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A B S T R A C T

In the past few years, we have observed rapid growth in digital content. Even in the biological domain, the
arrival of microscopic and nanoscopic images and videos captured for biological investigations increases the
need for space to store them. Hence, storing these data in a storage-efficient manner is a pressing need.
In this work, we have introduced a compact image representation technique with an eye on preserving
the shape that can shrink the memory requirement to store. The compact image representation is different
from image compression since it does not include any encoding mechanism. Rather, the idea is that this
mechanism stores the positions of key pixels, and when required, the original image can be regenerated. The
genetic algorithm is used to select key pixels, while the Gaussian kernel performs the reconstruction task
with the help of the positions of the selected key pixels. The model is tested on four different datasets.
The proposed technique shrinks the memory requirement by 87% to 98% while evaluated using the bit
reduction rate. However, the reconstructed images’ quality is a bit low when evaluated using metrics like
structural similarity index (ranges between 0.81 to 0.94), or root means squared error (ranges between 0.06
to 0.08). To investigate the impact of quality reduction in reconstructed images in real-life applications, we
performed image classification using reconstructed samples and found 0.13% to 2.30% classification accuracy
reduction compared to when classification is done using original samples. The proposed model’s performance
is comparable to state-of-the-art’s similar solutions.
1. Introduction

In the last few decades, the world has seen huge growth in digital
content in the form of texts, images, videos, sensor data, and many
more. The world today is digitized to an unbelievable extent. Many
studies have shown that countries with higher gross domestic product
(GDP) index are equipped with digitization power. The study1 esti-
mates, 70% of the globe’s GDP underwent some form of digitization
at the end of 2022. This study also estimated that by 2025, people will
generate 463 exabytes of data each day. A huge surge in the amount of
data shortly is predicted and inevitable. Among these digital contents,
vision data is more information-dense than the other avenues of data. A
video is essentially a stack of images in the fourth dimension. Recently,
we come across a huge amount of image and video data generated and
transmitted in our daily lives in some form. Social media is one such
place that generates an ample amount of such data.

Apart from this, the proliferation of high-content microscopes, used
in biological research, boosts this further. For example, a single high-
content nanoscopy microscope image with a resolution of 2048 × 2048
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1 https://techjury.net/blog/how-much-data-is-created-every-day/.

pixels, acquired in 12-bit depth and with three color channels, can
have a file size of around 36 megabytes. Lattice Light-Sheet Micro-
scope (LLSM), to capture 3D images of live fruit fly embryos over
several hours, generating image datasets of up to 26 terabytes in size.
Howard Hughes Medical Institute’s Janelia Research Campus is capable
of generating terabyte-sized image datasets of live biological samples
with subcellular resolution. The amount of data a nanoscopy spatio-
temporal image generates is almost equivalent to the amount of data
used by humans in 2022 (Torres-García et al., 2022). It is especially
of note that high-quality microscopy contains very crucial information
that is especially useful and can be the potential source of future
breakthroughs in the domain of medical science. This obscene amount
of data naturally leads to an important question ‘‘how do we store the
huge amount of data generated?’’. For a few years now, not only the
biological scientific community but also the vision research community
are going to face an abrupt halt in figuring out this problem.

Even if we are able to store such gigantic data somehow, the issue
related to sustainability is not solved. Wu et al. (2022) have men-
tioned that increased data storage means increased embodied carbon
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footprint, which is one of the major concerns when thinking about
sustainability. In the study2, Addis measured cloud-based digital data
preservation system emits 7800 kgCO2eq, a unit to measure gross
carbon emissions, to store 1 petabyte (PB) astronomy research related
images used in ARCHIVER project3 for 1 years. The measurement was

ade by deploying images in the Google Cloud platform. In another
tudy, Monserrate (2022) mentioned that cloud-based data storage has
 larger carbon footprint as compared to the airline industry. In the case
f energy, Hu (2015) in his study established that energy needed to run
 data center requires electricity consumed by nearly 50,000 homes.
he data centers along with edge devices like laptops, smartphones,
nd tablets are responsible for 2% of global CO2 emission (Burrington,

2015; Koomey and Masanet, 2021).
We can mitigate the discussed bottlenecks by storing data, specif-

cally vision data that takes larger storage space to store, with lesser
pace. This vision can be achieved by representing images compactly.
n image is a collection of pixels, each having an intensity value. The
imension of an image controls the number of pixels and more pixels
eans a larger storage requirement. So our idea is to identify a set of
ixel positions from which we can retrieve the image by employing a
D convolution with the help of a pre-defined kernel. Henceforth, we
ill call such pixels as ‘‘key pixels’’. So by the phrase ‘‘compact image

epresentation’’ we mean representing an image with the key pixels
nly and storing such pixel positions, even in array form, might shrink
he storage requirement compared to its actual storage requirement
hile storing all the pixels.

Let us define the problem with a better understanding. An image
(say, 𝐼 = {𝑓 (𝑥, 𝑦) ∶ 𝑓 (𝑥, 𝑦) ∈ {0, 1,… , 255} ∧ (𝑥, 𝑦) ∈ [1, 𝐻] × [1, 𝑊 ]})
having dimension 𝐻 × 𝑊 (𝐻 , and 𝑊 represent the height and width
of 𝐼 respectively) contains 𝑁 number of pixels i.e., 𝑁 = 𝐻 ∗ 𝑊 .
Now, if the number of key pixels (say, 𝑁 ′) is much lower than 𝑁
(mathematically, 𝑁 ′ ≪ 𝑁) with the property 𝑁 ∗ 𝑏 ≤ 𝑁 ′ ∗ 𝑏′, where
𝑏, 𝑏′ represent the number of bits required to store intensity value of a
single pixel in 𝐼 and position of a pixel value respectively then we can
shrink the storage requirement for 𝐼 . It is noteworthy to mention that
𝑏 is controlled by the bit depth of 𝐼 while the dimension of 𝐼 controls
𝑏′ i.e., 𝑏′ = ⌈𝑙 𝑜𝑔2(𝑚𝑎𝑥{𝐻 , 𝑊 })⌉. Unlike compression techniques, our
idea of ‘‘compact image representation’’ does not include any coding
scheme to lessen the use of bits to store pixel information (i.e., intensity
value). Rather it searches for the key pixels that guide the convolution
operator-inspired image regeneration process with minimal loss in
shape and pixel intensity information, the two key features of an image.

The pixels on the skeleton, edges, or boundary of objects present
in an image are good candidates to be used as key pixels as they
ossess a certain percentage of data pixels present in an image. In other

words, methods like edge detection (Canny, 1986; El-Sayed and Hafeez,
2012; Pramanik et al., 2022; Dey et al., 2022c), skeletonization (Guo
and Hall, 1992; Zhang and Suen, 1984; Lee et al., 1994; Ko et al.,
2021), boundary detection (Martin et al., 2004; Marmanis et al., 2018),
object detection (Ali et al., 2019b,a) followed by boundary detection
can be thought of as a key pixels generation process. But generating
he image from them causes sufficient loss in shape and pixels’ intensity

information of the image (see Fig. 1). In this figure, in the first column,
e have shown data pixels’ positions (termed as ‘‘Representer’’) gener-
ted using the Canny edge detector (Canny, 1986), objects’ boundary

pixels, objects’ skeleton pixels generated using the method by Lee et al.
(1994), random data pixels selected using Binomial distribution with
robability 0.5 (i.e., if a data pixel is not selected then it is converted
o background pixel), and key pixels selected using the present method
s pixels for compact representation of an image. Next, the representers
re convolved with the Gaussian kernel with varying kernel size during
he reconstruction process (the reconstruction process is described in

2 https://www.dpconline.org/blog/blog-matthew-addis-carbon-footprint.
3 https://archiver-project.eu/.
2 
detail in Section 2.1) and the reconstructed images are shown in 2nd,
3rd and 4th columns. In the figure legends, 𝑅, 𝑃 , 𝐹 , 𝑀 , 𝑆, #𝑅, and #𝑂
epresent recall, precision, F1-score, root means square error (RMSE)
core, structural similarity score (SSIM), number of data pixels in the
econstructed image, and number of data pixels in the original image,
espectively. The outputs show that irrespective of the Gaussian kernel
ize used during the reconstruction process, the randomly selected data
ixels as an image compact representer provide the best score in terms
f recall, precision, F1-score, RMSE, and SSIM (see 4th row), while the
keleton possesses the least number of pixels in the representer (see #𝑅
alue in the 1st column), followed by boundary and edge pixels. It is
lso clear from Fig. 2, where reconstructed images are shown on a part

of the image for better visualization, that the reconstructed image from
randomly selected key pixels is better than others. However, it selects
lmost 50% of the pixels, which is one of its major drawbacks.

The illustrations through Figs. 1 and 2 motivate us to suppress data
pixels (i.e., randomly converting some foreground pixels to background
pixels) intelligently to obtain a better set of key pixels that will be
lesser in count and retain good similarity with the original image
fter reconstructing the image from the selected key pixels using the

Gaussian kernel-based convolution operator. Therefore, we plan to
suppress foreground pixels in a controlled way so that we can achieve
very close shape and pixel intensity information of the original image
after reconstruction from the selected key pixels. In short, the search
technique designed here is to select a set of effective foreground pixels
as key pixels. An image with 𝑛 foreground pixels has 2𝑛− 1 possible pixel
subsets and one of them may be the best. Searching for the best solution
is an NP-complete problem (Sarkar et al., 2019; Malakar et al., 2020b;
Mukhopadhyay et al., 2023). This makes the selection process computa-
tionally expensive, which is against the objective of sustainability of AI
models (Van Wynsberghe, 2021). Therefore, rather than searching for
the best solution, we search for the near-optimal solution. Statistical
methods or filter-based selection approaches like Chi-square score-
based selection (Omar and Abd El-Hafeez, 2024), mutual information
Vergara and Estévez, 2014), and RelifF (Ghosh et al., 2017, 2019)

could be used for the same. However, their performances are not at
par with the other forms, like wrapper (Acampora et al., 2023; Das
et al., 2022; Malakar et al., 2020b), and hybrid (Dey et al., 2022a;
Ghosh et al., 2019) selection processes.. However, meta-heuristic-based
optimization algorithms are a better choice for such an objective (Dey
et al., 2022b,a).

The working procedure of meta-heuristics-based optimization al-
orithms can be of two types (Pan et al., 2022). One that was ini-

tially designed for solving optimization problems in the continuous
domain and then transformed to their binary version to meet the
optimization requirement in the binary domain. This discretization
process employed several transfer functions, quantum approaches,
thresholding techniques, etc. (Nadimi-Shahraki et al., 2021). Algo-
ithms like particle swarm optimization (PSO) (Kennedy and Eberhart,

1995; Sarkar et al., 2019; Eman et al., 2023), gravitational search
algorithm (GSA) (Rashedi et al., 2009, 2018), grey wolf optimization
(GWO) (Mirjalili et al., 2014; Saabia et al., 2019; Eliwa et al., 2023),

oth-flame optimization (Mirjalili, 2015; Xu et al., 2019), and Gazelle
optimization algorithm (GOA) (Taha et al., 2023) fall under this cat-
egory. The binary version of these algorithms has been successfully
applied to many real-life applications that require binary optimization
lgorithms (Pan et al., 2022). But the appropriate choice for discretiza-
ion is the pressing need for a better solution, which is another research

problem. For example, Mirjalili and Lewis (2013) and Malakar et al.
(2023) showed in their research how the transfer functions, used for
transforming this category of optimization algorithms from continuous
domain to discrete domain, affect the end result. On the contrary,
optimization algorithms like the genetic algorithm (GA) (Holland,
1992; Acampora et al., 2023), ant colony optimization (ACO) (Dorigo
et al., 2006; Karimi et al., 2023), memetic algorithm (Ghosh et al.,
2017, 2019), and discrete fish migration optimization (Pan et al., 2021,

https://www.dpconline.org/blog/blog-matthew-addis-carbon-footprint
https://archiver-project.eu/
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Fig. 1. Illustration of different compact image representation and their effect after reconstruction with the help of a fluorescent microscopy image showing mitochondria in the
living cell. The image is taken from UiTMito dataset (Sekh et al., 2021). In the figure legends, R, P, F, M, S, #R, and #O represent recall, precision, F1-score, RMSE score, SSIM,
number of data pixels in the reconstructed image, and number of data pixels in the original image respectively.
2022) were designed to work especially on binary domains. Thus, these
algorithms are free from transforming the process from continuous
space to discrete space, and we feel this category of algorithms is the
most suitable for the present optimization problem.

Here, we would also like to mention that by the free-lunch the-
orem (Wolpert and Macready, 1997) no optimization algorithm is
suitable for all applications that inherit the need for an optimization al-
gorithm. Thus, without searching for the most suitable meta-heuristics
3 
algorithm for the current problem, we use the GA to decide on a near-
optimal set of foreground pixels as key pixels. The computational time
of meta-heuristics algorithms like GA, ACO, PSO, and GWO is directly
proportional to the dimension of the search space (Mohiuddin et al.,
2023). The time complexity of the GA algorithm is ∼ 𝑂(𝐷 ∗ 𝐹 ∗
𝑃𝑠 ∗ 𝑀 𝑎𝑥𝑖𝑡𝑒𝑟), where 𝐷, 𝐹 , 𝑃𝑠, and 𝑀 𝑎𝑥𝑖𝑡𝑒𝑟 represent the dimension
of search space, complexity of fitness function, the population size of
GA, and the maximum iteration number of GA respectively, while ‘*’
indicates the arithmetic multiplication operator. Since time complexity
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Fig. 2. Illustration of reconstructed images generated from different compact image representations with the help of a cropped part (marked within a rectangle in (a)) of fluorescent
microscopy image showing mitochondria image taken from UiTMito dataset. In the reconstruction process, a 7 × 7 Gaussian kernel is used. Here, (a): original image with the
magnified cropped region, (b): a reconstructed image generated from Canny edges, (c): a reconstructed image generated from boundary pixels, (d): a reconstructed image generated
from skeleton pixels, (e): a reconstructed image generated from randomly selected key pixels, and (f): reconstructed image generated from key pixels selected using GA.
depends on the dimension of search space, selecting key pixels only
from foreground (i.e., data) pixels reduces the compute time. The major
contributions of the present work are as follows:

• An GA-based technique is proposed for the compact representa-
tion of images in a memory-efficient way.

• To the best of our knowledge, image compact representation for
memory-efficient storage is in its initial phase.

• A multi-objective function is designed to keep a trade-off between
shape and pixel intensity information preservation.

• A meta-heuristic algorithm is used for the first time beyond
problems like continuous function optimization, feature selection,
and variable selection.

• Three different types of metrics and four datasets are used to
evaluate the model performance.

• The proposed method outperforms the existing possible compact
image representation techniques.

2. Present work

In this work, we have proposed a method for compact repre-
sentation of images. This method first applies Otsu’s segmentation
method (Otsu, 1979) to obtain the foreground (or data) pixels of an
input image of dimension 𝐻 × 𝑊 (say, 𝐼𝐵 = {𝑓 ′(𝑥, 𝑦) ∶ 𝑓 ′(𝑥, 𝑦) ∈
{0, 1} ∧ (𝑥, 𝑦) ∈ [1, 𝐻] × [1, 𝑊 ]}) and then selects some foreground
pixels as the key pixels. The aim is to store the positions of the key
pixels (say, 𝐾 𝑃𝑝𝑜𝑠) for future use. 𝐾 𝑃𝑝𝑜𝑠 generation process is shown
in Algorithm 1. The key pixels are selected so that the original image
(say, 𝐼 = {𝑓 (𝑥, 𝑦) ∶ 𝑓 (𝑥, 𝑦) ∈ {0, 1,… , 255} ∧ (𝑥, 𝑦) ∈ [1, 𝐻] × [1, 𝑊 ]})
can be restored by convolving with the Gaussian kernel (say, 𝐾) with
optimal reconstruction error. The reconstruction process is described
in Algorithm 2. In the selection process, we use GA and its objective
function comprises three parameters: one to retain shape, one for
retaining intensity information, and the last one to control the number
of pixels to be selected. In other words, the objective function is so
designed that it can control the trade-off between shape distortion and
pixel intensity information loss while using a near optimal number of
pixels. The overall diagram of the proposed method is shown in Fig. 3
and the major steps are described hereafter. It is to be noted here that
the key pixel selection process (i.e., GA) uses the Gaussian kernel based
image reconstruction process to estimate pixel intensity loss.
4 
Algorithm 1 Compact Image Representation Generation from Input
Image

Require: Original image (i.e., 𝐼),
Ensure: Compact image representation i.e., a list of key pixel

position (say, 𝐾 𝑃𝑝𝑜𝑠)
𝐻 , 𝑊 ← getImageShape(I) ⊳ 𝐻 is height and 𝑊 is width
𝐼𝐵 ← applyOtsuThresholding (𝐼)
𝑖 ← 1
𝑗 ← 1
𝐷𝑐 𝑛𝑡 ← 0 ⊳ 𝐷𝑐 𝑛𝑡 is total number of data pixels
𝐷 𝑃𝑝𝑜𝑠 ← {} ⊳ 𝐷 𝑃𝑝𝑜𝑠 is data pixels’ positions
*********Encoding 𝐼𝐵 to chromosome like structure *********
while 𝑖 ≤ 𝐻 do

while 𝑖 ≤ 𝐻 do
if 𝐼𝐵(𝑖, 𝑗) ==‘1’ then ⊳ Binary value ‘1’ represents data

pixel
𝐷 𝑃𝑝𝑜𝑠 ← 𝐷 𝑃𝑝𝑜𝑠 ∪ {(𝑖, 𝑗)}
𝐷𝑐 𝑛𝑡 ← 𝐷𝑐 𝑛𝑡 + 1

end if
𝑗 ← 𝑗 + 1

end while
𝑖 ← 𝑖 + 1

end while
𝐶 𝑟𝑜𝑚𝑙 𝑒𝑛 ← 𝐷𝑐 𝑛𝑡
𝐾 𝑃𝑝𝑜𝑠 ←applyGA(𝑀 𝑎𝑥𝑖𝑡𝑟, 𝑃𝑠, 𝐶𝑝, 𝑀𝑝, 𝐶 𝑟𝑜𝑚𝑙 𝑒𝑛) ⊳ Parameters
are defined in Algorithm 3

2.1. Image reconstruction from a given set of key pixels’ position

As already mentioned that the key pixel selection process uses
the Gaussian kernel based image reconstruction process and thus we
describe the reconstruction process prior to describing other processes.
In the reconstruction process, we use the Gaussian kernel (i.e., 𝐾) of
size (𝑘×𝑘) that is convoluted with the (𝐼 ′ = {𝑓 ′(𝑥, 𝑦) ∶ 𝑓 ′(𝑥, 𝑦) ∈ {0, 1} ∧
(𝑥, 𝑦) ∈ [1, 𝐻] × [1, 𝑊 ]}) generated from 𝐼𝐵 of an original image (i.e., 𝐼)

′′ ′′
using GA and obtain the reconstructed image (say, 𝐼 = {𝑓 (𝑥, 𝑦) ∶
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Fig. 3. Flowchart showing the steps used in the present method.
Algorithm 2 Image Reconstruction from Compact Image Representa-
tion

Require: List of key pixel position (say, 𝐾 𝑃𝑝𝑜𝑠), List of data pixel
positions (say, 𝐷 𝑃𝑝𝑜𝑠), Length of chromosome (𝐶 𝑟𝑜𝑚𝑙 𝑒𝑛), Kernel
Size (say, 𝑘), Image height (say, 𝐻), and Image width (say, 𝑊 )

Ensure: Reconstructed image (i.e., 𝐼 ′′)
𝐼 ′ ← initializeOneMatrix(𝐻 , 𝑊 ) ⊳ ‘1’ represents not-data
pixel
𝑖 ← 1
*********Decoding chromosome to 𝐼 ′*********
while 𝑖 ≤ 𝐶 𝑟𝑜𝑚𝑙 𝑒𝑛 do

if 𝐾 𝑃𝑝𝑜𝑠(𝑖) ==‘1’ then ⊳ Binary value ‘1’ represents key
pixel

𝐼 ′(𝐷 𝑃𝑝𝑜𝑠(𝑖)) ← 0 ⊳ ‘0’ represents data pixel
end if
𝑖 ← 𝑖 + 1

end while
𝐾 ← getGaussianKernel(𝑘)
𝐼 ′′ ← applyConvolution(𝐼 ′, 𝐾) ⊳ GaussianBlur function from
pytorch is used
𝐼 ′′ ← applyContrastStretching(𝐼 ′′)
𝐼 ′′ ← applyAreaClosing(𝐼 ′′)
𝐼 ′′ ← 𝐼 ′′ ∗ 255 ⊳ Transform 𝐼 ′′ as grayscale image

𝑓 ′′(𝑥, 𝑦) ∈ [0, 1] ∧ (𝑥, 𝑦) ∈ [1, 𝐻] × [1, 𝑊 ]}) i.e., 𝐼 ′′ = 𝐼 ′ ⊛ 𝐾, where
⊛ is the convolutional operator and 𝐻 , and 𝑊 represent height and
width of the images. Next we have employed contrast stretching on 𝐼 ′′

to adjust the contrast of obtained using Gaussian blur process. Finally,
we have employed the gray level morphological closing operator with
3 × 3 structuring element on 𝐼 ′′ to generate the final reconstructed
image. The target of the present work is to degrade 𝐼 to generate 𝐼 ′

in a controlled way so that 𝐼 ∼ (255 ∗ 𝐼 ′′). The entire reconstruction
process is pictorially illustrated in Fig. 4 while the process is described
in Algorithm 2.

2.2. Encoding binarized image to fit for GA

The GA-based pixel selection process cannot be directly employed
on the binarized image (i.e., 𝐼𝐵). Therefore, we encode the 𝐼𝐵 to fit it
into the GA-based selection process. The basic component on which GA
works is chromosomes. Thus, we encode 𝐼𝐵 to form a chromosome-like
structure (see Fig. 5). At first, we have listed the data pixels’ position in
a list of 2D points shown in Fig. 5. The length of the list is considered

as the length of the chromosome and the indices of elements in the list

5 
as the indices of the chromosome. A ‘1’ value at the 𝑖th location in the
near-optimal chromosome represents that the pixel position associated
with this index is a key pixel, while ‘0’ indicates otherwise. This process
is explained using a toy example in Fig. 5 and the steps are illustrated
in Algorithm 1.

2.3. GA-based key pixels selection

The GA is a popular meta-heuristic algorithm that follows Dar-
winian’s theory of evolution of natural selection and genetics known
as ‘‘survival of the fittest’’. The GA is employed on a set of candidate
solutions, alternatively known as chromosomes, aiming at obtaining the
near-optimal solution by generating better chromosomes with the help
of two genetic operators: crossover and mutation. The set of candidate
solutions is called ‘‘population’’. A chromosome’s fitness score, which
is calculated using an objective function (see Section 2.3.2) decides its
rank in the population it belongs to. The selection process continues
generating candidate solutions till it finds a satisfactory solution or
reaches the maximum number of allowed generations. The crossover
(used for exploring search space) and mutation (an operation used to
exploit search space) operators of GA allow it to explore and exploit
any large search spaces efficiently. This section discusses important
components of the GA and their setting in our work. The entire process
is shown in Fig. 6 and the algorithm is shown in Algorithm 3.

2.3.1. Initial population generation
The population is a collection of candidate solutions. Let, the popu-

lation consist of 𝑃𝑠 (∈ N) number of candidate solutions (candidate to
qualify as the near-optimal solution). A candidate solution is a binary
string, also known as a chromosome, having length 𝑛, the number
of foreground pixels. In the candidate solution, a ‘‘1’’ indicates the
pixel position is selected as key pixels, and ‘‘0’’ means non-selection.
In our case, candidate solutions of the initial population are generated
randomly, and the value of 𝑃𝑠 = 20 is set empirically.

2.3.2. Fitness of chromosomes
Chromosomes in a population are ranked by their fitness score.

A higher fitness score means a better candidate solution. The fitness
score of a chromosome is measured with an objective function specially
designed for the problem at hand. The objective function comprised
three parameters to keep a good balance among pixel reduction rate
(say, 𝑟), shape similarity index (say, 𝑠), and gray scale similarity index
(say, 𝑔). The objective function (say, 𝑓 (𝑟, 𝑠, 𝑡)) used here to measure the
fitness score of a candidate solution (say, 𝜆) is defined by Eq. (1).
𝜆 = 𝑓 (𝑟, 𝑠, 𝑡) = 𝛼 ∗ 𝑟 + 𝛽 ∗ 𝑠 + 𝛾 ∗ 𝑔 (1)
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Fig. 4. Flowchart showing the steps used to generate reconstructed image (i.e., 𝐼 ′′) from decoded binary image (i.e., 𝐼 ′) from selected key pixel positions using GA.
Fig. 5. Encoding of the binarized image (i.e., 𝐼𝐵) to chromosome structure and reconstruction of the binarized image (i.e., 𝐼 ′) from selected chromosome after employing GA
using a toy example. In this figure, encoding refers to the process of converting 𝐼𝐵 into the chromosomal structure fit for GA and decoding refers to the process of constructing
𝐼 ′ from the selected near-optimal chromosome.
Fig. 6. Flowchart showing the steps used in the present GA-based guided denoiser.
In Eq. (1), 𝛼, 𝛽, and 𝛾 are three constant values. Experimentally,
we found that 𝛼 = 0.4, 𝛽 = 0.3, and 𝛾 = 0.3 are suitable choices. The
parameter 𝑟 is defined using Eq. (2).

𝑟 =
|{(𝑥, 𝑦) ∶ 𝑓𝐵(𝑥, 𝑦) = 1}| − |{(𝑥, 𝑦) ∶ 𝑓 ′(𝑥, 𝑦) = 1}|

|{(𝑥, 𝑦) ∶ 𝑓𝐵(𝑥, 𝑦) = 1}| (2)

To calculate 𝑠, we have considered F1-score between 𝐼𝐵 and bina-
rized version of 𝐼 ′′ (say, 𝐼 ′′𝐵 = {𝑓 ′′

𝐵 (𝑥, 𝑦) ∶ 𝑓 ′′
𝐵 (𝑥, 𝑦) ∈ 0, 1 ∧ (𝑥, 𝑦) ∈

[1, 𝐻] × [1, 𝑊 ]}). Otsu’s thresholding approach is used to generate 𝐼 ′′𝐵
from 𝐼 ′′. 𝑠 is calculated using Eq. (3)

𝑠 = 2 ∗ 𝑅𝑒 ∗ 𝑃 𝑟
𝑅𝑒 + 𝑃 𝑟 (3)

In Eq. (3), 𝑅𝑒 and 𝑃 𝑟 represent recall (see Eq. (4)) and precision
(see Eq. (5)) respectively.

𝑅𝑒 =
|{(𝑥, 𝑦) ∶ 𝑓𝐵 (𝑥, 𝑦) = 1 ∧ 𝑓 ′′

𝐵 (𝑥, 𝑦) = 1}|
|{(𝑥, 𝑦) ∶ 𝑓𝐵 (𝑥, 𝑦) = 1 ∧ 𝑓 ′′

𝐵 (𝑥, 𝑦) = 1}| + |{(𝑥, 𝑦) ∶ 𝑓𝐵 (𝑥, 𝑦) = 1 ∧ 𝑓 ′′
𝐵 (𝑥, 𝑦) = 0}|
(4)

6 
𝑃 𝑟 = |{(𝑥, 𝑦) ∶ 𝑓𝐵 (𝑥, 𝑦) = 1 ∧ 𝑓 ′′
𝐵 (𝑥, 𝑦) = 1}|

|{(𝑥, 𝑦) ∶ 𝑓𝐵 (𝑥, 𝑦) = 1 ∧ 𝑓 ′′
𝐵 (𝑥, 𝑦) = 1}| + |{(𝑥, 𝑦) ∶ 𝑓𝐵 (𝑥, 𝑦) = 0 ∧ 𝑓 ′′

𝐵 (𝑥, 𝑦) = 1}|
(5)

Finally, for 𝑔 we have measured root mean squared error (RMSE)
between 𝐼 , and 𝐼 ′′ (say, 𝑚) using Eq. (6) first, and then 𝑔 is calculated
by taking the reciprocal of 𝑚 i.e., 𝑔 = 1

𝑚 . This is done to comply with
the fact that a smaller RMSE score implies a better reconstruction of
the gray-scale image.

𝑚 =

√

√

√

√

√

1
𝐻 ∗ 𝑊

𝐻
∑

𝑥=1

𝑊
∑

𝑦=1
[𝑓 ′′(𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)]2 (6)

2.3.3. Crossover
The crossover operator helps the GA explore the search space better.

Single-point crossover, two-point crossover, and uniform crossover are
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Algorithm 3 GA-based Key Pixels Selection

Require: Stopping condition (say, 𝑀 𝑎𝑥𝑖𝑡𝑟), Population size (𝑃𝑠),
Crossover probability (say, 𝐶𝑝), Mutation probability (say, 𝑀𝑝),
encoded chromosome length (say 𝐶 𝑟𝑜𝑚𝑙 𝑒𝑛)

Ensure: Optimal chromosome (say, 𝑂 𝑝𝐶 𝑟𝑜𝑚) of length 𝐶 𝑟𝑜𝑚𝑙 𝑒𝑛
𝑃 𝑜𝑝 ← generateRandomPopulation(𝑃𝑠)
𝑃 𝑜𝑝𝑓 𝑖𝑡 ← evaluateFitnessOfChromosome(𝑃 𝑜𝑝)
while ¬𝐶 do

𝑃 ′ ← {}∪ performElitism(𝑃 𝑜𝑝𝑓 𝑖𝑡)
while |𝑃 ′

| < 𝑃𝑠| do
𝑝1, 𝑝2 ← performParentSelection(𝑃 𝑜𝑝𝑓 𝑖𝑡)
𝐹 𝑖𝑡𝑝1 ← getFitnessOfChromosome(𝑝1)
𝐹 𝑖𝑡𝑝2 ← evaluateFitnessOfChromosome(𝑝2)
𝑃 ′ ← 𝑃 ′ − {𝑝1, 𝑝2}
𝑜1, 𝑜2 ← performCrossover(𝑝1, 𝑝2, 𝐶𝑝)
𝑜1 ← performMutation(𝑜1, 𝑀𝑝)
𝑜2 ← performMutation(𝑜2, 𝑀𝑝)
𝐹 𝑖𝑡𝑜1 ← evaluateFitnessOfChromosome(𝑜1)
𝐹 𝑖𝑡𝑜2 ← evaluateFitnessOfChromosome(𝑜2)
if max(𝐹 𝑖𝑡𝑜1 , 𝐹 𝑖𝑡𝑜2 ) > max(𝐹 𝑖𝑡𝑝1 , 𝐹 𝑖𝑡𝑝2 ) then

𝑃 ′ ← 𝑃 ′ ∪ {𝑜1, 𝑜2}
else

𝑃 ′ ← 𝑃 ′ ∪ {𝑝1, 𝑝2}
end if

end while
𝑃 𝑜𝑝 ← 𝑃 ′

end while
𝑂 𝑝𝐶 𝑟𝑜𝑚 ← top-ranked (according to fitness score) in 𝑃 𝑜𝑝

present in the literature. We have used the uniform crossover (Spears
and De Jong, 1995) is used due to its better applicability in the larger
earch spaces (Malakar et al., 2020a). In this crossover scheme, we

first select two chromosomes from the entire population following the
roulette wheel selection algorithm as parent chromosomes, and then
the bits present there are exchanged based on a probability value,
known as crossover probability (say, 𝐶𝑝), to obtain two child chromo-
somes. We have employed crossover operators for 𝜇 ∈ [3, 5] times and
𝐶𝑝 = 0.85 is set empirically.

2.3.4. Mutation
The mutation operator guides GA in exploiting the search space

fficiently. In this phase, some of the bits in a chromosome are flipped
ased on a probability score, called mutation probability (say, 𝑀𝑝).
ere, we choose 𝑀𝑝 = 0.03 empirically.

2.3.5. Stopping criteria
GA is an iterative process, requiring a stopping criterion: the max-

imum number of generations allowed (say, 𝑀 𝑎𝑥𝑖𝑡𝑟). We have set the
number 𝑀 𝑎𝑥𝑖𝑡𝑟 = 15 empirically.

3. Experimental results

GA has been used in the present work to select key pixels. The
ositions of the key pixels and the image dimension will be stored for
urther use. The present method is evaluated on four datasets, and the

results are analyzed qualitatively and quantitatively. In the following
subsections, we first describe the datasets in use, evaluation metrics,
and parameters used in GA, and then describe the results obtained.
It is to be mentioned here that we have included the recognition
performances along with other quantitative metrics described later for
nalyzing the results.
7 
3.1. Datasets in use

For experimental purposes, we have used four datasets; two contain
images of handwritten digits and words, and the other two have fluo-
rescence microscopy. MNIST (Yan et al., 1998) and CMATERdb2.1.2
(Bhowmik et al., 2019) are considered as handwritten digits and word
atabases, respectively, while UitMito (Sekh et al., 2021) and 2D

HeLa (Boland and Murphy, 2001) datasets contain fluorescent mi-
croscopy images. Such datasets are chosen to include diversified data
while having gray-scale images. A summary of these datasets is pro-
vided in Table 1 as well as described a bit below.

MNIST: This dataset (Yan et al., 1998) is of handwritten digit
images that have been widely used to benchmark different image
classification and machine learning problems. The dataset was collected
by the authors and scanned using a flatbed scanner. It consists of 70,000
sample images of handwritten digits distributed equally over all the
lasses, i.e., it contains 7000 sample images per class. All the samples
re in grayscale with the resolution of 28 × 28 pixels. This dataset is

used for a 10-class classification problem.
CMATERdb2.1.2: Bhowmik et al. (2019) took the initiative to

prepare this dataset that contains images of handwritten Bangla words.
It is suitable for evaluating the performance of character extraction
algorithms from handwritten words (Malakar et al., 2021, 2011) are
used to measure the performance of handwritten word image recog-
nition using a holistic approach (Malakar et al., 2017, 2020c). It
contains handwritten words representing 120 popular city names in
West Bengal, India. 150 samples written by writers with varying ages,
genders, and educational qualifications per city name are present in
this dataset. In short, classically, this database is used for 120 class
classification or pattern classification problems.

2D HeLa: Boland and Murphy (2001) prepared the 2D HeLa dataset,
in short, we call it hereafter HeLa, and made it public for further
research. It consists of images of biological samples that are gen-
erated using fluorescence microscopy. HeLa cells were stained with
organelle-specific fluorescent dyes while capturing the images. The
dataset includes images of 10 organelles and thus it is suitable for 10
class classification problems.

UitMito: Sekh et al. (2021) generated this dataset consisting of fluo-
rescence microscopy images of live cells stained with a mitochondrial-
specific fluorescent dye. The dataset contains 1000 2D grayscale im-
ages, each with a resolution of 1024 × 1024 pixels, and was captured
over 1000 s.

3.2. Metrics in use

Apart from the qualitative evaluation, we have also performed
 quantitative assessment of the proposed work. Two different ap-
roaches are followed while designing quantitative metrics. One con-
entrates on how much space is used while storing the data in the
emory. Here, no bit encoding mechanism is used rather the number

f integer values required to store is considered. For this type of
uantitative measurement, we have used three metrics viz., actual pixel
eduction rate (see Eq. (7)), foreground pixel reduction rate (𝐹 𝑃 𝑅𝑅)

(see Eq. (8)), and byte reduction rate (𝐵 𝑅𝑅) (see Eq. (9)). The other
ne is the retrieval performance i.e., how much information of the
riginal image is retained in the reconstructed image generated from

its compact representation. Here we have used the recall (see Eq. (4)),
precision (see Eq. (5)), F1-score (see Eq. (3)), structural similarity index
SSIM) score (see Eq. (10)), RMSE (see Eq. (6)). Apart from these, we
ave also tested the quality of the generated images with the help of
lassification performance for the datasets for which the classification
roblem is defined, i.e., MNIST, CMATERdb, and HeLa.

• 𝐴𝑃 𝑅𝑅: It is defined by the ratio of the number of pixels used to
represent an image (i.e., the number of pixels whose position we
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Table 1
Summary of sample counts in the datasets in use. Here resolution is 𝑊 ×𝐻 .

Dataset # samples Resolution Capturing device Accessibility

MNIST 70 000 28 × 28 Scanner Public
CMATERdb2.1.2 18 000 Varying Scanner Public
HeLa 862 512 × 382 Fluorescence microscopy Public
UiTMito 1000 1024 × 1024 Fluorescence microscopy In-housea

a Represents that a portion of the dataset is public.
𝛽
f

k

m

c

(
V

e

w
S
C

will store instead of the original image) and the total number of
pixels present in the image. It is defined by the Eq. (7).

𝐴𝑃 𝑅𝑅 =
|{(𝑥, 𝑦) ∶ 𝑓 ′(𝑥, 𝑦) = 1}|

𝐻 ∗ 𝑊
(7)

 𝑃 𝑅𝑅: It is a similar measure as APRR but here ratio is calculated
oncerning the number of active or foreground pixels and it is defined
y the Eq. (8).

𝐹 𝑃 𝑅𝑅 =
|{(𝑥, 𝑦) ∶ 𝑓 ′(𝑥, 𝑦) = 1}|
|{(𝑥, 𝑦) ∶ 𝑓𝐵(𝑥, 𝑦) = 1}| (8)

 𝑅𝑅: It is a measure that is similar to the compression ratio. It is
alculated as the ratio between the number of bits needed to store the

compact representation of the image and the number of bits needed
o store the original image in its uncompressed form (see Eq. (8)). In

Eq. (8), 𝑏 and 𝑏′ depend on the dimension and bit depth of the input
image to be represented compactly. In our computation, bit depth is
considered as 8 (i.e., 𝑏′ = 8), while 𝑏 = ⌈

log2(𝑚𝑎𝑥{𝐻 ,𝑊 })
8 ⌉ ∗ 8 considering

it requirement to store an integer number as multiple of 8. This means
f 𝑚𝑎𝑥{𝐻 , 𝑊 } < 256, we set 𝑏 = 8 while if 𝑚𝑎𝑥{𝐻 , 𝑊 } ∈ [256, 65535]

we set 𝑏 = 16
𝐵 𝑅𝑅 =

2 ∗ |{(𝑥, 𝑦) ∶ 𝑓 ′(𝑥, 𝑦) = 1} + 1| ∗ 𝑏
|{𝐻 ∗ 𝑊 ∗ 𝑏′}|

(9)

 𝑆 𝐼 𝑀 : SSIM score finds the similarity between two images. Here, we
use this metric along with the RMSE score to have an understanding of
the reconstruction similarity between 𝐼 and 𝐼 ′′. The score is defined in
Eq. (10).

𝑆 𝑆 𝐼 𝑀 =
(2 ∗ 𝜇𝐼 ∗ 𝜇𝐼 ′′ + 𝑐1) ∗ (2 ∗ 𝜎𝐼 𝐼 ′′ + 𝑐2)

(𝜇2
𝐼 + 𝜇2

𝐼 ′′ + 𝑐1)(𝜎2𝐼 + 𝜎2𝐼 ′′ + 𝑐2)
(10)

In Eq. (10), 𝜇𝐼 , and 𝜇𝐼 ′′ represent the mean of the pixel intensities in
𝐼 , and 𝐼 ′′ respectively while standard deviations of all pixel intensities
resent in 𝐼 , and 𝐼 ′′ are represented by 𝜎𝐼 , and 𝜎𝐼 ′′ respectively. Also,

𝜎𝐼 𝐼 ′′ is the covariance between 𝐼 and 𝐼 ′′. 𝑐1 = (𝑘1 ∗ 𝐿)2, 𝑐2 = (𝑘2 ∗ 𝐿)2

are two variables to stabilize the division with a weak denominator
where 𝐿 is the dynamic range of pixel values, while 𝑘1 = 0.01, 𝑘2 = 0.03
are two constant values.

3.3. Parameter selection

Two factors can significantly affect the end performance of the
proposed model: (1) the weight values in the objective function i.e., 𝛼,
, and 𝛾 in Eq. (1), and (2) the size and type of the kernel that convolves
ith the binary image generated from compact representation (i.e., 𝐼 ′)

to generate the reconstructed image (i.e., 𝐼 ′′). To decide on these two
factors, we have experimented with a subset from each dataset by
selecting 5% of the samples randomly. The parameters 𝛼, 𝛽, and 𝛾
determine the contribution of 𝑟, 𝑠, and 𝑡 respectively (see Eq. (1)) in a

ulti-criteria/objective function. The higher the value of 𝛼, the lower
he number of selected key pixels i.e., lesser memory requirement to
tore an image. On the contrary, higher values of 𝛽, and 𝛾 ensure a
etter quality of the reconstructed image. So, we have tried to keep
he values close to each other and thus these values are chosen from
0.2, 0.5] experimentally. To decide the values of 𝛼, 𝛽, and 𝛾, we have
8 
Table 2
Performance of the proposed image compact representation technique with different
values of parameters 𝛼, 𝛽, and 𝛾 in Eq. (1). Here GA selects key pixels from the binary
version of an image (i.e., 𝐼𝐵), and the 3 × 3 Gaussian kernel is convolved with 𝐼 ′

to generate 𝐼 ′′. The metrics used here quantify the reconstruction error from 𝐼 ′ using
the corresponding kernels. ↑, and ↓ represent larger means better results and smaller
means better results, respectively.
𝛼 𝛽 𝛾 Recall (↑) Precision (↑) F1-score (↑) SSIM (↑) RMSE (↓)

0.2 0.3 0.5 .82 ± .11 .69 ± .09 .75 ± .08 .72 ± .08 .13 ± .02
0.2 0.5 0.3 .81 ± .10 .72 ± .09 .76 ± .09 .74 ± .09 .11 ± .02
0.5 0.2 0.3 .75 ± .13 .77 ± .06 .76 ± .07 .74 ± .08 .14 ± .02
0.5 0.3 0.2 .74 ± .11 .76 ± .08 .76 ± .09 .75 ± .10 .15 ± .02
0.3 0.3 0.4 .82 ± .13 .74 ± .09 .77 ± .08 .73 ± .09 .11 ± .02
0.3 0.4 0.3 .79 ± .14 .75 ± .09 .77 ± .07 .75 ± .08 .12 ± .02
0.4 0.3 0.3 .80 ± .12 .76 ± .07 .78 ± .07 .76 ± .08 .10 ± .02
0.2 0.4 0.4 .81 ± .16 .70 ± .11 .76 ± .09 .73 ± .09 .11 ± .02
0.4 0.2 0.4 .80 ± .13 .74 ± .09 .77 ± .09 .74 ± .10 .12 ± .02
0.4 0.4 0.2 .78 ± .12 .75 ± .10 .77 ± .09 .75 ± .09 .11 ± .02

experimented on the mentioned subset of the MNIST dataset using a
3 × 3 Gaussian kernel. The results for a few tested combinations are
shown in Table 2. From the results, it can be concluded that 𝛼 = 0.4,
= 0.3, and 𝛾 = 0.3 are good choices and we use these values in our

urther experiments.
The shape of the reconstructed images might differ based on the

ernel size due to the stroke width of the data parts in the input
images, while the weight of different kernels may lead to different
pixel intensity information in the reconstructed images. To decide on
this factor, we have used three different kernel sizes, viz., 3 × 3,
5 × 5, and 7 × 7, and three different types of kernel functions, namely,
the Gaussian kernel, the point spread function (PSF) kernel, and the

ean kernel. The obtained results are recorded in Table 3. From this
table, it is clear that the Gaussian kernel outperforms the others when
onsidering the same kernel size. For MNIST and CMATERdb 5 × 5

kernel provides the best performance, while on the other two datasets
i.e., HeLa and UiTMito) 7 × 7 kernel provides the best performance.
alues of all the parameters used in this work are listed in Table 4.

3.4. Results on entire dataset

We have employed our model on the four datasets described earlier.
In these experiments, we have used the selected parameter values of
Eq. (1), kernel size, and kernel type as decided in Section 3.3 through
experimentation on subsets of the datasets. We have also used the
mpirically selected parameter values for GA. All the parameters and

their corresponding values are listed in Table 4. The results are shown
in Table 5. It can be seen from this table that the proposed method
achieved .84 ± .14, .84 ± .07, .78 ± .13, and .88 ± .05 F1-score on
MNIST, CMATERdb, HeLa, and UiTMito datasets respectively. So, we
obtained the best reconstructed performance on the UiTMito dataset

hile the worst is on the HeLa dataset. Similarly, if we consider the
SIM score, then the proposed method performs poorly on MNIST and
MATERdb datasets while performing well for the other two datasets.

If we consider the space requirement reduction, then it can be seen



S. Malakar et al. Engineering Applications of Artiϧcial Intelligence 139 (2025) 109540 
Table 3
Performance of the proposed image compact representation technique. Here GA selects key pixels from the binary
version of an image (i.e., 𝐼𝐵), and the mentioned kernels are convolved with 𝐼 ′ to generate 𝐼 ′′.
Dataset Kernel Kernel size Recall (↑) Precision (↑) F1-score (↑) SSIM (↑) RMSE (↓)

3 × 3 .80 ± .12 .76 ± .07 .78 ± .07 .76 ± .08 .10 ± .02
Mean 5 × 5 .81 ± .13 .78 ± .11 .79 ± .09 .77 ± .10 .09 ± .03

7 × 7 .77 ± .12 .78 ± .15 .77 ± .11 .76 ± .11 .11 ± .04

3 × 3 .76 ± .10 .73 ± .08 .74 ± .07 .73 ± .08 .12 ± .02
MNIST PSF 5 × 5 .79 ± .12 .74 ± .11 .76 ± .09 .75 ± .10 .10 ± .03

7 × 7 .75 ± .11 .74 ± .13 .74 ± .12 .74 ± .11 .13 ± .04

3 × 3 .82 ± .10 .79 ± .06 .80 ± .06 .80 ± .08 .07 ± .02
Gaussian 5 × 5 .87 ± .13 .82 ± .11 .85 ± .09 .83 ± .10 .06 ± .03

7 × 7 .83 ± .15 .79 ± .10 .81 ± .10 .81 ± .09 .08 ± .04

3 × 3 .80 ± .07 .78 ± .05 .79 ± .05 .75 ± .06 .08 ± .02
Mean 5 × 5 .82 ± .07 .78 ± .05 .80 ± .05 .78 ± .06 .07 ± .02

7 × 7 .80 ± .06 .78 ± .07 .79 ± .08 .76 ± .06 .09 ± .02

3 × 3 .79 ± .07 .76 ± .04 .77 ± .04 .72 ± .07 .11 ± .02
CMATERdb PSF 5 × 5 .80 ± .08 .76 ± .05 .78 ± .06 .75 ± .07 .09 ± .02

7 × 7 .77 ± .05 .74 ± .07 .75 ± .05 .73 ± .08 .12 ± .02

3 × 3 .82 ± .07 .85 ± .05 .84 ± .05 .81 ± .06 .06 ± .02
Gaussian 5 × 5 .86 ± .07 .83 ± .05 .85 ± .05 .82 ± .06 .04 ± .02

7 × 7 .85 ± .07 .83 ± .05 .84 ± .05 .80 ± .06 .06 ± .02

3 × 3 .75 ± .12 .70 ± .13 .72 ± .12 .81 ± .11 .11 ± .07
Mean 5 × 5 .74 ± .11 .71 ± .12 .72 ± .10 .82 ± .10 .10 ± .07

7 × 7 .77 ± .11 .74 ± .15 .75 ± .12 .84 ± .10 .10 ± .06

3 × 3 .76 ± .09 .69 ± .13 .70 ± .10 .79 ± .10 .12 ± .07
HeLa PSF 5 × 5 .72 ± .10 .68 ± .13 .70 ± .10 .80 ± .10 .11 ± .06

7 × 7 .72 ± .11 .71 ± .15 .71 ± .12 .81 ± .11 .10 ± .06

3 × 3 .76 ± .09 .74 ± .12 .75 ± .09 .89 ± .10 .11 ± .06
Gaussian 5 × 5 .76 ± .11 .74 ± .14 .76 ± .13 .91 ± .10 .11 ± .06

7 × 7 .81 ± .10 .77 ± .15 .79 ± .11 .93 ± .09 .09 ± .05

3 × 3 .83 ± .10 .79 ± .11 .81 ± .10 .86 ± .09 .05 ± .03
Mean 5 × 5 .83 ± .10 .81 ± .10 .82 ± .09 .88 ± .09 .05 ± .05

7 × 7 .88 ± .09 .84 ± .11 .86 ± .10 .90 ± .08 .04 ± .03

3 × 3 .84 ± .09 .81 ± .11 .82 ± .10 .85 ± .10 .06 ± .05
UiTMito PSF 5 × 5 .84 ± .09 .82 ± .10 .83 ± .10 .87 ± .09 .05 ± .04

7 × 7 .87 ± .08 .83 ± .12 .85 ± .11 .89 ± .10 .05 ± .04

3 × 3 .85 ± .09 .84 ± .10 .84 ± .10 .90 ± .09 .06 ± .03
Gaussian 5 × 5 .86 ± .09 .83 ± .11 .84 ± .10 .92 ± .09 .04 ± .03

7 × 7 .91 ± .08 .87 ± .11 .89 ± .09 .95 ± .08 .03 ± .03
Table 4
List of parameters and their values used in this work to cite the results on the entire datasets.
Parameter Description Value

𝛼 Weight of pixel reduction rate in Eq. (1) 0.4
𝛽 Weight of shape similarity index in Eq. (1) 0.3
𝛾 Weight of gray-scale similarity index in Eq. (1) 0.3

𝑘 Kernel size in reconstruction process (MNIST and CMATERdb) 5
Kernel size in reconstruction process (HeLa and UiTMito) 7

𝑃𝑠 Population size 20
𝐶𝑝 Crossover probability 0.85
𝑀𝑝 Mutation probability 0.03
𝑀 𝑎𝑥𝑖𝑡𝑟 Maximum generation for stopping criterion 15
that the proposed technique reduces the memory requirement (see BRR
score) by around 95.00%, 87.00%, 98.00%, and 96.00% for MNIST,
CMATERdb, HeLa, and UiTMito datasets respectively.

3.5. Execution time

The key pixels selection process for compact image representation
uses GA. Theoretically, the time complexity of the GA algorithm is
∼ 𝑂(𝐷 ∗ 𝐹 ∗ 𝑃𝑠 ∗ 𝑀 𝑎𝑥𝑖𝑡𝑒𝑟), where 𝐷, 𝐹 , 𝑃𝑠, and 𝑀 𝑎𝑥𝑖𝑡𝑒𝑟 represent
the dimension of search space, complexity of fitness function, the
population size of GA, and the maximum iteration number of GA
respectively, while ‘*’ indicates the arithmetic multiplication operator.
Practically, out of these factors, the execution time mostly depends
a lot on the nature of the objective function i.e., fitness evaluation
9 
Table 5
Performance of the proposed memory efficient compact representation of images
technique on the entire dataset.

Performance metrics Dataset in use

MNIST CMATERdb HeLa UiTMito

Recall .86 ± .13 .85 ± .06 .80 ± .11 .90 ± .04
Precision .82 ± .15 .83 ± .07 .76 ± .14 .87 ± .06
F1-score .84 ± .14 .84 ± .07 .78 ± .13 .88 ± .05
SSIM .82 ± .11 .81 ± .08 .92 ± .04 .94 ± .04
RMSE .08 ± .05 .07 ± .06 .11 ± .07 .06 ± .03
APRR .02 ± .01 .04 ± .02 .01 ± .01 .01 ± .01
FPRR .17 ± .05 .21 ± .05 .15 ± .03 .12 ± .01
BRR .04 ± .02 .13 ± .07 .02 ± .03 .04 ± .01
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Table 6
Single-time execution time of important operations on the proposed method. Time is recorded in seconds (approximated at 4-decimal
place). ‘–’ indicate time is negligible to 4th-decimal place. Here, resolution is provided as 𝑊 ×𝐻 . OP # is used to provide a unique
ID to each operation.

Op # Operation Execution time (in second) on image of resolution

28 × 28 442 × 221 512 × 382 1024 × 1024

01 Image acquisitiona 0.0050 0.4350 0.3240 0.0200
02 Image binarizationa 0.0002 0.0003 0.0004 0.0009
03 Encoding 𝐼𝐵 to form chromosome 0.0013 0.0433 0.3542 1.8403
04 Reconstructing 𝐼 ′ from 𝐾 𝑃𝑝𝑜𝑠 0.0001 0.0011 0.0048 0.0156
05 𝐼 ′′ generation (i.e., 𝐼 ′′ = 𝐼 ′ ⊛ 𝐾)a 0.0005 0.0006 0.0008 0.0011
06 Contrast stretching of 𝐼 ′′ 0.0029 0.0927 0.7432 3.9837
07 Area closing on 𝐼 ′′a 0.0046 0.0428 0.2734 2.1026
08 RMSE loss calculationa 0.0004 0.0008 0.0045 0.0204
09 Shape similarity index estimation 0.0051 0.1674 1.3155 6.9860
10 Sorting candidate solutions 0.0004 0.0018 0.0071 0.0241
11 Crossover – 0.0020 0.0090 0.0278
12 Mutation – 0.0007 0.0036 0.0125

a Indicates that this operation uses a built-in Python library function while a user-defined function is used in other cases.
Table 7
Comparison with the other image compact representation techniques considered here for comparison. Images are reconstructed using
the Gaussian kernel with specified kernel size (5 × 5 for MNIST and CMATERdb and 7 × 7 for HeLa and UiTMito).
Dataset Representer F1-score (↑) SSIM (↑) RMSE (↓) APRR (↓) FPRR (↓) BRR (↓)

Canny edge .39 ± .07 .49 ± .07 .08 ± .04 .09 ± .02 .76 ± .21 .20 ± .08
Boundary .60 ± .12 .68 ± .14 .09 ± .04 .09 ± .02 .74 ± .20 .19 ± .06

MNIST Skeleton .60 ± .09 .69 ± .10 .06 ± .05 .04 ± .01 .35 ± .09 .08 ± .05
Random pixels .83 ± .10 .83 ± .09 .09 ± .04 .07 ± .02 .50 ± .05 .15 ± .09
Proposed .84 ± .14 .82 ± .11 .08 ± .05 .02 ± .01 .17 ± .05 .04 ± .02

Canny edge .56 ± .04 .61 ± .12 .25 ± .05 .06 ± .01 .36 ± .06 .26 ± .06
Boundary .51 ± .07 .57 ± .10 .19 ± .06 .06 ± .01 .33 ± .07 .24 ± .04

CMATERdb Skeleton .57 ± .08 .65 ± .11 .25 ± .07 .08 ± .02 .46 ± .20 .32 ± .09
Random pixels .84 ± .05 .82 ± .05 .07 ± .02 .09 ± .03 .50 ± .01 .38 ± .11
Proposed .84 ± .07 .81 ± .08 .07 ± .06 .04 ± .02 .21 ± .05 .13 ± .07

Canny edge .50 ± .17 .59 ± .10 .04 ± .08 .04 ± .04 .13 ± .11 .01 ± .01
Boundary .42 ± .18 .53 ± .10 .04 ± .09 .01 ± .01 .27 ± .18 .03 ± .02

HeLa Skeleton .33 ± .17 .51 ± .11 .20 ± .11 .10 ± .05 .21 ± .06 .39 ± .19
Random pixels .76 ± .12 .91 ± .10 .02 ± .03 .02 ± .02 .52 ± .06 .08 ± .08
Proposed .78 ± .13 .92 ± .04 .11 ± .07 .01 ± .01 .15 ± .03 .02 ± .03

Canny edge .79 ± .01 .80 ± .06 .08 ± .03 .02 ± .01 .29 ± .02 .08 ± .03
Boundary .49 ± .02 .90 ± .03 .06 ± .02 .02 ± .01 .28 ± .02 .08 ± .02

UiTMito Skeleton .80 ± .03 .91 ± .03 .03 ± .01 .01 ± .01 .11 ± .01 .03 ± .01
Random pixels .89 ± .01 .93 ± .02 .02 ± .01 .04 ± .01 .50 ± .01 .14 ± .04
Proposed .88 ± .05 .94 ± .04 .06 ± .03 .01 ± .01 .12 ± .01 .04 ± .01
C
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strategy. The fitness evaluation depends a lot on data volume (here,
image resolution). This is because the same is called several times in
the process. Therefore, we have measured the execution time of all the
import functions used in the current process with varying image resolu-
tions for a single-time execution and recorded in Table 6. All the times
are measured in the Google Colab free version without using GPUs. The
operations having identification (ID) code (i.e., OP # in Table 6) 01 is
executed only once in the proposed work. The time taken in the image
reconstruction process from key pixel positions (i.e., 𝐾 𝑃𝑝𝑜𝑠) is the time
aken to execute OP # 04, 05, 06, and 07. So the reconstruction process
akes 6.103 (i.e., 0.0156 + 0.0011 + 3.9837 + 2.1026 = 6.103) seconds for an
mage of resolution 1024 × 1024 while it takes ∼0.0081 s for an image
f dimension 28 × 28. The operations related to calculating fitness score
f a candidate solution of GA are OP # 02 to OP # 09 excluding OP
03. From, this table, it is clear that these operations consume a lot
f time and these times increase heavily with the increase in image

resolution. It is also noteworthy to observe that crossover and mutation
perations’ execution time increases as image resolution increases. This
appens because, as the image resolution increases, the length of the

chromosome (or dimension of search space i.e., 𝐹 ) also increases.
10 
3.6. Comparison with other compact representation methods

It has already been mentioned that key pixels generated using the
anny edge detection algorithm (Canny, 1986), skeleton extraction

techniques (Lee et al., 1994), boundary detection algorithm (Martin
et al., 2004), and randomly selected key pixels can also be considered
compact representations of the images. Therefore, we have recon-
structed the images from the compact representations where Canny
edge pixels, skeleton pixels, boundary pixels, and randomly selected
ey pixels are to be stored using the same Gaussian kernel used for
he current work, i.e., 5 × 5 kernel for MNIST and CMATERdb, and
× 7 kernel for HeLa and UiTMito datasets. The comparative results

re shown in Table 7. From these results, it can be noticed that the F1-
core, SSIM, and RMSE scores of reconstructed images from randomly
elected key pixels are very close (and sometimes even better) to the
cores obtained from the proposed method. However, the proposed
ethod selects much fewer key pixels than the randomly selected pixels

and is thus more memory-efficient for storing (see BRR score). If we
concentrate on the memory requirement for storing a compact version
of an image, then we can see that except for the UiTMito dataset, the
proposed performs the best. Even, it uses fewer key pixels than that of
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Table 8
Comparison of performance of the proposed method with deep learning-based tech-
niques: GU-Net (Banerjee et al., 2023), and GU-Net++ (Banerjee et al., 2024).

Dataset Method SSIM (↑) RMSE (↓) APRR (↓) BRR (↓)

GU-Net .83 ± .02 .06 ± .02 .04 ± .01 .08 ± .02
MNIST GU-Net++ .92 ± .02 .03 ± .01 .04 ± .01 .08 ± .02

Proposed .82 ± .11 .08 ± .05 .02 ± .01 .04 ± .02

GU-Net .79 ± .03 .11 ± .02 .03 ± .01 .11 ± .02
CMATERdb GU-Net++ .77 ± .03 .14 ± .04 .03 ± .01 .11 ± .02

Proposed .81 ± .08 .07 ± .06 .04 ± .02 .13 ± .07

GU-Net .89 ± .03 .24 ± .04 .21 ± .02 .44 ± .09
HeLA GU-Net++ .74 ± .05 .22 ± .07 .21 ± .02 .44 ± .09

Proposed .92 ± .04 .11 ± .07 .01 ± .01 .02 ± .03

GU-Net .90 ± .09 .20 ± .04 .03 ± .01 .11 ± .02
UiTMito GU-Net++ .92 ± .05 .16 ± .05 .03 ± .02 .11 ± .02

Proposed .94 ± .04 .06 ± .03 .01 ± .01 .04 ± .01

the skeleton in three of the four datasets. In summary, if we consider
the reconstruction similarity and memory requirement for storing the
compact representation of an image, then it can be safely commented
that the proposed method performs far better than the alternative ways
of storing an image in a memory-efficient way.

Apart from comparison with classical methods, we have compared
the performances of the present method with two recent deep learning-
based methods: guided U-Net (Banerjee et al., 2023) (in short, GU-

et) and its improved version, GU-Net++ (Banerjee et al., 2024). In
GU-Net, the authors have trained a U-Net with three loss functions:
shape, budget, and skeleton and PSF-based image reconstruction pro-
cess. In Banerjee et al. (2024), the authors have tried to mitigate the
issues of the reconstruction process through the use of the conditional
generative adversarial network (cGAN). It is to be noted here that GU-
Net and GU-Net++ need training data to build the learned module

hile the current method does not have such a requirement. Moreover,
the volume of the training dataset decides their performance which
is also clear from their performances on four variety of datasets. To
have a fair comparison with the present technique, these two methods
are trained and evaluated on all the four datasets mentioned earlier
and the comparative performances are shown in Table 8. The GU-Net
nd GU-Net++ are evaluated on the test samples shown in Table 9

for MNIST, CMATERdb, and HeLa while for UiTMito 20% of all the
samples (see Table 1 i.e., on 200 samples. However, the proposed
method is evaluated on all the samples as mentioned in Table 1. From
hese results, it can be noticed that the performance of the proposed

method is better than that of GU-Net, and GU-Net++ methods except
the MNIST dataset. The reason behind that could be these deep-learning
methods get enough train data to generalize the same. However, if the
train samples are less then the current approach is better. Moreover, to

ork on the UiTMito dataset, the images are partitioned into patches
f resolution 256 × 256 pixels following the approach taken by Sekh

et al. (2021). But no such special care is not required for the present
technique which is advantageous over deep learning-based techniques.

3.7. Discussion

The results described are related to the reconstruction metrics and
torage requirements. We found reconstruction errors when the Gaus-
ian kernel is convolved with the decoded binary image from the
elected near optimal key pixel positions (i.e., 𝐼 ′) and generates. That
eans there is a clear difference between the original image and the

reconstructed image. So the stated metrics do not describe how the
reconstruction error will affect real-time applications. To have the
answer to this query, we have considered image classification as a
real-life application. The datasets: MNIST, CMATERdb, and HeLa have
been previously used as classification problems. It is noteworthy to
mention here that our objective does not include generating the best
11 
classification accuracy for any particular dataset. Rather, our goal is to
test how the classification performance could be affected by the loss
obtained during the reconstruction process from the key pixels.

We have used EfficientNet-B0 (He et al., 2016) here for performing
he classification tasks. The pre-trained EfficientNet-B0 model trained
n ImageNet is fine-tuned on respective datasets to perform image clas-
ification. Two different experimental setups are followed to perform
he classification. In the first setup, we have used the original train and
est samples from the datasets to evaluate classification performance. In
he other setup, we have used the corresponding reconstructed images
nd tested on the reconstructed images, considering that the original
mages will not be available once they are stored using their compact
ersion. The train, validation, and test sample sizes are recorded in

Table 9 for the said datasets used for the classification task. The results
re presented in Fig. 7. From these results, it can be seen that the

classification accuracy obtained on reconstructed MNIST, CMATERdb,
and UiTMito images has dropped by 0.17%, 0.14%, and 2.30% respec-
tively. Here, the classification accuracy obtained on the reconstructed
images from the randomly selected key pixels is also very close to
the proposed one. It is to be noted here that this inspires the present
method of randomly selected key pixels approach. In other cases,
including the deep learning approaches: GU-Net and GU-Net++, the
classification performances are not that promising compared to the
original one except for the MNIST dataset. With these results, it can
be safely commented that the proposed GA-based key pixels’ selection
method not only returns less number of key pixels to store the image
in a memory-efficient way but also the reconstructed images could be
directly useful in real-life applications like image classification.

The proposed approach is planned to lessen the carbon footprint
generated while storing vision data in cloud or edge devices for a longer
period. So it is required to analyze whether the proposed approach
is beneficial for obtaining such a goal. To evaluate the same, we
have stored the high-quality microscopy images from the UiTMito
(Sekh et al., 2021) dataset using lossless as well as lossy compression
techniques. The reason behind such a choice is the higher resolution of
the images in the dataset and thus, a better explanation may be cited.
When we store an image of resolution 1024 × 1024 from the UiTMito
dataset using 24, and 8-bit bit map representation, the image sizes
are 1 and 3 Megabytes (MB), respectively. When we store the image
using portable network graphics (PNG) format, the storage requirement
becomes 747 kilobytes (KB). However, when the same image is stored
using an 8-bit graphics interchange format (gif) and joint photographic
experts group (JPEG), the memory requirement becomes 239 KB and
95.3 KB, respectively. However, in our storing system, the memory
requirement is ∼40.96 KB (i.e., below 50% of storage requirement for
JPEG), considering 0.04 as 𝐵 𝑅𝑅 value for the UiTMito dataset. This
study illustrates the need for the proposed approach to store vision data
for long-term storage.

3.8. Advantages, limitations and potential future research

In this section, we have first summarized the advantages of the
roposed method and then discussed its limitations, including potential
uture research. The advantages of the proposed method are as follows:

• This method picks less than 5% pixels of the original image to
store. Moreover, since it selects key pixels only from foreground
pixels, it will always shrink the storage requirement, which may
not be true for image compression techniques.

• Since the method does not use any deep learning method, this
method could be applied to images of any resolution, which is
not true for methods like GU-Net and GU-Net++.

• The current approach does not require any training samples. It
is designed to work on a dataset comprised of only one sample.
Thus, it could be directly integrated with image-capturing tech-
niques to store the images, like image compression techniques.
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Table 9
Summary of sample counts in the datasets in use.
Dataset # samples # train samples # validation samples # test samples

MNIST 70,000 48,000 12,000 10,000
CMATERdb2.1.2 18,000 11,520 2880 3600
HeLa 862 552 138 172
Fig. 7. Performance comparison of the proposed method in terms of classification accuracy with other image compact representation techniques considered here for comparison.
Here, the reconstructed images are classified and images are reconstructed using the Gaussian kernel with specified kernel size (5 × 5 for MNIST and CMATERdb datasets and
7 × 7 for HeLa and UiTMito datasets).
• The use of kernel-based image reconstruction is compute-efficient
reconstruction compared to image compression technique.

Despite its different advantages, this approach requires further im-
provement by considering its eye-catching limitations. The limitations
along with the possible solutions are discussed below.

• The key pixels are selected from the foreground pixels. The major-
ity of the failure that occurs during this is due to the segmentation
technique, which is here Otsu’s algorithm (Otsu, 1979) as it fails
to generate good foreground pixels when the input image is com-
plex. Thus, a more sophisticated image segmentation technique
is required to obtain better forground pixels. The unsupervised
segmentation techniques like watershed algorithm-based image
segmentation (Ng et al., 2006; Guo et al., 2022), pixel-level
clustering (Hoang and Kang, 2024), and U2Seg (Niu et al., 2024)
could be used in the future considering their impacts on im-
age segmentation problems. Techniques like (Ali et al., 2019a,b)
can also be used to extract object regions. Nevertheless, the
recent deep learning-aided segmentation techniques like segment
anything (Kirillov et al., 2023) could be used.

• The execution time largely depends on the nature of the objective
function (see Section 3.5). As the image resolution increases, the
execution time for the shape similarity index (measured using F1-
score) and RMSE loss calculations increases heavily (see Table 6).
Also, the image reconstruction time increases. This issue may be
resolved by excluding such a loss calculation and introducing a
new measure that can work in compact representation. Such an
approach will make the process more energy-efficient.

• The execution time is more for images of larger dimensions (see
Table 6), as the more the number of data pixels, the selection
process takes more time. So we have a plan to devise some
mechanism that can pre-select some important data pixels. So,
one can first employ a filter-based approach (Omar and Abd El-
Hafeez, 2024; Vergara and Estévez, 2014) and then employ a
meta-heuristic algorithm like GA on the reduced number of data
pixels. A similar approach has been used by Malakar et al. (2023)
to select a feature subset before using PSO for diagnostic attribute
selection from the datasets having a large number of attributes to
select from.

• The reconstruction performance depends on kernel size as well
as the kernel to be used. So in the future, generative artificial
12 
intelligence (GenAI) aided reconstruction process could be de-
signed to have a better reconstruction from 𝐼 ′. Banerjee et al.
(2024) recently used cGAN to tackle such an issue. However, its
performance drops when training data is less. Therefore, one can
plan to use the noise-like image (i.e., 𝐼 ′) can be fed to GenAI
techniques as a noise model instead of generating them from the
Gaussian noise.

4. Conclusion

The present work is an initiative to store vision data in a more
memory-efficient and shape-preserving way. We call this initiative a
‘‘compact image representation’’ of an image that differs from well-
known image compression since no encoding mechanism is used here
to store an image. Rather it tries to locate a near-optimal set of key
pixels from where the original image could be reconstructed using
some reconstruction technique. Here, we have used GA to select such
a near-optimal set of key pixels while the Gaussian kernel-based con-
volution operator is used in the reconstruction process. The proposed
technique is evaluated on four datasets: MNIST, CMATERdb, HeLa,
and UiTMito. Performance is evaluated using metrics like F1-score,
SSIM score, RMSE, APRR, FPRR, BRR, and classification accuracy. The
average F1-score, SSIM score, RMSE, APRR, FPRR, and BRR lies in
[.78, .88], [.81, .94], [.06, .08], [.01, .04], [.12, .21], [.02, .13] respectively
for these datasets. These results infer that the proposed model not
only reduces the memory requirements measured using APRR, FPRR,
and BRR to store the images but also obtains good reconstruction
similarity measured using F1-score, SSIM score, and RMSE. However,
the reconstruction metrics show that the proposed image reconstruc-
tion process generates images that have good reconstruction loss. To
investigate the impacts of the reconstructed images generated with
the stated reconstruction loss on real-life applications, a classification
task is performed using reconstructed images. These experiments show
that the classification accuracy drops by 0.17%, .14%, and 2.30% on
MNIST, CMATERdb, and HeLa datasets respectively. The performances
of the proposed method are also comparable with deep learning-based
methods: GU-Net, and GU-Net++. In short, being the work as first of
its kind, the results are promising.

Though the proposed method performs satisfactorily there is some
scope for improvement. First and foremost, the execution time for
generating key pixels is needed to improve. Secondly, the F1-score
(or shape similarity) for the datasets is close to 80% and the SSIM
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score ranges between 82 to 94) on these datasets. So in the future,
a better reconstruction algorithm is required along with a better se-
lection process for key pixels. The proposed technique is designed for
binary or gray-scale images. So the work can be extended to multi-
channel images in the future. It is also noteworthy to mention that
the datasets used here are not diverse enough to comment on the
generalizability of the process. Therefore, in the future, the method
could be applied to diverse data (like images from medical, satellite,
and complex images) to investigate its generalizability. For real-life
applications (here classification), we have reconstructed images from
their compact representation. Therefore, in the future, the same may
be tried from its compact representation.
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