig. 1.d shows an example of a false positive. In 
this case, the only nematode present in the sample was correctly detected, but the model predicted a nematode 
in an area free of parasites.

Fig. 1.  Example of different results for the automatic detection of nematodes with hyperspectral imaging and 
the proposed processing approach. (a, b) Successful detection of nematodes. (b) Example of a false negative. (c) 
Example of a false positive.
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Discussion
This research study demonstrates the capability of hyperspectral imaging and deep learning techniques to 
automatically identify nematodes embedded in cod muscle under industrial conditions at detection rates better 
than manual inspection. This ability is attributed to two main reasons. First, the high-powered interactance 
illumination setup used by the hyperspectral equipment makes it possible to have information on not only the 
surface of the fish muscle, but also information about deeper layers, enabling detection of nematodes embedded 
within the fish flesh. Such strong levels of illumination cannot be used for visual inspection as they overwhelm 
the human eye. Also, because the sample is illuminated from the same side as the detection camera, the thickness 
of the samples is less important and will not be negatively impacted by the presence of skin. In contrast, the 
conventional screening method using a candling table relies on light passing through the samples. Therefore, for 
thicker samples or samples with the skin on, the amount of light able to penetrate the fish tissue is reduced and 
hinders the ability of trimmers to see parasites.

The second reason lies in the combination of monotony and physical demands inherent in the job of the 
trimmers. These workers are tasked with meticulously inspecting and removing parasites from seafood 
products, a tedious process that demands prolonged attention to detail. The monotony of the job is emphasized 
by the repetitive nature of the task. Inspecting each fillet to ensure it meets quality standards requires an 
unwavering focus, as missing even a single parasite can lead to rejection of the entire delivery. Moreover, the 
physically demanding nature of the job adds an extra layer of challenge. The constant repetition of motions, 
such as trimming and inspecting, can lead to fatigue and strain on the body. Standing for extended periods 
and performing intricate tasks with precision can take a toll on the trimmers, making it a demanding job that 
requires both mental and physical resilience. In contrast, unlike people, the algorithms never grow tired or 
distracted.

These results have important implications for the seafood industry. Currently, every fillet must be manually 
inspected for nematodes. Using hyperspectral screening, only those with fillets identified with nematodes 
will need to be passed along for trimming and the annotated hyperspectral images can be used to assist the 
trimmers in removing the parasites. This will significantly reduce labor costs and the burden on the trimmers. 
The percentage of fillets infected with nematodes varies greatly depending on location and time of year. For some 
regions, like the Barents Sea, almost all specimens are infected while the number is much lower for cod from 
the North Sea. On average, about half of all cod have some level of nematode infection3. Automatic detection of 
nematodes by the seafood industry also opens up the possibility for researchers to collect statistics and assess the 
prevalence and impact of nematode infestations at scales far beyond what is possible in research studies alone.

Although the initial results of the study are promising, there remain several areas for improvement. The 
proposed method necessitates a considerable sample size for proper training and evaluation, and thus, expanding 
the sample set could lead to improved detection rates. However, during the different data collection campaigns, 
we emphasized the quality of data rather than its volume. Our objective was to gather a considerable number 
of images, ensuring that the annotations were accurate for effective algorithm training and evaluation. While 
we acknowledge that the available sample for our study is limited (comprising 289 annotated images and 244 
nematodes), it is worth noting that this sample size significantly exceeds the sample sizes of other studies related 
to nematode detection using hyperspectral imagery29,34–38. Additionally, as there is seasonal variation in the 
hyperspectral response of fish tissue, samplings from multiple times of year should be included in the training 
set to improve robustness. It is expected precision and recall can be improved using a larger dataset with a larger 
variation in the number of nematodes, their size, species, and position in the fish muscle. Additionally, detection 
rate could be improved by scanning at a lower speed, making a trade-off between throughput and identification. 
The solution presented in this work is limited to samples corresponding to the belly flaps. This is where the 
majority of nematode infestation occurs, but the region is not as thick as other parts of the fish, such as the 
loin. An important challenge to improving models lies in the difficulty in providing the ground truth of where 
nematodes are located in the fillets. Translating where a nematode was found during inspection to its location in 
a hyperspectral image is non-trivial due to deformation of the tissue during handling. Furthermore, even when 
fillets are inspected for nematodes by laboriously slicing the fish into thin sections, some nematodes are missed. 
There have been anecdotal incidents where apparent false positives by the neural network model turned out to 
be nematodes not detected upon manual evaluation of the fillets. Furthermore, it has been found that some false 
positives arise from other types of quality defect in the fillet (e.g. a blood spot, piece of black membrane) that 
can be removed by the trimmers to improve the visual quality of the fillet29. To address the issues associated with 
the subjective ground truth in future experiments, it is possible to utilize other technologies capable of precisely 
locating nematodes within samples, such as MRI or CT scans. However, the slower processing times of these 
technologies will restrict the number of samples with a more accurate ground truth that can be analysed.

Additionally, the conditions under which the hyperspectral images are captured (exposure time and the 
conveyor belt’s speed) determine the pixels’ spatial resolution. In this case, the acquisition conditions allowed 
to have square pixels, which means that the morphology of the fish samples and the nematodes are kept intact. 
However, different combinations of the acquisition parameters will produce images showing a morphological 
deformation, resulting in images stretched in the horizontal or vertical direction. Those deformations will affect 
the shape of the nematodes and will likely affect the model’s performance since it uses spatial information for the 
predictions. In this study, all data were gathered from a single factory. The performance of the method should 
remain consistent as long as the quality of the acquisition procedures and raw materials is maintained. However, 
variations on the acquisition parameters, especially the speed of the conveyor belt, could distort the shapes of the 
nematodes, negatively affecting the results. In such cases, it would be necessary to retrain the algorithm with data 
collected using the specific acquisition parameters of the new facility. Integrating supervised learning with other 
techniques, such as unsupervised learning, anomaly detection, or more sophisticated dimensionality reduction 
methods could improve the accuracy of the predictions. However, in our preliminary evaluation of methods for 
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detecting nematodes, we found that unsupervised techniques and anomaly detection methods failed to identify 
the location of the parasites. Further exploring these techniques could not only improve the performance of 
supervised learning methods but also assist in digitizing annotations within hyperspectral images, a process that 
is currently manual and labor-intensive.

In conclusion, we present a working solution based on hyperspectral imaging and deep learning for detecting 
nematodes under industrial conditions. The data was recorded under real world processing conditions, and the 
model execution performance to provide results in real-time has also been tested in an industrial environment. 
The algorithm can be executed at a throughput of 500 frames per second (exposure time of 2 ms). Although 
there is room for improvement in the detection rate, especially in the recall, this research work proves that 
the detection of nematodes is possible using hyperspectral imaging and neural networks, which can be used 
in seafood processing factories to improve the current workflow for nematode inspection and trimming. 
Already, the seafood industry has begun adoption of the technology. Based on the work described in this paper, 
a Maritech Eye has recently been installed at a filleting factory in Iceland to perform industrial sorting of cod 
fillets for nematodes.

Methods
Hyperspectral instrumentation
The hyperspectral data were captured using a Maritech Eye (Maritech Systems AS, Molde, Norway), an 
industrial-grade hyperspectral imaging system. This device is comprised of an interactance illumination 
system, a hyperspectral camera, and a high-performance processing unit. The interactance illumination can 
simultaneously measure both the absorption and scattering properties of biological tissues. Unlike the more 
commonly used diffuse reflectance illumination setup, interactance setups can measure beyond the sample 
surface to measure properties within. Depth of penetration in interactance hyperspectral imaging is dependent 
on a variety of factors including light intensity, distance between the light lines and, the optical properties of the 
sample, such as absorption, scattering, and refractive index. Depth of penetration also varies with the wavelength 
of light. Absorption dominates at shorter wavelengths, leading to shallow penetration, while scattering becomes 
more significant at longer wavelengths, allowing light to travel deeper into the tissue. Although to date the 
relationship between these factors has not been developed theoretically, there have been several experimental 
studies regarding light penetration in fish tissue39,40. Empirically, the depth of penetration is typically in the 
1-2 cm range, though in some cases deeper measurement is possible25. The Maritech Eye allows the acquisition 
and processing of hyperspectral images in real time and has been designed as an industrial solution for the 
seafood industry.

The hyperspectral camera is a HySpex Baldur V-1024N (Norsk Elektro Optikk AS, Oslo, Norway), which is 
a pushbroom camera covering the VNIR (visual and near-infrared) spectral range (485-960 nm) with a spectral 
resolution of 5.5 nm (88 spectral bands) and 1024 spatial pixels. The field of view is approximately 300 mm at a 
working distance of 1000 mm. As a pushbroom camera, each frame contains only the spectral information of a 
single narrow spatial line. Numerous frames are taken as the target sample moves along a conveyor belt, creating 
a hyperspectral data cube. The speed of the conveyor belt for this study was set to 130  mm/s, the standard 
configuration for the fish factory where measurements were taken. With this setup and an exposure time of 
2 ms (500 fps), the final pixel size of the measurements was approximately 0.27 × 0.26 mm. The interactance 
illumination is comprised of two focused halogen light lines (900 W electrical power). These focused lights are 
separated by approximately 8 mm, and the focusing plane of the hyperspectral camera is located between them41.

Raw material and data labeling
The Maritech Eye instrumentation was used to take hyperspectral images of cod belly flaps, both with and 
without nematodes. A total of 335 samples were gathered and analyzed from a fish factory in Portugal from 
three different sampling dates, spanning from December 2020 to June 2022. The fish samples for the study 
were obtained from commercial fillet production. The samples consisted of belly pieces from Atlantic cod 
(Gadus morhua) caught in Russian, Norwegian, and Icelandic waters. The average length of the belly pieces was 
19.4 ± 3.9 cm, with an average width of 10.1 ± 1.8 cm.

To develop a solution for automatic nematode detection using deep learning and hyperspectral imaging, 
a dataset comprising annotated digital images containing the precise location of the nematodes needed to be 
generated. Before the manual inspection of the fish samples, they were scanned with the Maritech Eye (Fig. 2). 
Data was extracted from the hyperspectral images to create RGB digital images of the belly flaps. These images 
were displayed on an iPad, such they could be annotated to mark the location of nematodes during manual 
inspection (Fig. 3a). To provide the ground truth needed to train the neural network models, nematodes in the 
fish samples were identified using the candling method. Here, the belly flaps are inspected on a light table and a 
skilled examiner identifies the location of the nematodes. In contrast to industrial conditions, where each fillet 
is inspected in a span of approximately ten seconds, a thorough inspection of a fillet over the span of several 
minutes was performed to ensure no nematodes were missed. The drawback to this reference method is that 
it limits detection to visible nematodes. Per the Commission Regular (EC) a visible nematode is defined as 
“a parasite or group of parasites which has a dimension, colour or texture which is clearly distinguishable from 
fish tissue… Visual inspection means non-destructive examination of fish or fishery products with or without 
optical means of magnifying and under good light conditions for human vision, including, if necessary, candling”42. 
Therefore, nematodes that are buried too deep in the flesh to be visible by the naked eye are not included in the 
calculations of detection precision and accuracy. Although visual inspection will not identify every nematode 
present in a fish, it is expected to identify the majority of them in this study, as research has found that 96% of 
all nematodes in cod are not embedded deeper than 10 mm in the tissue2 and the belly flaps were typically less 
than 10 mm in thickness. Despite reports indicating human mistakes in the visual identification of nematodes 
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during the processing of fillets, the samples chosen for annotation in this research were meticulously examined 
by an expert, who took additional time in the examination of every sample to ensure accuracy. Furthermore, 
during the process of digitizing annotations on the digital images, if the operator observed any additional areas 
of concern within the sample, a secondary evaluation was performed by the expert to determine the presence 
or absence of nematodes. Therefore, we expect the annotation error rate in our study to be significantly reduced 
compared to those usually reported for the visual identification of nematodes.

The manually annotated digital images, examples Supplementary Fig. 1, were used to pinpoint the precise 
location of the nematodes within a fish sample (Fig. 3b), and to serve as a guide for the digital annotation of the 
nematodes in the hyperspectral images (Fig. 3c). The annotation of the hyperspectral images was performed 
manually using the Breeze software for hyperspectral image analysis (Prediktera AB, Umeå, Sweden). Often 
nematodes cannot be identified by visual inspection of RGB or single band images created from hyperspectral 

Fig. 2.  Maritech Eye hyperspectral instrumentation being used in the processing line under industrial 
conditions.
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images without preprocessing. For this reason, once the approximate locations of the nematodes were determined 
using the reference digital annotations, the exact location of each nematode in a hyperspectral image was assessed 
by using different synthetic representations of the hyperspectral data, e.g., using different principal component 
analysis (PCA) combinations of the hyperspectral data. These alternative representations of the hyperspectral 
data allowed the nematodes’ location and shape to be highlighted among the surrounding fish muscle. Finally, 
once the nematode position and shape were identified, they were manually annotated using polygon shapes. 
This labeling process was labor intensive, both due to the difficulty of finding suitable preprocessing to help 
distinguish the nematodes from the surrounding fish muscle and the challenge of exhaustively searching each 
fillet to find every nematode for manual annotation of the digital images.

Of the 335 images acquired during the trials, only 289 of the images were annotated. The rejection of some 
of those samples was motivated by the difficulty of locating some of the nematodes in the hyperspectral images, 
which could produce confounding information for the deep learning model if they were not annotated. In the 
remaining 289 images, a total of 244 nematodes were identified. The distribution of the number of nematodes 
per sample and their size is summarized in Fig. 4. A visual example of the location, size, and shape of nematodes 
present in some of the samples comprising the dataset can be observed in Supplementary Fig. 1.+

As we are utilizing a supervised machine learning model, an adequate data partition must be performed 
to ensure the appropriate and unbiased generation and evaluation of the models. In this case, the splitting of 
samples into training, validation, and test sets was done by random sampling, with the training set containing 
196 samples (68%), the validation set 49 samples (17%), and the test set 44 samples (15%).

Data processing
In this section, we describe the workflow for developing algorithms for the automatic detection of nematodes 
from hyperspectral images (Fig.  5). Our study’s image processing workflow employs established techniques 
tailored for hyperspectral data. Flat field calibration normalizes illumination and sensor discrepancies, while 
Principal Component Analysis (PCA) reduces data dimensionality, preserving vital variance. Local calibration 
corrects for sample variability, and zero mean unit variance normalization standardizes data for model training. 
Finally, the LinkNet deep learning architecture, designed for semantic segmentation, efficiently combines spatial 
and spectral information to differentiate nematodes from fish tissue. These methods are theoretically grounded 
in computer vision and machine learning, forming a cohesive workflow for nematode detection in white fish.

Flat field calibration
The first preprocessing stage applied to the hyperspectral data is a flat field calibration of the hyperspectral 
images followed by the subsequent transformation of the images into pseudo-absorbance. This calibration 
makes use of two reference images. The white reference image consists of a hyperspectral image of a PTFE 
(Teflon) target plate of 25 mm thickness, which is characterized by a flat spectral response in the camera spectral 
range43, while the dark reference image is acquired when light is blocked from entering the camera sensor. The 
white reference image contains information about the spectral response of the hyperspectral system, including 
the spectral shape of the light source and the spatial distribution of the light within the field of view of the 
camera. The dark reference contains the noise recorded by the hyperspectral camera sensor. When applying the 
flat field calibration (Eq. 1), the environmental conditions of the hyperspectral data are removed. In Eq. 1, HCcal 
is the calibrated hyperspectral image,  HCraw is the raw hyperspectral data, and WhiteRef and DarkRef are the 
white and dark references, respectively. Finally, the hyperspectral images are converted into pseudo-absorbance 
by applying the transformation on Equation 2.

Fig. 3.  Workflow for the identification and labeling of nematodes. (a) Manual examination of the fillets for 
nematodes using a candling table, and digital annotation using an iPad. (b) Example of manual annotation 
of nematodes in the digital images (blue color circling). (c) Example of digital annotation of nematodes in a 
synthetic RGB image extracted from the hyperspectral cube (yellow color circling).
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HCcal =

HCraw −DarkRef

WhiteRef −DarkRef
� (1)

	 HCabsorbance = −log10(HCcal)� (2)

Background removal
The second step in the processing workflow consists of image segmentation where the belly pieces are 
identified against the background, i.e., the conveyor belt. In this case, we used a segmentation model using a 
PCA transformation based on the spectral information from the belly samples and the background, followed 
by thresholding to identify the pixels corresponding to the sample. This segmentation capability is a feature 
provided by the Breeze software.

PCA dimensionality reduction
Once the segmentation of the fish sample was performed, a PCA model was constructed to perform a 
dimensionality reduction of the spectral information. Reducing the dimensionality of hyperspectral images is 
a widely adopted preprocessing step in the field of hyperspectral image classification. The main purpose of this 
process is to reduce the hyperspectral data dimensions, while ensuring that the most significant information is 
retained44. PCA has been widely employed as a method for dimensionality reduction in hyperspectral image 
analysis45,46. PCA reduces high-dimensional hyperspectral data to a lower-dimensional space by utilizing 
orthogonal variables from the data covariance matrix. In this case, we targeted to reduce the dimensionality 
of the data from the original 88 spectral bands to 10 components. This PCA model was constructed from 
the pixels (1 × 1 × 88) taken from the samples belonging to the training set (n = 196). As the pixels assigned 
to the non-nematode class were overrepresented compared to the nematode pixels, the nematode pixels were 
randomly oversampled to create a class balance array of spectral data. Every pixel in the training set was stacked 

Fig. 5.  Processing workflow for the detection of nematodes from hyperspectral image data.

 

Fig. 4.  Dataset summary, including the number of nematodes per sample (a), and the size of the nematodes 
(b).
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to create an N × 88 matrix stacking all the spectral information, with N being the number of nematode and 
non-nematode pixels (several millions). Once this spectral dataset was created, the PCA model was computed, 
and the hyperspectral data was transformed from an initial dimension of W × H × 88 to a final dimension of 
W × H × 10.

Local calibration
No significant differences were found when analyzing the spectral signature of the nematodes and the flesh 
within the belly samples. As suggested in a previous study38, in interactance or transmission measurements, the 
light interacting with a nematode near the fillet surface is similar to the light measured from an area next to the 
nematode. For that reason, a local calibration filter is proposed to calibrate the spectrum of pixels with the goal 
of reducing spectral variations, such as those caused by the fillet color or light scattering effects.

This local calibration has three parameters: r1, r2 and r3. The implementation of the local calibration is based 
on using 2D image filter kernels, which are applied to the hyperspectral image. The local neighborhood kernel 
(KLOCAL) has a dimension of 2r1 + 1× 2r1 + 1, and is defined by Eq. 3 for the spatial coordinates (x, y). The 
background filter (KBKG) has a dimension of 2r3 + 1× 2r3 + 1, and is defined by Eq. 4.

	
KLOCAL (i, j) =

{
1√

(i−x)2+(j−y)2
∀i, j = 0 . . . 2r1

0 ∀ (i, j) = (r1, r1)
� (3)

	
KBKG (i, j) =

{
1√

(i−x)2+(j−y)2
∀i, j ̸= r2 − r1 . . . r2 + r1

0 ∀i, j = r2 − r1 . . . r2 + r1
� (4)

For every spatial pixel (x, y) in every dimension of the W × H × 10 data cube after the PCA transformation 
HCPCA, the local calibration is applied as described in Eq. 5, where ILOCAL and IBKG are subregions of HCPCA 
centered in the spatial coordinates (x, y) of size 2r1 + 1× 2r1 + 1 and 2r3 + 1× 2r3 + 1:

	
LC (x, y) =

ILOCAL ∗KLOCAL

IBKG ∗KBKG
=

∑2r1
i=0

∑2r1
j=0KLOCAL (i, j) ILOCAL(x− i, y − j)∑2r3

i=0

∑2r3
j=0KBKG (i, j) IBKG(x− i, y − j)

� (5)

	 ILOCAL = HCPCA (x− r1 : x + r1, y − r1 : y + r1)� (6)

	 IBKG = HCPCA(x− r3 : x + r3, y − r3 : y + r3)� (7)

In this work, the values for r1, r2, and r3 are 1, 2 and 5 respectively.

Zero mean unit variance
The data was normalized to contain a mean of zero and a standard deviation of 1, known as zero mean unit 
variance. The mean (X) and standard deviation (σX) value are obtained from the training data only. The formula 
is given by Eq. 7, where X represents each individual value in the x, y, lambda dimensions.

	
X −X

σX
� (7)

Patches generation
For each sample image (W ´ H ´ 10), patches of dimensions 256 ´256 ´ 10 were created with a stride of 128 to be 
the input to the deep learning model. Since the dimensions of the sample were typically not divisible by 256, each 
sample image was padded to a width or height that could be divisible by 256 to create equal size patches. Padding 
was performed on all borders. With a stride smaller than the patch size, overlapping patches were created.

For each 256 ´ 256 ´ 10 image in the training data, data augmentation was performed through 90 degrees 
rotation, as well as flipping each patch on the vertical axis. This resulted in 8 variations of the same patch, 
including the original patch. The model was trained using 25,328 patches (after data augmentation), and the 
number of patches for validation and test were 795 and 706, respectively. The number of patches containing 
nematodes was 8064, 290, and 189 for training, validation, and test, which constitutes a highly unbalanced 
dataset.

Figure 6 shows examples of patches used to train the deep neural network for the different preprocessing 
stages. Figure 6a shows a single band image from the hyperspectral cube (545 nm), where the location of the 
nematodes, according to the manual annotations, is highlighted. Figure 6a illustrates the heterogeneity in shape, 
size, and location of the nematodes within the fish samples. Figure 6b shows the same single-band image where 
the nematodes are not highlighted. Figure 6c shows the second principal component image after applying PCA. 
The second PCA component was selected for the representation because it highlights the nematodes over the 
fish tissue. Figure 6d shows the result of the local calibration application to the image. In Fig. 6d, it is observed 
that the visualization of both different tissue structures (connective tissue, blood vessels, etc.) and nematodes are 
enhanced. Finally, Fig. 6e shows the results of the zero mean unit variance normalization.

Deep neural network architecture
The objective of image segmentation is to categorize every pixel within an image into distinct object classes. In 
recent years, various deep learning-based approaches have been proposed for performing image segmentation47.
Our solution involves a pixel wise segmentation model based on the LinkNet architecture48. The LinkNet 
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architecture, combined with a DenseNet encoder, is effective in semantic segmentation of hyperspectral data by 
efficiently leveraging dense feature reuse for spectral depth and LinkNet’s shortcuts for spatial detail, creating 
a computationally effective model for complex, high-dimensional datasets. The LinkNet architecture has an 
encoder decoder structure and is especially designed to reduce training and inference time, as well as to be 
memory efficient. The encoder part encodes the spatial and spectral information into a feature space, whereas 
the decoder part translates this back to a spatial representation to enable segmentation.

The encoder consists of a Densenet 121-layer convolutional neural network49. Each dense block (Fig.  7) 
consists of several convolutional operators in which skip connections occur. Denseblocks contain batch 
normalization and RELU activation functions, which are omitted in Fig. 7. Each encoder layer is connected to 
the decoder part of the architecture to recover the lost spatial information, which occurs in the encoder part 
due to downsampling with pooling layers. Within the decoder part of the network, the features are upsampled 
through transpose convolutions which contain trainable parameters, compared to other upsampling approaches.

The LinkNet architecture with Densenet121 encoder structure is trained with a learning rate of 5 × 10–4 and 
ADAM optimizer, batch size of 16, for a total of 500 epochs with early stopping set when the validation loss did 
not decrease for 50 epochs.

For segmentation problems, loss functions based on the overlap measurements have demonstrated their 
robustness, especially when there is a class imbalance50. For this reason, we used the DICE loss with a beta of 2, 
which can be defined as:

	
L_DICE(tp, fp, fn) =

(
1 + β2

)
· tp

(1 + β2) · fp + β2 · fn + fp
� (8)

With tp = true positives, fp = false positives, and fn = false negatives. DICE is equivalent to the F1 score and can 
thus be written as:

Fig. 6.  Patches of 256 × 256 pixels used for training and evaluating the deep neural network model for 
the different preprocessing stages: (a) Single band (545 nm) nematode annotations, (b) Single band image 
(545 nm), (c) Second principal component image after PCA, (d) Second principal component image after 
applying local calibration, (e) Zero mean unit variance image.

 

Scientific Reports |        (2024) 14:27426 10| https://doi.org/10.1038/s41598-024-76808-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
L_DICE( precision, recall ) = 1−

(
1 + β2

) precision · recall
β2 · precision + recall

� (9)

The DICE is a similarity metric that measures the overlap between the predictions made by the neural network 
model and the ground truth. The β value determines how important is recall in comparison with precision, 
which means that the DICE loss function will penalize the false negatives in the learning process.

This work was developed in Python. The Scikit-learn library51 was used for the implementation of PCA, the 
performance metrics, and the data partitions; the OpenCV library was used for the local calibration51 and the 
TensorFlow implementation of the Keras Deep Learning API52,53 together with the Segmentation Models API54 
were used for the Deep Neural Network implementation.

Evaluation metrics
In this section, we describe the metrics used for the evaluation of the performance of the proposed workflow. To 
determine whether a nematode was considered detected or not, we used the Intersection of the Union (IOU, also 
known as Jaccard Index) between the predicted bounding box by the deep learning model (Bp) and the ground 
truth bounding box (Bgt) according to the manual labels. The IOU measures the overlap between the predicted 
and the labeled bounding box.

	
J (Bp,Bgt) = IOU =

area (Bp ∩ Bgt)

area (Bp ∪ Bgt)

The output of the deep learning network provides for each pixel a value between 0 and 1, indicating the 
probability that it belongs to the class nematode. For the predictions to be binary for each pixel and to make the 
final class assignment (nematode or not), a threshold for the deep learning network output is defined (Thmodel). 
The model threshold determines the bounding boxes of the predictions, and enables the calculation of the 
IOU. Additionally, it is necessary to establish a second threshold to decide how much overlap between the two 
bounding boxes (predicted and ground truth) is required to determine if the segmentation of the nematode is 
considered correct (ThIOU).

For each pair of ThIOU  and Thmodel values, the predictions can be quantified in terms of true positives (TP), 
false positives (FP), and false negatives (FN). In order to evaluate the overall detection performance of nematodes 
in the dataset, we report precision, recall, and F1 score for different combinations of  ThIOU  and Thmodel. On the 

Fig. 7.  LinkNet encoder-decoder architecture with Densenet-121 encoder.
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one hand, precision (P ) is the ratio between the actual number of successes in detecting nematodes and the total 
number of nematodes flagged by the model. High precision indicates an accurate detection of positive cases with 
a low number of false positives. On the other hand, recall (R) is the ratio between the total number of successes 
in detecting nematodes and the total number of nematodes in the dataset. A high recall implies a high detection 
rate of the nematodes in the dataset and indicates the ability of the model to avoid false negatives. Finally, the F1 
score is the harmonic mean of precision and recall and measures the overall quality of the predictions. Contrary 
to the overall accuracy, precision, recall, and F1 are not sensitive to unbalanced datasets.

	
P =

TP
TP + FP

=
TP

all detections

	
R =

TP
TP + FN

=
TP

all ground truths

	
F1 = 2

P · R
P + R

=
2 TP

2TP + FP + FN

Evaluation of the model performance
The learning curves corresponding to the training of the LinkNet model with Densenet-121 encoder are shown 
in Supplementary Fig. 2 and refer to the model performance at the patch level.

With the goal of obtaining a model with high recall, we used the DICE loss function with β = 2, which 
forces the recall to be twice as important as precision during the learning process. The best model was selected 
with regards to the minimum DICE loss for the validation data, and with an early stopping criterion. In this 
case, the optimum model was found after 106 epochs. Supplementary Fig. 2b shows the evolution of the IOU 
during training. For the optimal model, the IOU is 0.67 for the validation set, which means that the average 
overlap between the predictions and the ground truth data is 67%. The IOU helps penalize both under and 
over-segmentation. In this specific application, a perfect overlap between the predictions and the ground truth 
may not be ideal due to possible pixel-level labeling errors during the manual annotations of the samples. The 
similarity between the IOU score in the training, validation, and test set indicates no overfitting.

Supplementary Fig. 3 shows a report of the precision, recall, and F1-score performance for different model 
and IOU thresholds for the training, validation, and test sets. There are no relevant variations in the evaluation 
metrics when the model threshold changes for a fixed IOU threshold. Additionally, it is worth mentioning that 
the model produces accurate predictions when the model threshold is higher than 0.1, i.e., the probability of 
a pixel belonging to the nematode class is higher than 10%. The IOU threshold has a higher impact on the 
evaluation metrics than the model threshold. As mentioned before, the choice of IOU threshold strongly impacts 
the evaluation metrics. Precision is not as sensitive to the IOU threshold because false positives are not affected 
by the IOU threshold. Also, the changes in the IOU threshold are only related to a decrease in true positives 
associated with a high IOU threshold. In contrast, recall is more sensitive to the IOU threshold because it affects 
both the true positives and the false negatives.

Regarding the detection performance of the proposed approach, for an IOU threshold of 0.5, the results of 
the test set show predictions with high precision (0.89) and a good recall (0.73). This means that the current 
model can identify 73% of the nematodes present in the samples with a low number of false positives. From the 
perspective of applying this model in a real-world scenario, high precision means that only a small fraction of 
the fish samples without the nematodes will be manually reinspected. This will in many situations greatly reduce 
the workload on trimmers. However, the main feature of an industrial nematode detection solution would be 
to identify most of the nematodes (high recall) to identify which fish pieces should be manually inspected and 
trimmed and ensure that no fish with nematodes are sent to the market.

Although our solution has a high nematode detection rate, several optimization strategies can be employed 
to increase the detection even further. For example, it may involve expanding data diversity with advanced 
augmentation, integrating anomaly detection, and adopting newer neural network architectures. Optimizing 
hyperparameters, employing higher-resolution imaging, and establishing a feedback loop for continuous model 
refinement could further improve accuracy and adaptability to new data patterns.

Model development challenges
The dataset imposed some challenges that limit the neural network model’s performance. First, although the 
initial dataset was composed of 335 images, the digital annotation of the samples was possible in only 289. This 
means that about 14% of the samples were not used and reveals the difficulty providing ground truth identification 
of nematodes. The motivation for rejecting those samples was to limit the analysis, especially during the training 
phase, to data with highly reliable labels. The limited size of the dataset restricted the feasibility of performing 
multiple training-validation splits, which may affect the generalizability of the results. Future work with larger 
datasets could explore this aspect more thoroughly. Second, the dataset is highly imbalanced. The patches used 
to train the model were 25,328 (after data augmentation), from which only 8064 contained nematodes. This 
means that the number of patches containing nematodes in the training set was only 32%. Additionally, the 
size of the nematodes is relatively small (according to Fig.  4, up to 500 pixels) compared to the size of the 
patches (256´256). The imbalanced number of samples available to train the model and the heterogeneity of 
the nematodes regarding their location in different types of tissue within the fish flesh, and their shape and size 
impose significant challenges for teaching a neural network model able to provide generalization among those 
different scenarios. However, despite these challenges, the neural network model was able to provide competent 
results, which may be further improved with an increased dataset.
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