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I. Preface 

I never planned on doing a Ph.D.; my academic achievements were modest at best during my 

high school years, and I had no clear vision of what I wanted to do other than have a job like 

my dad; I liked the idea of flexible working hours, spending time outdoors, and using my brain 

to solve something. 

For some time, I believed the best way to achieve a job like this would be to become an 

engineer. However, towards the end of high school, I needed more motivation to do 

schoolwork, and it became apparent to me that I would not be able to get into the best 

engineering schools.  

Instead, I decided to go to an outdoor school in Nordfjord. At this time, I had never tried 

backcountry skiing, and avalanches had never really been a concern. For one year, my only 

agenda was to be outdoors, ski, bike, hike, kayak, surf, etc. During the first months, I learned 

that we were set to have an avalanche course in January. This sparked an interest that led me to 

read "Staying Alive in Avalanche Terrain" before any snow fell on the ground. I found 

avalanches to be an exciting topic. Over the next few months, I spent a lot of time skiing while 

trying to learn more about snow and avalanches. The idea that working with snow and 

avalanches could be one way of getting the type of job I wanted slowly developed as the months 

went by. 

Next, I had to serve 18 months in the Norwegian Army, followed by the more compelling 

International Snow and Avalanche course in Alta, Norway. Over six months, I spent nearly 150 

days in backcountry terrain, learning more about snow and avalanches and how decision-

making in avalanche terrain differs from Norway to the Alps and Canada. 

I figured Earth Sciences would be a relevant education for working with avalanches, so I earned 

my bachelor's degree in Bergen. I spent one of the semesters abroad at Montana State University 

(MSU), getting to know Jordy Hendrikx (one of my co-supervisors). During these months, I 

started working on mapping avalanche terrain with geospatial software. My project at MSU led 

to a part-time job at the Norwegian Water Resources and Energy Directorate (NVE), 

responsible for all regional avalanche forecasting in Norway. In parallel, I started my master's 

degree in geohazards at the University of Oslo. Within the first year of my master's degree, I 



 

 

applied for a job at NVE and was lucky enough to get a permanent position within the avalanche 

forecasting service. 

When I finished my master's degree in 2021, the idea of doing a Ph.D. had emerged. Markus 

Landrø, one of my colleagues at NVE (and co-supervisor), had just finished his Ph.D. I planned 

to work for a few years to get some time to think about my goals. However, when Andrea 

Mannberg (co-supervisor) had remaining budget from another project, it created the perfect 

opportunity to start a fully funded Ph.D. with the support of NVE and without any specific 

constraints. I could research whatever I wanted, which was both exciting and frightening at the 

same time.  

I remembered a presentation at the International Snow Science Workshop in Innsbruck in 2016, 

where someone used telecom data to count the number of backcountry skiers in Andorra. The 

main questions in my head were whether we could determine how many skiers are out there 

and whether the avalanche forecasts affect their behaviour. This topic also tied nicely into my 

previous experience with avalanche terrain. Simply put – to say whether avalanche forecasts 

affect skiers’ terrain choices, we need to know who skis where, when, and what type of 

avalanche terrain the skiers expose themselves to.  
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III. Abstract 

Backcountry skiing has emerged as a so-called adventure sport in recent decades and has had a 

considerable social and economic impact in Northern Norway. Tourism, Norway's fifth-largest 

export industry, is experiencing significant growth and is especially important for small 

communities. However, recreation in avalanche terrain comes at a cost due to the risk of 

avalanches. Consequently, any change in avalanche risk could directly or indirectly impact a 

large proportion of the population in these areas. Moreover, many avalanche deaths with 

frequent search and rescue operations are unsustainable for these small communities.  

There are currently no precise methods to calculate the risk of backcountry skiing or measure 

whether the avalanche forecast leads to a behavioral change among skiers, selecting less 

exposed terrain or avoiding avalanche terrain altogether when the forecasted avalanche hazard 

is high. Measuring avalanche risk or whether avalanche forecasts influence skiers' terrain 

choices requires comprehensive data on daily backcountry usage, detailed insights into skiers' 

locations, and slope-scale avalanche conditions. As a steppingstone, this thesis has developed 

an automated model (AutoATES) to classify avalanche terrain exposure, comparable in 

performance to human mappers. Such a model enables large areas to be mapped using a 

consistent and efficient method. Scalability is essential when we want to compare terrain 

exposure with backcountry usage in the future.  

Furthermore, this thesis has attempted to enumerate backcountry usage using two methods. The 

first approach used signaling data. Unfortunately, there were considerable discrepancies 

between the estimated positions from the signaling data and our validation data using an 

independent GPS track. The second approach, using beacon checkers to count backcountry 

skiers, was far more successful. During two seasons, from December to May from 2021 to 

2023, we recorded 56,760 individual trips from 26-29 trailheads within the ~2,600 km2 study 

area, offering valuable insights into backcountry usage as a function of time of day, week, and 

month.  

In the future, it may be possible to estimate the proportion by analyzing the extensive database 

of GPS tracks submitted to Center for Avalanche Research and Education to measure what 

percentage of these activities originate at a beacon checkpoint. Once we know the proportion, 

it could be possible to compare our data with accident and fatality data to estimate the region's 

fatality rate of backcountry skiing. 
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1 Introduction 

In recent decades, a new category of sports has emerged, known as extreme, adventure, action, 

and lifestyle sports. These so-called adventure sports have transformed the landscape, 

surpassing many traditional sports in participation and influence (Brymer et al., 2020). 

Backcountry skiing is one of these sports and has a considerable social and economic impact 

in Northern Norway. Tourism, Norway's fifth-largest export industry, is experiencing 

significant growth, particularly in individualistic and often risk-prone activities (NOU, 2023). 

Avalanches pose a direct threat to people recreating in snow-covered mountains. Official 

records show that in the past 10 years (2014-2024), 750 people have been caught in avalanches 

in Norway. However, the actual number is likely higher. Out of these incidents, 58 were fatal, 

with 62% of the victims killed in Northern Norway alone (Varsom, 2024b).  

Adventure sport tourism is often presented as a solution for sustainable development in Arctic 

communities with limited economic opportunities (Ryeng, 2019; Sisneros-Kidd et al., 2019). 

In Lyngen, Kåfjord, and Skjervøy municipalities, which have less than 9,000 inhabitants, 

backcountry skiers account for approximately 30,000 guest nights annually (Ryeng, 2019). This 

highlights the importance of ski tourism for economic development in the region. Ski tourism 

is also a multi-billion market worldwide attracting between 300 and 350 billion annual skier 

visits (Steiger et al., 2019). However, recreation in avalanche terrain comes at a cost. In 

approximately 90% of all fatal avalanche accidents, the avalanche is triggered by the victim or 

someone in the victim's group (Tschirky et al., 2000). This indicates that skiers' decisions often 

expose them to risk. This risk can be both intentional and unintentional. Some are aware of and 

accept the danger the activity entails. Others lack the necessary understanding of the avalanche 

formation and unconsciously expose themselves to avalanche risk (Techel et al., 2015). Most 

municipalities in Northern Norway are small and have limited resources, relying heavily on the 

economic opportunities adventure sports tourism provides. Consequently, any change in 

avalanche risk could directly or indirectly impact a significant proportion of the population. 

Moreover, many avalanche deaths with frequent search and rescue operations are not 

sustainable for these small communities. 

Accurately calculating the statistical risk of death is challenging due to the scarcity of reliable 

data on backcountry skiers. The only reliable estimate to date is the four national surveys 

conducted in Switzerland between 1999 and 2020 (Bürgi et al., 2021; Lamprecht et al., 2008, 
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2014; Lamprecht & Stamm, 2000). Using their data, Winkler et al. (2016) found the statistical 

risk of death to be between 8.7 and 9.4 micromorts, where one micromorts represents one in a 

million chance of death per day (Howard, 1984). 

To mitigate accidents, numerous countries have established avalanche warning services (AWS) 

aimed at enhancing public awareness and reducing avalanche-related deaths (e.g., R. V. Engeset 

et al., 2018). These services have been operational for more than two decades in many countries, 

but measuring their effectiveness remains challenging. The core issue is whether there is a 

behavioral change in response to the forecasts. If effective, we should observe backcountry 

skiers adjusting their behavior by seeking less exposed terrain or avoiding avalanche terrain 

altogether when the forecasted avalanche hazard is high. Without such behavioral changes, the 

impact of AWS on reducing fatalities could be limited. 

Understanding whether avalanche forecasts influence behavior requires comprehensive data on 

daily backcountry usage, detailed insights into skiers' locations, and the slope scale avalanche 

conditions. This thesis, therefore, introduces two key developments as steppingstones: (1) 

methods to count backcountry skiers and (2) a model to classify avalanche terrain. These tools 

are crucial for assessing the impact of avalanche forecasts. If the forecasts are effective, skiers 

should alter their terrain choices in response to avalanche hazards. Therefore, to measure 

whether avalanche forecasts affect skiers' terrain choices, we need to know who skis, where, 

when, and the type of avalanche terrain backcountry skiers expose themselves to. The scope of 

the thesis does not extend into why skiers expose themselves to risk. 

The structure of this thesis is designed to provide a comprehensive understanding of the 

research conducted and its significance. Following this Introduction section that sets the 

context for the study, the Objectives section outlines the research goals and key questions 

addressed. The Background is divided into two parts: general concepts related to avalanches 

and thesis-specific concepts, which focus on topics particularly relevant to this study. For 

readers already familiar with avalanches and this specific decision-making environment, it is 

suggested to skip to the thesis-specific section. The core of the thesis consists of the Methods 

and Results for Papers I-IV, detailing my research and findings. This is followed by a 

Discussion that explores the implications of the results and suggests avenues for future 

research. Finally, the Conclusion summarizes the key insights and contributions of the thesis. 
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2 Objectives 

This thesis addresses the overarching research question: who skis where, when? This simple 

question can be divided into several detailed research inquiries. For instance, to explore the 

“who” aspect, we could investigate the demographics of backcountry skiers in avalanche-prone 

areas. The “where” aspect could involve determining the types of terrain that skiers, in general 

or specific groups recreate in. The “when” aspect could examine the timing of backcountry 

skiing activities, such as time of day, week, or month, or explore any correlations with the 

avalanche forecast. Furthermore, we could investigate the combination of terrain types being 

skied on specific days in relation to avalanche forecasts, thus addressing how many skies where 

at any given location when. 

Given these possibilities, my initial focus on the broader question, who skis where, when? is 

defined by the following two research questions: 

1. How can the terrain exposure of backcountry skiers be quantified using automated 

methods? 

2. What methods could be developed to enumerate backcountry usage? 

Quantifying the exposure of backcountry activities will enable us to compare where (or what 

type of terrain) backcountry skiers recreate in relation to time. Furthermore, by developing a 

method to enumerate backcountry usage, we can determine the baseline frequency of 

backcountry skiing as a function of time of day, week, or month. The baseline frequency could 

also be used to estimate a fatality rate, when compared to fatality statistics. This thesis therefore 

aims to establish a foundation for understanding the baseline frequency of backcountry 

recreation in Norway and to explore whether exposure can be automatically quantified as a 

proxy for terrain choices in the future. 

Addressing the full width of the question, who skis where, when? is challenging and extends 

beyond the four papers included in this thesis. Therefore, in addition, I am currently conducting 

several further studies that are in the early stages and not yet ready for publication (IV. List of 

papers). However, to provide a comprehensive discussion of this challenge, I have chosen to 

include some of the broader context from these studies in the discussion section. 
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3 Background: general concepts 

Understanding avalanche dynamics is crucial for backcountry safety and can be described using 

the avalanche triangle (Fredston & Fesler, 1994), which highlights three key elements: weather, 

snowpack, and terrain, with the human factor at the center (Figure 1). Weather impacts snow 

stability through factors such as temperature, wind, and precipitation. The snowpack consists 

of layers of snow that accumulate over time, each varying in hardness and strength due to snow 

metamorphism (Schweizer et al., 2003). Terrain determines where avalanches are likely to 

occur, influenced by factors such as slope angle, aspect, curvature, and forest density 

(Schweizer et al., 2003; Statham & Campbell, 2023). The human factor is central, as humans 

make decisions and interact with these three elements. The interplay between weather, 

snowpack, and terrain is complex and dynamic. Understanding these interactions is essential 

for making informed decisions in the backcountry (Hetland et al., 2024). In this following 

section I will describe some general concepts and terminology that are relevant to this thesis. 

 

Figure 1: The avalanche triangle, consisting of snowpack, weather, terrain (Fredston & Fesler, 1994), and the 

human factor in the middle. Paper I & II is related to terrain, while paper III and IV is related to the human factor 

(where people go). 

3.1 Avalanches 

A snow avalanche is a mass of snow that slides, flows, or tumbles down a slope and can 

generally be categorized into two main types: loose snow avalanches and slab avalanches 

(McClung & Schaerer, 2006). Loose snow avalanches release at the surface of the snowpack, 
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starting from a single point and widening as they descend. In contrast, slab avalanches, which 

cause most fatalities (Schweizer & Lütschg, 2001; Sheets et al., 2018), occur due to a failure 

within a weak layer of the snowpack. This failure leads to propagating fractures that cause large 

blocks of snow to break free and tumble down the slope. Both types of avalanches can be either 

dry or wet, determined by the moisture content of the snow involved, resulting in variations 

such as dry slab, wet slab, dry loose, and wet loose avalanches. Even though some infrequent 

avalanches release at lower angles, 30° is in most cases communicated as the critical angle for 

avalanches to release, with the majority releasing on slopes between 35 to 50°. The release 

mechanism for avalanches is caused by a change in the snowpack's stress balance, which could 

be due to additional weight from a fresh snowfall, the presence of a skier, or a reduction in the 

snowpack's inherent strength (McClung & Schaerer, 2006).  

3.2 Avalanche terrain 

Avalanche terrain is defined as all areas that could be affected by an avalanche under the right 

circumstances. An avalanche and its affected area are defined as an avalanche path, and could 

be divided into a start zone, transition zone and runout zone – also known as release area, the 

track and deposition areas respectively. The start zone is the area where snow begins to move, 

the transition zone is the area below the starting zone and above the runout zone where 

avalanche debris deposits (McClung & Schaerer, 2006). 

As noted previously, most avalanches release on slopes steeper than 30° (Schweizer et al., 

2003). The runout length of an avalanche could be defined using the travel angle (or alpha 

angle), which is the angle from the highest point of the starting zone to the lowest edge of the 

runout zone, measured along the natural flow path of the avalanche (Toft, Müller, et al., 2023). 

An analysis from a large database of events in Switzerland, and a smaller study from Norway 

found that the median travel angle for avalanches is around 33°, but there are numerous 

examples of avalanches reaching travel angles as low as 15-18° (Lied & Bakkehøi, 1980; Toft, 

Müller, et al., 2023). 

Avalanche terrain often comprises multiple avalanche paths, each with distinct frequencies of 

occurrence, known as return periods. These return periods can vary substantially, making the 

precise mapping of avalanche terrain challenging. Variables such as the slope's steepness, forest 

density, the shape of the terrain, potential terrain traps, and the frequency and magnitude of 

avalanches must all be factored in for safe navigation (Statham & Campbell, 2023). 
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3.3 Decision environment 

Decision-making in avalanche terrain is challenging, as no single cue or combination of cues 

can reliably predict avalanche risk (Landrø, Hetland, et al., 2020; Landrø, Pfuhl, et al., 2020). 

Backcountry skiers are forced to navigate this complexity with incomplete knowledge of the 

probabilities, making it an intricate task. The challenge lies in the fact that it is nearly impossible 

to eliminate all environmental uncertainties when assessing avalanche risk (R. V. Engeset et 

al., 2018; Furman et al., 2010; Landrø, Hetland, et al., 2020; Landrø, Pfuhl, et al., 2020; Statham 

et al., 2018). 

The accuracy of a skier's decision is not merely a matter of logical and consistent reasoning 

rules (Fischhoff & Broomell, 2020; Hammond, 1966). Avalanche accidents often occur because 

the perceived risk does not align with the real danger, a clear indication of human error. 

Decision accuracy is how well a decision aligns with reality to achieve a goal, or in this case, 

not triggering an avalanche (Kozyreva & Hertwig, 2021). Backcountry skiers often rely on the 

outcome of their decisions to judge their accuracy. Unfortunately, in avalanche terrain, poor 

decisions often do not result in immediate negative feedback (Ebert, 2019; Johnson et al., 2020; 

Zweifel & Haegeli, 2014).  

Triggering an avalanche indicates a poor decision, but not triggering one doesn't necessarily 

mean the decision was well reasoned. Many times, luck, rather than good decision-making, 

prevents an avalanche (Landrø, 2021). Thus, using the prior decision outcome as feedback is 

unreliable for evaluating decision accuracy in avalanche terrain. This lack of reliable feedback 

makes it difficult for skiers to improve their decision-making skills and correctly assess their 

abilities. Such a challenging learning environment can lead to overconfidence and the spread 

of poor decision-making practices (Hogarth et al., 2015). Even experienced skiers may 

misjudge the risk due to this combination of environmental uncertainty and cognitive biases. 

As such, developing a reliable decision-making strategy or trustable gut feeling to deal with 

this uncertainty takes a lot of experience, something most people do not achieve during their 

lifetime (Landrø, Hetland, et al., 2020). 

3.4 Avalanche forecasting 

To improve decision making and help backcountry skiers select appropriate terrain for the given 

avalanche conditions, many countries have established an avalanche warning service (AWS). 
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These services provide a forecast (also known as bulletin) with detailed information about the 

current snowpack and the expected avalanche hazard over the next 24-hour period for a defined 

geographic area. Most avalanche forecasts are presented using a danger level, avalanche 

problems and some general information about the snowpack. The avalanche danger level scale 

ranges from 1 (low) to 5 (very high/extreme) (EAWS, 2024; Statham et al., 2010).  

3.5 Avalanche risk and exposure 

The terms avalanche risk and avalanche exposure are two distinct concepts that are often 

used in avalanche safety and risk management (Statham, 2008; Statham et al., 2018). 

Avalanche risk is the product of avalanche hazard, vulnerability, and exposure. These three 

factors represent the potential for harm or loss from avalanches. Avalanche hazard refers to the 

potential harm caused by avalanches and is determined by two main factors: the likelihood of 

triggering an avalanche and its potential size or destructiveness. In other words, it evaluates the 

chances of an avalanche to occur and how large it could be. Vulnerability refers to the 

susceptibility of people, infrastructure, or activities to be affected by an avalanche. Exposure 

indicates the extent to which people, infrastructure, or activities are present in avalanche-prone 

areas. By evaluating avalanche risk through these components, one can make informed 

decisions about navigating and mitigating dangers in regions susceptible to avalanches 

(Statham, 2008). 

In summary, avalanche risk focuses on the likelihood and consequences of avalanches, while 

avalanche exposure deals with the extent to which elements at risk are situated within potential 

avalanche paths.  

3.6 Base rate fallacy 

In order to evaluate the level of or changes in exposure, or risk, we need to know the base rate. 

The base rate is the background information which describes how things usually are, in contrast 

to how things appear to be (Kahneman & Tversky, 1973). For example, males are notably over-

represented in avalanche fatalities, accounting for as much as 86% of such deaths (Soulé et al., 

2017). Assuming a balanced base rate of 50% males and 50% females in the population, males 

would be at considerably higher risk, with 50% of the population accounting for 86% of the 

fatalities. Conversely, if the base rate is 10% females and 90% males, females would be at 

greater risk, accounting for 14% of the fatalities while representing only 10% of the population. 
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Decision-makers often rely on how things appear to be. If they fail to consider the background 

information, or base rate, in relevant situations, it is known as base rate fallacy or neglect 

(Kahneman & Tversky, 1973). Surprisingly, this error isn't limited to amateurs; even 

experienced statisticians can get caught up in it when they lean more on gut feeling than 

deliberate calculation (Bar-Hillel, 1980). Ignoring the base-rate could have considerable 

consequences, affecting risk communication, forecasting, training, media, and the ability to 

determine which measures are truly effective. 

I have identified four common types of base rate fallacies where the underlying base rate is 

often overlooked or neglected. Each type has a corresponding example to illustrate how 

neglecting the base rate can lead to misguided decisions and ineffective risk mitigation 

strategies. 

Fallacy 1. Demographics (age, gender, nationality, training etc.) 

Men are more likely to be in a fatal accident compared to a woman because they 

are overrepresented in the fatality statistics. 

Fallacy 2. Avalanche danger or problems. 

To stay safe, it is best to avoid days with moderate and considerable danger levels 

because most fatal accidents happen during these periods. 

Fallacy 3. Terrain properties (aspect, elevation, release, runout, or ATES class) 

To stay safe, it’s best to avoid north facing slopes because most fatal accidents occur 

in this aspect. 

Fallacy 4. Time periods (year, month, week, or holidays) 

To stay safe, it’s best to avoid skiing in March and April because most fatal 

accidents occur during these two months. 

Although I will not develop methods to measure all these base rate characteristics in this thesis, 

I believe it is important to provide an overview of the issue of base rate fallacies in the avalanche 

field. Highlighting these common errors can raise awareness and encourage more 

comprehensive and accurate decision-making processes within the avalanche community. By 

understanding and considering the base rate information, we can improve risk communication, 



 

9 

forecasting, training, and ultimately enhance the effectiveness of measures implemented to 

ensure backcountry safety. 

3.7 Examples of base rate fallacy 
The base rate information is crucial when deciding on the necessity and efficacy of an 

intervention such as avalanche forecasts, education or other risk managing strategies. One 

example of this is from Troms in Northern Norway where avalanche accidents are notably 

prevalent. A large percentage of these incidents involves international visitors instead of native 

Norwegians. As a result, local authorities and news outlets tend to highlight international 

visitors as the main problem. This perspective, however, might be misleading. By not 

considering the base rate of native Norwegians versus international visitors, they might ignore 

the fact that visitor traffic rates could match the visitor accident rates. This oversight can lead 

to two contrasting strategies: (1) investing resources mainly to reduce accidents among visitors, 

sidelining the native population, or (2) adopting a broader approach that benefits all, visitors, 

and locals alike. 

Another instance where the base rate is important, is when developing decision making 

frameworks (DMFs). Even though Landrø, Hetland et al. (2020) found a mismatch between 

what factors experts use and what factors DMFs rely on, they are still being widely 

recommended to assess the avalanche risk when skiing in avalanche terrain. A significant 

limitation of DMFs, as noted by Winkler et al. (2021), is that all rule based DMFs were 

developed primarily using accident data, neglecting the base rate information. This oversight 

suggests an assumption that all terrains are visited equally, regardless of factors like steepness, 

topography, elevation, and prevailing conditions.  

The Reduction Method (RM), conceptualized by Munter (1997), is one of the most used DMF 

in Europe, and the basis for many variants of the method. It is based on an equation that balances 

the danger potential against reduction factors. One reduction factor within the RM suggests the 

avoidance of North-facing, due to the more frequent accidents. This would be valid if there is 

an evenly distributed background traffic, or base rate. If the base rate is unknown, one might 

argue that there is a tendency for backcountry enthusiasts to favor North-facing slopes due to 

the superior snow conditions (e.g., Grímsdóttir & McClung, 2006). Luckily for the RM, 

Winkler et al. (2021) found North-facing slopes to be two times riskier compared to South-

facing slopes when adjusting for base-rate. Alarmingly, fatality data from Norway contradicts 
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the more frequent accidents in North-facing slopes, indicating a higher accident incidence on 

South-facing slopes. However, the base rate remains unknown (Aasen, 2023). 

4 Background: thesis specific concepts 

4.1 Avalanche terrain classification. 

Avalanche terrain can be classified using various concepts on a map. One of the first examples 

consist of manually drawing avalanche paths onto topographic maps based on expert opinion 

using red and blue colors (SLF, 1960). Today, there are many different avalanche terrain 

classification systems designed for various purposes, but they can generally be divided into two 

categories: (1) hazard maps for roads, buildings, and other infrastructure (e.g., Rudolf‐Miklau 

et al., 2014), and (2) maps intended to assist backcountry recreation (e.g., Harvey et al., 2018). 

A key difference is that hazard maps for roads, buildings and other infrastructure typically are 

more conservative accounting for extreme events (e.g. destructive size 4-5) while recreational 

hazard maps are more interested in skier triggered avalanches (e.g., destructive size ≤ 3) 

(Harvey et al., 2018). Both categories can be created using manual methods, automated 

methods, or a combination of both (semi-automated). 

Hazard maps are useful for managing avalanche risk in avalanche prone areas, as they identify 

high-risk areas where buildings and infrastructure should not be constructed (Rudolf‐Miklau 

et al., 2014). In many alpine countries, experts create these maps for specific avalanche paths 

or for a defined return period by combining historical records, field investigations, terrain 

analysis, forest data, and numerical modelling (e.g., NVE, 2020; SLF, 1984). These maps have 

proven to be effective in preventing damage and casualties from avalanches (Margreth & 

Romang, 2010). However, because they are labor-intensive (thus, expensive), hazard maps are 

typically only available in areas where infrastructure already exists (Bühler et al., 2022).  

In Norway, avalanche hazard indication maps (AHIMs) take a more conservative approach by 

delineating potentially dangerous areas and are valuable for land-use planning. They help 

quickly determine whether a development site requires more detailed hazard assessments (Issler 

et al., 2023). These maps often cover large regions and are not restricted to settled areas. They 

typically provide broad, model-based estimates of hazard zones, particularly in extreme events, 

but need more detailed information about hazard intensity and runout. These maps are less 

precise than detailed hazard maps. While various methods have been tested in regions like 
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Switzerland, Italy, and Norway, many approaches struggle with accurately modelling 

avalanche runout (Bühler et al., 2022; Issler et al., 2023; Maggioni et al., 2018). 

In recent years, the classification of avalanche terrain maps to support backcountry recreation 

has become increasingly common. These backcountry hazard maps generally fall into three 

categories: (1) maps that outline the terrain as categorical values like simple, challenging and 

complex terrain (e.g., Barbolini et al., 2011; Harvey et al., 2018; Statham et al., 2006), (2) 

continuous maps that use dynamic values (e.g. values ranging from 0 to 1), with higher values 

indicating higher risk (e.g., Harvey et al., 2018; Schmudlach & Köhler, 2016; Thumlert & 

Haegeli, 2018) and (3) maps that indicate potential starting zones, remote triggering and runout 

zones (e.g., Harvey et al., 2018; Varsom, 2024a).  

All avalanche terrain classification schemes involve some level of conceptualization. 

Categorical classification schemes are the most abstract, as they create entirely new categories 

that don't exist outside of the model. A continuous classification, such as the severity score 

ranging from -3 to 4 developed by Thumlert & Haegeli (2018), is data-driven, but the severity 

score is still a conceptual idea. Even basic maps that categorize avalanche terrain into release 

areas and runout zones (e.g., Varsom, 2018; 2024) rely on conceptual definitions of these areas, 

despite being built on purely data-driven models. 

4.1.1 The avalanche terrain exposure scale (ATES) 
The avalanche terrain exposure scale (ATES) is a conceptual classification of avalanche terrain. 

The first version of ATES was created as a response to a fatal avalanche accident in Glacier 

national park. On February 1, 2003, an avalanche caught 17 students, resulting in seven 

fatalities. Following this event there was a demand for more accessible tools to understand and 

communicate avalanche risks. Although not directly recommended, it became apparent that a 

classification system for recreational use of avalanche terrain was essential, like existing 

systems for climbing and whitewater activities (Statham et al., 2006). 

4.1.2 ATES v.1 

As a response to the accident in Glacier National Park, Statham et al. (2006) introduced ATES 

v.1 to make it easier to evaluate, describe and communicate the complexities of popular 

backcountry routes. The initial concept was inspired by the ski area system's simple color codes 

for runs, aimed at matching individuals with terrain suitable for their skill levels.  
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Two distinct models were proposed: a communication model for the public (Table 1) and a 

technical model for professionals (Table 2). This dual-model approach ensured that both the 

public and professionals needs were met (Statham et al., 2006).  

Table 1: ATES Public Communication Model (v.1) from Statham et al. (2006). 

 

ATES v.1 uses eleven terrain properties (Table 2) to qualitatively describe the overall exposure 

to avalanche terrain independently of hazard conditions. Based on these terrain properties, 

backcountry routes are classified into three avalanche terrain classes: simple (1), challenging 

(2) and complex (3). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

13 

Table 2: ATES Technical Model (v.1) from Statham et al. (2006). Terrain that qualifies under an italicized descriptor 

automatically defaults into that or a higher terrain class. 

 

4.1.3 Spatial ATES 

The original purpose of the ATES v.1 terrain rating was to classify backcountry routes, but the 

framework has also been applied at a spatial scale, mapping areas (or zones) instead of routes. 

The original idea was that by integrating the linear ATES v.1 rating into a GIS algorithm would 

allow for consistent and efficient large-scale classification. However, the qualitative nature of 

ATES v.1 makes it challenging to map in GIS (Thumlert & Haegeli, 2018). The first example 

of spatial ATES was pioneered by Delparte (2008) who used GIS together with terrain 

properties like vegetation density and slope incline. Expanding upon this concept Campbell and 

Gould (Campbell & Gould, 2013) proposed a more deterministic model for spatial ATES 
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(Table 3). They also introduced the concept of non-avalanche terrain as an optional terrain class 

in the ATES framework. 

Table 3: A proposed model for spatial ATES mapping (from Campbell & Gould, 2013). 

 

Even though an extensive area of 8,000 km2 was mapped in Western Canada, the spatial 

resolution of these maps is too low for slope scale routefinding where a spatial resolution of 

20-30 m is necessary, as noted by Thumlert and Haegeli (2018) with insights from Schweizer 

et al. (2003). To address this limitation, several other approaches has been attempted using a 

manual approach (Gavaldà et al., 2013; NVE, 2014; Sykes et al., 2020). Data driven methods 

such as the algorithm proposed by Schmudlach and Köhler (2016) and Thumlert and Haegeli 

(2018) holds more promise, but both studies conclude that for ATES to be widely implemented, 

a fully automated method needs to be developed. These prior attempts laid the necessary 

groundwork and impetus for GIS based ATES mapping. 

4.1.4 ATES v.2 

Since its introduction in 2004, ATES has been adopted widespread internationally and has been 

used in many more applications than what was originally intended as noted by Bogie and Davies 

(2010), Gavaldà et al. (2013), Larsen et al. (2020), Maartensson et al. (2013), and McManamy 



 

15 

et al. (2008). It has become an important tool for both risk management and avalanche 

education, as highlighted by Floyer and Robine (2018) and Zacharias (2020) and has served as 

a research instrument for studying terrain use preferences, according to studies like Hendrikx 

et al. (2022), Johnson & Hendrikx (2021), and Sykes et al. (2020). In both Canada and Norway, 

the application of ATES has evolved from recreational use to being incorporated into legal and 

regulatory frameworks. ATES is now widely used in workplace avalanche safety protocols 

(CAA, 2016; Landrø et al., 2016; Statham & Campbell, 2023).  

After years of development, Statham and Campbell (2023) published a revised ATES rating, 

now known as ATES v.2. The new version expands on the original ATES v.1 (Statham et al., 

2006) by increasing from three to five classes. The new version includes non-avalanche terrain 

(0) as proposed by Campbell and Gould (2013), and a new class named extreme terrain (4). It 

also combines the original ATES framework with the spatial ATES model proposed by 

Campbell and Gould (2013), making it suitable for both linear and spatial ATES. Additionally, 

this version addresses various shortcomings recognized in earlier iterations over the last two 

decades (Statham et al., 2023). ATES v.2 continues to use two distinct models:  a 

communication model for the public (Table 4) and a technical model for professionals (Table 

5). 

Table 4: ATES v.2 communication model for backcountry travel (from Statham & Campbell, 2023). 
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4.1.5 Application 

The new ATES v.2 framework opens for many more applications compared to the previous 

iteration which was made for rating backcountry routes. When implementing ATES, it is 

important to identify the objectives of the final product, as this will guide the assessment and 

mapping process. The objective and approach should match the intended application. For 

example, if the objective is to assist trip planning for the public, a single rating for a backcountry 

route might be sufficient. On the other hand, if the goal is to help backcountry skiers navigate 

in avalanche terrain, more detailed ATES zones are required (Statham & Campbell, 2023). 

4.1.5.1 ATES features 

Reviewing the use cases of ATES over the last two decades, four approaches to ATES 

classification have been identified (Table 6). Regardless of the method used, defining an area 

or route is essential for assigning an ATES rating. When evaluating an area, the focus is on the 

entire region without considering specific routes through it. In contrast, a route is determined 

by a travel path from start to end, including all terrain effecting the path of travel. The entire 

area or route could receive a single ATES rating, or it could be divided into zones, corridors, 

or route segments to enhance spatial detail (Statham & Campbell, 2023). 
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Table 5: ATES v.2 technical model (Statham & Campbell, 2023). 
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Table 6: ATES feature types and their spatial representation (Sharp et al., 2023; Statham & Campbell, 2023). 

ATES feature Example Application Spatial Representation 

Areas 

Rating a commonly defined region that may have 

either a well-defined geographic boundary or an 

ambiguous boundary 

Polygon or point 

Zones 

Rating a specific slope or terrain feature within an 

area where ATES parameters dictate the zone 

boundaries. 

Polygon or raster 

Corridors 

Rating a physical or conceptual path of travel with 

navigational freedom between defined starting and 

end points. 

Polygon or line 

Routes 

Rating a physical or conceptual path of travel 

between a defined starting and end point with 

limited navigational freedom. 

Line 

4.1.5.2 Spatial scale 

The spatial scale is like the zoom level on a map. When we zoom in closely, we see finer details 

(high resolution), much like examining individual features in avalanche terrain. On the other 

hand, zooming out gives us a broader view (lower resolution), where we might only see larger 

areas such as entire ski runs. For ATES ratings, it's important to select the appropriate spatial 

scale. At times, a detailed view isn't necessary, and a wider perspective suffices, allowing ATES 

mappers to overlook smaller elements below a certain size, grouping them into larger, more 

general zones or routes (Statham & Campbell, 2023). 

For example, if we are rating a specific backcountry route, the scale is predetermined by the 

route and the avalanche terrain interacting with it. However, there will be areas with less 

avalanche exposure which could be shown using different ATES ratings for different segments 

of the trip, or they could all be grouped together using the highest ATES rating along the route. 

The same concept applies to areal (spatial) mapping where a defined area could be rated to 

complex terrain, or there could be subareas with challenging or simple terrain within it (Statham 

& Campbell, 2023). 

Making high resolution ATES ratings requires a lot of work and resources because the mapper 

would need to draw all relevant features at slope scale. For a map to be useful to be used for 
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slope scale navigation, it needs to be very detailed, with terrain features as small as 20-30 meters 

included (Schweizer et al., 2003; Thumlert & Haegeli, 2018). 

4.2 Methods to enumerate backcountry recreationists. 

Counting the number of people participating in winter backcountry activities is important for 

understanding backcountry usage and characteristics, which is essential to make a customized 

AWS that works as intended. Langford et al. (2020) conducted a literature review to examine 

existing methods to enumerate the backcountry population. In their review, they assessed 22 

established monitoring methods, ranging from manual observations to mobile tracking and 

surveys. The review concludes with five recommended approaches: National cross-sectional 

survey, extrapolation from direct counts, indirect counts, citizen science counts, and online 

engagement (Table 7). Both studies presented in this thesis (Papers III and IV) could be 

described as indirect methods of counting.  

The first study using telecommunication network signaling data aligns with the Indirect 

Counts method (Table 7) because the process doesn't count the skiers directly. It uses a proxy 

(mobile phone signals) to infer the population, which makes it a modern adaptation of indirect 

counting, applying technological evidence instead of physical traces like tracks. 

The second study uses avalanche beacon signals, which could also be defined by the Indirect 

Counts method. In contrast to the mobile phone signals, the avalanche transceiver doesn't 

transmit a unique signal which adds some complexity due to the possibility of repeated counting 

of the same individual. The possibility of counting the same person multiple times requires 

adjusting the data using a ratio based on a validation study that incorporates time-lapse 

photography. The time-lapse photography introduces elements from Extrapolation from 

Direct Counts, as it involves counting individual backcountry skiers in a specific area. So, the 

beacon signals are indirect counts, but they are validated using direct counts (Table 7). 
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Table 7: Description of the five different methods highlighted by Langford et al. (2020) in their review of available 

methods to estimate backcountry terrain usage. Paper III fits within indirect counts while Paper IV is a combination 

of indirect counts and extrapolation from direct counts. 

Methods Description 

National cross-

sectional survey 

This method involves conducting a nationwide survey at a single point 

in time to collect data on the population, using a representative sample 

to infer the characteristics of the larger population. 

Extrapolation 

from direct counts 

(Paper IV) 

This method involves counting individuals in a specific area and then 

using this data to estimate the total population size by applying the 

observed numbers to a larger area or group. 

Indirect counts 

(Paper III & IV) 

This method involves estimating population sizes based on evidence of 

presence or traces left by individuals, rather than observing the 

individuals directly. 

Citizen science 

counts 

This method relies on the public to collect and report data on the 

population, often through organized projects where volunteers record 

sightings or other indicators of the population. 

Online 

engagement 

This method uses digital platforms and tools to gather data on a 

population, analyzing interactions, behaviors, and responses within 

digital environments to estimate population characteristics or sizes. 

4.2.1 Demographics 
Numerous studies have explored the demographic aspects of the backcountry skier population, 

though not all specifically measure base rates. Some examples include Sole (2008), which used 

a intersect survey and found a participant median age of 33, with individuals spending an 

average of 19 days yearly in avalanche terrain. The findings from Techel et al. (2015), Zweifel 

et al. (2016), and Hendrikx et al. (2022) converged on a median group size of approximately 

two individuals. However, Berlin et al. (2019) broadened the scope, investigating nationwide 

demographics without specifically focusing on skiers. Other research, such as that by Mannberg 

et al. (2018, 2020) and Winkler et al. (2016), provide additional insights into age, gender 

distribution, and skiing experience among participants. While these studies provide valuable 
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information about the backcountry traveler population, each comes with its own limitations and 

should be interpreted with caution. 

4.2.2 Instability properties (avalanche danger, problems, or other ratings) 

Instability ratings, which include avalanche danger levels and other parameters, have also been 

scrutinized. Techel et al. (2015) and Winkler et al. (2021) examined the base rate of various 

avalanche danger levels, whereas Grímsdóttir and McClung (2006) assessed different stability 

ratings, comparing these with the likelihood of avalanche triggers. 

4.2.3 Terrain properties and terrain classification 

Terrain features, such as slope, elevation, aspect, have been explored by researchers like 

Hendrikx et al. (2016, 2022) and Winkler et al. (2021). While some studies found no notable 

trends, others, like Grímsdóttir and McClung (2006), pointed out specific inclinations regarding 

most-skied elevations and corresponding avalanche occurrences. Furthermore, many studies 

have connected movement data with terrain classifications (Degraeuwe et al., 2024; Hendrikx 

et al., 2022; Sykes et al., 2020; Thumlert & Haegeli, 2018; Winkler et al., 2021).  

4.2.4 Temporal distributions 

Analyzing temporal distributions—whether in terms of days of the week, months, or annual 

patterns – can shed light on behavioral trends and associated risks. Past conference proceedings 

have tried to quantify the yearly base rate of backcountry recreation, often resorting to what is 

being described in literature as rough estimates (Jamieson et al., 2009; Valla, 1984). Rough 

estimates are numbers that are presented without any background on where the numbers come 

from, or what methods are used to define them. They are still being cited due to the lack of 

better numbers. 

Birkeland et al. (2017) suggest a possible decrease in the yearly fatality rate in North America, 

given the steady rise in bulletin usage (used as a proxy for yearly base rate of backcountry 

skiers), but there is no validation of whether bulletin data represents actual terrain usage. To 

the contrary, Winkler et al. (2016) do not find any evidence supporting that backcountry skiing 

is becoming safer using the results from the two decade-long Swiss national survey (Bürgi et 

al., 2021; Lamprecht et al., 2008, 2014; Lamprecht & Stamm, 2000) reveal a slight dip in the 

fatal accident rate from 9.4 to 8.7 micromorts between 1999 and 2013. The total number of 

hours per year for backcountry skiing was estimated to be 3.9, 4.8 and 4.9 in 2008, 2014 and 
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2020 respectively. The study highlights the importance of temporal base rate information in 

fatality research. Avalanche related fatalities in Switzerland increased from 6.5 to 8.6 between 

1999 and 2013, which could be interpreted as backcountry skiing becoming more dangerous. 

However, when including the amount of backcountry skiing, there is no increase in fatality rate.  

Walcher (2019) gathered historical incident and exposure data from helicopter- and snowcat-

skiing operations to conduct a quantitative retrospective risk analysis. The dataset encompasses 

47 winter seasons (1969/1970 to 2015/2016), including a total of 2,792,570 skier-days and 763 

incidents resulting in injuries or fatalities among guests or guides. The fatality rate was found 

the be decreasing towards 2015-2016 

4.3 Fuzzy logic and data analysis techniques 

In the following subsections, I will present some data analysis techniques that are being used 

in AutoATES (Larsen et al., 2020; Toft, Sykes, et al., 2024), and are essential parts of the 

algorithm used to define avalanche release areas.  

4.3.1 Fuzzy operator 

Fuzzy operators are fundamental components in fuzzy logic systems, which handle reasoning 

that is approximate rather than precise. These operators, including the fuzzy AND, OR, and 

NOT, manipulate fuzzy sets and degrees of membership to produce a range of values between 

0 and 1, rather than binary true or false outcomes. The fuzzy AND operator, specifically, 

combines the membership values of multiple fuzzy sets using a function, typically the minimum 

or the product, to determine the degree of membership in the resulting set. For instance, if the 

membership values of two sets A and B are 0.7 and 0.5, respectively, the fuzzy AND operation 

using the minimum function would yield a membership value of 0.5. These operators allow for 

more nuanced decision-making processes in systems where uncertainty and partial truths are 

inherent, enhancing the flexibility and robustness of the logic (Zadeh, 1965). 

4.3.2 Cauchy membership values 

Cauchy membership functions are used in fuzzy logic to describe the degree of membership of 

elements within a fuzzy set, characterized by the Cauchy distribution (Jang et al., 1997). The 

function is defined by a peak at a central value, with a shape that decays symmetrically 

according to Eq. 1. 
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𝜇(𝑥) =
1

1 + (𝑥 − 𝑐
𝑎 )

2𝑏 

where μ(x) is the Cauchy membership value; x is an input variable (e.g., slope angle, wind 

shelter, or forest density); and a, b, and c are parameters which control the weight of each input 

variable. This function is advantageous due to its heavy tails, meaning it assigns non-zero 

membership values to elements far from the center, providing a more gradual transition from 

full membership to non-membership compared to other membership functions like the 

Gaussian. This property makes Cauchy membership functions particularly useful in 

applications requiring robust modeling of uncertainty, where outliers or extreme values are 

present. 

4.3.3 Sliding window 

In raster processing, a sliding window refers to a moving subset of the raster grid used for 

localized analysis and computation. This window, typically a square or rectangular block of 

cells, traverses the entire raster grid, moving one cell at a time (or by a defined step size), to 

perform specific calculations or operations within its bounds (Figure 1). For instance, it can be 

used to compute terrain attributes like slope, aspect, or curvature by analyzing the elevation 

values within the window. As the window slides over each cell in the DEM, it allows for the 

extraction of local features and patterns, facilitating detailed spatial analysis and enhancing the 

understanding of the terrain's characteristics (Wang et al., 2024). 
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Figure 2: The red square represents the initial 3x3 window position, the blue rectangle shows the window after it 

has moved one cell to the right, and the green rectangle represents another cell to the right. The arrows indicate 

the direction of movement.  

5 Methods and results 

In this section, I present an overview of the methodologies and key results from the four 

research papers included in this thesis. The initial pair of papers focus on the evolution and 

improvements of automated ATES models over recent years. The latter two papers introduce 

innovative approaches for estimating backcountry populations through the analysis of signaling 

data from mobile networks and the implementation of beacon checkers at numerous trailheads 

surrounding Tromsø – but using a methodology that, with sufficient resources, could be applied 

elsewhere. 

5.1 Study I: AutoATES v1.0 

In our first study, the objective was to investigate whether an automated approach could be used 

to make high-resolution ATES v.1 maps for all of mainland Norway, as no such approach 

existed. An automated model of ATES could also improve existing practices for linear and 

spatial ATES mapping, being time consuming due to all the manual mapping needed. The 

ATES maps for Norway were then validated using existing areas and routes classified using the 

ATES v1.0 framework (Statham et al., 2006).  

5.1.1 Methods 

The input for the AutoATES v1.0 model is a 10 m raster digital elevation model (DEM). The 

first step is to calculate the slope angle which is used to determine a rough ATES classification 

inspired by the ATES zonal model (Table 3) proposed by Campbell and Gould (2013), followed 

by an analysis of release and runout areas. 

The model expands on prior work by Veitinger et al. (2016) by utilizing the potential release 

area (PRA) model, which incorporates inputs such as slope angle, wind shelter, and roughness. 

The addition of the wind shelter index allows for the definition of release area scenarios based 

on prevailing wind direction or individual storm events. By introducing a multi-scale roughness 

parameter, the model captures fine-scale topography and its attenuation under snow influence, 

enabling a more accurate assessment of snow's impact on terrain morphology and, 

consequently, the size and location of potential release areas. 
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The three inputs slope angle, wind shelter and roughness are weighted from zero to one using 

a Cauchy membership function. The advantage with Cauchy membership functions is that they 

are easy to use, and let experts manually tweak the model output by using three input variables 

(see Section 4.3.2). The membership functions for slope angle, windshelter, and roughness are 

utilized in a Fuzzy logic operator (see Section 4.3.1) to determine a final score on a continuous 

scale ranging from zero to one. Here, a value of zero indicates areas where avalanches are not 

likely to release, whereas a score of one represents the areas with the highest likelihood of 

avalanche release. PRAs with values greater than 0.05 were classified as complex terrain, in 

line with the ATES v1 technical model, which defines release areas as complex terrain. 

When PRAs are defined, the model estimates potential avalanche runout areas by utilizing the 

hydrological terrain analysis software TauDEM (Tarboton, 2005). By using the D-Infinity 

Avalanche tool, the model can calculate potential runout lengths using the travel angle. One of 

the benefits by using the travel angle to model avalanche runout areas is that it is an easy and 

powerful variable that could be used to define different runout scenarios.  

The runout length estimations are based upon the foundational work of Lied and Bakkehøi 

(1980), who provided empirical data on avalanche runout lengths, to establish specific 

thresholds for categorizing runout lengths. Their analysis of the travel angle distribution from 

423 Norwegian avalanches was later extended by Toft, Müller, et al. (2023) by analyzing 

18,737 avalanches in Switzerland. This larger dataset confirmed that most avalanches stop at 

an angle of 18°, with 95% coming to a stop by 23°. Based on these findings, avalanche runouts 

that extend up to 18° from the release point are categorized as simple terrain. In contrast, 

runouts reaching 23° are considered challenging terrain, indicative of areas where avalanches 

occur more frequently. 

In a final step, the classified slope angle layer is merged with PRAs (complex) and avalanche 

runouts defined as a travel angle of 23 (challenging) and 18° (simple). Compared to previous 

ATES maps which are often smooth and generalized, the output is very detailed. To make the 

maps more similar to previously existing maps, the output is smoothed out and areas smaller 

than 25,000 m2 is assigned to the surrounding ATES class.  

5.1.2 Results 

A total of 365,246 km2 of terrain was mapped according to the ATES framework, covering all 

of mainland Norway. The composition of the ATES maps was as follows: 71% of the area is 
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classified as non-avalanche terrain, while the remaining portions are categorized into three 

levels of avalanche exposure – 13% as simple, 9% as challenging, and 7% as complex terrain. 

To validate the spatial ATES maps, we compared them against areas and routes previously 

mapped by avalanche experts. The primary finding was that the AutoATES v1.0 demonstrated 

a high level of agreement with manually created maps in non-forested terrain. However, in 

forested regions, which was a small proportion our validation dataset, the results were more 

mixed. Additionally, we identified a shortfall in the AutoATES v1.0's use of the TauDEM 

hydrological flow process, which struggled to precisely simulate avalanche runouts in flat 

terrain. Despite these challenges, the AutoATES v1.0 model is still of significant value, 

particularly considering that a substantial portion of Norway's avalanche-prone terrain is 

located above the treeline. Consequently, the AutoATES v1.0 model could serve as a crucial 

tool for ensuring consistency in manual ATES mapping and enhancing the reproducibility of 

such maps. 

5.2 Study II: AutoATES v2.0 

After using the AutoATES v1.0 model for some time, we identified some limitations. Its simple 

approach did not take overhead exposure into account, and the hydrological flow model of the 

TauDEM runout simulation was flawed in flat terrain. Additionally, the v1.0 model did not 

account for forest density, which has been found to be one of the most important factors for 

ATES classification (Delparte, 2008; Schumacher et al., 2022). In our second study, we 

therefore address these limitations, as well as updating the model to reflect the changes made 

in ATES v2.0 (Statham & Campbell, 2023). 

5.2.1 Methods 

When developing the AutoATES v1.0 model, we relied extensively on proprietary software. 

However, at the beginning of the AutoATES v2.0 project, we committed to using only open 

and freely accessible software. To achieve this, we rewrote the entire model in the Python 

programming language, using exclusively open-source modules. 

The minimum input data needed to run the AutoATES v2.0 model is two raster layers consisting 

of a DEM and forest density layer (stem density, canopy cover or basal area) with a spatial 

resolution ranging from 5 to 30 m. It is feasible to run the model with just a DEM raster, but 

the resulting output would only be applicable to open terrain. 
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The AutoATES v2.0 model chain consists of two main components: a pre-processing step and 

the AutoATES v2.0 classifier. During the pre-processing phase, we use the DEM raster to 

calculate slope angles, identify potential avalanche release areas, and determining runout zones, 

similar to the process in v1.0. However, a key improvement in v2.0 is the inclusion of forest 

density data, which now plays a crucial role in both the PRA and runout length calculations. 

Even though we have made some changes to the new model, we still use Cauchy membership 

values for evaluating the significance of each input parameter. Our modifications included 

transitioning the codebase to Python from its original R and SAGA implementations. 

Furthermore, the original PRA model from Veitinger et al. (2016) did not include forest density 

data. Sharp (2018) incorporated this into a more comprehensive model that integrates this data 

alongside slope angle, windshelter, and roughness, which we have built upon. 

When we reviewed the PRA threshold from Study 1, we found it to be overly conservative for 

our study areas in Western Canada. Consequently, we adjusted the threshold value from 0.05 

to 0.15, aligning with the recommendations made by Sykes et al. (2024). Additionally, we 

refined the calculation of the windshelter index to better suit our requirements. Plattner et al. 

(2006) recommended a radius of 60 m around each cell for an optimal windshelter index. We 

therefore adapted the model to automatically select the optimal sliding window (see Section 

4.3.3) size for spatial resolutions ranging from 5 to 30 m, ensuring the desired 60 m radius is 

maintained. 

Another issue with the original PRA model by Veitinger et al. (2016) was that it was designed 

for a spatial resolution of 2 m, which have some implications for the roughness parameter at 

our spatial resolution ranging from 5 to 30 m. If we e.g. used a 20 m raster as input, the scale 

of the roughness would be 10 times as large as intended, being more towards a rough basin, 

more so than slope scale (Blöschl, 1999; Blöschl & Sivapalan, 1995). Additionally, the 

roughness calculation depended on snow depth values, which cannot be accurately determined 

without a thorough assessment of the snowpack properties at any given time. Due to these 

complexities, we decided to remove the roughness parameter from the PRA model used in 

AutoATES v2.0. 

The Flow-Py model, introduced by D’Amboise et al. (2022), improved avalanche runout 

simulation by predicting potential avalanche tracks and deposition areas. Flow-Py introduces a 

flow process intensity parameter, allowing it to accurately simulate mass movements even in 
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flat and uphill terrains, thus offering more reliable results than the hydrological tool TauDEM 

used in AutoATES v1.0. 

Another advantage with Flow-Py is its ability to produce additional output layers, including 

overhead exposure and intensity. We use these two layers by scaling and averaging to generate 

an overhead exposure layer. Furthermore, it is possible to use a forest detrainment module, 

utilizing forest density data to improve the predictions on avalanche spread and runout 

distances. For a detailed explanation of Flow-Py's capabilities and applications, see D’Amboise 

et al. (2022). 

Once the pre-processing for PRA and Flow-Py is finished, the AutoATES classifier employs a 

series of map algebra equations to identify and combine the ATES classifications based on 

slope angle, travel angle, and overhead hazard, maintaining a process similar to what was 

implemented in AutoATES v1.0. The subsequent step for the AutoATES classifier is to lower 

the ATES class in terrain with dense forest. The forest density is applied as a secondary step to 

increase the importance of the forest density criteria. 

5.2.2 Results 

To evaluate the performance of the AutoATES v2.0 model, we use the two benchmark maps 

made by Sykes et al. (2024) for Connaught Creek, British Colombia and Bow Summit, Alberta 

Canada. The maps are made by having three avalanche experts making individual maps for the 

same two areas. When all the maps where done, they collaborated to make a consensus map 

they all could agree on. The maps were developed using GIS, remote sensing imagery, local 

knowledge and field observations. More information about the development of these maps can 

be found in Sykes et al. (2024). 

Even though these consensus maps are made in a collaborative way to reduce individual 

characteristics among each expert, we could never have a complete benchmark map that 

represents a sole version of the ground truth. The qualitative nature of the ATES framework 

allows for multiple interpretations, and human mappers will always struggle to make these 

maps at the same spatial scale. We consider the maps created by Sykes et al. (2024) to be the 

most accurate map currently available for validating spatial ATES maps. 

The AutoATES v2.0 model has improved the performance of ATES maps substantially 

compared to v1.0. The development of the new model has been done in numerous iterations 
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which means that the increased performance is due to multiple improvements. To measure each 

of these improvements, we used an ablation study which is a common method to validate 

complex machine learning algorithms (Meyes et al., 2019). An ablation study could be 

described using the following steps (from Toft, Sykes, et al., 2024): 

1. Train or develop the full model or system with all its components and parameters intact and 

measure its performance on a given task or dataset. 

2. Systematically remove or disable one component or parameter at a time, keeping the rest 

of the model unchanged. 

3. Measure the performance of the modified model without the removed component or 

parameter. 

4. Compare the performance of the modified model to the performance of the original, 

complete model. 

5. Repeat steps 2-4 for each component or parameter of interest. 

To evaluate AutoATES v2.0, we conducted an ablation study focusing on six key internal 

components to determine their individual contributions to the model's effectiveness. The most 

significant improvements include integrating forest density data into the post-forest-

classification process, incorporating forest density information into the PRA model, and 

adopting the new Flow-Py model. These improvements led to a notable increase in the model's 

overall performance, as measured by the F1-score. Specifically, the performance at Bow 

Summit improved from 64% to 77%, and at Connaught Creek, it increased substantially from 

39% to 71%. 

5.3 Study III: Using telecom data to enumerate skiers. 

In our third study, we attempted to use signaling data to enumerate backcountry skiers in 

Northern Norway. The hypothesis was that if we would be able to get a representable sample 

of the traffic, we could calculate the fatality rate. Unfortunately, we found large discrepancies 

between the estimated positions from telecom signaling data and our validation data using an 

independent GPS track.  

5.3.1 Methods 

Telia, one of the largest mobile network providers in Norway utilizes telecom network data, 

one of the most extensive and constantly generated data sources, to provide insights into 
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national movement patterns without compromising individual privacy. This methodology, 

compliant with General Data Protection Regulation (GDPR), ensures anonymity by 

aggregating data into groups and not storing or processing identifiable information. The process 

involves the use of signaling data, generated by smartphones during active or passive use, which 

includes a timestamp and the coverage area (Cell ID) connected to the phone. 

The best server estimate (BSE), which is the estimated coverage area, is defined for each Cell 

ID and offers a more precise location compared to solely using the Base Transceiver Station 

(BTS) by linking multiple Cell IDs associated with different antennas. Although Telia does not 

employ triangulation due to privacy policies, analyzing signaling data over time allows for the 

creation of movement chains, which are particularly useful in urban areas but have in this study 

also been applied to assess movements in avalanche terrain. 

Telia's methodology involves three types of reports: Activity reports that show where crowds 

spend time, Routing reports that track passing crowds, and Origin-Destination reports that detail 

trips between locations. For this study, we focus on the Activity report, which quantifies the 

time spent by subscribers in a specific area, adjustable in resolution to maintain privacy 

compliance. 

This approach has been applied to a case study in Tromsø, Northern Norway, where avalanche 

terrain and populated areas were defined using GIS software. Populated areas were determined 

based on the number of inhabitants per square kilometer, while avalanche terrain was classified 

according to the ATES framework (Larsen et al., 2020). To avoid noise from other activities, 

any avalanche terrain within 300 meters of a house or road was excluded. 

A mobility analysis was conducted by sharing the defined layers with Telia, who then 

distinguished between populated and avalanche-prone areas using their BSE. This enabled the 

counting of phones moving into avalanche terrain, with additional filters applied to consider 

only those in the terrain for a sufficient duration during daylight hours, accounting for typical 

backcountry trip durations and times. 

The study also explores correlations between the number of people in avalanche terrain and 

various factors such as daylight, avalanche forecast page views, weekends and holidays, 

weather conditions, and avalanche danger levels. These correlations help understand the 
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influence of different factors on backcountry usage and can inform safety measures and 

resource allocation for avalanche prevention and response. 

The validation process involves an algorithm developed by Telia to assign the most likely 

position within a Cell ID. The algorithm is trained on data from populated areas and roads. We 

combine the output from this algorithm with GPS data from two known phones.  

5.3.2 Results 

The mobility analysis revealed that an estimated 13,666 individuals spent at least two hours in 

avalanche terrain during the 2019-2020 season, with daily figures ranging from none to 118 

people, averaging 75 individuals per day. The analysis showed a weak but statistically 

significant correlation between the number of people in avalanche terrain and factors such as 

daylight, weekends, holidays, and avalanche forecast page views, with daylight having the most 

substantial correlation. Other weather-related factors like precipitation, wind, daily avalanche 

danger, and cloud cover did not show a significant correlation. 

The positional validation, conducted using a specially configured phone that allowed 

comparison between telecom signaling data and precise GPS locations, highlighted notable 

discrepancies. The estimated positions from signaling data often placed individuals in less 

accurate locations, such as valley bottoms or along roads and fjords, rather than their actual 

GPS-tracked positions. The discrepancy between the signaling data and GPS locations varied 

widely, with a median difference of 6,523 meters and 95% of the points within 12,920 meters, 

indicating that while useful for broad movement patterns, signaling data cannot be used to 

pinpoint whether a skier is in avalanche terrain or not. 

5.4 Study IV: Using beacon checkers to enumerate skiers. 

A wide range of solutions have been experimented with to quantify the backcountry skier 

population, including tracking of cell phone location, surveys, light barriers, and voluntary 

registration boards. Unfortunately, all have different shortcomings. In Study IV, we have 

developed and validated a methodology to enumerate backcountry skiers in Tromsø, Norway.  

5.4.1 Methods 

To quantify backcountry skiers, a checkpoint (CP) sign equipped with a low-power 

consumption beacon checker (BC) system were deployed at trailheads throughout the study 
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area. The BCs, operating on a 12V system, wakes up every 15 seconds to detect nearby 

avalanche transceivers (or beacons). To ensure continuous operation throughout the winter 

season, the system was supported by solar panels and robust LiFePo4 batteries, allowing the 

BCs to function effectively even during Tromsø's prolonged polar nights. Data was transmitted 

to a database every three hours using the mobile network. 

The BCs were designed to count all avalanche beacon signals within a certain range, without 

distinguishing between individual skiers, potentially leading to overcounts if individuals passed 

multiple times. To select optimal locations for these CPs, the study utilized the Strava Heatmap 

and consulted with local avalanche experts, resulting in 29 strategically placed CPs for the 

initial season. The system's reliability was maintained through regular maintenance and the use 

of silica gel to prevent moisture accumulation inside the devices. 

To validate the BC counts and address the issue of non-unique counts, a time-lapse camera was 

set up at a distance to observe three high-traffic trailheads covering six CPs. This method 

allowed for the comparison of actual skier numbers with BC data while adhering to privacy 

laws by ensuring individuals couldn't be identified in the images. This validation step was 

crucial for assessing the accuracy of the BC data and making necessary adjustments to account 

for the system's inherent limitations in distinguishing unique individuals. 

5.4.2 Results 

During the first season from 2021-2022, our aim was to deploy 29 CPs around Tromsø, to 

monitor backcountry skier traffic. Unfortunately, three of these CPs faced operational issues, 

leaving 26 CPs with an average downtime of 3.54%. In the subsequent season of 2022-2023, 

the plan was to set up 25 CPs. However, two failed to collect data, but the remaining 23 CPs 

showed a significant improvement in reliability, with a mere 0.19% downtime. 

Validation of the BC counts was conducted using a time-lapse camera, which faced its own 

challenges, including erroneous setup and environmental conditions that rendered a third of the 

images unusable. Of the 101,470 usable images from 75 days, manual analysis identified 1,399 

individuals passing the CPs, allowing a calibration of the count data to reflect the number of 

unique trips.  

We identified that for trailheads where the path leading away from the parking lot is confined, 

it’s nearly impossible to avoid being counted in both directions. We have illustrated this 
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problem in Figure 1, using two types of scenarios. In type 1, the CPs are positioned in such a 

way that skiers are likely to pass by them only once, typically at the beginning of their trip. 

Type 2 CPs on the other hand, are located where geographical or trail layout constraints cause 

skiers to pass by the CP both at the start and end of their trip, leading to potential double-

counting of individuals (Figure 1). 

 

Figure 3: In most locations, the CP is placed so that it is logical to pass it on the ascent, while there is much room 

to avoid it on the descent (scenario 1). However, in some locations, it is most convenient to pass it on both the 

ascent and the descent (scenario 2) (from Toft, Sykes, et al., 2024). 

After calibrating our count data to the number of unique, the data confirmed that for every 

person counted at a Type 1 CP, there was nearly a one-to-one correspondence (87%), whereas 

Type 2 CPs showed almost double the counts per person (192%), suggesting some overcounting 

due to the system's inability to distinguish unique individuals. The analysis of skier traffic 

revealed distinct patterns by time of day, week, and month. Skier activity increased from the 

early morning, peaking between 08:00 and 09:00, and gradually decreased until the evening, 

with some nighttime activity observed. Weekends saw the highest traffic, with a steady increase 

in activity from Monday to Friday. Monthly data showed a growing trend from December to 

April, with March and April being the most popular months, followed by a decrease in May. 

Seasonal comparison highlighted consistent skier traffic across both seasons, with a notable 

mid-season peak in February during the first season. The second season saw a more spread out 

increase in activity, culminating in a high at the season's end. These findings underline the 

effectiveness of CPs in monitoring skier traffic and the importance of operational reliability for 

accurate data collection. 
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6 Discussion 

In this thesis, I have started to lay the groundwork to answer the important question: who skis 

where, when? To quantify where people ski and their exposure, an automatic terrain model 

that classifies avalanche terrain on a large scale is needed. Therefore, I have created an 

automated version of the well-known ATES classification scheme to measure skiers’ exposure. 

First, I will discuss the implications of the new AutoATES v1.0 model and explain why a 

revised v2.0 version was necessary, before describing methods to enumerate backcountry usage 

and future research.  

Automated ATES mapping presents some distinct advantages and disadvantages when 

compared to traditional manual mapping. One of the primary benefits of manual ATES 

mapping is its independence from digital elevation and forest density data. Human mappers can 

evaluate the terrain without relying on pre-existing digital models, allowing for flexibility in 

regions where high-quality models may not be available. Including local knowledge is a 

significant advantage of manual mapping, as it can be relevant when identifying micro-terrain 

or avalanche frequency data unavailable elsewhere. This can make decision-makers feel more 

confident in human-made maps, as they can be subject to direct quality control and validation. 

However, manual approaches are often subjective and may suffer from human bias, as different 

experts interpret avalanche terrain differently. Furthermore, manual mapping tends to have a 

lower resolution and is not scalable, making it time-consuming and impractical for covering 

large or remote areas. 

On the other hand, automated ATES mapping offers both consistency and scalability. Both 

factors are essential when comparing terrain exposure with backcountry usage (e.g., Degraeuwe 

et al., 2024; Hendrikx et al., 2022; Sykes et al., 2020; Winkler et al., 2021). Automated methods 

eliminate human bias by using algorithms to analyze terrain data systematically, ensuring 

uniformity across large regions. The scalability of this approach is a significant advantage, as 

it can process large areas much faster and with higher resolution than manual methods, making 

it ideal for mapping expansive or hard-to-reach regions. However, these methods heavily 

depend on input data quality; poor or incomplete terrain models can lead to inaccurate 

assessments. Another disadvantage is that automated mapping does not incorporate local 

knowledge, which can be a critical component of hazard assessment. Moreover, while large 
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areas can be mapped efficiently, there is no viable option to review all output, which makes it 

harder to ensure the same level of control. 

Since its introduction, AutoATES v1.0 maps have been applied to a variety of different 

applications. However, like all new developments there is a need for improvements. Engeset et 

al. (2022) compared six color variations of the AutoATES v1.0 maps on individuals with and 

without color vision deficiency (CVD) varying in nationality, avalanche education and 

familiarity with ATES. Their results suggest that color's, legends, and maps used by the NAWS 

should be improved in combination with symbols to help users with CVD (Engeset et al., 2022). 

They also found that the European color scheme for ski runs is the best color combination for 

ATES maps for participants with and without CVD. Therefore, it is recommended as a 

worldwide standard for ATES. The accuracy of the ATES model also depends on factors like 

forest cover, not included in the ATES 1.0. Schumacher et al. (2022) made the first comparison 

of how forest density data would affect the AutoATES v1.0 model. The new maps were 

compared to manually classified ATES trips in Western Norway. The overall accuracy 

increased from 55% with the regular AutoATES v1.0 compared to 67% when utilizing a canopy 

cover. The ATES maps have also been used to track decision making process for backcountry 

skiers. Hendrikx et al. (2022) used AutoATES v1.0 to generate maps for selected avalanche 

regions in the USA and Canada. They then tracked the decision-making process of backcountry 

skiers by collecting skiers GPS tracks and providing them with surveys after the trip. In 

addition, the AutoATES v1.0 maps have also been used to define avalanche terrain for signaling 

data (Toft, Sirotkin, et al., 2023), satellite detected avalanches in Wyoming and Utah, USA 

(Keskinen et al. 2022) and Langtang, Nepal (Eckerstorfer et al. 2023).  

Another application of the AutoATES v1.0 model is to generate avalanche runout maps for 

recreational use, as both release and runout areas are estimated as a part of the model workflow. 

Such maps have been available in Norway since 2020 (Varsom, 2020). These maps have also 

been incorporated into decision-making policies by guides on Svalbard, the Norwegian Armed 

Forces and Search and Rescue (SAR). 

Even though AutoATES v1.0 has been widely applied, the model has several known 

limitations. Its simple approach to terrain characteristics does not take overhead exposure into 

account, and the hydrological flow model of the TauDEM runout simulation is flawed in flat 

terrain. Additionally, the model did not account for forest density, which has been found to be 

one of the most important factors for ATES classification (Delparte, 2008; Schumacher et al., 
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2022). A final challenge was that the model was heavily dependent on proprietary software 

(Larsen et al., 2020), thereby increasing the monetary and computing costs to operate the model 

and limiting open-source access (Toft, Sykes, et al., 2024).  

To address these limitations, we have developed a new AutoATES v2.0 model which improve 

upon these known issues. This updated version was designed to be compatible with the new 

ATES v2.0, which consists of five classes instead of three (Toft, Sykes, et al., 2024). The 

performance of the new AutoATES v2.0 model is found to be comparable to that of human 

mappers (Sykes et al., 2024). More importantly, it serves as a comprehensive framework that 

facilitates the measurement of exposure for specific routes or areas.  

Although AutoATES v2.0 is relatively new, it has already been applied in various contexts. 

Avis et al. (2023) used AutoATES v2.0 to generate maps and collaborated with avalanche 

professionals in Colorado, Montana, and Utah to gather local feedback on the model across 

over 1.7 million acres. They conducted five iterations of feedback. Even though this feedback 

did not include all the millions of acres mapped, focusing on key areas within each forecast 

region provided sufficient information to make improvements that enhanced AutoATES 

outputs across the entire region. Furthermore, Sykes et al. (2024) validated and optimized the 

AutoATES v2.0 parameters using a grid search method. The model was optimized by training 

it on two benchmark maps in Connaught Creek and Bow Summit in Western Canada, see Sykes 

et al. 2024 for more information. With all the improvements in AutoATES v2.0, another set of 

avalanche runout maps for recreational use was processed and published for all of Norway, 

Svalbard, and selected regions in Greenland (Varsom, 2024a). 

Despite the fundamental differences between automated and manual methods for generating 

ATES ratings, manual maps created by experts is considered to be the most reliable dataset for 

validating AutoATES. Moreover, fine-tuning AutoATES input parameters based on these 

expert-generated maps for specific regions can enhance its accuracy beyond what can be 

achieved using only theoretically derived parameters (Sykes et al., 2024).  

However, AutoATES has a significantly higher spatial resolution than manual ATES mapping, 

which creates challenges when manual mapping is regarded as the gold standard for validation. 

This presents a dilemma: if manual mapping is the benchmark, it becomes impossible for 

AutoATES to demonstrate improvements that surpass this standard. Should the gold standard 

remain the gold standard? AutoATES is capable of mapping terrain at a much finer spatial 
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resolution than manual methods, potentially offering more detailed and accurate assessments 

of avalanche risk. Currently we are making the AutoATES output coarser to align with manual 

mapping, which may limit its potential. This raises an important question about whether the 

reliance on manual maps for validation is holding back the advancement of automated 

techniques. The challenge lies in the absence of a more advanced validation dataset. Without 

it, it is challenging to fully exploit the capabilities of AutoATES and to push beyond the 

limitations of traditional manual methods. 

When evaluating the performance of automated ATES mapping it is also important to consider 

how the performance is measured. One common evaluation metric which we used in our paper 

is the F1-score (Toft, Sykes, et al., 2024). However, the F1-score does not account for the 

natural ordering of terrain difficulty within these categories. This limitation becomes especially 

relevant in avalanche terrain classification, where the severity of misclassifications varies. For 

example, in the context of AutoATES, which classifies terrain into non-avalanche, simple, 

challenging, complex, and extreme avalanche terrain, the F1-score treats all misclassifications 

equally. If the true terrain class is simple, and the model predicts challenging, or if it predicts 

complex or extreme, the F1-score does not distinguish between these types of errors in terms 

of severity. This suggests that the F1-score might not be the most suitable metric for evaluating 

multi-categorical models like AutoATES, where the classes follow a natural order and some 

misclassifications may be more consequential than others (e.g., Ebert & Milne, 2022). In the 

future, it would be beneficial to explore more appropriate skill score measures when validating 

AutoATES. 

After having developed a terrain model to estimate backcountry skiers’ exposure the next aim 

was to count how many people travel in avalanche terrain, and ideally, determine when and 

where they travel. First, we attempted to use signaling data from Telia, one of the largest mobile 

network providers in Norway. The main advantage of this method was that if successful, it 

could be scaled to cover all of Norway. The initial results were very promising. Unfortunately, 

when we validated our results, we found that there were substantial discrepancies between the 

estimated positions from Telia and the GPS reference positions. In essence, this meant that our 

results were not trustworthy, and we abandoned this method to get an estimate of the total 

amount of backcountry skiers within a region. The method also had its limitation as it is a 

relatively crude measure, meaning that we do not get any details on skier’s terrain choices. This 

would limit the possibility to answer questions like whether the avalanche forecast affect skiers 
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travel choices. By using the Telia data, we would have been able to compare how many skiers 

there were out on different danger levels or avalanche problems, but we would not be able to 

measure whether skiers e.g. opted towards less exposed terrain when the avalanche danger was 

higher. Hence, this study serves as an important lesson learned in understanding the limitations 

and potential of using telecom data for movement analysis in remote outdoor settings. The study 

identifies some important limitations regarding the use of telecom data for tracking movements 

in avalanche-prone areas. The large difference between estimated positions and GPS reference 

data shows the limitations of using signaling data for precise location tracking in non-urban 

areas. An important factor for this inaccuracy appears to be the lower density of base transceiver 

stations (BTS) in non-urban areas where most avalanche terrain is located. To make telecom 

data a viable option to enumerate skiers in avalanche terrain, the density of BTS should be 

much higher than what is currently available. In areas with a higher density BTS the results 

may be different (e.g. in the US or NZ where triangulation is permitted).  

As signaling data is a crude measure of backcountry skiers, we also worked on a method using 

a large network of beacon checkers at common trailheads around Tromsø. Most mountains that 

are being used for backcountry skiing in Tromsø have an established starting point. Our 

hypothesis was that if we identified these sites and placed a large sign with a beacon checker 

between the parking lot and the most common route, most skiers would walk by to check 

whether their beacon is working properly. By including a data logger on these signs, we could 

monitor how many skiing trips that is being done at different trailheads each day or time of day. 

However, as beacon checkers is not an established method to count backcountry skiers, we first 

had to validate whether we could use these beacon checkers to get an accurate count of skier 

trips in the area. To validate our results, we used a time-lapse camera to compare the actual 

number of skier trips with the counts from each beacon checker. This enabled us to calculate a 

ratio which could be used to calculate the actual number of skier trips instead of number of 

beacon checker counts. We believe that our results represent a substantial methodological 

progress in terms of measuring backcountry usage at a regional scale. We have successfully 

measured a large part of the backcountry usage over an area of 2,589 km2, providing detailed 

insights into base rates on hourly, daily, and monthly basis. We believe that using a widespread 

network of CPs, as we have done, is currently the most effective way to measure backcountry 

usage in hard-to-reach areas.  
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6.1 Current research 

Based on my results and insights, I identified some promising new ideas that could better 

address my research questions. With additional time and resources available, I decided to 

explore new methods to answer these questions. This work extends beyond the four papers 

included in this thesis. 

The beacon checker method has its limitations, being expensive and requiring substantial 

maintenance to provide consistent results over multiple seasons. To address this, we have 

developed a new battery-powered device that continuously searches for Bluetooth Low Energy 

(BLE) signals (BLE sniffer). This device has a theoretical battery life of 600 days, can detect 

all BLE signals within a 100-meter range, and transmits the results over LTE/IoT, like the CPs. 

The advantage of this method is that it requires no action from the skier, as most people carry 

at least one active BLE unit (e.g., phone, watch, or headset). This method will need to be 

validated using a time-lapse to determine the ratio of BLE signals to backcountry skiers. 

However, it is much more cost-effective, with each device priced at US$200 compared to 

US$1600 (excluding sales tax) for a CP with a beacon checker. Additionally, there is no need 

for maintenance during the season or a large vehicle with a trailer to transport the equipment. 

We have currently built 32 devices and placed them alongside each CP to enable a comparison 

at the end of the season. This will allow us to compare the results against CP data. 

Unfortunately, the backcountry usage information from both the CPs and BLE sniffers only 

indicates when and from which trailhead a backcountry activity occurred. While this data is 

more detailed than the signaling data, which only tells us how many people were within 

avalanche terrain within a region, it still lacks specificity. There could be many different routes 

with varying levels of exposure from a single trailhead. In the future, we aim to explore the 

possibility of assigning the most typical ATES rating for each trailhead and comparing this 

information with daily trailhead usage and avalanche forecasts. However, due to the substantial 

variability in avalanche exposure from each trailhead, it is uncertain whether this method will 

prove valuable. 

Backcountry skiing is not a coherent risk activity. It is possible to ski safely even under high 

avalanche danger if you choose your slopes carefully, while moderate avalanche danger can 

still pose significant risks depending on specific factors. The level of risk is highly dependent 

on the precise location and the specific conditions at that site. Thus, the regional avalanche 
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danger rating does not always directly correlate with the actual risk faced by skiers in particular 

areas. 

To resolve this lack of coherent risk, we need to know exactly where on the mountain people 

ski. To gather this type of data, we have initiated a study where skiers can voluntarily share 

their Strava activity data in the form of GPS tracks with the Center of Avalanche Research and 

Education (CARE) (Toft, Mannberg, et al., 2024). Currently, approximately 1,500 users share 

their activity data in real-time, which has resulted in 86,000 GPS tracks from 2014 to 2024 in 

Northern Norway. 

In this future study, our aim is to track the precise locations of where people ski. Additionally, 

we need specific information of the snowpack at specific locations to calculate the avalanche 

risk from each GPS track. While regional avalanche forecasts provide some information, they 

have severe limitations as they do not reflect the avalanche conditions at slope scale. Ideally, 

we would need highly detailed information of the snowpack at each individual slope.  

Currently, there is no method to obtain this level of detail, but one approach could involve 

asking skiers to evaluate and report the conditions immediately after their trip. To this end, we 

have implemented a GPS tracks study where participants provide reflections on the conditions, 

they encountered (Mannberg et al., 2024). Although this approach shows promise, we still do 

not have a clear method to calculate the individual avalanche risk that skiers expose themselves 

to while skiing. 

However, what we can do is to estimate people's terrain exposure. The obvious solution would 

be to assign an ATES rating to each GPS track, ranging from non-avalanche to extreme terrain 

(five classes). However, ATES is sensitive to the most exposed section of a trip, meaning that 

a GPS track with a brief exposure to steep terrain could receive the same rating as another trip 

with repeated exposure to similar terrain. To address this issue, we have started to develop an 

exposure score specifically for this application that provides detailed information on the 

theoretical exposure of the track, independent of avalanche conditions. Instead of evaluating 

exposure based on the most exposed section of a trip, the exposure score demonstrates the 

incrementally increase with the amount of exposure, giving a more accurate representation of 

the entire trip's exposure. 
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Although a thesis can only cover so much, this work has laid the groundwork for future research 

and provides a starting point to answer my main question: who skis where, when? By 

establishing these methodologies and concepts, I hope that they can be used in future research 

to improve our understanding of skier’s terrain choices in avalanche terrain, and the associated 

risk. 

6.2 Future research 

When I made the initial proposal for this thesis, the idea was to: (1) research how dangerous it 

is to do backcountry skiing in Tromsø, and (2) whether the avalanche forecast affect skiers’ 

terrain choices. Unfortunately, I have not progressed as much as I originally intended. To 

resolve these two overarching aims I would need precise data on the overall backcountry usage, 

accidents, and fatalities within the region, as well as how many skiers expose themselves to 

different degrees of avalanche terrain. Hence, the working title who skis where, when? We 

have a fair understanding of the number of accidents and fatalities within the region from the 

NAWS accident statistics, but we lack precise data on the overall backcountry usage and skiers’ 

exposure.  

To go from enumerating backcountry usage at the most frequented trailheads to estimating 

overall backcountry usage in the region, we need to determine what proportion of the total 

traffic our current studies are capturing with the CP and, in the future, with the BLE sniffers. 

One method to estimate this proportion is by analyzing the large database of GPS tracks to see 

what percentage of these activities originate at a CP. Once we know the proportion or ratio, we 

could compare our data with accident and fatality data to estimate the fatality rate of 

backcountry skiing in the region. Additionally, it could be possible to classify each GPS track 

according to the ATES framework to determine what proportion of the GPS tracks fall within 

each ATES class. This information could then be compared to the ATES classification of the 

terrain where accidents occur, providing insights into the fatality or accident rate across 

different severities of ATES terrain. Another addition could be to include the number of severe 

injuries reported by the hospital. A ten-year retrospective study on avalanche fatalities and 

severe injuries is currently being conducted at the hospital in Tromsø, which will provide a 

bigger picture than only fatalities (Dehli & Cronblad, 2024). 

To measure a trend over time, we could monitor selected trailheads annually using CP or BLE 

sniffers. Focusing on a few representative trailheads makes the resources needed to maintain 
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the project become more manageable. The methods described in this thesis allow us to identify 

which CP people start from and the general type of terrain they access. However, this approach 

has limitations since people can access various types of terrain.  

We should review the extensive database of GPS tracks, calculate their exposure, link them to 

the regional avalanche forecasts, and compare the data. Recent studies have increasingly 

combined terrain classification with real-world travel data to better understand the relationship 

between terrain use and avalanche risk, providing insights into "where" and "when" individuals 

face heightened exposure. For example, Thumlert & Haegeli (2018) examined how heli-skiing 

guides utilized terrain exposure to manage risks, applying a severity score to different terrain 

types. Similarly, Sykes et al. (2020) used GPS trackers on side-country skiers over a few days 

to assess terrain use within the ATES framework, albeit with a small sample size of 136 tracks 

collected during 19 field days between 2017 and 2018. These studies capture how skiers engage 

with avalanche terrain in controlled or semi-controlled settings. 

Larger-scale studies like Winkler et al. (2021) and Hendrikx et al. (2022) took a broader 

approach by crowd-sourcing GPS tracks from backcountry users. Winkler et al. (2021) 

analyzed 7,355 tracks submitted over several ski seasons (2005/06 to 2018/19), classifying 

avalanche terrain into a terrain indicator (TI) which consists of four classes similar to ATES. 

They found that the risk correlates strongly with the information of the avalanche forecast. 

Hendrikx et al. (2022) analyzed 482 GPS tracks and compared them with AutoATES v1 to 

examine how experience influences decision-making and terrain use. Their findings highlight 

that a skier's level of experience is correlated with avalanche terrain exposure. 

Building on the work of Winkler et al. (2021), Degraeuwe et al. (2024) developed a fully 

probabilistic method for assessing avalanche risk, analyzing 8,558 backcountry tours. This 

study introduced a novel statistically derived terrain classification method that adjusts for 

population base rates using linear regression. By combining terrain indicators with national 

survey data and accident records, the approach of Degraeuwe et al. (2024) provides a 

probabilistic method for understanding personal risk based on terrain use in the backcountry. 

The 86,000 GPS tracks in our database are growing at a rate of approximately 15,000 tracks 

per season. These data could be a valuable dataset for further analysis. Preliminary analysis 

indicates that roughly 50% of these activities are from a forecasting region in mainland Norway 

(excluding Svalbard). After manually removing activities that do not appear to be backcountry 



 

43 

skiing, we estimate that we will have 31,000 valid activities remaining for analysis. Of these, 

8.3% are within our study area in Tromsø, Northern Norway. A preliminary analysis using a 

subset of data from forecasting regions in Norway (approximately 12,800 GPS tracks from 321 

users) is in progress (Toft, Mannberg, et al., 2024). This analysis will offer valuable insights 

into the relationship between skiers' terrain choices and avalanche forecasts. 

7 Conclusion 

While I have not directly addressed the overarching research question: who skis where when? 

I have developed a framework for quantifying exposure to avalanche terrain. This framework 

can create spatial ATES maps for larger areas, such as AutoATES v1.0/2.0. It can also be 

applied to develop recreational avalanche runout maps for AWS'. In the future, this framework 

could enable us to quantify the exposure of backcountry activities using collected GPS tracks. 

Additionally, I have reviewed and tested various methods to enumerate backcountry usage. My 

first approach, using signaling data, would have considerable advantages if successful. 

Unfortunately, I found that the method was not as reliable as the preliminary findings suggested. 

My second approach, using beacon checkers, was far more successful, enabling me to find the 

base rates of backcountry usage in Tromsø, Northern Norway, for the time of day, week, and 

month. 

These methods combined provide the foundation and a clear path forward to understand 

whether avalanche forecasts affect skiers’ terrain choices, and what type of avalanche terrain 

the skiers expose themselves to, and ultimately, who skis where, when? 
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Abstract
Snow avalanches are a significant natural hazard in Norway. One method to manage the 
backcountry avalanche hazard is through detailed mapping of avalanche terrain. Avalanche 
terrain can be mapped using a variety of methods, including using the Avalanche Terrain 
Exposure Scale (ATES); however, manual classification of terrain using ATES is time con-
suming. This study has developed and compared a fully automated algorithm to provide 
ATES mapping for all of Norway. Our new algorithm is based on the technical model for 
ATES mapping. This model has specific terrain-based thresholds that can be applied for 
automated terrain-based modeling. Our algorithm expands on prior work by including the 
potential release area (PRA) model to identify and calculate the likelihood of an avalanche 
releasing from a start zone. We also use the raster-based TauDEM-model to determine 
the avalanche runout length. The final product is a 10-m resolution ATES map. We com-
pared this nationwide ATES map with areas that have been manually mapped by avalanche 
experts, and find that the automated approach yields similar and reliable results. In addition 
to comparing mapped areas, we also examine manually mapped linear routes and compare 
these with the automated mapped ATES areas. Our results suggest that for open terrain, 
the vast majority of the manually classified tracks are predominantly in the same ATES 
class as our algorithm. For forested areas, we get mixed results, which can be attributed 
to a lack of suitable vegetation data at an appropriate scale. Despite this limitation, the 
current ATES algorithm and resulting spatial data are already valuable as a large portion 
(~ 70%) of the Norwegian backcountry terrain is above tree line. The automated algorithm 
is also useful to ensure consistent manual classification across different regions in Norway, 
or globally, and will permit greater reproducibility and easier updating of mapping for the 
future.
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1 Introduction

1.1  Background

A snow avalanche is a mass of snow that slides rapidly down an inclined slope, such as 
a mountainside. Snow avalanches are triggered by either natural processes (e.g., new 
precipitation, wind deposition, rapid temperature changes, etc.) or by human activity. 
Snow avalanches are a significant natural hazard in Norway. On average over the last 
20 years, about six people die annually in Norway due to avalanches, with an order of 
magnitude more in reported close-call accidents. During the winter season 2018–2019, 
13 people died due to avalanches (NGI 2019; Varsom 2019a). Furthermore, in every 
winter, key sections of the Norwegian road and rail networks are closed due to ava-
lanches or avalanche danger. On average, 250 avalanches are registered on Norwegian 
roads every year (NPRA 2019). Numerous times, vulnerable settlements are completely 
isolated, forcing long detours due to avalanches blocking key transportation routes, or 
subject to evacuation by the police.

In Norway, as in several other countries (e.g., Birkeland et  al. 2017; Techel et  al. 
2018), there is a tendency for most of the recent fatal accidents to occur in connection 
with outdoor activities. In response to this change in avalanche fatalities, there has been 
a greater emphasis on increased public education and avalanche forecasting, including 
in Norway (Engeset 2013; Engeset et al. 2018). To supplement the avalanche forecast-
ing and education, efforts have been made to map avalanche terrain (e.g., Statham et al. 
2006) and to develop decision aids to guide appropriate terrain use under varying condi-
tions (Haegeli et al. 2006; Landrø et al. 2020).

In many regions around the world, avalanche hazard maps are being generated for 
different applications. Two distinct types of mapping are (1) hazard zoning maps devel-
oped for settlements, roads and industrial sites (e.g., Canadian Avalanche Association 
2002; Arnalds et al. 2004; Sauermoser 2006); and (2) hazard maps developed for back-
country recreationalists to be used as a trip planning tool before entering avalanche ter-
rain (e.g., Gruber and Bartelt 2007; Barbolini et al. 2011). The hazard maps developed 
in this paper are intended for backcountry guidance only and are not legally binding like 
a municipality risk map for avalanche zoning related to infrastructure. Their purpose is 
to inform and provide guidance for recreational users, rather than a regulatory frame-
work for planning and enforcement.

In Norway, specifically aimed at outdoor recreationalists, there are two types of ski 
touring routes that have thus far been manually mapped; observer trips used by the Nor-
wegian Avalanche Warning Service (NAWS) (Landrø et al. 2016), and trips described 
in some of the recent ski touring guidebooks. However, such routes are generally not 
available nationwide for backcountry terrain due to the level of manual work required to 
generate them.

To delineate avalanche hazard maps at national scales, automated models must be 
used (Bühler et al. 2018). Different types of backcountry hazard maps exist, they can 
be broadly divided into two types; (1) outlining degree of hazard, often low, moderate, 
high (e.g., Statham et al. 2006; Barbolini et al. 2011; Harvey et al. 2018), or (2) continu-
ous which contains dynamic hazard values ranging from 0 to 1 where increasing value 
indicates increased hazard (e.g., Schmudlach and Köhler 2016; Harvey et al. 2018).

One approach that is of particular relevance and fits within this first category is the 
Avalanche Terrain Exposure Scale (ATES). ATES is a terrain classification system 
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developed by Parks Canada to better communicate the complexities and risks of trave-
ling in avalanche prone terrain (Statham et  al. 2006). Campbell and Gould (2013) 
refined this approach and proposed a practical model for semi-automated classification 
of avalanche terrain.

In 2014, the Norwegian Water Resources and Energy Directorate (NVE) published a 
pilot study in collaboration with Grant Statham from Parks Canada to determine whether 
the Canadian ATES classification could be adapted for use in Norway. A Norwegian ver-
sion was evaluated and a few locations across the country were manually classified by 
experts at the Norwegian Avalanche Warning Service (NVE 2014). Furthermore, during 
the winter season of 2018–2019, 123 popular routes used for ski-touring were manually 
classified by NVE using the modified ATES classification scheme (Varsom 2019b) in three 
test regions; Troms, Lofoten and Romsdalen in Norway. A total of 586 km of classified 
tracks are now available online to the public (Varsom 2019c).

1.2  Objectives

The objective of this paper is to expand on the manual ATES mapping and manual route 
classification in Norway, and develop an automatic algorithm for high spatial resolution 
ATES mapping for all of mainland Norway. The resulting map was then compared to 
areas and linear features (popular ski tours) mapped by avalanche experts using a manual 
approach.

Our specific aim is to present the automated mapping methods, compare them to expert 
generated maps and demonstrate how this new approach can provide quantitative assess-
ment of manually assessed areas and routes, to increase consistent and reproducible ATES 
classification across different regions in Norway, or globally.

1.3  Study area

This study covers the mainland of Norway including islands in close proximity to the 
coastline. In total, 365,246 km2 of terrain is mapped stretching from 58° N to 71° N and 5° 
E to 31° E (Fig. 1). The land surface is ranging from sea level to 2469 m a.s.l. and there is 
snow on the ground for a minimum of 3–8 months as a function of latitude and elevation. 
The landscape has a large variation of terrain and vegetation types due to its large range in 
latitude and longitude, as well as distance from the sea.

The NAWS produces daily avalanche forecasts for mainland Norway for 21 A-rated 
regions (Fig. 1) and 21 B-rated regions. Daily avalanche forecasts are published every day 
for all A-rated regions from 1st of December until 31st of May, and these forecasts are 
based on regular manual field observations of snow and avalanches using Regobs (Engeset 
et al. 2018). Avalanche forecasts are published for B-rated regions, if the weather forecast 
indicates the likelihood of an avalanche danger rating of high (4) or very high/extreme (5).

In northern Norway in Troms County, three popular ski touring mountains were manu-
ally mapped by avalanche experts using zonal ATES, collectively covering 25.3 km2. These 
areas are Fager#ellet, Gabriel#ellet and Skittentinden (Fig. 1). Furthermore, three popular 
ski-touring regions have been mapped in Troms (41 routes, 191 km), together with Lofoten 
(30 routes, 113 km) and Romsdalen (52 routes, 281 km). All in all 123 routes with a sum-
marized route length of 586 km are analyzed. A portion of each region, with examples of 
the ATES regional mapping and mapped linear features, is shown in Fig. 1. The regions 
are characterized by a mountain #ord landscape with steep mountains and u-shaped valleys 
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as a result of glacial erosion. The mountains rise from sea level to 1000–1500 m a.s.l. The 
elevation of the tree line decreases with latitude, from approximately 800 m a.s.l. in Roms-
dalen in the South to approximately 300 m a.s.l. in Troms in the North.

1.4  ATES

The ATES model was designed to easily communicate the avalanche terrain complexi-
ties and risks to novices. To do so, the model is divided into two separate components, 
a public communication model and a technical model. The technical model is used to 
guide experts using 11 parameters to categorize a route into a public communication 
model consisting of three classes; Class 1 “Simple”, Class 2 “Challenging”, or Class 
3 “Complex” (Statham et  al. 2006). The public model is only a text-based classifica-
tion of a linear route. However, Statham et al. (2006) suggest that a future goal would 
be to apply this model spatially. Delparte (2008) made the first attempt to apply this 
model spatially, and identified slope angle and forest density as the most important fac-
tors. During the period 2009–2012, 4000  km2 of avalanche terrain was mapped spa-
tially using the qualitative method designed for linear routes. Campbell et  al. (2012) 

Fig. 1  ATES v.1.04 mapped for all of Norway where Challenging and Complex terrain is colored in blue 
and red, respectively. The Norwegian Avalanche Warning Service (NAWS) A- and B-rated forecasting 
regions are shown on the map (right). A portion of each case study region for Troms, Lofoten and Roms-
dalen are shown from the top, on the left
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identified problems in this method and stated the need for a more quantifiable model, as 
well as the need for a non-avalanche terrain class. Having identified slope angle and for-
est density as the most important factors, 2000 km2 of manually mapped terrain in Brit-
ish Colombia Canada was analyzed so that empirical thresholds could be quantified. As 
a result of this study, a set of terrain and vegetation thresholds (Table 1) were proposed 
as a model for mapping with the ATES model (Campbell and Gould 2013).

In Canada, as of 2013 over 8000 km2 of terrain has been ATES mapped at the basin 
scale of 100 m to 1 km (Campbell and Gould 2013). This approach is useful for recrea-
tional trip planning or industrial planning operations, but not for detailed route finding 
in complex terrain, where a spatial scale of 20–30 m is needed. Larger scale (i.e., higher 
resolution) maps are therefore needed for more detailed route decision-making (Sch-
weizer 2003; Thumlert and Haegeli 2017). To address this deficiency, several different 
approaches have been utilized so far. Using a 30-m DEM, Gavaldà et  al. (2013) and 
NVE (2014) spatial mapped areas in Spain and Norway using a manual approach from 
the qualitative and linear ATES v1.04 model (Statham et al. 2006). In contrast, using 
observed terrain use of professional ski guides, Thumlert and Haegeli (2017) showed 
that it is possible to derive ATES empirically at a 20-m scale. Finally, Schmudlach and 
Köhler (2016) proposed a new method for an automated ATES classification at a 10-m 
scale; however, this model is not validated. They suggested that for the spatial ATES 
classification to become widely implemented, a fully automated algorithm would need 
to be developed.

2  Methods and data

2.1  Development of an automated ATES algorithm

2.1.1  Digital terrain model

A digital terrain model (DTM) for Norway was downloaded from the Norwegian Map-
ping Authority in the nationwide 10 × 10 m raster model (Kartverket 2013). The coor-
dinate system EUREF89 Universal Transverse Mercator Zone 33, 2d + NN54, one of 
Norway’s official coordinate systems, was used. The vertical standard deviation of the 
DTM used is ± 4 to 6 m and the scale is 1:10,000 (Kartverket 2013).

2.1.2  Slope

A slope raster was delineated according to the thresholds for open terrain proposed by 
Campbell and Gould (2013) in ESRI ArcMap 10.6. All slope angles above 40° were 
assigned class 3 (complex); values between 40° and 25° were assigned class 2 (chal-
lenging). Slope inclines below 25° were assigned class 1 (simple) and the optional class 
0 (non-avalanche terrain) threshold was applied at 15°. Areas with slope angles below 
15° could still be assigned a higher terrain class if the subsequent steps in the analysis 
showed this terrain to be in the runout of an avalanche path. The delineated classes were 
then exported as a shapefile for each class (Fig. 3).
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2.1.3  Potential release area

To calculate the avalanche path start zone density (Table  1), the potential release area 
(PRA) algorithm is used (Veitinger and Sovilla 2016a, b). The algorithm uses three cri-
teria; slope, wind shelter index and roughness, as calculated from the input parameters; a 
DTM, average snow depth, and main wind direction (optional, but not used in this analy-
sis) (Fig. 2). Using a 10-m DTM, the roughness criteria are neglected due to the coarse 
scale, as the script is optimized for a 2-m DTM (Veitinger and Sovilla 2016b). The PRA 
algorithm is written in the programming language R (R Core Team 2017). Important func-
tions are accessed by the RSAGA package (Brenning 2008), connecting to the open-source 
SAGA GIS software (Conrad et al. 2015). The PRA output is an ASCII raster file assigning 
values between 0 and 1 for each cell, with higher values suggesting an increased likelihood 
of avalanches to release. In this paper, values below 0.05 are not considered to be a start-
ing zone. The values between 0.05 and 1 were exported as a shapefile and assigned class 3 
(Fig. 3).

Slope angles between 28 and 60° are considered to be possible release areas. Therein 
slope angles between 35° and 45° are assigned the largest membership value. On each side, 
the membership values decrease and slope angles below 30° and above 50° are assigned 
low membership values.

The wind shelter index, which is also a PRA calculation, is used instead of a curvature 
measure. Wind-exposed terrain have negative values and are assigned low membership val-
ues, wind-sheltered terrain have positive values and are assigned high membership values.

The roughness factor is derived from the neighboring tiles in the raster in a 3 × 3 win-
dow. Given that we are using a 10 m DTM, the scale of the roughness factor is therefore 
averaged over a line of 30 m. Planar and smooth terrain are assigned low roughness values 
and high membership values because these are more prone to avalanche. Rough surfaces 
are assigned high roughness values and are less likely to avalanche (Veitinger and Sovilla 
2016a, b).

2.1.4  Avalanche runout

To estimate the potential avalanche runout, the hydrologic terrain analysis software 
TauDEM and TauDEM toolbox for ESRI ArcMap (Tarboton 2005) were used to derive 
interaction with avalanche paths identified from the DTM (Table 1). TauDEM is a suite 
of tools that can compute the avalanche runout length when a specified alpha angle is 

Fig. 2  Flowchart of the PRA algorithm (modified from Veitinger et al. 2016)
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provided. The D-Infinity Avalanche is a function tool in TauDEM, which may be used to 
detect all locations downslope of a given starting cell(s) until a given alpha angle from 
the starting cell is reached (Tarboton 2013). In the algorithm, avalanche runouts were 
calculated for using the tools from TauDEM and chosen alpha angles. These runout 
alpha angles were based on studies of return periods of avalanche runouts in Norway 
(Lied and Bakkehøi 1980).

The advantage of using the alpha angle to estimate the runout length is that it is 
a powerful input variable to fine tune the algorithm runout estimations for different 
regions and climates. Lied and Bakkehøi (1980) undertook empirical studies on 423 
well-known maximum extents of avalanche events in Norway. They found that 100% of 

Fig. 3  Flowchart showing all processing steps of the automated ATES algorithm (v.1.0)
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avalanches stop within an alpha angle of 18° and 95% stop within 23°. Due to this, all 
runouts within an 18° alpha angle would be classified as simple terrain. Avalanches do 
not normally run that far downslope, so a 23° runout angle was set as the threshold for 
challenging terrain, having more frequent avalanches.

2.1.5  Large-scale ATES mapping

ATES mapping was first conducted for three small areas; Fager#ellet, Gabriel#ellet and Skit-
tentinden (approx. 25 km2) in Troms county. These three areas were selected to permit direct 
comparison to the manual, expert-guided ATES mapping that had already been completed 
(NVE 2014). However, to go from the mesoscale (mountain) to macroscale (whole of Nor-
way), the entire process had to be automated for efficient processing. All steps were automated 
in a script using Python 2.7 (Larsen 2019a, Fig. 3). To increase the efficiency of processing, 
the entire study area of Norway had to be divided into several smaller tiles. To eliminate the 
potential of having avalanche runouts stop along the borders of these tiles before they were 
modeled to their full runout potential, all tiles were created using watershed boundaries. With 
the available processing power, it was found that smaller tiles (< 4000 km2) were possible to 
process (using a desktop computer with 32 GB RAM, HDD and 3.6 GHz Intel Core i7 proces-
sor). The study area was divided into 395 watershed tiles with a given feature identification 
(FID) number, tiles were then processed one at a time following the list of FID numbers in 
a.bat file. The advantage of using this method is that if the processing of one tile was incom-
plete, the computer skipped to the next tile and the incomplete tile could be reprocessed at a 
later stage. The processing time for the entire mainland Norway was approximately 500 h.

2.1.6  Merging and generalization

The resulting “raw” output from the automated ATES algorithm is at very high spatial resolu-
tion compared to the previously mapped areas with ATES and includes some noise as a result 
of smaller terrain features. With the current DTM accuracy with a standard deviation error of 
up to 4–6 m, these resulting maps could be interpreted at a higher resolution than intended. To 
address this issue of the perception of increased accuracy due to this greater precision from 
the DTM, the resulting layers needed to be smoothed, such that smaller areas are combined 
into the adjacent ATES classes to produce a more generalized “public” version of the ATES 
mapping.

In the public available maps from Varsom (2019c), we use a smoothing factor of 500 m 
using the PAEK algorithm (Bodansky et al. 2002) as well as removing all polygons smaller 
than 25,000 m2, assigning them the surrounding class value (Larsen 2019b). This final dataset 
which is exposed to the public is equivalent to the finer scale resolution that Avalanche Can-
ada use in their manual ATES maps, which are presented at a 100–1000 m scale (Campbell 
and Gould 2013). However, the current version of the algorithm (v1.0, 2020), which is avail-
able to the public online has a scale lock set at 1:100,000, where further zooming in on this 
layer results in the layer disappearing from view.
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2.2  Methods for model validation and comparison

2.2.1  Spatial validation

To assess how robust the automated ATES algorithm is, we compare it with manual ATES 
classification published by NVE in 2014 from the three mountains in Norway; Fager#ellet, 
Skittentinden and Gabriel#ellet (Fig. 4). The spatial extent of the manual ATES classifica-
tion maps is used to clip out a relevant area from the automatic ATES map, such that these 
rasters are equal in area and extent. Then, for each class in the manual ATES classifica-
tion, the percentage agreement with each class in the automatic ATES map is plotted in a 
bar plot. This is then repeated for each class at each site, resulting in a total of 9 bar plots 
(Fig. 5).

2.2.2  Linear validation

Manual classification of ATES tracks is less complex and time consuming to map for an 
avalanche expert compared to spatial maps; therefore, a lot more data are available for 
comparison to the automatic ATES maps. Before the 2018/2019 season, NVE recruited 
one avalanche expert with local knowledge from each area of interest to map the moun-
tains in their region using the ATES classification scheme. A GIS web tool in the browser 

Fig. 4  The three case study areas Fager#ellet, Skittentinden and Gabriel#ellet used to evaluate the ATES 
algorithm’s performance (v.1.0). The upper three maps are from the NVE (2014) manual mapping, while 
the lower three maps are the output from the automated algorithm explained in this paper. The numbers in 
the figure are reference points mentioned in the discussion
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was created, making it easy for the experts to draw and classify each route. In the end of 
the project, they reviewed each other’s work. In total, NVE classified 586  km of tracks 
from 123 different routes in the Troms, Lofoten and Romsdalen regions (regions are shown 
in Fig.  1). The Norwegian ATES classification differs slightly from the original version 
emphasizing cornices more and includes a class 0 (non-avalanche) terrain (Varsom 2019b). 
To compare these results against the spatial automated ATES maps, all manually classified 
tracks were sorted by their region and class value. Then, the tracks were split into points 
every 10 m. For each point, the corresponding value from the automated ATES map raster 
was extracted, and the resulting data were compared against each other. The results are pre-
sented in a table showing the percent agreement score for each class.

3  Results

In total, 365,246 km2 of terrain was ATES mapped in Norway using our automated algo-
rithm. This represents 100% of the total land area of mainland Norway including all of the 
22 forecasting regions. Of this total area, 71% was non-avalanche terrain (class 0), 13% 
was simple terrain (class 1), 9% was challenging terrain (class 2), and 7% was complex 
(class 3). Since April 2019, the data are publicly available via a map-based online tool for 
trip planning on this webpage (Varsom 2019c).

3.1  Algorithm spatial performance

To assess the spatial properties of the new automated ATES algorithm, we compared the 
results to expert-guided maps classified by NVE (2014) for three areas in Troms county 

Fig. 5  Visual illustration of the percentage agreement score presented in Table 2
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(Fager#ellet, Skittentinden and Gabriel#ellet). A visual comparison of the manual maps vs. 
the automated algorithm is shown in Fig. 4 and the result of the comparison in Fig. 5.

The manual expert classification was undertaken by NVE in 2014 also considered for-
est density, terrain traps and interaction with avalanche paths, something which the cur-
rent version of our automated ATES algorithm does not. Future work will address this 
deficiency once forest density layers at the appropriate scale are available. As such, areas 
below 300–350 m a.s.l. may be incorrectly classified in some locations as a result of the 
lack of forest cover consideration in the automated ATES version.

To measure the performance of the automated ATES algorithm compared to the expert-
guided NVE maps, we use a simple agreement percentage to assess the algorithm perfor-
mance. These values are presented in Table 2 and Fig. 5.

3.2  Algorithm linear route performance

To assess the performance of the new automated ATES algorithm, we compared the auto-
mated ATES data to 586 km of linear tracks from 123 expert-guided routes classified by 
NVE in 2019. These linear routes were manual classified and accounted for forest, which 
the current version of our automated ATES algorithm does not. For this reason, all areas 
with forest are removed from this analysis, and only “open” terrain is considered. For 
Romsdalen, this represented approx. 60% of all classified terrain, whereas for Lofoten and 
Troms, this represented approx. 80% of all classified terrain. We used a coarser forest layer 
(Gjertsen and Nilsen 2012), which only provided binary data of forest or open (and not 
density and vegetation type, which would be needed for full implementation into ATES), 

Table 2  Percentage agreement 
score for each case study location 
comparing the manual NVE 
classification and the automated 
ATES algorithm

Bold values represent the percentage agreement values where both the 
automated and manual systems provided the same ATES class

Automated ATES (%)

Class 1 Class 2 Class 3

NVE expert spatial
Fager#ellet
 Class 1 77.01 18.54 4.45
 Class 2 33.55 45.33 21.12
 Class 3 1.11 28.17 70.72

Gabriel#ellet
 Class 1 72.90 23.78 3.32
 Class 2 13.25 58.39 28.37
 Class 3 0.82 32.35 88.83

Skittentinden
 Class 1 84.22 13.77 2.01
 Class 2 12.10 70.09 17.82
 Class 3 8.10 28.92 62.98

Average
 Class 1 78.38 18.72 2.92
 Class 2 22.51 53.45 24.04
 Class 3 4.00 29.51 66.49
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which permitted removal of these areas from this analysis. To measure the performance 
of the algorithm compared to the expert-guided NVE maps, the agreement percentage is 
again used to assess the algorithm performance. These values are presented in Table  3. 
Given the conservative nature of the manual ATES classification of these routes, we have 
highlighted (in italics) the % of terrain that the automatic ATES algorithm categorizes as 
more hazardous than the manual classification.

4  Discussion

4.1  Comparison to other avalanche mapping work

Various other automated models have been proposed to create ATES maps. Schmudlach 
and Köhler (2016) developed an algorithm that computes a 10-m continuous ATES map 
based on the statistical likelihood of human-triggered avalanches. A drawback with this 
method is that it is solely based on expert judgement without validation against other 
referenced ATES mapping (e.g., Statham et al. 2006) or ATES mapping (e.g., Campbell 
and Gould 2013). Thumlert and Haegeli (2017) developed a mapping algorithm from the 
movement of professional ski guides. They developed an ATES map with a spatial resolu-
tion of 20 m and showed that it was possible to make an ATES map based on observed 
terrain use from professional ski guides. However, they acknowledge that the method has 
several limitations including having to decide whether the skied terrain was a wise decision 
or not, and therefore to determine whether to include it in the dataset or not. The method is 
also computationally expensive and only derived from one snow climate over two seasons, 
making it vulnerable if applied for different climates and wildly different terrain types. In 

Table 3  Percentage agreement 
score comparing 586 km of 
manually classified linear 
routes and the automated ATES 
algorithm (if more hazardous 
than the manual classification, 
marked in italics)

Automated ATES (%)

Class 1 Class 2 Class 3

NVE expert linear
Troms (191 km)
 Class 1 91.67 6.29 2.04
 Class 2 61.43 35.66 2.91
 Class 3 60.86 25.52 13.62

Lofoten (113 km)
 Class 1 90.77 7.69 1.53
 Class 2 59.53 37.44 3.03
 Class 3 44.04 42.82 13.14

Romsdalen (281 km)
 Class 1 88.30 11.23 0.47
 Class 2 52.22 41.53 6.24
 Class 3 34.29 55.92 9.79

Average
 Class 1 90.52 8.00 1.48
 Class 2 57.10 38.53 4.37
 Class 3 43.14 45.43 11.43
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an alternative approach to mapping avalanche terrain, Harvey et al. (2018) developed ava-
lanche terrain maps by combining avalanche terrain characteristics similar to our study, 
but then utilized multiple parameterizations of the RAMMS model to estimate runout dis-
tances. This method was used to make nationwide avalanche maps for Switzerland. They 
concluded that ATES was not appropriate for the European Alps because of too many trips 
being classified as “complex”, and they ending up creating a new classification. The out-
put was both a continuous and discrete map providing information of the consequences 
of traveling in avalanche terrain. Barbolini et al. (2011) proposed a new methodology to 
perform avalanche hazard mapping over large areas. This method combine two modules; 
(1) used to define potential release areas based on slope, morphology and vegetation, and 
(2) a runout algorithm (AFRA) which provides an automatic definition of areas that could 
be affected by an avalanche. We believe that our approach, using an automated algorithm 
makes it possible to map large areas at a low cost using the well-known and pragmatic 
ATES classification scheme. The algorithm only needs a DTM as input and can be adjusted 
for different climates using different alpha angles, making it very versatile.

4.2  Algorithm spatial performance

To create an automated algorithm for ATES terrain classification, it is challenging to use 
the qualitative classification (v1.04) proposed by Statham et  al. (2006). Therefore, the 
quantitative model proposed by Campbell and Gould (2013) is used. It is primarily derived 
from slope incline and land forest density, but the model additionally emphasizes start zone 
density, interaction with avalanche paths, terrain traps and curvature (Table 1).

When we apply our algorithm to open terrain, we can efficiently map terrain as per 
the thresholds proposed by Campbell and Gould (2013). In specific, when we compare 
our algorithm-based ATES map results with the more generalized manual ATES maps as 
produced by avalanche experts, we see that the algorithm-based maps are explicit in their 
classification (Fig. 4). Comparing the manual ATES maps with the thresholds from Camp-
bell and Gould (2013), it was found that they were more generous in their classification 
and added more adjacent terrain to the classification, yielding a smoother, more generic 
ATES map than the algorithm approach. This first phase of manual ATES mapping was 
an early pilot project and as we see in Sect. 3.2, the later manual mapping is more consist-
ent with our automated algorithm. Figure 4 shows that the algorithm produces a broadly 
similar spatial pattern as the NVE classification. Specifically for Fager#ellet (Fig.  4, 
(1)), the long narrow corridor in the lower middle is identified in both maps. Some small 
areas of this corridor are determined as challenging by the algorithm, but these areas are 
located below the tree line and would possibly be classified down to simple terrain if a for-
est density mask was included. Above this corridor (Fig. 4, (2)), NVE has classified the 
area as simple and challenging terrain. The algorithm identified this as a potential start 
zone, and therefore been classified as complex. Likewise, for Gabriel#ellet (Fig. 4, (3)), 
the algorithm produces a broadly similar spatial pattern as the NVE classification, with 
the marked exception of an area of complex terrain in the algorithm-based map, where the 
manual map has classified this as simple terrain. This difference can likely be attributed 
to a section of cliffs that was overlooked in the pilot manual mapping project, while the 
algorithm identified this feature, leading to a higher class. Finally, for Skittentinden (Fig. 4, 
(4)), the algorithm produces a broadly similar spatial pattern as the NVE classification but 
with more nuanced spatial patterns differentiating challenging from complex terrain in the 
upper half of the mapped area. However, this increased spatial resolution expressed in this 
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nuanced pattern is likely not helpful for the user because these pockets of challenging ter-
rain are not useable without prior exposure to adjacent complex terrain. As evidenced by 
these three case study examples, and checked in multiple other areas throughout Norway, 
the algorithm works well for open terrain. However, with the limitation of not explicitly 
accounting for forest density, which the expert-guided maps do, there is an expected dif-
ference in the classification matrix for areas with mixed and forest terrain. Fortunately, for 
many areas in Norway most recreational ski touring occurs well above the treeline (e.g., 
in Troms and Romsdalen approximately 60–80% of the distance of the individual mapped 
tours are above the treeline). However, due to these limitations, the algorithm maps should 
not be compared directly with the manual ATES maps, but rather compared more broadly 
to assess if the resulting patterns are consistent with the manual expert mapping. Using this 
approach, it is clear that the algorithm is producing similar ATES results as the manual 
method, but with more nuanced details for terrain classifications. Furthermore, the ATES 
results are conservative results due to the exclusion of forest cover parameters.

4.3  Algorithm linear route performance

Directly comparing the algorithm-based ATES map and the manually categorized ATES 
linear routes is also complicated and with only moderate explanatory power. We do not 
expect an ATES linear route of “simple” to be 100% simple, but we do expect the vast 
majority of it to be in simple terrain. As we see in our results (Table  3), the values for 
agreement between the algorithm-based ATES map and the linear route for simple terrain 
range from 88 to 92%, suggesting that the vast majority of the route is within the sim-
ple class. However, one-tenth of a simple route is within challenging or complex terrain, 
suggesting either that our classification of simple terrain is either to conservative, or the 
experts from NVE are too generous in their classification.

Likewise, we assume that for “challenging” linear routes, that the majority of the route 
is in simple to challenging terrain, whereas very little should be in complex terrain. In our 
results, we get values of between 2 and 6% in complex terrain, suggesting that 94–98% of 
challenging routes are within terrain that the algorithm classifies as simple to challenging 
terrain. For “complex” terrain, we are unable to repeat this analysis because only a small 
fraction of a route can result in a manual classification of complex (e.g., 10% for Roms-
dalen region), even though most of the route is in simple or challenging terrain.

For validation of challenging terrain, we rely on the spatial comparison in Sect.  3.2, 
manual spot checks of areas clearly representing challenging terrain, and with knowl-
edge that the algorithm performs within the thresholds proposed by Campbell and Gould 
(2013). In general, the linear tracks show broadly consistent results across all three regions 
and classes, suggesting that the experts from NVE do not display any regional bias in their 
classification of manual ATES routes. Furthermore, we see that the percentage agreements 
are very high for simple and challenging terrain, which is encouraging for the algorithm-
based ATES maps. The challenge with this analysis is that we are unable to assess which 
of the methods, if any, is 100% accurate, so a direct comparison and direct interpretation 
of these results are problematic. Despite this, we see that the algorithm is producing ATES 
maps that compare very favorably, and in some cases produce more realistic maps than the 
manual ATES mapping approaches for both spatial- and route-based applications.
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4.4  Limitations

While we are encouraged by the results of this algorithm, urge caution in their use due to a 
number of limitations. Slope angle is identified as the most important factor for ATES delin-
eation. Using the thresholds proposed from Campbell and Gould (2013), it was possible to 
divide the terrain into rough classes early in the processing. It was found that when using the 
non-avalanche threshold of 20°, simple terrain was neglected, to avoid this, the threshold was 
lowered to 15° in the automated ATES algorithm. However, the consequences of mapping 
thousands of square kilometers as non-avalanche terrain with only minimal case study vali-
dation, and high public use, could lead to dangerous scenarios. Therefore, it was decided to 
remove the non-avalanche terrain entirely from the publicly available maps until a robust veg-
etation layer is available, and appropriate safety margins can be applied. A nationwide high-
resolution DTM from aerial light detection and ranging (LIDAR) will be available in 2022 
(Kartverket 2019), which will permit high-resolution assessment terrain, and greatly improve 
the current algorithm.

The second most important factor in the method is the forest density parametrization. 
Implementing this into the algorithm should be uncomplicated based on the published thresh-
olds dividing the density into open, mixed and forest (Table 1). At this stage, however, it has 
not been implemented in the current algorithm due to the lack of reliable forest density data for 
Norway at the relevant spatial scale. Options such as the area resource map (AR5) have been 
considered, but the accuracy of the data is limited (Gjertsen and Nilsen 2012). Norwegian 
Institute of Bioeconomy Research (NIBIO) is working on a high-resolution forest resources’ 
map (SR16) which is produced by automatic modeling of AR5, DTM, aerial LIDAR and pho-
togrammetry data (NIBIO 2019). When this dataset becomes available nationwide, it could be 
implemented in the algorithm to account for the effect of forest on avalanches. Quantifying the 
effect of forest density for each region, we found that in Romsdalen, approximately 40% of the 
length of the mapped manual routes are within areas with mixed forest or forest, as compared 
to Lofoten and Troms where forest only covered approx. 20% of the total route length. Thus, 
it is more likely that the automated algorithm is correct at higher latitudes where the forest is 
less extensive, and the vegetation elevation is lower. Routes with a large percentage of forested 
terrain would however receive a conservative classification due to the exclusion of the forest 
parameter.

To account for start zones, the PRA script developed by Veitinger et al. (2016) is used. 
To calculate the release areas, the script uses the three parameters: slope, wind shelter index 
and roughness. This script was optimized for a 2-m DTM, but both a finer and coarser scale 
DTM could be applied (Veitinger et al. 2016). Currently, a 10-m DTM is the best available 
resolution for mainland Norway and is therefore used. In practice, the roughness parameter is 
currently being neglected due to the coarse scale of the DTM. The automated ATES algorithm 
has also been successfully applied at Nordenskiöld Land at a 5-m DTM resolution without 
doing any changes to the script. To account for downslope and cross-slope curvature, the wind 
shelter index is used. Numerous studies show that wind shelter index from a DTM can accu-
rately reflect the accumulated snow patterns (e.g., Schirmer et al. 2011; Winstral et al. 2002). 
Despite these limitations, this automated algorithm and the workflow presented provide a tan-
gible first step forward toward fully automated and consistent and reproducible ATES map-
ping. Future advancements will refine and improve this algorithm over time.
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5  Conclusion

This paper presents a fully automated algorithm that is able to produce a high-resolution 
nationwide ATES map for Norway from a DTM. Validating the new ATES maps with 
regions that had expert-guided ATES maps and linear routes as produced by NVE showed 
high consistency in all regions, when only open terrain was considered. For forested areas, 
which comprise the minority of avalanche terrain assessed, we get mixed results. Thus, 
future work should focus on incorporating vegetation data at the appropriate spatial res-
olution when it becomes available to further improve the automated ATES algorithm. 
However, a large percentage of the Norwegian backcountry terrain is above the tree line 
(approx. 80% for Troms and ~ 60% for Romsdalen), thus the current algorithm is already 
a helpful tool for expert-guided mapping and as recreational trip planning tool. The auto-
mated algorithm is also useful to increase the consistency between different experts map-
ping ATES manually in different regions of Norway. Finally, another advantage of using 
an automated approach, in contrast to expert-based methods, is the reproducibility of the 
mapping and future updates and improvements can easily be performed.
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Abstract. Avalanche risk assessment is complex and chal-
lenging, with terrain assessment as one of the most
fundamental factors. To aid people’s terrain assessment,
Parks Canada developed the Avalanche Terrain Exposure
Scale (ATES), a system that classifies the severity of
avalanche terrain into five classes from non-avalanche terrain
to extreme terrain. Manual classification is laborious and de-
pendent on expert’s assessments. To ease the process Larsen
et al. (2020) developed an automated ATES model (Au-
toATES v1.0). Although the model allowed large-scale map-
ping, it had some significant limitations. This paper presents
an improved AutoATES v2.0 model improving the potential
release area (PRA) model, utilizing the new Flow-Py runout
simulation package. Furthermore, it incorporates forest den-
sity data in the PRA, in Flow-Py, and in a newly developed
post-forest-classification step. AutoATES v2.0 has also been
rewritten in open-source software, making it more widely
available. The paper includes a validation of the model mea-
sured against two consensus maps made by three experts at
two different locations in western Canada. For Bow Sum-
mit, the F1 score (a measure of how well the model per-
forms) improved from 64 % to 77 %. For Connaught Creek,
the F1 score improved from 40 % to 71 %. The main chal-
lenge limiting large-scale ATES classification is the determi-
nation of optimal input parameters for different regions and
climates. In areas where AutoATES v2.0 is applied, it can be
a valuable tool for avalanche risk assessment and decision-
making. Ultimately, our goal is for AutoATES v2.0 to enable

efficient, regional-scale, and potentially global ATES map-
ping in a standardized manner rather than based solely on
expert judgment.

1 Introduction

Snow avalanches lead to a yearly average of 140 fatal ac-
cidents in Europe and North America (Techel et al., 2016,
2018; Birkeland et al., 2017). More than 90 % of fatal
avalanche accidents are related to recreational activity and
triggered by the victim or someone in their party (Schweizer
and Lütschg, 2001; Techel and Zweifel, 2013; Engeset et al.,
2018). This means that avalanche accidents are not random
but rather a result of less-than-optimal decisions. Strength-
ening people’s ability to make better decisions by raising
awareness and providing information and education is impor-
tant and may ultimately save lives. To do so, many countries
have established avalanche forecasting services (Engeset et
al., 2018). However, despite access to updated avalanche
forecast, the complexity and variability of the of the snow-
pack still leaves avalanche risk management a complex task.
The inherent lack of feedback from the environment also
turns avalanche terrain into a wicked learning environment
(Fisher et al., 2022). Reliable information and decision-
making support are therefore crucial. The most efficient
method to mitigate the avalanche hazard is to choose appro-
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priate terrain for the given avalanche conditions (Thumlert
and Haegeli, 2018).

Assessing avalanche terrain may be intuitive for avalanche
professionals (Landrø et al., 2020); however, this may not be
the case for recreational users of avalanche terrain. To aid
non-professional terrain assessment Parks Canada developed
the Avalanche Terrain Exposure Scale (ATES v1.0). This is a
terrain classification system to communicate the potential ex-
posure to avalanches and thus how difficult avalanche man-
agement would be in different types of terrain (Statham et
al., 2006). The complexity of avalanche terrain is the result
of interactions of multiple release areas, tracks, and depo-
sition areas. Within these three areas, other factors like, for
example, terrain traps or forest density, could make terrain
management more complex due to a more severe outcome.

Originally, ATES v1.0 categorized popular backcountry
routes into three levels: simple (1), challenging (2), and com-
plex (3). With the growing adoption of ATES, its application
expanded beyond individual routes to spatial zones, such as
the initiative by Avalanche Canada, which mapped several
thousand square kilometers of avalanche terrain (Campbell
and Gould, 2013). An update to the system led to ATES v2.0,
which introduced two new classes: non-avalanche terrain (0)
and extreme (4). This revised version also expanded the
scope of ATES to include spatial representations like zones,
areas, and corridors. The updated scale is referred to as
ATES v2.0, and a more thorough description can be found in
Statham and Campbell (2023). ATES classification has been
used to provide guidelines for terrain use linked to people’s
specific avalanches management skills (CAA, 2016) or for
recreational purposes (Campbell and Gould, 2013; Thum-
lert and Haegeli, 2018; Larsen et al., 2020; Schumacher et
al., 2022). ATES mapping has also been used to describe
backcountry users’ terrain preferences recorded by GPS (i.e.,
Hendrikx et al., 2022; Johnson and Hendrikx, 2021; Sykes et
al., 2020).

The development of ATES maps for Avalanche Canada
from 2009 through 2012 was done using a combination of
manual mapping and a GIS-assisted workflow (Campbell
and Gould, 2013). ATES zoning was labor intensive, re-
lied heavily on expert judgment, and as a result ATES maps
were typically only available in high-use areas. Campbell and
Gould (2013) identified the limitations of this method and
presented a more quantifiable zonal model that could lever-
age GIS tools for more systematic terrain classification. An
automated model to classify avalanche terrain would need
the following components: (1) a model of potential release
areas (PRAs) for avalanches and (2) a runout simulation,
which is an estimation of where and how far an avalanche
would slide.

The first attempt at a fully automated ATES model was
made by Larsen et al. (2020) using a combination of the
zonal and technical model of ATES (Campbell and Gould,
2013; Statham et al., 2006). Larsen et al. (2020) developed
an automated ATES (AutoATES v1.0) model that was able

to make ATES zones for all of Norway, using only a digi-
tal elevation model (DEM) as input. This simple approach to
terrain characteristics does not take overhead exposure into
account, and the performance of the simple avalanche runout
simulation is also insufficient in flatter terrain. In addition,
the model did not account for forest density, which has been
found to be one of the most important factors for ATES clas-
sification (Delparte, 2008; Schumacher et al., 2022). A final
challenge was that the model was heavily dependent on pro-
prietary software (Larsen et al., 2020), thereby increasing the
monetary and computing costs to operate the model and lim-
iting open-source access.

1.1 Improving potential release areas (PRA) model

The PRA establishes the baseline for where avalanches may
release and is used as an input for the avalanche runout sim-
ulations. In AutoATES v1.0, Larsen et al. (2020) utilized
the PRA model by Veitinger et al. (2016), which outputs
a continuous range of values between 0 and 1. This model
considers factors such as wind shelter, terrain roughness,
slope angle, and forest density. Originally, forest density was
only a binary input, effectively categorizing areas as either
“forested” or “non-forested”. In the binary approach, any
“forested” area was not further processed by the PRA model
and was simply labeled as non-PRA. Sharp (2018) improved
the PRA model by including the forest density parameter in
what is known as a fuzzy logic operator. Fuzzy logic, unlike
binary, does not restrict inputs to yes-or-no values; instead, it
allows for degrees of truth (continuous). This method recog-
nizes the differences in forest density and treats it with equal
importance to other factors like roughness, slope angle, and
wind shelter.

1.2 Improvements for runout simulations

There are several avalanche runout simulation models avail-
able to estimate the potential track and deposition area, given
specific start zone inputs from the PRA model (Christen
et al., 2010; Sampl and Zwinger, 2004; Tarboton, 1997;
D’Amboise et al., 2022). In principle, these runout models
can be divided into two categories: (1) process-based, which
attempt to calculate all the physical properties involved, or
(2) empirical models, which are driven by data-based ob-
servations. Selecting an appropriate modeling approach de-
pends on the problem to be solved, data availability, the
required accuracy, and the spatial scale (D’Amboise et al.,
2022). Given access to highly detailed data and unlimited
computational power, the process-based models outperform
the data-based empirical models. However, given the lim-
itations in computational power when processing large ar-
eas and the need for more accurate digital elevation mod-
els (DEMs) in many countries, the data-based model is more
suitable for large-scale mapping applications.

Nat. Hazards Earth Syst. Sci., 24, 1779–1793, 2024 https://doi.org/10.5194/nhess-24-1779-2024
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Two of the most common process-based simulation tools
for avalanche hazard assessment are the RAMMS (Christen
et al., 2010) and Samos-AT (Sampl and Zwinger, 2004) mod-
els. Both models are made to simulate an accurate prediction
of avalanche runout distances, flow velocities, and impact
pressures in a 3-dimensional space. These models are typi-
cally calibrated towards known avalanches with long return
periods and define potential avalanche terrain. These models
are suitable for avalanche terrain zoning, where the aim is
to divide the potential avalanche terrain into different zones.
Across large spatial areas such as regional forecast areas or
entire countries, these models are less suitable. Even though
the computational power required to apply the process-based
models over large areas is a factor, it could be done at re-
gional scales (e.g., Bühler et al., 2022).

In contrast to the process-based models, data-based mod-
els are computationally inexpensive and can more easily be
applied to large geographic areas. A common data-based
method to delineate avalanche runout is applying the classi-
cal runout angle concepts and path routing in 3-dimensional
terrain (D’Amboise et al., 2022). Comparison of the model
results to more computationally expensive simulation type
models shows that they respond adequately for the delin-
eation of broad-scale terrain classification.

In prior automated ATES mapping work, Larsen et
al. (2020) used the multiple flow direction model D-infinity
(Tarboton, 1997). This model is coupled with the alpha angle
(also known as travel angle). The D-infinity model identifies
the cells downslope of the starting cell for each PRA cell.
The model spreads downslope until a defined alpha angle is
reached from the starting cell (as per Heim, 1932; Lied and
Bakkehøi, 1980; Toft et al., 2023). While used in hydrology
applications, a substantial weakness of the D-infinity model
is that it cannot appropriately model avalanche movement,
which may occasionally flow in flat and uphill terrain.

Recently, D’Amboise et al. (2022) presented a new cus-
tomizable simulation package (Flow-Py) to estimate the
runout distance and intensity of dense core avalanches (not
considering powder clouds). The model utilizes persistence-
based routing instead of terrain-based routing, enabling the
simulation to respond appropriately to flat or uphill terrain.
Where the D-infinity model only considers flow direction,
the Flow-Py model also considers flow process intensity.
Both models use the same stopping criteria to estimate the
runout distance by defining the alpha angle from the initial
starting cell.

2 Model development

The main objective of the AutoATES v2.0 model is to im-
prove large-scale spatial ATES mapping, update the map-
ping to reflect recent changes in ATES v2.0, and improve the
model workflow. For AutoATES v2.0 to be a viable option

for large-scale ATES classification, the model performance
should be at least as accurate as manual mapping.

2.1 Implementation

To secure a broad adaptation of the new AutoATES model,
it is important that the model is open-source and easy to use.
The v1.0 model was written using proprietary software. We
have resolved this by rewriting the entire v2.0 model into the
programming language Python using widely available and
open-source modules. The AutoATES v2.0 model is avail-
able on GitHub (Toft et al., 2024).

2.2 Input data

The minimum input data required to run the full Au-
toATES v2.0 are a DEM and forest density raster (a digital
representation of the terrain/elevation and forest density) us-
ing the GeoTIFF format. It is also possible to run the model
with only a DEM as input, but the output would then only be
valid for open, non-forested terrain. Both rasters must have a
matching spatial resolution and extent and be defined using a
projected coordinate system. The model has been tested with
spatial resolutions ranging from 5 to 30 m (cell sizes), but it
should be possible to run other spatial resolutions.

Our parameterization for forest density allows for various
metrics of forest density inputs. The model is designed to
work with stem density, percent canopy cover, basal area,
or no forest (only for mapping of open terrain). The forest
type must be defined in the beginning of the Python script.
Forest density influences snow accumulation and snowpack
stability, with denser forests generally reducing the risk of
avalanches (Bebi et al., 2009).

2.2.1 Percent canopy cover

Canopy cover has a direct relationship with radiation balance
and can impact formation of persistent weak layers as well
as give an estimate of the degree of snowfall intercepted by
trees prior to falling onto the snowpack (Bebi et al., 2009).
Forest canopy also impedes wind transport of snow reduc-
ing the formation of wind slabs. Percent canopy cover is a
widely used metric that quantifies the extent of forest density
by measuring the proportion of the ground area obscured by
tree canopies when viewed from above. Percent canopy cover
can be estimated using various methods including aerial pho-
tography, satellite imagery, remote sensing techniques, and
ground-based measurements. The resultant parameter used
in our model has a value ranging from 0 to 100.

2.2.2 Stem density

Stem density is a metric used to quantify the number of tree
stems (trunks) per unit area, typically expressed as stems per
hectare or stems per square meter, which provides insight
into forest structure and composition. Stem density can in-
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fluence the snowpack stability and avalanche initiation, as a
higher stem density generally results in more trees obstruct-
ing and anchoring the snow, thereby reducing the likelihood
of avalanche occurrence (Bebi et al., 2009). Stem density can
be measured through various techniques, including field sur-
veys, aerial imagery analysis, or remote sensing data. The re-
sultant parameter used in our model can have a value ranging
from zero to a couple of thousands (depending on minimum
stem diameter) and is stated in number of stems per hectare.

2.2.3 Basal area

The basal area is a unit used to describe the sum of the cross-
sectional areas of all trees within a given space, specifically
those in the dominant, co-dominant, and high intermediate
positions within the forest canopy. It is a measure of the den-
sity of trees and is quantified in square meters per hectare
(Sandvoss et al., 2005). The advantage with basal area over
canopy cover and stem density is that it incorporates the size
of trees in addition to the number of trees and is a more direct
measurement of the density of the forest vegetation.

The basal area value can have any value starting from zero
upwards. While theoretically, there is no upper limit to this
value, practically it is generally capped at around 60 m2 ha�1

to reflect realistic forest conditions.

2.3 Model components

The AutoATES v2.0 model is split into two main compo-
nents: (1) pre-processing and (2) the AutoATES classifier. In
the pre-processing step, the DEM and forest density rasters
are used as input for the start zone PRA model. When the
PRA calculations are complete, the PRA and DEM are used
to calculate the avalanche runout using the Flow-Py compo-
nent. When all the key components are calculated, they are
used as input for the AutoATES classifier, which assigns the
final ATES classes for each raster cell (Fig. 1).

2.3.1 PRA

The PRA model uses a Cauchy membership function to de-
termine the importance of each parameter. A Cauchy mem-
bership value reflects how strongly an input variable belongs
within a certain set (Jang and Sun, 1997). A Cauchy mem-
bership value must be defined for each input variable (Eq. 1).

µ(x) = 1

1 +
�

x�c
a

�2b
, (1)

where µ(x) is the Cauchy membership value; x is an input
variable (e.g., slope angle, wind shelter, or forest); and a, b,
and c are parameters which control the weight of each in-
put variable. We use the membership values suggested by
Veitinger et al. (2016) for slope angle and wind shelter while
using the value suggested by Sharp (2018) for stem density
(Fig. 2). In our modified version of the PRA model (v2.0),

we have chosen to remove the roughness parameter due to
the scale issues with 5–30 m cell sizes (the original PRA
model was made to work with a 2 m cell size). The re-
moval of roughness makes it less ideal for higher-resolution
DEMs (< 5 m cell sizes); see Sect. 4.1.4 for a discussion
around this. We have also defined new membership func-
tions for canopy cover and basal area based on input from
Parks Canada avalanche experts and through testing of the
AutoATES model on our two study areas. These values could
be fine-tuned for specific datasets and applications to im-
prove the performance of the PRA model.

The Cauchy membership values from slope angle, wind
shelter, and forest density are used as inputs for the fuzzy op-
erator. We use the same “fuzzy AND” operator used by both
Veitinger et al. (2016) and Sharp (2018), originally defined
by Werners (1988). The PRA value is therefore defined as
follows in Eq. (2):

µPRA(x) = � · min(µs(x),µw(x)µf(x))

+ (1 � � ) + (µs(x),µw(x)µf(x))

3
x 2 X,� 2 [0,1], (2)

with three fuzzy sets slope angle µst (x), wind shelter µw(x),
forest density µf(xt), and with � defined in Eq. (3) as

� = 1 � min(µs(x)µw(x)µf(x)) . (3)

The PRA output is a continuous layer ranging between 0 (not
likely) to 1 (very likely). Most data-based runout models
need release areas in a binary format where 0 is no potential
release areas, while the potential release areas are encoded
as 1. To convert the PRA layer to a binary format, we se-
lect a cutoff threshold (PRAthreshold) where all pixels above
this value are included in the potential release area for the
runout modeling. We found the PRAthreshold from Larsen et
al. (2020) to be too conservative for our study areas and have
therefore increased the value to 0.15. The PRAthreshold could
be adjusted depending on whether frequent or more extreme
avalanche scenarios are of interest.

We have also adjusted how the wind shelter index is cal-
culated. Using a 2 m DEM, Veitinger et al. (2016) resam-
pled the DEM by a factor of 5 (from 2 to 10 m) and applied
a 11 ⇥ 11 sliding window (a technique where a fixed-size
segment of data moves over the entire dataset one step at a
time). This is according to the recommendations of Plattner
et al. (2006), who found the optimal radius to be 60 m, fol-
lowed by a secondary optimal radius of 250 m. To achieve
the same results, we removed the down sampling factor of 5
and used the 10 m DEM directly to calculate the wind shelter
index. If other DEM resolutions are to be used, the wind shel-
ter index should be adjusted accordingly to use either 60 m
(recommended) or 250 m as the radius around each cell. This
could be done by either resampling the spatial resolution or
changing the size of the sliding window.
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Figure 1. The main components of the AutoATES v2.0 model. First, a pre-processing step is completed to calculate all the necessary raster
layers using PRA and Flow-Py. Finally, the AutoATES classifier is used to assign the final ATES classifications.

Figure 2. The different Cauchy functions used by Veitinger et al. (2016) and Sharp (2018) for slope angle and stem density. The values a,
b, and c are inputs for the Cauchy membership value (Eq. 1). We have suggested new membership values for wind shelter, canopy cover (%),
and basal area. We recommend that these values are fine-tuned for specific datasets and applications. Read a more in-depth discussion of this
in Sect. 4.3.

2.3.2 Avalanche simulation

The Flow-Py model developed by D’Amboise et al. (2022)
is used for the avalanche simulation of the potential track
and deposition area. Flow-Py is a dense core model; thus
AutoATES v2.0 is based on dense core runout extents and
does not consider powder clouds. It is similar to the Tau-
DEM model utilized in AutoATES v1.0, which uses the al-
pha angle to limit the flow (Larsen et al., 2020; Tarboton,
1997). Flow-Py also includes a flow process intensity param-
eter, which makes it able to handle mass movement in flat
and uphill terrain, significantly improving the output com-
pared to AutoATES v1.0. Another advantage of the Flow-
Py model is the additional output layers, which represent the
overhead exposure. We utilize the cell count and zdelta layer
by scaling the two layers from 0–100 and taking their aver-
age value, which represents the overhead exposure layer. In
the AutoATES v2.0 model it is possible to select cell count,
zdelta, or both to represent the overhead exposure. The layer
enables us to quantify the exposure from different release ar-
eas at every raster cell. We use the forest detrainment module
of Flow-Py, which makes it possible to use forest density as

an input layer to limit spreading and runout distance. An in-
depth description of the Flow-Py simulation package can be
found in D’Amboise et al. (2022).

2.3.3 AutoATES classifier

When the pre-processing of PRA and Flow-Py is completed,
the AutoATES classifier uses a set of map algebra equations
to define each ATES class. The following raster layers from
the pre-processing step are used as input in the AutoATES
classifier:

– slope angle (calculated from the DEM)

– forest density (provided by the user, as per Sect. 2.3.1–
2.3.3)

– PRA (calculated from the DEM and forest data)

– runout distance as a function of alpha angle (calculated
from PRA and Flow-Py)

– overhead exposure (cell count, zdelta or both) (calculated
from PRA and Flow-Py).
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Table 1. The recommended input parameters for AutoATES according to Sykes et al. (2023). The encoding describes the name of each
parameter in the AutoATES model.

Input parameter Class Range Encoding

Slope angle threshold (SAT)

Simple (1) < 18° SAT12 = 18°
Challenging (2) 18–28° SAT23 = 28°
Complex (3) 28–39° SAT34 = 39°
Extreme (4) > 39°

Alpha angle threshold (AAT)
Simple (1) < 24° AAT12 = 24°
Challenging (2) 24–33° AAT23 = 33°
Complex (3) > 33°

Overhead exposure (OE)
Simple (1) < 5 OE12 = 5
Challenging (2) 5– 0 OE23 = 40
Complex (3) > 40

Island filter size (ISLsize) 30 000 m2

Table 2. The recommended input parameters for AutoATES according to Sykes et al. (2023). The encoding is the same for all three forest
types, but the forest input type can be defined by a string in the AutoATES script.

Input parameter Class Range Encoding

Canopy cover (%)

Open 0–20 TREE1 = 20
Sparse 20–55 TREE2 = 55
Moderate 55–75 TREE3 = 75
Dense 75–100

Stem density (no. of stems per ha)

Open 0–100 TREE1 = 100
Sparse 100–250 TREE2 = 250
Moderate 250–500 TREE3 = 500
Dense > 500

Basal area (m2 ha�1)

Open 0–10 TREE1 = 10
Sparse 10–20 TREE2 = 20
Moderate 20–25 TREE3 = 25
Dense > 25

The first step of the AutoATES classifier is controlled by ad-
justable thresholds for slope angle, runout distance, overhead
exposure, and island filter size (Table 1). Using these parame-
ters, the AutoATES model outputs a preliminary, and conser-
vative, layer with the categorical classes (1) simple, (2) chal-
lenging, (3) complex, and (4) extreme terrain by keeping the
maximum value of the three input rasters.

The second step of the AutoATES classifier is to reduce the
exposure in certain ATES classes depending on forest den-
sity. The forest density is applied in a secondary step to in-
crease the importance of the forest density criteria. The forest
density layers are divided into four different categories with
different thresholds for each forest density input (Table 2).

Once the forest density parameter has been coded into the
four classes of forest density (i.e., open, sparse, moderate,
and dense), as a function of the forest density input parameter
used, we mapped these categorical descriptors on to ATES
classes (Table 3).

Finally, the island filter size is applied removing clusters
smaller than a specified area and incorporating it to the sur-
rounding class. The filter size is not a new addition to the
model as it is a part of the v1.0 model, but Sykes et al. (2023)
found that a filter size of 30 000 m2 (Table 1) was the optimal
filter size for all the spatial resolutions tested.

2.4 AutoATES outputs

The outputs from AutoATES v2.0 have the same spatial res-
olution as the input. The following outputs are available:

– continuous PRA

– Flow-Py raw outputs (D’Amboise et al., 2022)

– preliminary ATES classification of slope angle

– preliminary ATES classification of runout distance
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Table 3. Forest criteria applied to the second step of the AutoATES.

Initial ATES rating

Forest criteria Simple (1) Challenging (2) Complex (3) Extreme (4)

Open PRA and runout Simple (1) Challenging (2) Complex (3) Extreme (4)

Sparse PRA and runout Simple (1) Simple (1) Challenging (2) Complex (3)

Moderate PRA Simple (1) Simple (1) Challenging (2) Complex (3)
Runout Simple (1) Simple (1) Simple (1) Complex (3)

Dense PRA Simple (1) Simple (1) Simple (1) Challenging (2)
Runout Simple (1) Simple (1) Simple (1) Complex (3)

– preliminary ATES classification of overhead exposure

– forest density criteria

– AutoATES v2.0

– AutoATES v2.0 with island size filter.

2.5 Model validation

To evaluate the performance of AutoATES v2.0, we use
two Canadian benchmark maps made explicitly for Con-
naught Creek (British Colombia) and Bow Summit (Alberta),
Canada (Fig. 3). These are the only locations that have man-
ually mapped maps using the ATES v2.0 model (Sykes et al.,
2023). The benchmark maps were made by combining indi-
vidual maps from a panel of three experts, utilizing method-
ologies such as a geographic information system (GIS), re-
mote sensing imagery, local knowledge, and field-based in-
vestigations. Sykes et al. (2023) provide an in-depth descrip-
tion of how the benchmark maps were developed.

For the model validation, the benchmark maps are com-
pared against the AutoATES v2.0 model described above us-
ing the optimized parameters from Sykes et al. (2023). In-
put data for the validation model are a 26 m ALOS DEM
combined with forest density data (basal area) from the
British Columbia Vegetation Resource Inventory (BC VRI).
For more information about the input data, see Sykes et
al. (2023).

We use the metrics accuracy, precision, recall, and F1
score to evaluate the performance of the model. These met-
rics provide a more detailed assessment, accounting for class
imbalance and varying prediction results. They have been
widely used in various fields, including avalanche literature
(e.g., Keskinen et al., 2022). For a more in-depth understand-
ing of these metrics and their sources, see Liu et al. (2012),
who provides a comprehensive review of evaluation metrics
for classifiers.

3 Results and validation

3.1 Model accuracy

There is no true validation dataset for AutoATES due to dif-
ferences in scale between automated and manual methods,
but we believe the new benchmark maps made by Sykes et
al. (2023) provide the best spatial validation maps to date. In
Fig. 4, we visualize the differences between AutoATES v1.0,
v2.0, and the ATES benchmark maps for Connaught Creek
and Bow Summit.

We use a confusion matrix for each study area to com-
pare the ATES benchmark, which serves as the ground truth,
against the results generated by the AutoATES v2.0 model
(Table 4). The confusion matrices enable us to evaluate the
performance of the AutoATES v2.0 model by calculating
various metrics, such as accuracy, precision, recall, and F1
score. For Bow Summit, the model performs well for sim-
ple terrain with 91.97 % accuracy, but the accuracy for chal-
lenging terrain is much lower at 65 %. Complex terrain and
extreme terrain are closer to the average, both with an accu-
racy of 79 % (Table 4). The accuracy distribution between
the four classes is slightly different for Connaught Creek.
The v2.0 model performs the worst in simple terrain with
an accuracy of 63 %. Challenging terrain has an accuracy of
71.0 %, complex has an accuracy of 78.0 %, and extreme ter-
rain has an accuracy of 83 % (Table 4).

3.2 Ablation study

The performance of the AutoATES v2.0 model has improved
compared to the AutoATES v1.0. The transition from v1.0
to v2.0 has been marked by numerous internal iterations, fea-
turing improvements such as an optimized PRA model ac-
counting for forest data, incorporating the Flow-Py runout
model, considering forest data in the final terrain class model,
and more. To fully understand the underlying factors behind
the improvements of AutoATES v2.0, it is crucial to examine
each of the components that have been modified. This will
help clarify how each modification contributes to the overall
performance of the model.
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Figure 3. Two areas where benchmark maps for the updated ATES are available in Glacier National Park and Banff National Park. An
overview of the greater area with the study areas in 3D view and overview photo (adapted from Sykes et al., 2023).

To do this, we utilize the concept of an ablation study,
which is a common method used to evaluate the importance
or contribution of individual components within a system or
model. It is a type of sensitivity analysis that aims to un-
derstand the impact of removing or ablating specific compo-
nents on the overall performance or output of the system. Ab-
lation studies are commonly employed in machine learning,
computational neuroscience, and other scientific disciplines
to analyze and understand the roles and relationships of dif-
ferent elements in a complex system (Meyes et al., 2019).

The general procedure for an ablation study involves the
following steps:

1. Train or develop the full model or system with all its
components and parameters intact and measure its per-
formance on a given task or dataset.

2. Systematically remove or disable one component or pa-
rameter at a time, keeping the rest of the model un-
changed.

3. Measure the performance of the modified model with-
out the removed component or parameter.

4. Compare the performance of the modified model to the
performance of the original, complete model.
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Figure 4. A visual comparison between AutoATES v1.0, v2.0, and the ATES benchmark maps for Connaught Creek and Bow Summit using
the European ATES color scheme (Statham and Campbell, 2023). AutoATES v1.0 does not use the extreme (4) class.

Table 4. A confusion matrix is used to compare the ATES benchmark maps with AutoATES v2.0. Bow Summit is presented above, while
Connaught Creek is presented below. The accuracy of each terrain class is marked out with gray shading (area or percent of pixels correctly
identified).

AutoATES v2.0

Simple (1) Challenging (2) Complex (3) Extreme (4)

Bow Summit

Simple (1) 4 527 848 m2 (91.97 %) 140 608 m2 (10.78 %) 16 900 m2 (1.01 %) 0 m2 (0.00 %)
ATES Challenging (2) 391 404 m2 (7.95 %) 852 436 m2 (65.34 %) 179 816 m2 (10.75 %) 0 m2 (0.00 %)
benchmark Complex (3) 4056 m2 (0.08 %) 310 960 m2 (23.83 %) 1 316 172 m2 (78.70 %) 110 188 m2 (21.03 %)

Extreme (4) 0 m2 (0.00 %) 676 m2 (0.05 %) 159 536 m2 (9.54 %) 413 712 m2 (78.97 %)

Connaught Creek

Simple (1) 1 364 844 m2 (63.31 %) 263 640 m2 (10.64 %) 76 388 m2 (1.03 %) 0 m2 (0.00 %)
ATES Challenging (2) 683 436 m2 (31.30 %) 1 757 600 m2 (70.96 %) 884 208 m2 (11.92 %) 676 m2 (0.05 %)
benchmark Complex (3) 102 752 m2 (4.77 %) 449 540 m2 (18.15 %) 5 787 236 m2 (78.00 %) 237 276 m2 (17.01 %)

Extreme (4) 4732 m2 (0.22 %) 6084 m2 (0.25 %) 671 944 m2 (9.06 %) 1 156 636 m2 (82.94 %)

5. Repeat steps 2–4 for each component or parameter of
interest.

For AutoATES v2.0, we have identified six components
of the model that have been developed since v1.0. Using
the concepts of an ablation study approach, we have calcu-

lated the precision, recall, and F1 score by removing differ-
ent components of the model (Table 5). The reference model
is the final AutoATES v2.0. A lower F1 score for a model
compared to the reference indicates that an important com-
ponent has been removed. In Bow Summit, the most impor-
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Table 5. The results from the ablation study where different components are removed to measure the effect for Bow Summit. The term dev1–
6 defines the development model being evaluated, SAT34 is the slope angle threshold between complex and extreme terrain, and AAT23 is
the ↵ angle threshold between challenging and complex terrain.

Version Component removed Pixel Precision Recall F1 score F1 score
accuracy change

B
ow

Su
m

m
it

v1.0⇤ 67.40 % 68.75 % 66.07 % 64.06 % �13.24 %
dev1* SAT34 threshold 87.63 % 78.74 % 76.05 % 81.81 % 4.51 %
dev2 AAT23 threshold 84.20 % 82.82 % 80.97 % 77.16 % �0.14 %
dev3 Forest data from PRA v1.0 78.40 % 78.6 % 75.90 % 70.21 % �7.09 %
dev4 Forest data from PRA v2.0 76.80 % 71.29 % 70.61 % 68.03 % �9.27 %
dev5 Flow-Py (back to TauDEM) 79.10 % 69.82 % 68.99 % 72.66 % �4.64 %
dev6 Post-forest classification 80.30 % 73.38 % 72.12 % 75.49 % �1.81 %
v2.0 Reference 84.40 % 75.74 % 76.19 % 77.30 % 0.00 %

C
on

na
ug

ht
C

re
ek

v1.0⇤ 49.44 % 40.21 % 38.70 % 38.70 % �32.68 %
dev1⇤ SAT34 threshold 80.20 % 72.43 % 74.73 % 72.79 % 1.41 %
dev2 AAT23 threshold 74.70 % 73.65 % 70.89 % 71.30 % �0.08 %
dev3 Forest data from PRA v1.0 71.80 % 71.23 % 64.12 % 66.71 % �4.67 %
dev4 Forest data from PRA v2.0 72.70 % 73.33 % 64.68 % 67.73 % �3.65 %
dev5 Flow-Py (back to TauDEM) 65.50 % 66.78 % 67.55 % 65.87 % �5.51 %
dev6 Post-forest classification 59.90 % 56.40 % 48.20 % 48.30 % �23.08 %
v2.0 Reference 74.90 % 73.80 % 70.94 % 71.38 % 0.00 %

⇤ AutoATES v1.0 and dev1 use the old ATES v1.0 framework with three terrain classes, which could lead to higher F1 scores. See
Sect. 4.1.1 for an in-depth discussion.

tant component is the inclusion of forest data in the PRA
model (dev4). In Connaught Creek, the most important fac-
tor is the post-forest classification (dev6). In general, all new
components in AutoATES v2.0 improve the model by several
percent, except the inclusion of the alpha angle threshold be-
tween challenging and simple terrain (dev2), which only im-
proves by 0.08 %–0.14 % for the two study areas.

4 Discussion

One of the primary challenges when developing Au-
toATES v2.0 has been to create a robust process for validat-
ing the output. Initial attempts by Larsen et al. (2020) com-
pared AutoATES v1.0 to available linear and spatial ATES
ratings in Norway; however the validity of these ratings was
uncertain because they were developed with limited peer re-
view and could be biased.

In contrast, the approach by Sykes et al. (2023) attempts
to address these deficiencies and create benchmark maps for
two regions in Canada. Their approach – which used three
experts to map each study area and then create benchmark
maps based on their individual output – is a more compre-
hensive methodology to address this issue. For the purpose
of our analysis, we consider these benchmark ATES maps as
the standard to which we will measure any AutoATES mod-
els.

While the benchmark maps provide the best available val-
idation dataset, there are still fundamental differences in how
terrain rating experts create ATES maps versus AutoATES.

The scale of analysis for terrain rating experts is generally
focused on terrain features, classifying an entire ridgeline,
bowl, or gulley as a single unit of analysis. In contrast, Au-
toATES is a raster-based model which operates on a pixel-
by-pixel analysis scale. The size of the pixels depends on
the DEM data available for a given study area. Variability in
DEM resolution and quality is one of the biggest challenges
of applying AutoATES in data-sparse regions (e.g., western
Canada). The scale mismatch between terrain rating experts
and AutoATES is a persistent difference and an issue that
needs to be thoroughly considered with further validation ef-
forts. The optimal scale of use for AutoATES is outside the
scope of this current work, but detailed analysis by Sykes et
al. (2023) has considered the impact of DEM resolution on
AutoATES and notes that there is no real difference in perfor-
mance using DEM datasets with a spatial resolution ranging
from 5–26 m. We therefore recommend that the spatial reso-
lution of the DEM and forest data is between 5 and 30 m.

4.1 Model performance

We investigated the performance of the AutoATES v2.0
model compared to the v1.0 model both designed to iden-
tify potential release and runout areas. Although the under-
lying concept remains consistent between the two versions,
numerous components have been altered or refined in the lat-
est iteration.
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4.1.1 Extreme terrain (dev1)

The first modification to the AutoATES v2.0 model was to in-
clude the extreme terrain class from ATES v2.0. We incorpo-
rated the new class by including another slope angle thresh-
old (SAT). We measured the importance of this change by
using the results from the ablation study (Table 5, dev1). The
result is that the ablated model performs better with regards
to F1 score (e.g., 4.51 % improvement for Bow Summit and
1.41 % for Connaught Creek) than the reference model. This
means that excluding the SAT34 threshold (e.g., complex/ex-
treme threshold) increases the accuracy of the model. How-
ever, without it, the model would be using the old ATES v1.0
classification excluding extreme terrain. This implies that ex-
cluding the SAT34 threshold enhances the model’s numerical
accuracy. Nonetheless, its absence would cause the model to
employ the outdated ATES v1.0 classification, which does
not account for extreme terrain and therefore diminishes its
value for ATES v2.0.

When working with classification problems, decision
boundaries are the borders or thresholds that separate dif-
ferent classes (Lee and Landgrebe, 1993). The complexity
of the decision boundaries often depends on the number of
classes. When there are fewer classes, the decision bound-
aries tend to be simpler, as there are fewer regions to separate
in the feature space. With simpler decision boundaries, the
model may have an easier time making accurate predictions,
as there is less chance of overfitting or incorrectly assigning
data points to the wrong class. This could lead to higher pre-
cision, recall, and ultimately higher F1 scores. We believe the
fewer classes in the ATES v1.0 is the reason why it performs
better than the ATES v2.0 reference model.

4.1.2 Terrain traps (dev2)

To improve the model’s ability to identify terrain traps
such as depressions and gullies, another alpha angle thresh-
old (AAT) was added to be included in complex terrain. The
previous model only had AAT thresholds, which defaulted
terrain into simple and challenging terrain. The extra com-
ponent was added in the early stages of the development
of AutoATES v2.0. The ablation analysis shows that this
change has very little effect on the overall performance of the
model (Table 5, dev2) with a 0.14 % decrease for Bow Sum-
mit and 0.08 % for Connaught Creek. This method would not
help in modeling other common terrain traps such as cliffs,
crevasses, and forests. We have not made any attempts to
model other types of terrain traps because we believe it would
have a very limited effect on the overall performance given
our spatial resolution.

4.1.3 Forest data in PRA (dev3 and dev4)

Forest density is one of the most important parameters for
ATES classification. In the original PRA v1.0 from Veitinger

et al. (2016) it was not possible to include forest density as
one of the inputs. The modified PRA v2.0 used in the Au-
toATES v2.0 model builds on the work from Sharp (2018).

When comparing the importance of PRA v1.0 (dev3) and
PRA v2.0 (dev4) to the reference model, we see that the for-
est density into PRA is among one of the most important
components (Table 5, dev3-4) (e.g., 7.09 %–9.27 % decrease
for Bow Summit and 3.65 %–4.67 % for Connaught Creek).
Comparing the results between PRA v1.0 and PRA v2.0, we
can measure the difference between the two models without
forest input. We found that the PRA v1.0 performed better
than v2.0 in Bow Summit, but the opposite is the case in
Connaught Creek. However, given that Larsen et al. (2020)
did not adapt the PRA v1.0 model according to the recom-
mendations of Veitinger et al. (2016), we believe the changes
are conceptually still important even though there are no sub-
stantial differences between the two in the ablation valida-
tion.

4.1.4 Roughness in PRA

The PRA was initially developed and optimized for a 2 m
DEM, while we utilize a 10 m DEM as the default. If rough-
ness were calculated using a 10 m DEM, it would measure
the roughness at basin scale, instead of the roughness at the
slope scale (Blöschl, 1999; Blöschl and Sivapalan, 1995).
The roughness is also dependent of a snow depth value,
which is impossible to define without assessing the snow-
pack properties at a given time. Sykes et al. (2023) demon-
strate minimal value in running AutoATES v2.0 using high-
resolution DEMs (< 5 m). Sykes et al. (2023) further illus-
trate the impact of DEM scale on ATES mapping. We have
therefore chosen to remove the roughness parameter from
our version of the PRA model.

4.1.5 Flow-Py (dev5)

The previous iteration of AutoATES had some severe issues
with the runout simulation of avalanches where avalanches
were simulated using a flow model for water. The Flow-
Py simulation works in a similar fashion where the flow is
limited by an alpha angle threshold, but the flow model has
been changed to give more realistic outputs in terms of snow
avalanches. Some other advantages with the Flow-Py simu-
lation suite are that there are additional outputs such as cell
count and zdelta, which makes it possible to account for the
exposure of multiple overlapping paths and avalanche paths
with high kinetic energy. When we compare the Flow-Py out-
puts compared to the TauDEM, we see a substantial improve-
ment when using the Flow-Py outputs (Table 5, dev5), with a
4.64 % decrease for Bow Summit and 5.51 % for Connaught
Creek.
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4.1.6 Post-forest classification (dev6)

Even though the inclusion of forest density in the PRA model
improved the performance of AutoATES, we found the need
to reclassify sections that were obviously densely forested
and resulted in a higher ATES rating than needed. To improve
this, we added a post-forest classification criterion. This was
efficient for Connaught Creek but less efficient for Bow Sum-
mit (Table 5, dev6) (1.81 % decrease for Bow Summit and
23.08 % for Connaught Creek). The forest impact of dev6 is
minimal at Bow Summit but important for Connaught Creek.
The reason for this is unclear, but one hypothesis is that there
is more steep forested terrain in Connaught Creek, and the
model therefore relies more on the post-forest classification.
Connaught Creek also has more large runouts and overhead
hazard that rely on the post-forest classification.

In the future, we hope to be less reliant on the post-forest
classification criteria by optimizing the forest detrainment
module in Flow-Py. This module of Flow-Py makes it pos-
sible to reduce the runout length in areas with dense forest.

4.1.7 Discrepancies

The discrepancy in accuracy scores between the two study ar-
eas is mainly attributed to the complex terrain of Connaught
Creek with many smaller topographical features and the lim-
itations of the BC VRI forest data resolution in capturing
local forest characteristics (Sykes et al., 2023). This issue
significantly affects the assessment of overhead hazards and
the delineation of boundaries between ATES classes, with
challenging (2) terrain showing the lowest accuracy and high
rates of underprediction errors. Sykes et al. (2023) provide an
extended discussion of the differences between the two study
sites.

4.2 Application

AutoATES v2.0 is meant to be a stand-alone tool for map-
ping large-scale areas, but it should first be validated for a
smaller area by experts to assess whether there is a need to
make some changes to the input parameters. When the user
is confident with their maps, the parameters could be used to
generate ATES maps for a larger surrounding area.

While it is possible to run the presented version of Au-
toATES v2.0 without making any changes, we recommend
a workflow where the optimal parameters are first identi-
fied. The suggested parameters in this paper are valid for
the two test areas in western Canada. When applying Au-
toATES v2.0 for other areas, the parameters will likely need
to be re-evaluated. Applying the parameters presented in this
document to other regions without site-specific calibration
risks inaccurate ATES mapping and potentially catastrophic
outcomes. Users should apply this model at their own risk.
We therefore urge all future users of our code to conduct
a local validation before proceeding with the generation of

large-scale ATES maps. This is especially important when
the target group is the general public.

Begin with a relevant test area which should include a vari-
ety of terrain and all terrain classes. We recommend a work-
flow where the PRA model and Flow-Py are processed inde-
pendent of the AutoATES classifier. The output from PRA
and Flow-Py is easier to validate by local experts compared
to the AutoATES output. It is more intuitive as avalanche
experts have more tangible experience with identifying start
and runout zones. In our experience, we complete approxi-
mately 1–3 iterations of PRA and Flow-Py before moving on
to the AutoATES classifier. In general, we have experienced
that the “c” parameter in the Cauchy function for slope an-
gle combined with the max alpha angle for Flow-Py is the
most effective for customizing the output. We also recom-
mend fine-tuning all parameters in the Cauchy function for
PRA when using forest density data that are different than
what we used in this validation. This could be done by us-
ing a local avalanche terrain expert to review the output from
each Cauchy membership value and adjusting it until the out-
put is appropriate.

When these steps are done in advance, our experience is
that the output of the AutoATES classifier tends to be much
more accurate. The final AutoATES could then be shared
among local experts who provide further feedback. Changes
could then be made to the AutoATES classifier parameters
and improved during an iterative process. When the final in-
put parameters are set, they could be used to generate larger
areas. A description of the input parameters used should be
shared as metadata with the resulting spatial maps.

Large-scale application

We have used the DEM from ALOS at a spatial resolution
of 26 m. This dataset is available worldwide and could en-
able large-scale application of AutoATES v2.0 in the future.
The main limitation right now is that to our knowledge, there
are no global forest data available that have a suitable ac-
curacy and resolution. In all countries we have tested Au-
toATES (Norway, Canada, USA) there has been a consider-
able testing period to determine the best available forest data
and fine tuning of model parameters to work well with local
forest data. This is the rationale for providing multiple “de-
fault” settings for the input forest data including stem density,
canopy cover, and basal area. The PRA parameters used for
each of these are unique and need to be locally tested before
large-scale application of AutoATES v2.0.

4.3 Limitations

Despite the notable improvements of the AutoATES v2.0
model, there are still some limitations that should be ac-
knowledged.

In the context of large-scale ATES classification (e.g., Nor-
way, 385 207 km2), Flow-Py becomes computationally
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heavy, which may present challenges when processing large
datasets or applying the model in real-time applications. We
executed the Flow-Py algorithm across all of Norway on
an Amazon Web Services Elastic Cloud Compute Instance
(AWS EC2 c6g.metal), which took 30 d to complete at a cost
of USD 1600. This could potentially limit the scalability and
accessibility of the model for certain use cases and users with
limited computational resources.

Determining the optimal input parameters for the Au-
toATES model is important to get the best performance pos-
sible. The suitability of these parameters across different
snow climates and terrain types remains an open question.
Further research and validation are needed to ensure that the
chosen parameters provide accurate and reliable results in
various contexts. Users should not adopt the input parame-
ters stated in this paper.

The model does not account for changes in vegetation over
time such as natural events like landslides or forest fires.
Therefore, it is important to update the ATES mapping pe-
riodically to account for major changes in the landscape.

Due to the limited sample size of mapped class 0 ter-
rain in the validation datasets that we used to develop Au-
toATESv2.0, we do not feel that there has been sufficient re-
search on this topic to warrant publication at this time. Au-
toATES is a promising tool for estimating areas with no ex-
posure to avalanche terrain; however there is significant li-
ability associated with deeming an area safe from avalanche
hazard. Further development of the autoATESv2.0 model and
consultation with avalanche community stakeholders is nec-
essary before delving into automated mapping of class 0 ter-
rain.

Addressing these limitations in future work could enhance
the performance, applicability, and reliability of the Au-
toATES model, ensuring its effectiveness across a wide range
of climates and terrain characteristics.

5 Conclusion

In conclusion, the development of AutoATES v2.0 has fo-
cused on creating a more robust and accurate model for
mapping avalanche terrain into ATES ratings by incorporat-
ing new components to improve the model. This has been
achieved by integrating new components that enhance the
model’s performance, including the addition of an extreme
terrain class, improved PRA with support for multiple forest
density types, Flow-Py, and a post-forest classification cri-
terion. Moreover, a significant portion of the code has been
rewritten to increase efficiency and eliminate dependency on
proprietary software.

However, limitations related to the determination of op-
timal input parameters for different regions and climates
need to be considered for future model development. By
addressing these limitations and continuing to refine the
model through iterative testing and expert feedback, Au-

toATES v2.0 can serve as a valuable tool for avalanche risk
assessment and decision-making in a wide range of snow
climates and terrain types. Ultimately, our goal is for Au-
toATES v2.0 to enable efficient, large-scale, and potentially
global ATES mapping in a standardized manner.

Code and data availability. To reproduce the results from this
study, please find the AutoATES v2.0 model and valida-
tion data from the ablation study in the OSF repository
(https://doi.org/10.17605/OSF.IO/ZXJW5, Sykes et al., 2023. For
future application of AutoATES v2.0, a GitHub repository (https:
//github.com/AutoATES, Toft et al., 2024) will be maintained with
future iterations of the model available (Toft et al., 2024).
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Outdoor recreation continues to increase in popularity. In Norway, several avalanche fatalities
are recorded every year, but the accurate calculation of a fatal accident rate is impossible
without knowing how many people are exposed. We attempted to employ signaling data from
telecom networks to enumerate backcountry travelers in avalanche terrain. Each signaling
data event contains information about which coverage area the phone is connected to and
a timestamp. There is no triangulation, making it impossible to know whether the associated
phone is moving or stationary within the coverage area. Hence, it is easier to track the phone’s
movement through different coverage areas. We utilize this by enumerating the number of
people with phones traveling to avalanche-prone terrain for the 2019-2020 winter season. We
estimated that 13,666 phones were in avalanche terrain during the season, ranging from 0 to
118 phones per day with an average of 75 phones per day. We correlated the number of phones
per day against amount of daylight (R2=0.186, p < 0.01), weekends and holidays (R2=0.073, p <
0.01), and number of bulletin views (R2=0.045, p < 0.01). Unfortunately, the validation revealed
discrepancies between the estimated positions in the mobile network and the true reference
positions as collected with a GPS. We attribute this to the algorithm being designed to measure
urban mobility and the long distance between the base transceiver stations in mountainous
areas. This lack of coherence between the signaling data and GPS records for rural areas in
Norway has implication for the utility of signaling data outside of urban regions.

Keywords avalanche, risk, signaling data, telecom, non-urban areas

The number of avalanche fatalities is gen-
erally well-documented (Thapa, 2010;

Willibald et al., 2019), but obtaining a reli-
able measure of the total population (denom-
inator) of people accessing avalanche terrain
is difficult due to the open-access nature of
these activities (Winkler et al., 2016). How-
ever, there are multiple indirect proxies sug-
gesting that backcountry travelers in avalanche
terrain have increased in recent years (Birke-
land et al., 2017; Jekich et al., 2016; Techel et
al., 2016; Winkler, 2015). Backcountry travel-
ers voluntarily expose themselves to avalanche
risk during recreational activities such as skiing,
snowboarding, snowshoeing, and snowmobil-
ing (Johnson et al., 2020).
If the entire population of backcountry trav-

elers accessing avalanche terrain was known, it

would be possible to calculate the likelihood of
being killed by doing that activity in terms of mi-
cromorts. A micromort is a unit of risk, which
denotes a one-in-a-million chance of death
(Howard, 1984). The calculation of micromorts
is important as it would permit comparison
to other recreational activities (e.g., skydiving,
scuba diving and mountain biking) and a com-
mensurate level of interventions, through tar-
geted education and hazard awareness over
time.
Several studies have tried to estimate the

risk of death from recreational skiing, using
such methods as rough estimates (Valla, 1984),
light barriers and counting at specific locations
(Zweifel et al., 2006), surveys (Sole & Emery,
2008; Winkler et al., 2016), and archived logs
from mechanized skiing (Walcher et al., 2019).
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Take-home Message
We attempted to utilize signaling data to enumerate back-

country travelers in avalanche terrain. A representative

sample would enable us to calculate the fatal accident rate.

Unfortunately, the spatial validation revealed discrepancies

between the estimated positions in the mobile network and

the true reference positions collected with a GPS.

However, many of these methods only repre-
sent a crude measure of backcountry users
for a small defined area, short time frame, or
generalized survey data.
In Norway, an average of 6.5 avalanche fa-

talities have occurred per year over the last
10 years, but this has varied from 2 in the
2016-2017 winter season to 13 in the 2018-
2019 season (Figure 1). While these fatali-
ties provide some insight into avalanche risk,
we are unable to estimate the fatality rate, as
we do not have an estimate of the total num-
ber of people that expose themselves to this
risk. Therefore, we are unable to assess if
these changes in avalanche fatalities are due
to changes in the number of people exposed,
the snow cover, or the risk management. The
latter is of great interest for avalanche fore-
casting services and educational institutions
worldwide. Currently, no suitable methods
exist to measure the effects of structured in-
terventions, such as avalanche education or
avalanche forecasting.
Furthermore, in the last 5 years, the trend-

line for avalanche fatalities has flattened out
at approximately 6 fatalities (Figure 1, 10-year
moving average). However, over this same pe-
riod, we find it likely that there have beenmany
more people in the mountains due to the in-
creased popularity of backcountry travel. This
increase is supported by various proxies, in-
cluding the number of unique users access-
ing online avalanche forecasts (Engeset et al.,
2018). Therefore, does this increase in use
and relatively steady count of fatalities suggest
that the fatal accident rate has decreased over
time? This is difficult to ascertain when we do
not have a reliable base rate estimate of how
many people are exposed to avalanche terrain
every day or from year to year.

While our focus is on backcountry travelers
in avalanche terrain, the same issue is shared
by many other outdoor recreation activities, in-
cluding but not limited to hiking, mountain bik-
ing, paragliding, trail running, and white-water
kayaking. The fatalities and respective hazard-
causing deaths are documented in all of these
cases. The number of hours backcountry trav-
elers expose themselves to avalanches, also
known as the base rate, is absent (Johnson
et al., 2020; Kahneman & Tversky, 1973). As
such, a method to efficiently collect data on
avalanche exposure is of value to the broader
community of outdoor recreation.
Avalanches cause significant human and ma-

terial losses (Schweizer, 2008). Mitigation poli-
cies and prioritization require a qualitative ba-
sis fromwhich to design strategies and allocate
resources. WMO (2021) recommends a risk-
based approach to warnings and mitigation
(adopted by government agencies such as the
Norwegian Water Resources and Energy Direc-
torate) that requires base rate data. Due to the
lack of exposure data, base rates are challeng-
ing to calculate in terms of people traveling in
avalanche terrain. With base rate data, it is eas-
ier to understand which natural hazards need
the most attention, the amounts of resources
that are needed, andwhichmeasures aremost
efficient from a cost-benefit perspective.
The base rate information could also be

used to validate whether an increase in objec-
tive danger correlates with avalanche danger
levels. Winkler et al. (2021) calculated a relative
risk between the danger levels, but without a
base rate, they could not calculate the absolute
risk (i.e., micromorts). Furthermore, without a
valid base rate measure, Bayesian approaches,
which utilize diagnostic tests (also known as
stability tests) to assess avalanche decision-
making, lack important input data (Ebert, 2019;
Techel et al., 2020).
Given the ubiquitous use of mobile phones

in Norway (Statista, 2021), with 99.9% of
the population having access to 4G coverage
(MLGM, 2021), there is a potential opportu-
nity to obtain some insight into the total ex-
posure to avalanche terrain. Telia, one of the
largest mobile network operators (MNOs) in
Norway, collects a vast amount of anonymized
data through what is referred to as signaling
data. Every time a phone communicates with
a base transceiver station (BTS) (e.g., a phone
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Figure 1 Recreational avalanche fatalities in Norway by winter season from 1972 to 2021 with a 5 and 10-year moving
average (NGI, 2019; Varsom, 2021).

call, text message, or the phone itself checks
for new emails), signaling data is generated. On
average, a Telia subscriber generates around
300-400 active and passive signaling events a
day, or roughly 15 events per hour. The vast
amount of data collected makes it an appeal-
ing data source when studying human mobility
(Zhao et al., 2016).
During the last few decades, telecom data

have been widely used in the research com-
munity. Many useful findings of human activity
have been reported for urban areas (González
et al., 2008; Song et al., 2010). To our knowl-
edge, there is no research applying telecom
data in non-urban areas other than Francisco
et al. (2018). The reason for this could be the
relatively lower density of BTSs in rural and
mountainous terrain, with the majority located
where people live, work, and travel (Zhao et al.,
2016).
Norway has a vast number of remote moun-

tains, fjords, and islands. It is also among the
least densely populated countries globally, with
a population density of 15 people per square
kilometer (UN, 2021). Despite this, the MNOs
in Norway have been ranked among the top 10
providers worldwide with respect to cell phone
coverage for several years in a row (Speedtest,
2021). As a result of the excellent coverage,
most mountainous areas in Norway have full
4G coverage (Telenor, 2021; Telia, 2021), and

therefore their signaling data are expected to
have some utility in these areas.
In this study, we attempted to use

anonymized and aggregated signaling data to
count how many people expose themselves to
avalanche terrain around Tromsø, Norway. We
selected this area as historically, nearly 2/3 of
all recreational avalanche fatalities in Norway
occur in this county (Varsom, 2021). However,
because no one has been able to accurately
estimate how many people enter avalanche
terrain in this region, it is impossible to say
whether this high number of fatalities is solely
due to more users in the area, or if it is more
dangerous to ski in the area around Tromsø
compared to the rest of the country. Without
the base rate information, we are unable to
determine which of the two hypotheses is
correct (Johnson et al., 2020; Kahneman &
Tversky, 1973).
Secondly, we also want to use this method

to help assess whether the fatal accident rate
(FAR) from avalanches has increased or de-
creased during the last decade. Despite the
number of avalanche fatalities over the last
ten years having been relatively stable, there
is a general agreement that there has been
a significant increase in traffic amongst dif-
ferent groups of backcountry travelers in the
same period. This view of increasing use is
supported by a range of proxies, including the
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number of people seen in avalanche terrain,
the number of vehicles at trailheads, and the
sale of backcountry traveling equipment. This
increase of use, combined with a relatively sta-
ble fatality count, suggests that the FAR has
decreased during the last few decades (Techel
et al., 2016).
The challenges of determining the number

of people exposing themselves to avalanche
risk in the backcountry and calculating the risk
of skiing in avalanche terrain, have been ap-
proached by several others using a range of
imperfect methods. For example, Zweifel et
al. (2006) used light barriers and voluntary
registration boards at four sites near Davos,
Switzerland. Using these methods, Zweifel et
al. (2006) calculated the individual risk factor
for this population and found it lower than
the risk of driving a car. However, this was
for very limited area of Switzerland, and repre-
sents an engaged and self-selecting audience
that voluntarily provide registration informa-
tion. There have also been several studies us-
ing GPS-tracking and surveys to assess terrain
use (Buhler & Floyer, 2016; Hendrikx & John-
son, 2014; Hendrikx et al., 2016; Sykes et al.,
2020; Thumlert & Haegeli, 2017; Winkler et al.,
2021), but these studies are not representa-
tive for the whole population and are generally
skewed towards more engaged and advanced
users. Passive tracking of backcountry users
with time-lapse camera technology has also
been used (Saly et al., 2020), but was also lim-
ited to a small geographic area. The use of
telecom data for avalanche terrain is limited to
a single study by Francisco et al. (2018), who
undertook a case study to track backcountry
users in the Sorteny valley, Andorra. They ob-
tained access to raw call detail records (CDRs),
including an estimated position for each record
with an accuracy of 150 meters for a period
of 20 days. From these CDRs, they created
daily frequency plots and compared them with
avalanche danger, temperature, wind, snow
depth, solar radiation, and precipitation. Un-
fortunately, Francisco et al. (2018) did not pro-
vide any information regarding how the po-
sition (latitude, longitude) was established or
validated.
Our study attempted to build on these prior

studies and used truly anonymized signaling
data from Telia Company to count the to-
tal number of backcountry users within one

avalanche forecasting zone in northern Nor-
way. We also explored how these counts
changed in relation to known drivers of usage,
including weekends and holidays, and variable
environmental conditions.

Methods

Telia uses telecom network data, which is one
of the most extensive and continuously gen-
erated datasets in society today. The network
data exceeds billions of data points every day
in each Nordic country. These are stored in
the Telia database for billing, network optimiza-
tion, and other purposes. However, in con-
trast to regular data services, Telia can safe-
guard that no individuals can be identified in
the dataset, while still providing extrapolated
national movement patterns that are statisti-
cally representative for the entire population
and not just Telia subscribers.
Using signaling data, Telia can produce

mobility insights through a GDPR-compliant
method. They do this by never storing, pro-
cessing, or exposing data that can identify an
individual, and the smallest result generated
is in groups of 5 individuals within the same
movement chain (Ågren et al., 2021).
Telia does not have the exact position of

each phone in their signaling data, and new
data is only generated when the phone is ac-
tively or passively used (i.e., calling, SMS, trans-
fer of data), but most smartphones today are
constantly checking for updates, and thus con-
stantly generating signaling data.
Each signaling data record includes a times-

tamp and the coverage area (Cell ID) to which
the phone is connected. The best server es-
timate (BSE), which is the estimated coverage
area, is defined for each Cell ID.Most BTSs have
several Cell IDs due to the different antennas
pointing in diverging directions. Thus, the Cell
ID provides more specific information about
the position of the phone than only using the
BTS. The BSE consists of uniquely shaped poly-
gons representing the coverage area of each
Cell ID. The MNOs collect a lot of data, but
the utility of that data for research purposes
is limited due to privacy concerns. Telia Com-
pany does not use any triangulation method-
ology to define a more exact location due to
their strict privacy policy, but by analyzing the
data over time, it is possible to generate move-
ment chains from the signaling data. Telia’s
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algorithms process the movement chains to
form insights. They were originally intended
for urban areas, but we have employed them
to assess whether we can count skiers’ phones
in avalanche terrain using the insights from
signaling data.
The algorithms that process the movement

chains are designed to capture three differ-
ent patterns. The overview below intends to
provide a working understanding of how Telia
distill relevant data for each report.

1. Activity report – where crowds are spending
time without directional movement.

2. Routing report – where crowds are passing
by without stopping.

3. Origin-destination report – the trips made
by crowds between origins and destinations.

In this study, we utilize the activity report,
which captures howmany subscribers spend a
defined amount of time in a defined geograph-
ical area. The activity report can be produced
from a regional level and down to a statistical
grid, with the lowest resolutions being 500 x
500 meters in a dense urban area. The res-
olution is flexible, so the grids are larger to
secure GDPR compliance in rural settings. It
is possible to filter the amount of time spent
in a defined area, or use timestamps to reveal
when visitors arrived or left an area during the
day.
The spatial resolution of mobile network

data is dependent on the size of the Cell ID
that the cellphone has been communicating
with. Each BTS has several Cell IDs with a geo-
graphic coverage area. When a device moves
around it will connect to multiple different Cell
IDs, leaving a movement chain. The initial pro-
cessing involves turning this raw data trace into
dwells (activities taking place in one location)
and movements (Figure 2).
To utilize this methodology, we defined a ge-

ographical area for the avalanche terrain. We
also defined where people live (i.e., populated
areas) to identify areas that we could distin-
guish between avalanche terrain and popu-
lated areas. We defined populated areas and
avalanche terrain on a map using GIS software
(Figure 3). Definitions and methods for defin-
ing these areas are outlined in the sections
below.

Populated areas

Statistics Norway (2021) has created a GIS layer
with the number of inhabitants per 1x1 square
kilometers. We used this layer and defined
populated areas as grid cells with more than
ten inhabitants.

Avalanche terrain

Avalanche terrain can be defined using the
Avalanche Terrain Exposure Scale (ATES)
framework (Statham et al., 2006). Using the
nationwide ATES layer developed by Larsen
et al.(2020), we defined avalanche terrain as
the sum of simple, challenging, and complex
avalanche terrain. Numerous houses and
roads lie within avalanche terrain (Kalsnes et al.,
2021). We removed all avalanche terrain within
300 meters of a house or a road from the GIS
layer. The distance of 300 meters was chosen
to avoid counting people that are driving a car
or living in a house, but not moving between a
populated area and avalanche terrain.

Mobility analysis

The two layers with populated areas and
avalanche terrain were exported and shared
with Telia. They applied the layers with their
BSE of the coverage area and identified ar-
eas where it was possible to distinguish be-
tween populated regions (purple) and poten-
tial avalanche terrain (red) (Figure 4). Us-
ing the insights from the movement chains,
Telia counted how many phones traveled into
avalanche terrain using signaling data.
Given the nature of the terrain, the most

common backcountry trips around Tromsø
include a vertical elevation gain of between
800-1200 vertical meters. Assuming a regu-
lar uphill pace of 400-600 vertical meters per
hour, this could cause uphill travel to take as
few as 2 hours for the fittest recreationists.
Most people also hike and ride during the day-
time. Therefore, we added a filter that only
kept phones that were in avalanche-prone ter-
rain for at least 2 hours between 07.00-23.00,
during the 2019-2020 avalanche forecasting
season (1st of December until 31st of May). This
period includes the spring season when the
Covid-19 pandemic started. Large parts of Nor-
way closed down on March 13th and there is
likely a drop in tourists after this date.
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Figure 2 The movement of each cellphone could be tracked through different coverage areas.

Figure 3 The case study area Tromsø, Northern Norway.
Avalanche terrain is colored in red, while the populated areas are
colored in dark gray. The avalanche forecast regions are delineated
using a dashed line on the inset map.

Validation

To improve the insights from the movement
chains, Telia has developed an algorithm that
can assign the most likely position within the
Cell ID. Telia has targeted the algorithm against
normal behavior, which means that the posi-
tions will be biased towards populated areas
and roads where most people travel. The in-
depth details regarding the algorithm are con-
sidered a trade secret and are not disclosed
due to Telia’s commercial interests. Using the
output from the algorithm enables us to com-
pare the GPS position to signal data-derived
position. The GPS on their watch has a position
accuracy of 5-10 m (Wing et al., 2005).

Correlation with other usage factors

We correlated the number of people per day
against the amount of daylight, number of
avalanche bulletin page views, weekends and
holidays, the daily avalanche danger, percent-
age of cloud cover, wind strength, and precip-
itation. All weather parameters were aggre-
gated between 07.00 in the morning and 23.00
in the evening to only account for the condi-
tions during daytime. Amount of daylight was
calculated for a latitude of 69° North (SatAgro,
2019). The daily avalanche danger level was
provided by Varsom (2021) and the number
of page views for the avalanche forecast on
Varsom.no was provided by Google Analytics.
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Figure 4 Example of identified areas around Tromsø where the Telia could distinguish between populated areas
(purple) and potential avalanche terrain (red) given their BTS coverage in the region.

Table 1 Number of people in potential avalanche terrain versus
different variables that could be controlling number of people in
avalanche terrain. * Variable is not significant.

Number of people per day versus: R2 p-value

Amount of daylight 0.186 < 0.01
Weekend and holidays 0.073 < 0.01
Avalanche forecast page views 0.045 < 0.01
Avalanche bulletin 0.007 0.244*
Cloud cover 0.004 0.374*
Wind strength 0.002 0.521*
Precipitation 0.000 0.917*

Weekends and holidays were encoded as bi-
nary values of 0 or 1, with weekends and holi-
days coded as 1 and weekdays coded as 0. The
weather variables were downloaded from the
Norwegian Centre for Climate Services (2021)
on an hourly basis.

Results

Mobility analysis

Using the mobility analysis methods, we esti-
mated that 13,666 people were in avalanche
terrain for at least two hours during the 2019-
2020 season (December 1st, 2019, to May 31st,
2020, consisting of 182 days). The number
of people in avalanche terrain per day varied
from 0 to 118, with an average of 75 people
per day.
Amount of daylight had the strongest, albeit

very low, correlation (R2 = 0.186, p < 0.01), fol-
lowed by weekends and holidays (R2 = 0.073,
p < 0.01) and the number of forecast page
views (R2 = 0.045, p < 0.01). We also correlated
against precipitation, wind, daily avalanche dan-
ger and cloud cover, but none of these param-
eters were statistically significant (Table 1).

Positional Validation

Using a phone with a special SIM card that
was whitelisted (i.e., not anonymized in the
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Table 2 Minimum, maximum, median, and 95% of all point distances between GPS track and signaling data spatial
locations.

Min Max Median 95% of points within N (samples)

Trip 1 455 m 8,216 m 4,188 m 7,580 m 74
Trip 2 7,876 m 21,502 m 13,607 m 20,424 m 93
Trip 3 19 m 16,213 m 2,596 m 14,212 m 135
Trip 4 1,997 m 8,919 m 6,911 m 8,736 m 114
All trips 19 m 21,502 m 6,523 m 12,920 m 416

telecom network—users gave specific consent
for this), our validation focused on the posi-
tional accuracy of the signaling data relative
to the synchronous GPS records. When we
compared these, we discovered that there was
a discrepancy between the two data sets. In
the examples (Figure 5), we can see that the
estimated positions from the signaling data
does not resemble the GPS track. Most of the
signaling data positions are estimated to be
in the valley bottom, following road corridors
or out on the fjords. For all four trips, the po-
sitional difference ranged from 19 meters to
21,502 meters. The median positional differ-
ence was 6,523 meters and 95% of the points
were within 12,920 meters (Table 2).

Discussion

A qualitative review of the four GPS tracks and
the signaling data estimated locations shows
discrepancies in the estimated positions from
the two data sets as shown in Figure 4. This
is further supported by our quantitative analy-
sis, where all trips were off by several hundred
meters to several kilometers (Table 2). Clearly
these positional results are disappointing, and
in strong contrast to the reported 150-meter
accuracy of the geolocation in mountainous
terrain in Andorra (Francisco et al., 2018). It
is difficult to directly compare our results re-
garding accuracy given that we do not know
how Francisco et al. estimated their positional
data, or how they validated the accuracy of the
signaling data. The differences could be due
to several factors, including the potential lower
density of BTSs in Troms and/or the algorithm
in Norway being designed by Telia for use in ur-
ban areas. By comparison, Jansen et al. (2021)

found the position accuracy of telecom data to
be roughly 500 meters in the cities and 3,000
meters in rural areas.
To validate our data, we wanted to check

whether the Telia’s algorithm estimated the
correct locations in rural areas where the cov-
erage areas for each Cell ID are much larger.
The algorithm is tuned to work in populated
areas where the coverage areas for each Cell
ID are small, which makes it easier to estimate
the position moving through different cover-
age areas. The difference in density of BTSs
was one of the significant uncertainties in our
study. After sending mountain runners out
with whitelisted phones, we learned that the
positioning of each phone did not work as well
as we had initially hoped. When whitelisted
phones were compared with actual GPS tracks,
we found that the signaling data-derived loca-
tions would follow the road corridors leading to
the mountains. When our mountain runners
parked their cars at the foot of the mountain
and started running up, the estimated posi-
tion stayed in the valley bottom or out on the
fjords. We quickly learned that what we initially
believed to be a good dataset of ski traffic in
the region from the signaling data was biased
by the large coverage area of each Cell ID out-
side the cities. We think there are two primary
reasons for this:

1. Telia’s algorithm is targeted using data from
people travelling on roads between houses,
work, stores, etc.

2. The coverage area outside the populated
areas is too large to define whether people
are up in the mountains or not.
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In the bigger picture, these problems are
not that surprising. Mobile networks are built
and optimized for urban areas where most
people live, work and travel. Telecom com-
panies specifically design and build their net-
works to cover large areas with the fewest pos-
sible number of antennas. We are trying to
achieve the opposite, capturing signaling data
from unpopulated areas where people usually
do not travel due to lack of infrastructure. In
a broader sense, this is the main limitation of
our ability to accurately estimate the position
of each phone in rural areas.
We also compared the data with parame-

ters we expected would affect the number of

people out in the mountains to initially verify
our data. The parameters were amount of
daylight (expected positive correlation), num-
ber of bulletin page views (expected positive
correlation), the occurrence of weekends and
holidays (expected positive correlation), rain
(expected negative correlation), cloud cover
(expected negative correlation), wind strength
(expected negative correlation), and avalanche
danger (expected negative correlation). For
weather data, we only investigated data be-
tween 07.00-23.00 because this was the pe-
riod, we counted people and would likely af-
fect the decision to go skiing or not. The most
important coefficient was amount of daylight,

Figure 5 Comparison of 4 different color-coded trips using GPS data (line) and estimated positions from the signaling
data (circle, triangle, square and pentagon).
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followed by weekend/holidays and number of
bulletin page views. The various weather pa-
rameters were not significant and had very low
coefficient scores. The results are logical be-
cause most backcountry travelers are outside
when there is daylight in the Arctic, but we had
hoped for a better fit towards the weather pa-
rameters. This lack of fit in our simple correla-
tions is most likely due to the inaccurate loca-
tion positions from the signaling data, resulting
in the additional counts of users that were not
in avalanche terrain, but were included in our
data set. This resulting data set is therefore
much noisier and includes people in other ar-
eas outside of the immediate populated areas,
but not necessarily in avalanche terrain.

Original Purpose
The objective of this manuscript is to document our at-
tempts to use signaling data from telecom networks to
count the number of backcountry travelers in avalanche
terrain within the Tromsø avalanche forecasting region in
Northern Norway. If this method had permitted an accu-
rate count of people in avalanche terrain, we would have
been able to obtain a very representative sample of overall
terrain usage. Combined with the observed number of fa-
talities in the same avalanche forecasting region, we would
also have been able to calculate how risky the activity is in
terms of micromorts. Furthermore, we could have tracked
terrain usage over several winter seasons to obtain data to
assess whether there are any trends concerning the num-
ber of people accessing avalanche terrain over time and
whether increased interventions, including the uptake of
avalanche awareness courses and improved avalanche fore-
casting, is evident in a change in micromorts over time. To
our knowledge, there have not been any studies utilizing
telecom network data in non-urban areas. We believe that
our results are significant for a broader audience to show-
case potential pitfalls when using this type of data. We also
highlight the importance of validating this type of data.

Limitations

As already noted in our discussion above, the
positional accuracy of the signaling data when
compared to the GPS data is the main limita-
tion to the use of this methodology as currently
presented. Access to the raw data, prior to
analysis by the algorithm, which is targeted for
urban use, might alleviate some of these issues,
but this was considered outside the scope of
the current study.
Furthermore, the reliability of any mobile

phone tracking in avalanche terrain depends
on users leaving their phone turned on for the
duration of their trip. Many backcountry trav-
elers elect to turn their cell phones off to pur-
posefully save battery power for emergency
calls. Travelers are also generally encouraged
to turn their cell phones off or to flight mode to
prevent potential interference with avalanche
transceivers. This reality was reflected in a win-
ter backcountry survey by Ortega et al. (2018)
in Alaska, which showed that of the 63 users
interviewed, approximately half of them typi-
cally leave their phone turned on whereas the
rest turn theirs off or to flight mode.
The main limitation in making telecom data

viable for counting people in avalanche-prone
terrain is the lack of numerous BTSs in moun-
tainous areas. A more specific algorithm could
improve the data quality for this use case, but
the BTS density is likely the key factor that
would make the methodmore viable if a moun-
tainous area with a higher density of BTSs is
found.

Conclusion

In urban areas, each BTS with several Cell IDs is
close together, which means that Telia can es-
timate more accurate positions given the small
coverage area for each Cell ID. Even though
Norway has exceptional cellphone coverage
compared to many other countries, it is still in-
sufficiently dense in our non-urban and moun-
tainous study area case study. The long dis-
tances between the BTSs, and therefore large
coverage areas, combined with the populated
area-targeted algorithm, are the most likely
reasons for the inability to accurately calcu-
late the position of each phone in avalanche
terrain. The poor correlation between the
GPS track and the position of the whitelisted
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phones means that we cannot trust the po-
sitional accuracy of this initial dataset as pro-
vided by Telia. Future work should focus on
making a model that is independent of where
most people travel. This study provides a use-
ful, yet unsuccessful, case study that demon-
strates the limits of signaling data for use in
non-urban mountainous areas. It has rele-
vant implications for the application of signal-
ing data tracking to other outdoor recreation
activities. We highlight the importance of val-
idating positional data from signaling data to
be used in mobility studies in remote areas.

Data

The data that support the findings of this study
are available at https://zenodo.org/record/
7891581.
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Abstract: 17 

Backcountry skiers, travelling in avalanche terrain, account for a large proportion of avalanche fatalities 18 

worldwide. Despite this, the exact count of the number of recreationists exposed to avalanches (also 19 

known as the background information), is poorly documented in most countries. Without detailed 20 

background information on temporal and spatial backcountry usage, making well-reasoned decisions 21 

from fatality statistics is impossible. This study developed a methodology to enumerate a large proportion 22 

of backcountry usage from a 2 589 km2 study area in Tromsø, Northern Norway. We use an extensive 23 

network of specially adapted beacon checkers – small, waterproof devices that detect and count signals 24 

from avalanche transceivers. Over two seasons, from December to May from 2021 to 2023, we recorded 25 

56 760 individual trips. Our findings indicate that most (60.0%) backcountry trips begin between 07:00 26 

and 12:00, with noticeable activity in the afternoon as well. Saturdays and Sundays see the highest daily 27 

activity rates, comprising 40.1% of total weekly traffic, while weekdays, though less busy per day, account 28 

for the remaining 59.9%. The peak season for winter backcountry skiing is during March and April (when 29 

counts from the period December to May are considered), accounting for 56.3% of all traffic. This monthly 30 

usage aligns with avalanche incident data, where 55.8% of incidents occur during the same two months. 31 

mailto:htla@nve.no
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Our study demonstrates the use of our methodology and advances the understanding of temporal trends 32 

from winter backcountry skiing, quantifying the movement characteristics of backcountry skiers in 33 

Tromsø, Norway. 34 

1 Introduction/background 35 

Snow avalanches pose a significant hazard in mountainous regions, resulting in an average of 250 fatalities 36 

annually worldwide (Schweizer et al., 2021). Over the past decade in Norway, there have been an average 37 

of 6.5 yearly fatalities due to avalanches. The annual count has varied, ranging from 2 in the winter of 38 

2016-2017 to 13 in the winter of 2018-2019 (Toft et al., 2023). In the Norwegian subset of fatality data, 39 

90% of the incidents occur due to recreational activities in avalanche terrain (Varsom, 2023). Furthermore, 40 

there has been a noticeable increase in fatalities over the last two decades, especially in Northern Norway. 41 

This is believed to be related to the increase in popularity of winter backcountry recreation(e.g. Birkeland 42 

et al., 2017). Birkeland et al. (2017) argue that the avalanche fatality rate (the number of deaths per unit 43 

of usage) is likely decreasing in North America. This decline is attributed to the growing number of 44 

recreationalists, often referred to as backcountry skiers1, who are often exposed to avalanches. Evidence 45 

for this increase in backcountry skiing can be seen in the rising use of avalanche bulletins between 1995 46 

and 2017. However, no reliable method of directly or indirectly counting the number of backcountry skiers 47 

at different times and locations at regional to national scales is available today (Langford et al., 2020). 48 

Despite the noteworthy work by established avalanche warning services (AWS) and significant focus on 49 

avalanche education (Greene et al., 2022), the trend of the fatality rate remains unclear due to poorly 50 

documented numbers of backcountry usage in most countries.  51 

 52 

The main objective of this paper is to introduce a method that can enumerate backcountry usage within 53 

a set area, throughout the entire winter season. This is important, because without an accurate 54 

 

1 We use this term to also includes snowboarders. Snowmobilers are not relevant in our study as they are illegal in 
most backcountry terrain in Norway. 
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understanding of the number of skiers in an area (i.e. the background information), it is impossible to 55 

estimate an accurate fatality rate. The absence of a background information when interpreting fatality 56 

count data provides an incomplete understanding of the population level risk, and any changes in the 57 

fatality rate over time. The nature of backcountry skiing, dispersed across mountainous terrain without 58 

predefined “trails”, makes it challenging to quantify the entire population within an area. In most cases, 59 

there is no single point where everybody skis through, and the starting location and skiing patterns in the 60 

terrain might change throughout the season depending on snow conditions, and skier traffic. The diverse 61 

nature of backcountry skiing makes it challenging to use more conventional counting methods at larger 62 

spatial scales, such as thermal counters or induction loops where skiers would have to be led towards a 63 

single point or follow the same trail. 64 

 65 

In this paper, we present a method to quantify backcountry usage by making a large network of modified, 66 

counting, beacon checkers in Northern Norway. Although the technology has been previously 67 

documented by Waller et al. (2012) and further explored in Waller (2014), no results have been published 68 

to date. 69 

2 Background 70 

In many sports such as climbing, biking, skydiving, and alpine skiing, we understand the background 71 

information (Feletti et al., 2017). However, when it comes to travel in avalanche terrain, the 72 

understanding of the background information (e.g. how many are out there) is limited. This is particularly 73 

challenging when studying backcountry skiers because of the interaction between avalanches as a natural 74 

phenomenon, with limited feedback to those who interact with it, combined with human decision-75 

making. Ideally, the background information, and corresponding fatality data which could aid decision-76 

makers should include information related to demographic insights, details about the total backcountry 77 

usage, or statistics on backcountry usage broken down by days, weeks, months, or even hourly patterns. 78 
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Ultimately, this would allow for an improved understanding of the drivers of changes in avalanche fatality 79 

rates, and thereby allow for more targeted solutions. 80 

 81 

Similar to backcountry skiing, road traffic statistics has many related patterns. Just like with avalanches 82 

fatalities, there are daily and seasonal fluctuations influenced by travel behaviors or natural factors such 83 

as snow, ice, and rain (Malin et al., 2019). Demographic data also plays a crucial role here; for instance, 84 

men are statistically more prone to traffic accidents than women, and this observation is supported by 85 

extensive research (Cullen et al., 2021). To gain a similar understanding and making informed decisions in 86 

the avalanche community, a more in-depth investigation of the background information is needed 87 

compared to what is available today.  88 

 89 

Analyzing temporal distributions, whether in terms of days of the week, months, or annual patterns, can 90 

shed light on behavioral trends and associated risks. Past studies have tried to quantify the yearly terrain 91 

usage, although often resorting to educated estimations (Jamieson et al., 2009; Münter, 2003; Valla, 92 

1984). Zweifel et al. (2006) was the first to enumerate backcountry skiers within a limited area by directly 93 

counting. Using an experimental setup of light barriers, observations from ski patrol and voluntarily 94 

registration boards they were able to estimate a total of 2 922 off-piste runs from the Rinerhorn ski resort 95 

in Switzerland.  96 

 97 

In Canada, Sole (2008) estimated the number of recreational skiers, using a survey (n=447) to find the 98 

percentage of people with a recreational avalanche safety course through Canadian Avalanche 99 

Association (CAA) between 2005 and 2007. The courses were taught by independent avalanche course 100 

providers, but the CAA developed the curriculum. Using the  total number of students (provided by CAA), 101 

he was (simply put) able to estimate a backcountry population of 34 485. A similar study was conducted 102 

by Procter et al. (2014) in Italy, where they surveyed 5 576 individuals over a 1-week period to learn more 103 
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about the demographics of backcountry skiers. Furthermore, Techel et al. (2015) used social media 104 

platforms to extract 15 586 tours from Switzerland. Using the information available, they estimated the 105 

background information as a function of weather, snowpack, avalanche danger and day of week.  106 

 107 

One of the most comprehensive studies on the backcountry population is the Swiss cross-sectional 108 

national survey, conducted in 2000, 2008, 2014 and 2020 (Bürgi et al., 2021; Lamprecht et al., 2014, 2008; 109 

Lamprecht and Stamm, 2000). The results indicate a rapid growth in the backcountry skiing population 110 

over the last decade, from approximately 1.4% of the population from 2000-2014 to 3.4% in 2020 (Table 111 

1). Although, the median number of hours spent in avalanche terrain decreased from 56 hours in 2014 to 112 

20 hours in 2020, meaning that the total number of hours spent by the entire population did not change 113 

substantially. These data suggests that the growth in the backcountry skiing population may be due to 114 

less experienced individuals taking up the sport, who typically spend fewer hours per year in avalanche 115 

terrain. 116 

Table 1: Results from the Swiss cross-sectional survey between 2000-2020 (Bürgi et al., 2021; Lamprecht et al., 2014, 117 
2008; Lamprecht and Stamm, 2000). 118 

Year 
Proportion of the 

population [%] 
Touring days per 

year [median] 
Average No. of hours 

per year [median] 
Total No. of hours per 
year [in million hours] 

2000 1.3 10 - - 
2008 1.5 10 - 3.9 
2014 1.4 10 56 4.8 
2020 3.4 6 20 4.9 

 119 

When Winkler et al. (2016) compared the survey results with avalanche fatalities, the data revealed a 120 

minuscule decrease in the fatal accident rate from 9.4 to 8.7 micromorts (i.e. 9.4 to 8.7 x 10-6) from 1999 121 

to 2013, where one micromort is equivalent to a one-in-a-million chance of death in a given year (Howard, 122 

1984). For comparison, a skydiving jump in the US has a probability of 5.1 micromorts (United States 123 

Parachute Association, 2022). The study by Winkler et al. (2016) is a compelling example of the 124 

importance of considering background information when assessing outcomes. If we only consider the 125 
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fatality data alone, there appears to be a concerning 32% increase in deaths during that same period (1999 126 

to 2013) in Switzerland. 127 

 128 

Using another approach, in work in Montana, USA, at Saddle Peak near Bridger Bowl ski area, Saly et al. 129 

(2020) used remote time-lapse photography monitoring from a fixed distance to record terrain metrics of 130 

all skiers in avalanche terrain. Saly et al. (2020) counted 525 skiers over a period of 13 days and identified 131 

7,499 skier point locations (the timelapse camera took photos every 10 seconds resulting in multiple 132 

locations for each skier). This method captures all skiers but is limited by visibility. In the same season, 133 

Sykes et al. (2020) counted and tracked 136 participants over 19 field days using intercept surveys and 134 

GPS tracking, but this method is limited by the high personnel costs, and location conducive to capturing 135 

participants on their route. Both methods are limited to counting skiers at slope scale and are difficult to 136 

apply at scale for a region or entire country.  137 

 138 

In Northern Norway, Toft et al. (2023) attempted to quantify backcountry skiers using signaling data from 139 

mobile network operators. Unfortunately, when they compared the positional accuracy with actual GPS 140 

data, it became evident that the method was highly inaccurate in remote terrain typically used by 141 

backcountry skiers.  142 

 143 

Langford et al. (2020) conducted a literature review to examine existing methods to estimate the overall 144 

backcountry usage. They considered 22 methods and narrowed them down to five categories. If we 145 

compare these methods with current research, most studies fit within these categories (Table 2).  146 

(1) When conducted properly, cross-sectional surveys can accurately reflect the broader population, 147 

yet they typically offer limited spatial or temporal insights, as Winkler et al. (2016) noted.  148 
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(2) Extrapolation from direct counts provides valuable spatial and temporal information. However, 149 

its scalability is challenging over larger areas, a limitation highlighted in studies by Zweifel et al. 150 

(2006), Saly et al. (2020), and Sykes et al. (2020).  151 

(3) Indirect counts (e.g. Toft et al. 2023),  152 

(4) Citizen science counts feature extensive spatial coverage and gather detailed spatial-temporal 153 

data (Johnson and Hendrikx, 2021). However, studies have yet to secure a sample size sufficient 154 

for national or global statistical validity. The method also assumes that the user-reported trips are 155 

representative, which is unlikely, given self-selection bias to participate in crowd-sourced data 156 

collection. 157 

(5) Online engagement has shown promise, particularly in Switzerland, where extensive user-158 

reported datasets are leveraged (Techel et al., 2015; Winkler et al., 2021). This method can extract 159 

spatial and temporal data, assuming the representativeness of user-reported trips as for citizen 160 

science counts.  161 

All these methods attempt to capture a representative sample of the population to allow for an accurate 162 

estimate of the background information, but each of these methodologies have limitations when applied 163 

to large regions or entire countries. 164 

 165 

Table 2: Comparing available methods and example studies with their spatial scale, spatial and temporal 166 

resolution, length of season and type of sample. 167 

Approach Examples Spatial scale 
Spatial 

resolution 

Temporal 

resolution 

Length of 

season 
Sample 

Cross-sectional 

surveys 

Lamprecht et al. 

2000; 2008; 2014; 

Bürgi et al. 2021 

Nationwide Low N/A N/A 
Representative1 

(n=10 652) 

Extrapolation from 

direct counts 

Zweifel et al. 2006  Ski resort Moderate High All season Subset (n=5 337) 

Saly et al. 2020 Slope High High All season Subset (n=525) 



Page 8 of 39 
 

Sykes et al. 2020 Slope High Low 
Selection 

of 19 days 
Subset (n=136) 

Citizen science 

counts 

Johnson & Hendrikx, 

2021 
Worldwide High High All season 

User-reported 

(n=482) 

Online engagement 

Techel et al. 2015 Nationwide Moderate High All season 
User-reported 

(n=15 586) 

Winkler et al. 2021 Nationwide High High All season 
User-reported 

(n=7 355) 

Indirect counts This study Regional Moderate High All season 
Representative2 

(n=56 752) 

1 Representative in terms of number of touring days per season. 168 

2 Representative in terms of time of day, week, and month. No number of overall touring days per season. 169 

3 Methods 170 

3.1 Study area 171 

The study was conducted in a 2 589 km² area surrounding Tromsø, Norway, located within the Arctic 172 

Circle. This region experiences polar nights for extended periods during the winter (Figure 1). The region 173 

was selected due to its large percentage of Norwegian avalanche fatalities, accounting for 56% of the 174 

country’s total from 2018-2023 (Varsom, 2023). Tromsø’s appeal as a tourist destination, particularly for 175 

foreign visitors who now represent over half of the regional avalanche deaths, adds to its relevance in 176 

avalanche research. The area’s Arctic Transitional climate, which alternates between maritime conditions 177 

with frequent rain-induced crusts in warmer periods and extensive depth hoar formation in colder 178 

seasons (Velsand, 2017). 179 
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 180 

Figure 1: The study area (black dotted line) in the vicinity of Tromsø, Norway. The location of the 29 signs with beacon 181 

checkers deployed during the first season are shown (bottom of the pole marks the spot). The red x’s illustrate the 6 182 

locations that were considered, but not implemented. The location of the time-lapse camera is marked with a camera 183 

icon. 184 

3.2 Setup and components 185 

The beacon checker are a small waterproof device that constantly searches for avalanche transceiver 186 

signals. An avalanche transceiver (combined transmitter and receiver) or avalanche beacon is an 187 
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emergency locator beacon used to find people buried under snow. They are widely carried by backcountry 188 

travelers, for use in the case an avalanche burial (Schweizer and Krüsi, 2003).  189 

 190 

When a transceiver signal is within a threshold distance, the beacon checker can be programmed to flash 191 

with green LEDs, beep or both. The response is a confirmation to the backcountry skier that their 192 

avalanche beacon is on and transmits a searchable signal. beacon checkers are most commonly used at 193 

large ski resorts or popular backcountry trailheads in North America to remind people that they are 194 

accessing terrain where an avalanche beacon is recommended, and that it should be in transmitting mode 195 

at this point. It is also possible to use the beacon checker to activate a gate, requiring an avalanche beacon 196 

to access certain types of higher risk avalanche terrain. This feature utilizes an electrical current being 197 

transmitted by the beacon checker when a beacon is within the threshold range. Our methodology is built 198 

around this feature, where the electrical current is used for counting the number of people passing by the 199 

beacon checker. We present the first data of this type, collected for a large geographic area, an estimate 200 

of backcountry usage from avalanche terrain in Northern Norway. 201 

 202 

The beacon checker runs on a 12 VDC system, with a power consumption of roughly 15-20 mAh in sleep 203 

and power save mode. In sleep mode, the device wakes up every 15 seconds to search for signals in the 204 

area. In power save mode, a red and green LED lights flash instead of being constantly illuminated. The 205 

red light shows that there is no beacon within the range, and it turns green when an avalanche beacon is 206 

within the threshold distance. Because a lot of the trailheads used in this study are along roads, we 207 

disabled the red light to avoid disturbance for road users. The power consumption of the beacon checker 208 

is estimated to be 0.42 Ah per day.  209 

 210 

Figure 2 shows the setup of our system for counting backcountry users at trailheads with beacon checkers. 211 

To keep the system running from the beginning of December to the end of May, we also added a solar 212 
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panel (12 VDC, 30 W). The solar panel charges the batteries from the beginning of March (halfway into 213 

the season) and through May. However, due to the polar latitude of the region (~69°N), it is affected by 214 

the polar night for a large part of the winter season, we had to use two 12 VDC LiFePo4 batteries. In total, 215 

each beacon checker had a battery capacity of 2x24 Ah, which is enough to be running for roughly four 216 

months under optimal conditions. 217 

 218 

To gather data from the beacon checker every time it’s being used, we added a data logger and pulse 219 

counter with IoT/LTE capabilities. To translate the 12 VDC current signal from the beacon checker, we 220 

added a SPST-NO type of reed relay. When the relay is exposed for a 12 VDC current, it closes the circuit 221 

between the two wires from the datalogger, triggering a count each time (Figure 2). The datalogger was 222 

set to record the number of counts per 5-minute interval. A total of 32 units were prebuilt by us and 223 

shipped to Tromsø, Norway for their deployment and the operational phase. 224 

 225 

 226 

Figure 2: The technical system consists of three parts: (1) a solar panel, (2) a beacon checker and (3) a hard case with 227 

2 batteries and a data logger. 228 

 229 

During the operational phase, the technical system was mounted on a post with appropriate signage. 230 

Using the same layout as the information signs in the neighboring municipality, Lyngen, we developed a 231 
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design for the beacon checkpoints (CPs) using a 90x75 cm template (Figure 3a). The signs were attached 232 

110 cm above the ground using a single pole measuring 270 cm x 60 mm. The upper 70 cm was used to 233 

attach the solar panel using brackets, making the whole installation 270 cm in height and roughly 35 kg. 234 

The pole was attached to the ground using a metal foundation where a rock surface was available using 235 

12 mm expansion bolts and glue (Figure 3a). If the ground consisted of mud or soil, an 89x900 mm ground 236 

screw was used. The material cost of a single CP, including the beacon checker, signage, and pole, was 237 

approx. US$1,600 (excl. Norwegian sales tax) when purchased in 2021. 238 

 239 

To enable convenient transportation and storage of the 32 CPs, with a total weight of 1 120 kg, two custom 240 

trailers were built using mounting brackets and a canoe stand. This made it possible to bolt each CP to the 241 

trailer, with a maximum capacity of 16 CPs per trailer (Figure 3b). To make sure that the CP keep running 242 

with no malfunction, they were mounted at the end of November and retrieved again at the beginning of 243 

June. Retrieving the CPs at the end of each season enables service, including recharging the batteries and 244 

making sure that each beacon checker is dry and ready for a new season in a harsh winter climate. The 245 

main limitation of the system reliability is the beacon checkers which frequently gets filled with water in 246 

the spring season. We have now added silica gel inside each device at the beginning of the season to limit 247 

this issue. 248 

 249 

 250 
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Figure 3: a) The CP mounted in the field in winter conditions. b) The two custom made trailers to transport 251 

the CPs between their operational location and the storage and service site. 252 

3.3 Site selection 253 

Using the Strava Heatmap (Strava, 2023), we identified locations that are the main trailheads being used 254 

for skiing within the study area of roughly 1-hour drive from downtown Tromsø, Norway (Figure 1). After 255 

identifying the most used routes, we shared the map with three local avalanche experts to check whether 256 

we had missed any relevant locations, and to confirm the relevance of the selected sites. The process led 257 

to 35 sites being identified, but only 30 got approval from the land owner, and one was discarded due to 258 

construction (Figure 1; Table 3). 259 

 260 

The last step to confirm the final selection of our CP locations, was to obtain permission from the relevant 261 

landowner at each location. Fortunately, 86% (30/35) of the requested locations were approved by the 262 

respective landowners, and we could proceed with these locations (Table 3). One location was later 263 

dropped due to a highway being built at the intended location. We therefore deployed 29 CPs during the 264 

first season from 2021-2022 (Figure 1). 265 

 266 

The beacon checkers do not search for unique individual frequencies or individual people when counting 267 

the number of people passing each CP (adjusted to a detection range of 2-3 m). The range is like many 268 

typical trail counters, but the CPs have the advantage that there is a benefit for the skier to go past the 269 

beacon checker. This means that if one person is curious and walks back and forth to the sign 10 times, 270 

that person would be counted 10 times. It also means that for some trailheads, where the path leading 271 

away from the parking lot is very defined, it’s hard to avoid being counted in both directions. We have 272 

illustrated this problem in Figure 4, using two scenarios. In the one-pass scenario, the CP is placed in such 273 

a way that there is no detour to pass it on their departure, but on their return, there is the potential for 274 

people to go around the CP (e.g. skiing an adjacent slope to another point along the road). Therefore, in 275 
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the case of one-pass, it is up to the backcountry skier to elect if they chose to pass or avoid the CP on their 276 

return. In a two-pass scenario, there is some level of geographic confinement which makes it impossible 277 

to not go pass the CP on both their departure and return. Careful consideration was given to each site, 278 

and adjustments were made to the data to reflect these scenarios. We have included a column in Table 3 279 

showing what category each CP is in terms of one-pass or a two-pass scenario. 280 

 281 

 282 

Figure 4: In most locations, the CP is placed so that it is logical to pass it on the ascent, while there is much room to 283 

avoid it on the descent (one-pass). However, in some locations, it is most convenient to pass it on both the ascent 284 

and the descent (two-pass). 285 

 286 

Table 3: A list of all the locations grouped by region that were considered, and whether they had landowner 287 

permission and when they have been active during the last two seasons from 2021-2023. A qualitative assessment 288 

of whether each location is a one-time, or two-time, pass type is also presented as type. 289 

ID Location Permission Active Type Used in time-
lapse validation 

Kvaløya 
1 Tverrfjellet Yes 21-23 one-pass Yes 
2 Durmålstinden Yes 21-23 one-pass Yes 
3 Skittentinden 1 Yes 21-23 one-pass Yes 
4 Skittentinden 2 Yes 21-23 two-pass Yes 
5 Straumsaksla 1 Yes 21-23 one-pass Yes 
6 Straumsaksla 2 Yes 21-23 one-pass Yes 
7 Straumsaksla 3 Yes 21-23 one-pass No 
8 Storsteinnestinden 1 Yes 21-23 one-pass No 
9 Storsteinnestinden 2 Yes 21-23 one-pass No 
10 Steinskarfjellet Yes 21-23 one-pass No 
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Ringvassøya 
11 Bjørnskarstinden2 Yes    
12 Nordfjellet Yes 21-23 two-pass No 
13  Skulgamtinden Yes 21-23 one-pass No 
      
Rekvik 
14 Storstolpen Yes 21-23 one-pass No 
15 Hollendaren Yes 21-23 one-pass No 
16 Styrmannstinden2 Yes 21-22 one-pass No 
17 Buren No    
      
Kvaløysletta 
18 Rødtinden Yes 21-23 one-pass No 
19 Akselkollen Yes 21-23 one-pass No 
20 Finnlandsfjellet2 Yes 21-22 one-pass No 
21 Botnfjellet Yes 21-23 one-pass No 
22 Gråtinden No  

 
 

    
 

 
Tromsø mainland 
23 Ullstinden Yes 21-23 one-pass No 
24 Rundfjellet1 Yes 21-22 one-pass No 
25 Tromsdalstinden Yes 21-23 two-pass No 
26 Middagsaksla Yes 21-23 two-pass No 
27 Fagerfjellet Yes 21-23 one-pass No 
28 Stormheimfjellet Yes 21-23 two-pass No 
29 Gårdselvtind1 Yes 22-23 two-pass No 
30 Andersdalstinden Yes 21-23 two-pass No 
31 Blåtinden Yes 21-23 two-pass No 
32 Storkollen4 Yes  

 
 

33 Sollidalsaksla No  
 

 
34 Bønntuva No  

 
 

35 Gabrielfjellet No  
 

 
 290 

1 Malfunction during the first season. Not in use during the second season. 291 

2 Did not capture the traffic as expected during the first season. Not in use during the second season. 292 

3 Malfunction during the first season. New path established outside of beacon checker; counts are probably not 293 

accurate during second season. 294 

4 A new highway is being built at the intended location. 295 

3.4 Validation using a time-lapse camera. 296 
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As it is not possible to count the number of unique people using the beacon checker method, we need to 297 

validated the number of counts received from the beacon checkers relative to the number of people 298 

entering backcountry terrain at each CP. To do this, we mounted a time-lapse camera on an adjacent 299 

mountain ridge taking frequent images (every 30 seconds). 300 

 301 

According to Norwegian privacy law, a time-lapse camera taking images frequently is considered 302 

surveillance if it is possible to identify people on the images. It was therefore necessary to have a long 303 

distance between the camera and the CP to get the approval from the Norwegian Agency for Shared 304 

Services in Education and Research (SIKT). The data could only be used for validation of the time-lapse 305 

camera and had to be deleted immediately afterwards its intended use. 306 

 307 

Due to limitations in terms of resources and location, we placed the camera on a single spot on Kvaløya 308 

with a direct line to three high-use trailheads with two CPs mounted at each location (some specific 309 

trailheads have access to backcountry terrain at both sides of the road, hence two CPs). This enabled us 310 

to get data from six different CPs including both one-pass and two-pass scenarios (as per Figure 4 and 311 

Table 3). Optimally, we would have moved the camera to other CPs, but due to landowner permissions 312 

and terrain characteristics that allowed images being taken from several hundred meters to kilometers 313 

away, the options were limited. 314 

 315 

The time-lapse camera was built using a custom built hard-case box that could be pivoted in both vertical 316 

and horizontal planes. A digital single-lens reflex (DSLR) camera with an APS-C sensor was used in 317 

combination with a 140-560 mm zoom lens and an external digital time-lapse controller. The whole 318 

installation was powered by two LiFePo4 12V 24Ah batteries identical to the ones being used in the CPs. 319 

The camera was maintained every two weeks by replacing the memory card, batteries and resetting all 320 

camera settings from the 14th  of February to June 1st during the 2023 season. Every two-week period, the 321 
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camera was rotated between the three trailheads as the camera field of view could only cover one 322 

trailhead at the time. The time-lapse camera captured images every 30 seconds for a total of 108 days 323 

(194,400 images) between 08:00-09:00 and 23:00-24:00 (depending on daylight saving time). 324 

 325 

To compare the number of skiers with the counts received from each CP, we manually went through all 326 

images. For every day, we noted the valid timeframe of the images (e.g. start, blurred periods, end) and 327 

the number of skiers entering backcountry terrain. We also noted how many that returned from 328 

backcountry terrain, but this data was not used for the analysis. Finally, we compared the number of skiers 329 

entering backcountry terrain with the counts from each CP during the day (e.g. if 24 skiers entered 330 

avalanche terrain and the CP logged 30 counts, the ratio would be 0.80).  331 

3.5 Operational issues with the CPs. 332 

During the period of deployment, various operational challenges impacted the data collection process at 333 

several CPs. These interruptions and malfunctions are crucial to acknowledge for accurate data 334 

interpretation and analysis.  335 

3.5.1 The 2021-2022 season 336 

During the first season from 2021-2022, we intended to set up 29 CPs. However, due to the limited 337 

availability of parts as a result of the Covid-19 pandemic and resulting supply-chain issues, only 22 CPs 338 

were placed out from 1st of December (Table 3; Appendix-1).  339 

 340 

Unfortunately, Straumsaksla 2 never commenced operation due to a technical error that went unnoticed, 341 

so we do not have data from this location during the first season. Furthermore, the CP at Skittentinden 1 342 

experienced a data logger malfunction, ceasing its operation from 1st of December through 8th of 343 

December 2021. Later in December, a widespread power outage occurred on Kvaløya (Table 3; Appendix 344 

1) as these CPs were set up in early November. This happened due to lower solar input than expected. 345 

The problem leads to significant data gaps from the 18th of December 2021 to 4th of January 2022. The 346 
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problem was rectified by adding a second battery to all CPs (Figure 1). Another short outage on the Tromsø 347 

mainland (Appendix-1) occurred from January 21st to 23rd, 2022. 348 

 349 

Additional seven CPs were installed on March 25th, 2022, when the final parts had arrived. These were 350 

strategically selected for late installation due to their low expected traffic in the first half of the season, 351 

or low priority (Appendix-1). Due to failures with equipment, we quickly realized that we would have to 352 

reduce the number of locations to allocate spare parts. Bjørnskarstind and Rundfjellet was therefore 353 

decommissioned instantly due to the unavailability of replacement parts and low priority. 354 

 355 

Some CPs faced individual challenges as well. Gårdselvtind malfunctioned and was eventually 356 

discontinued due to a shortage of essential spare parts and the placement of an erroneous data logger at 357 

the site. From the 13th of February until 7th of March 2022, the beacon checker at Botnfjellet 358 

malfunctioned. The error came from the gain module which adjusts the detection distance. The error 359 

made the CP count all beacons within range, and not the threshold distance of 2-3 m. Although the period 360 

was easy to identify due to the unusually large traffic data reported, the issue was discovered too late to 361 

prevent the recording of inaccurate data during that specific timeframe.  362 

3.5.2 The 2022-2023 season 363 

From the start of the season, 25 CPs were placed out (Table 3; Appendix-2). Two CP (Ullstinden and 364 

Straumsaksla 3) never commenced operation. The failure of these stations went unnoticed due to an 365 

oversight in the routine data monitoring and verification processes. For Straumsaksla 3, the detection of 366 

the issue was particularly challenging due to its typically low traffic in the early part of the season.  367 

 368 

The same error that occurred during the 21-22 season at Botnfjellet was identified at Stormheimfjellet 369 

from the 10th of February 2023. The error was quickly identified, and the beacon checker was replaced by 370 

the 17th of February 2023.  371 
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 372 

In conclusion, the data collected during the two skiing seasons should be analyzed with consideration for 373 

these operational challenges. These outlined issues provide context for the data gaps and anomalies 374 

observed in the recorded backcountry skier data, ensuring a more accurate and informed interpretation 375 

and analysis. 376 

4 Results 377 

The intention was to set up 29 CPs for the first season from 2021-2022. Unfortunately, two CPs were 378 

never commissioned, and one CP never commenced operation. The remaining 26 CPs had an overall 379 

downtime of 4.7% (207 out of 4,424 days). 380 

 381 

During the second season from 2022-2023, we intended to set up 25 CPs. Two CPs failed to collect data. 382 

The remaining 23 CPs had an overall downtime of 0.2% (8 out of 4 163 days), which is a large improvement 383 

from the previous season.  384 

4.1 Validation using a time lapse camera. 385 

When we reviewed the time lapse camera images, a substantial number of the images were unusable due 386 

to erroneous set-up, including focus and camera settings (i.e. ISO, shutter time and aperture). This left a 387 

total of 75 days from February 14th to April 30th (135 000 images) where skiers could be identified. Roughly 388 

22% of these images were unusable due to darkness within the 15-hour period between 08:00-09:00 and 389 

23:00-24:00. The polar nights are longer in early winter, meaning that a larger proportion of these 390 

unusable images occurred in the early season. Another 4% the images where unusable due to bad visibility 391 

such as fog, and dew on the lens. This left us with 101 470 images to analyze. After manually reviewing all 392 

the images, we found a total of 1 399 people passing the six CPs within the periods of the time-lapse 393 

camera being operational. This means that for one-pass CPs, 0.87 of people counted by the CP are 394 

observed to have passed the site on average, with values ranging from 0.41 to 1.14 (i.e., almost 1 count 395 
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per person). For two-pass CPs, 1.92 of people counted by the CP are observed to have passed the site on 396 

average (i.e. almost 2 counts per person) (Table 4). 397 

 398 

Table 4: A time-lapse camera was placed out taking images of six different beacon stations at three different 399 

locations. The number of days, images, skiers, and accuracy for each location is presented in each column. 400 

 Station ID No. of days No. of images No. of skiers No. of counts Ratio 

One-pass 

Straumsaksla 1 

Skittentinden 1 
29 33 746 

70 

414 

29 

449 

0.41 

1.08 

Durmålstinden 

Tverrfjellet 
15 17 488 

384 

395 

232 

363 

0.60 

0.92 

Straumsaksla 2 18 22 768 120 137 1.14 

Summary 64 74 002 1 399 1211 0.87 

       

Two-pass 
Skittentinden 2 18 22 768 115 221 1.92 

Summary 18 22 768 115 221 1.92 

 401 

4.2 Adjust for validation metrics 402 

Using the findings from the validation with time lapse camera, we can empirically adjust our data 403 

accordingly. For one-pass CPs, we have divided the counts from the beacon checker by 0.87 to get the 404 

number of unique trips. We do the same for two-pass CPs, where we divided the counts by 1.92 to get 405 

the number of unique trips (Table 5; Figure 5). 406 



Page 21 of 39 
 

 407 

Figure 5: The number of unique trips from each CP illustrated. The larger the circle, the more trips is being made in 408 

the area (one circle per CP). 409 

 410 

Table 5: A summary of counts from all stations is provided below (rounded to closest 10s). For more detailed 411 

information on each station throughout the season, see Appendices-1 and 2. 412 

 No. of beacon checker counts No. of unique trips 

ID Location 2021-2022 2022-2023 2021-2022 2022-2023 

1 Tverrfjellet 2 120 1 840 2420 2 100 

2 Durmålstinden 260 790 300 900 

3 Skittentinden 1 720 1 510 820 1 720 

4 Skittentinden 2 1 830 1 440 950 750 

5 Straumsaksla 1 290 150 330 170 
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6 Straumsaksla 2 0 640 N/A 730 

7 Straumsaksla 3 360 N/A 420 N/A 

8 Storsteinnestinden 1 2 540 1 900 2 900 2 170 

9 Storsteinnestinden 2 410 110 470 130 

10 Steinskarfjellet 3 060 1 700 3 490 1 940 

12 Nordfjellet 190 220 100 120 

13 Skulgamtinden 230 180 260 200 

14 Storstolpen 240 2 060 280 2350 

15 Hollendaren 160 60 190 70 

16 Styrmannstinden 10 N/A 10 N/A 

18 Rødtinden 2 390 1 700 2 730 1 940 

19 Akselkollen 2 630 3 210 3 000 3 660 

20 Finnlandsfjellet 110 N/A 130 0 

21 Botnfjellet 3 200 1 770 3 650 2 020 

23 Ullstinden 3 390 N/A 3 870 N/A 

25 Tromsdalstinden 2 380 2 880 1240 1 500 

26 Middagsaksla 250 150 130 80 

27 Fagerfjellet 2 400 1 340 2 740 1 530 

28 Stormheimfjellet 1 430 660 740 340 

29 Gårdselvtind 810 230 420 120 

30 Andersdalstinden 250 60 130 30 

31 Blåtinden 630 280 330 140 

 Sum 32 290 24 880 32 050 24 710 

4.3 Skier traffic by hour 413 
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To better understand the distribution by time of day, we grouped our dataset from all CPs by hour. To do 414 

this, we only used one-pass CPs. Type 2 CPs would not be representative in this context as we expect each 415 

skier to pass the CP two times, making it impossible to know which registration accounted for heading out 416 

time. The data shows increasing traffic from 06:00 to about 09:00, with increasing traffic levels until 417 

around 09:00. From 09:00 to around 20:00, there is a gradual decrease in people starting their trips. There 418 

is also some traffic late in the evening and through the night (Figure 6). 419 

 420 

 421 

Figure 6: The distribution of skier traffic throughout the day is shown above. Most people are out between 06:00 and 422 

18:00, with the peak between 08:00 and 09:00. Some skiers are out during the night which is not uncommon in this 423 

region with modern headlamps. Only one-pass CPs are used here, as two-pass CPs would not be representative in 424 

this context, as we expect each skier to pass the CP two times. 425 

4.4 Skier traffic by day week 426 

A distinct difference between weekdays and weekends characterizes the distribution of traffic throughout 427 

the week. The highest level of activity was observed on Saturdays and Sundays. In contrast, the weekdays, 428 
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from Monday to Friday, show relatively lower and consistent counts of skiers per day. However, there is 429 

a slight increase in traffic from Monday (~6 200) to Friday (~7 500) (Figure 7).  430 

 431 

Figure 7: The distribution of traffic throughout the week. Most people are out during the weekend, but there is also 432 

a significant amount of traffic during the weekdays. 433 

4.5 Skier traffic by month 434 

To get a better understanding of the seasonal variations, we excluded any CPs that experienced failures 435 

for periods exceeding two weeks (specifically, CPs 7, 12, 13, 15, 16, 20, 23 and 29). Ideally, the analysis 436 

would consider only CPs that provided uninterrupted data across both seasons. However, the extensive 437 

power outage in the first season, particularly in December, necessitated the inclusion of CPs with partial 438 

data to maintain a viable sample size for comparison. 439 

 440 

If we compare the distribution of skier traffic throughout the season by month (Figure 8), we can see that 441 

the trend in traffic is gradually increasing from December to April. There is approximately the same 442 

amount of traffic in January and February. March and April represent the most popular months, with April 443 

being the peak. In May, the traffic decreases to a level just below January and February, but significantly 444 
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higher than December. The traffic for the 2021-2022 season was higher than the 2022-2023 season in all 445 

months except for December and March, where the 2022-2023 season saw more traffic. When comparing 446 

the two seasons using the Pearson correlation coefficient, we find a value of 0.89, indicating a strong 447 

positive linear relationship between the datasets. Additionally, the p-value of 0.016 suggests that this 448 

correlation is statistically significant. 449 

  450 

Figure 8: The data illustrates a monthly distribution of unique skiing trips, with the lowest number of trips occurring 451 

in December, and a notable spike observed in March and April. 452 

4.6 Seasonal variations 453 

To maintain consistency in our analysis, we again excluded CPs that experienced failures for periods 454 

exceeding two weeks, specifically CPs 7, 12, 13, 15, 16, 20, 23, and 29. A cumulative data visualization 455 

reveal that the traffic is fairly consistent for both seasons. Notably, the 21-22 season show a marginally 456 

more pronounced mid-season peak in February, although the 22-23 season bridges that gap over the next 457 

month and a half. In the final month of the 21-22 season, we found a relative increase compared to the 458 

22-23 season, culminating in the highest number of unique trips for the entire season (Figure 9). 459 
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 460 

 461 

Figure 9: A cumulativ comparison of no. of unique trips from both seasons. CPs that experienced failures for periods 462 

exceeding two weeks (specifically, CPs 7, 12, 13, 15, 16, 20, 23 and 29 are excluded). 463 

5 Discussion 464 

5.1 Validation using time-lapse camera. 465 

In our study, we needed to validate skier count data from CPs, as they do not represent unique skiers. We 466 

employed a time-lapse camera set to capture images every 30 seconds to achieve this. The 30-second 467 

interval was defined to have as few images to process while still being frequent enough to detect all skiers 468 

passing through the picture frame. Our impression from the manual validation is that this interval was 469 

suitable for our purposes, as skiers are not likely to pass through the camera field of view within the 30 470 

second timeframe.  471 

 472 

During February's shorter daylight hours, the camera operated from 09:00 to 22:00. After the switch to 473 

summertime on March 26th, the timing shifted to 08:00 to 21:00. Looking back, extending this operational 474 

period would have been beneficial as daylight hours increased towards the spring.  475 
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 476 

To reduce the processing time of manually going through all the images, we noted how many people 477 

passed each CP daily combined with timestamps defining the counted period. This allowed us to compare 478 

daily counts at each CP for the specific time frame. However, the accuracy varied daily, influenced by the 479 

number of people using the trailhead and their interactions with the CP. For example, a single individual 480 

passing the trailhead without using the CP results in a 0% validation rate for that day. Conversely, if one 481 

person passes multiple times, curious about the sign, it might result in a count of five for a single individual. 482 

During days with more counts, this effect decreases.  483 

 484 

Through this method, we observed that the accuracy rates converged over several days to an average of 485 

0.87 for one-pass CPs and 1.92 for two-pass CPs. One-pass CPs were validated at five different locations 486 

with ratios ranging from 0.41 to 1.14. We believe the ratio differences are primarily due to the placement 487 

of each CP. For example, at the Durmålstinden trailhead, the parking lot is situated on a plateau, with the 488 

CP positioned lower and not as visible, contributing to a lower rate. Similarly, the Straumsaksla 1 CP is 489 

located 20-30 m off the natural path to the mountain, with optimal placement hindered by a large swamp. 490 

Given the nature of these examples, it is more appropriate to evaluate the validity of the CPs based on 491 

these multi-day averages rather than making day-to-day comparisons. 492 

5.2 Limitations 493 

Although we find our results promising, we must acknowledge certain limitations in our methodology. 494 

The CPs are mounted in harsh and remote areas. Even though we made all precautions possible, it is 495 

inevitable to avoid technical errors such as low battery voltages, moisture in electronics and the CPs falling 496 

over due to strong winds (e.g. 30-50 m/s). To limit these issues, we always had a person available to do 497 

maintenance on short notice. In most cases, this allowed us to keep the CPs running with a low downtime. 498 

 499 
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Another limitation for the study itself is the dependence on a landowner permission to mount a CP at 500 

each trailhead. While we rarely faced this restriction in our desired locations, it could be a big issue if the 501 

study where to be recreated somewhere else. Additionally, we operate under the assumption that the 502 

ratios derived from our validation are applicable to all CPs. We would also like to emphasize that our 503 

sample size for two-pass counting points was smaller than ideal, making two-pass CPs more uncertain. 504 

We also rely on the assumption that our categorization into one-pass and two-pass CPs is accurate. 505 

 506 

Not all locations are suitable for CPs. Examples where a CP is challenging is locations with no designated 507 

trailhead or parking lot. Many popular backcountry trips in Norway could begin at different locations, 508 

making it hard to cover all usage with a single CP. Furthermore, we believe the actual placement of each 509 

CP in relation to the parking lot could have a big impact on the ratio we are able to count. An example of 510 

this could be if the CP is mounted in a way that makes it a detour in contrast to something that is right in 511 

front of you when leaving the trailhead. In some cases, the material cost of multiple CPs, including the 512 

beacon checker, signage, batteries, datalogger and pole could make the study infeasible for many, making 513 

it a limitation. 514 

5.3 Temporal distributions 515 

Our results show the hourly, daily, and monthly distribution of backcountry trips across the Tromsø region. 516 

The results are in line with what we expected with most skiers starting their backcountry trip before noon 517 

(Figure 5). There is also some activity during the night, which is not uncommon in Tromsø with headlamps 518 

in the early winter and 24-hour daylight from the end of April. 519 

 520 

Saturdays and Sundays have the highest daily rate of skiers, but only accounts for 40.1% of the overall 521 

traffic. Weekdays have a relatively lower daily rate, but accounts for 59.9% of the overall traffic (Figure 522 

6). The fact that there is a high amount of backcountry skier usage during weekdays could be of high value 523 

to the Norwegian Avalanche Warning Service (NAWS) when they allocate their resources.  524 
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 525 

Our results indicate that nearly half (56.3%) of the backcountry touring days take place in March and April. 526 

This trend aligns closely with data on avalanche incidents (including fatalities, injuries, being caught in an 527 

avalanche or near misses) within the study area over 15 seasons from 2008 to 2023 (Varsom, 2023). 528 

Notably, 55.8% of the incidents (48 out of 86), also happened during these two months. While we could 529 

analyze fatalities, injuries, and avalanche incidents (caught but not buried or injured) individually, the 530 

relatively small sample size could lead to statistical issues. A small sample size can result in unreliable or 531 

skewed statistics that might not provide a valid representation of broader trends or risk factors. We 532 

considered comparing our data with regional bulletin website usage. However, we do not trust the 533 

analytics from the study period as NAWS transitioned from Universal Analytics to Google Analytics 4 534 

during this same period. 535 

5.4 Future work 536 

Our methodology represents an initial step towards achieving a representative sample for an entire 537 

region. Future work could include the potential to approximate the overall seasonal background 538 

information in the study area by collecting a large dataset of GPS tracks through crowd sourcing. With a 539 

comprehensive set of GPS data, we could conduct a GIS analysis to determine the proportion of tracks 540 

that originate from each CP. This approach would enable us to estimate the percentage of total traffic 541 

captured by our CPs relative to the data collected through crowd sourced methods.  542 

 543 

Expanding our methodology to regions with different characteristics from our current study area would 544 

also be beneficial. This expansion could provide insights into regional variations in backcountry usage 545 

patterns. Additionally, there might be room for technological advancements in beacon checker 546 

technology. Enhancements could include the ability to identify number of unique signals within a range 547 

or to detect other prevalent signals like WLAN (i.e. Wi-Fi) or Bluetooth, thereby offering a more accurate 548 

and nuanced understanding of skier counts and patterns. 549 
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5.4.1 Recommendations for future application 550 

In this section, we would like to provide some advice for future application of this method. After two 551 

seasons of data collection, maintenance, and lots of what ifs that we were not able to anticipate: 552 

• Make sure to always have enough spare parts on hand, as something will fail occasionally, or 553 

simply be lost. We have found it easier to swap all electronics (beacon checker, datalogger, 554 

batteries) with a new setup, and resolve the error in the lab. 555 

• Use glue when mounting the foundation for the CPs, do not trust expansion bolts. The vibration 556 

from the wind will over time unscrew the bolts, making the CP fall over. 557 

• Always have a person available to do maintenance when needed, and make sure that there is 558 

more than one person that can do maintenance. Furthermore, make everything modular and 559 

use wire connections with clear markings, (or connectors) making it less likely to connect 560 

something wrong. It only takes one wrong wire connection to burn a beacon checker or a 561 

datalogger. These precautions make it easier to have multiple people do maintenance.  562 

• Use silica gel in the beacon checker housing. They are not 100% waterproof.  563 

• Make sure that the datalogger and beacon checker is dried-out after each season, and make 564 

sure that everything is working properly before a new season. It is much easier to fix errors in 565 

the lab, compared to in the field. 566 

• Always make sure to test the CP before leaving the site. 567 

6 Conclusion 568 

We believe our study is a proof-of-concept using beacon checker technology increasing our understanding 569 

of the backcountry usage at regional scales. We have managed to quantify a large proportion of the 570 

backcountry skiing population over a 2 589 km2 area, offering valuable insights into various timescales, 571 

including hourly, weekly, and yearly distributions of backcountry usage.  572 
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 573 

Over two seasons, from December to May from 2021 to 2023, we recorded 56 760 individual trips from 574 

26-29 trailheads. Saturdays and Sundays see the highest daily activity rates, comprising 40.1% of total 575 

weekly traffic, while weekdays, though less busy per day, account for the remaining 59.9%. The peak 576 

season for winter backcountry skiing is during March and April (when counts from December to May are 577 

considered), accounting for 56.3% of all traffic. This monthly usage aligns with avalanche incident data, 578 

where 55.8% of incidents occur during the same two months. 579 

 580 

While our methods still have some limitations, we argue that a large scale spatially distributed system as 581 

presented here, provides the best method to currently estimate backcountry usage across a remote and 582 

dispersed region. However, our findings also highlight the need for further research to build upon the 583 

groundwork we have laid to be able to calculate the usage for an entire region.  584 
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Appendix-1: A plot for each station during the first season from 2021-2022. Timesteps with blue shading 687 

mark periods where the beacon checker has malfunctioned, or no data collecting was in progress. 688 
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Appendix-2: A plot for each station during the first season from 2022-2023. Timesteps with blue shading 691 

mark periods where the beacon checker has malfunctioned, or no data collecting was in progress. 692 
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