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Abstract—The purpose of this paper is to explore an innovative
primary control strategy for a voltage source inverter (VSI). This
strategy involves integrating an Artificial Neural Network (ANN)
into the proportional resonant (PR) regulator within the inner
loop of the primary control system. The primary objective is
to regulate the output voltage and minimize deviations under
various operating conditions, thereby enhancing the inverter’s
overall performance. The ANN, employed as a predictive analytic
method, facilitates real-time tuning of the PR controller parame-
ters. In addition, the outer level of primary control incorporates
a droop control loop to distribute power among distributed
generators (DG). This proposed approach reduces the converter
control system’s reliance on specific operating conditions and
seamlessly accommodates varying loading conditions. To ensure
adaptability and stability in various operating conditions, real-
time simulations are implemented using OPAL-RT (OP4510),
and the results demonstrate the efficacy of the proposed control
strategy.

Index Terms—Artificial Neural Network (ANN), Artificial in-
telligent control, Predictive analytic method.

I. INTRODUCTION

IN the ever-evolving landscape of microgrids, the inte-
gration of Distributed Energy Resources (DERs) is be-

coming increasingly prevalent, reshaping the dynamics of
energy systems and emphasizing the critical importance of
robust voltage control [13]. The surge in adoption of wind
turbines, solar panels, and other DERs underscores the need
for innovative control strategies to ensure stable and reliable
microgrid operation [2]. In the midst of this significant shift
towards DER-based energy systems, island microgrids face
unique challenges in maintaining voltage stability, exacerbated
by their highly dynamic load profiles, limited inertia, and the
intermittent nature of renewable energy sources [3]. These
challenges underscore the limitations of conventional Voltage
Source Inverter (VSI) control methods, which often exhibit
fixed or slow-adapting parameters, struggle with harmonic
mitigation, and prove sensitive to unforeseen system uncer-
tainties [4]. Recognizing these challenges, the integration of
predictive analytics and Artificial Intelligence (AI) methods
emerges as a promising avenue for enhancing VSI control in
island microgrids [5]. Predictive analytics and AI not only
provide a means of real-time learning and adaptation but also
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offer a pathway to overcome the limitations of conventional
control methods. By combining the adaptability and learning
capabilities of AI with the stability provided by conventional
methods, intelligent controllers can be designed to address the
unique intricacies of island microgrid operation [6], [7]. The
advantages of employing AI methods in the context of VSI
control for microgrids are multifaceted. Real-time learning
and adaptation, facilitated by AI algorithms, enable continuous
improvement, allowing the controller to anticipate and respond
to dynamic load changes promptly [8]. This translates into
enhanced voltage regulation, with reduced deviations and
improved power quality by minimizing harmonic distortion,
thereby ensuring better compatibility with connected loads
[9]. The increased system stability achieved through AI-based
control contributes to enhanced resilience against dynamic
load disturbances, ultimately resulting in reduced operational
costs through lower harmonic-related losses and improved
overall efficiency [10]. Recent studies have explored the
potential of AI in VSI control for microgrids, focusing on
addressing stability, power quality, and control integration
challenges. [4] and [11] both propose virtual impedance-
based and adaptive droop control strategies, respectively, to
enhance stability and improve power allocation accuracy. [12]
discusses the potential of AI, particularly deep learning and
deep reinforcement learning, in addressing the complex energy
management issues in microgrids. [13] introduces an adaptive
droop control and fuzzy PI control mechanisms for voltage and
frequency control, aiming to reduce harmonic distortion and
be independent of line parameters. These studies collectively
highlight the potential of AI in addressing various challenges
in VSI control for microgrids.

Current AI-based methods for VSI control in microgrids
struggle with limited adaptability, complex algorithms, and of-
ten focus on single aspects like voltage regulation or harmonic
mitigation. Our proposed solution integrates a ANN within a
proportional resonant (PR) controller, addressing these limi-
tations. By predicting system behavior and adaptively tuning
the controller, our method simultaneously optimizes voltage
regulation and harmonic mitigation, achieving less than 2%
reduction in voltage deviations compared to conventional
methods. The ANN’s predictions further enhance prescriptive
analytics for optimized control and resource allocation, sig-



nificantly boosting microgrid efficiency and resilience. This
methodology bridges predictive and prescriptive analytics [14],
opening up promising avenues for further research and prac-
tical applications in diverse microgrid scenarios [15], [16].

II. AC MICROGRID MODELING
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Fig. 1: The single-line diagram of the understudied ACMG

Figure 1 displays a schematic of the ACMG, featuring
two DG units operating as voltage source converters (VSCs)
supplying power to both local and remote loads. The ACMG
operates in island mode, and each DG unit utilizes a decen-
tralized control strategy for microgrid regulation, as depicted
in Fig. 2.
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Fig. 2: Structure of the proposed control system.

A three-phase LC filter, connected to a load, aims to
eliminate harmonics from the output voltage and current. The
dynamic model of this filter, expressed in the α− β frame, is
given by:

Lf
dif

dt
= vi− vc− if · rf

Cf
dvc

dt
= if − io (1)

where Lf and Cf represent the inductor and capacitor of
the filter, respectively. vi and io denote the input voltage and
output current of the filter, respectively. The input voltage vi
is connected to the dc-link voltage Vdc and the switching state
vector.

To establish a feedback control system capable of adjusting
load voltages amidst disturbances, the dynamic model is
transformed into the stationary α− β frame using the Clarke
transformation T:

Ẋ = AX+BU+ED, Y = CX (2)

where X, U, D, and Y are matrices representing state
variables, inputs, disturbances, and outputs, respectively.

The output voltage in the α − β frame is expressed in the
Laplace domain:

Vcαβ
(s) = M(2×2)(s)Viαβ

(s)−N(2×2)(s)Ioαβ
(s) (3)

with decoupled matrices M(2×2)(s) and N(2×2)(s).
The proposed control strategy focuses on the primary con-

trol, incorporating droop control as the outer loop and voltage
control as the inner loop. The droop control loop generates
reference signals for the voltage control, ensuring power-
sharing for active and reactive power. The droop characteristics
equation is given by:

f = f0 −m(Pav − P0) V = V0 − n(Qav −Q0) (4)

where f0, V0, m, and n are nominal frequency, voltage, and
droop coefficients, respectively.

The voltage control loop, designed with double loops,
sustains the bus voltage of the DG unit within acceptable
limits. A feed-forward control loop mitigates the influence of
load dynamics.

The current control employs a PI controller with parameters
Kp and Ki adjusted for internal stability and VSC protection.
The PR controller regulates voltage, providing steady-state
tracking for the sinusoidal reference signal.

The PR controller’s transfer function is expressed as:

GPR(s) = KP +Σ∞
h=2n+1

Khs

s2 + 2hωcs+ ω2
h

n = 0, 1, 2, 3, ...∞ (5)

where KP and Kh represent the proportional and integral
harmonic gains, respectively.

III. METHODOLOGY

An artificial neural network (ANN) is employed as a pre-
dictive analytic method to adjust these parameters based on
operating conditions. The ANN is trained on a dataset of
historical system data and is then used to predict the optimal
parameters for the current operating conditions. This allows
for improved system stability and performance. In our work,
the ANN is designed with three layers: the input and output
layers each have 2 nodes, and the hidden layer has 5 nodes.

A. Artificial neural network (ANN) modeling

PR control is employed in power electronic systems, to
ensure that the converter output closely follows the sinusoidal
reference waveform, and to reduce harmonics and minimizing
distortion in the output voltage. However, in practice, tuning
the parameters of a PR controller can be a challenging task.
Achieving optimal performance requires careful adjustment
of proportional and resonant gains, and this tuning process
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Fig. 3: The architecture of the ANN based voltage control of
the VSC

may be complex and time-consuming, particularly for complex
systems.

The ANN adjustor is used to adjust the parameters of
proportional gain KP and integral harmonic gain Kh based
on the errors ev and ef and the change of error ∆ev and ∆ef ,
as shown in Fig. 2.

KP = K∗
P +∆KP Kh = K∗

h +∆Kh (6)

where K∗
P and K∗

h are the reference values of ANN-PR-based
controllers. K∗

P and K∗
h are calculated offline based on the

Ziegler–Nichols method. In the proposed algorithm, a three-
layer artificial neural network (ANN) is employed to update
the controller coefficients KP and Kh. The variables f and vc
are measured by sensors. As illustrated in Fig. 2, the inputs
to the ANN, denoted as ev,f and ∆ev,f .

The architecture of the ANN based voltage control of the
VSC is shown in Fig. 3 and described in Algorithm 1. As
shown in Fig. 3, the inputs consist of the tracking error ev(t) =
Vrefαβ

−vαβ(t) and its rate of change ∆ev = ev(t)−ev(t−1).
Additionally, the error ef (t) = fref −f and its rate of change
∆ef (t) = ef (t)− ef (t−1) are considered. The outputs ANN
unit are denoted as ∆Kp and ∆Kh. The output of the j-th
node in the hidden layer can be defined as:

a
(1)
j = ϕ

(
Z

(1)
j

)
= ϕ

(
p∑

i=1

wijxi + bj

)
(7)

xi represents the input to the i-th node in the input layer. wij

is the weight from the i-th input node to the j-th node in
the hidden layer. a(1)j and Z

(1)
j represent the output and the

weighted sum at the j-th node in the hidden layer, respectively.
ϕ is the activation function. p the nodes number in the hidden
layer.

The sigmoid function is chosen to represent the activation
function

a(l)n = ϕ
(
Z(l)
n

)
=

1

1 + e−Z
(l)
n

where l represents the layer. l = {0, 2, 3} for input, hidden
and output layers, respectively. The objective during training
process is to minimize the cost function E, as expressed:

E =
1

2

p∑
i=1

e2i (8)

where p is the number of the nodes in the input layer. ei =
xref − xi; where xi, xref are the mearsured and the desired

value at the i-th neuron in the input layer. The output of each
layer can be calculated as:

a
(0)
i (t) = ϕ

(
Z

(0)
i (t)

)
= xi(t), i = 1, 2

a
(1)
j (t) = ϕ

(
Z

(1)
j (t)

)
= ϕ

(
p∑

i=1

wijxi(t) + bj

)
, j = 1, 2...5

a
(2)
k (t) = ϕ

(
Z

(2)
k (t)

)
= ϕ

 m∑
j=1

wjkx
(1)
j (t) + bk

 , k = 1, 2

(9)

where t is the t-th iteration, a(1)j (t) and a
(2)
k (t) are the output

of the j-th and k-th node in the hidden and output layers,
respectively. m is the nodes number in the hidden layer. The
back-propagation algorithm is used to update the weights of
the ANN accorading to the following [6]:

If yk is the target output for the k-th node in the output
layer. δk and δj are errors of the output and hidden layers.

δk = (yk − a
(2)
k ) · (a(2)k · (1− a

(2)
k ))

δj = δk · wjk · (a(1)j · (1− a
(1)
j ))

∆wjk = η · δk · a(1)j ∆wij = η · δj · xi (10)

wjk(t+ 1)← wjk(t) + ∆wjk

wij(t+ 1)← wij(t) + ∆wij (11)

Algorithm 1
1: Given: wij(0), wjk(0), bj , bk, η
2: for each sampling xi do
3: Solve (9) ⇒ a

(1)
j , a(2)k

4: end for
5: Ckeck: ⇒ ∆e==0
6: for each sampling input j do
7: Solve (10) ⇒ δk, δj
8: end for
9: Apply ∆wij , ∆wjk to update the weights (11)

10: t −→ t+ 1
11: Repeat: 2 −→ 9

IV. SIMULATION AND RESULTS

TABLE I: Parameters of ACMG

Parameter Value Parameter Value
rf , Lf , Cf 0.1 Ω, 4.3 mH, 15 µF T ∗

S 20 µSec
SL1, SL2, SL3 0.8, 1.5, 1.28 kVA Vref 400 V
rl1, rl2, rl3 2.8, 2, 1.1 mΩ fref 50 Hz
Ll1, Ll2, Ll3 0.44, 0.32, 0.17 mH fs 25 kHz

T ∗
S is the sampling time

A comprehensive assessment of the proposed intelligent
primary control approach was conducted using established
simulation tools, including MATLAB SimPowerSystems and
OPAL-RT with RT-LAB configuration. The simulations incor-
porated realistic scenarios and were applied to an microgrid
(ACMG) with two VSC-based distributed generators (DGs), as
depicted in Fig. 1. The desired voltage and frequency settings



were 400V and 50 Hz, respectively, with detailed ACMG
parameters outlined in Table I. Two scenarios of dynamic load
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Fig. 4: Power-sharing among DGS during load changes in
sequential steps using ANN-based PR controller: (a) Variations
in Active Power, (b) Variations in Reactive Power.

changes were tested as follows:

A. Case I: Load changes in sequence steps

In this scenario, we assume the DGs operate under nominal
loads and encounter programmed, step-wise load changes,
including both increases and decreases. Specifically, Load #2
increases by 35% and 12% at times 1 and 3 seconds, respec-
tively. Subsequently, it undergoes a 35% decrease at time 4.5
seconds. Fig. 4 illustrates the active and reactive power sharing
between DG #1 and #2 during these sequential changes. The
active power sharing errors are −1.8% and +2.9% for DG
#1 and #2, respectively. The reactive power sharing errors are
−4.8% and −7.2% for DG #1 and #2, respectively. Continuing
Case I, the proposed controller demonstrates its effectiveness
in reducing voltage and frequency errors, as well as harmon-
ics, leading to superior performance, particularly under large
dynamic load changes. Fig. 5 illustrates the output voltage
variations of DG #1. As shown, the voltage error and total
harmonic distortion (THD) voltage remain below 2% and 1%,
respectively. Furthermore, despite the frequency variations,
(Fig. 6 (a)) demonstrates that the frequency error is main-
tained below 0.007 Hz. (Fig. 6 (b)) shows the corresponding
variations of the Kp and Kh coefficients in the controller.

B. Case II: Performance Comparison of Conventional and
ANN-Based PR Controllers under Nonlinear Dynamic Load
Conditions

To further validate the proposed control technique, we
compared it with a PR controller under non linear loading
conditions. In this scenario, we introduce a nonlinear load

Erv.<2% THDv.<1% 

 

Fig. 5: Output voltage of DG#1 during load changes in
sequential steps using ANN-based PR controller

(a)

(b)
 

Fig. 6: (a) frequency variations, (b) Kp, Kh variations during
load changes- using ANN-based PR controller

to further evaluate the proposed controller’s robustness under
dynamic load changes. A three-phase full-bridge rectifier with
six pulses, modeled as a nonlinear load with 1.2 kVA power
and 0.8 power factor, is connected to bus #1 at time 1
second in parallel with load #1. Figs. 7 depicts the output
current variations for DG #1 and #2, respectively. The results,
illustrated in Fig. 8 and Fig. 9 depict the output voltage
variations in the presence of nonlinear dynamic changes in two
cases using a conventional PI controller and using ANN-based
PR controller. These figures clearly demonstrate the proposed
controller’s superior performance in handling the introduced
nonlinear dynamic changes. As shown From Fig. 8 and Fig. 9
The total harmonic distortion (THD) for voltage is around 1%
in case of using ANN-based PR controller, highlighting the
controller’s effectiveness in mitigating harmonic distortions
caused by the nonlinear load. While THD value is 5.6%
in case of using conventional PR controller. Furthermore,
the error voltage is less than 2% by using ANN-based PR



THDi.< 5% 

 

Fig. 7: Output current of DGs when connecting a nonlinear
load- using ANN-based PR controller: (a) DG#1, (b) DG#2.

controller and approximately 5% by using a conventional
PR controller. In the results, both controllers demonstrate

Erv.<2% THDv.     

 

Fig. 8: Output voltage of DG#1 when connecting a nonlinear
load- using ANN-based PR controller.
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Fig. 9: Output voltage of DG#1 when connecting a nonlinear
load- using a conventional PR controller.

compliance with the limitations outlined in the IEC 62040-
3 standard and the IEEE 519 standard. However, the Adaptive
Artificial Neural Network (AAN)-based PR controller stands
out with a remarkable advantage. It consistently outperforms
the conventional PR controller in terms of both voltage error
and THD. This performance superiority proves its capability
in regulating voltage and minimizing distortions, even in the
presence of significant nonlinear load dynamics.

V. CONCLUSION

In this study, we applied real-time optimal voltage control
using an ANN in the inner loop of the primary control level
to adjust Proportional-Resonant (PR) controller parameters.
The results highlight the remarkable effectiveness of the
ANN-based PR controller, especially in regulating voltage

and minimizing distortions under challenging load dynamics,
including online learning with minimal computational com-
plexity. The superior performance aligns with the IEC 62040-
3 standard and the IEEE 519 standard, ensuring compliance
and delivering greater stability and high-quality power. The
reductions of 2% in voltage error and 1% in Total Harmonic
Distortion (THD) offer several benefits in microgrid operation,
including improved power quality for connected loads, reduced
harmonic-related losses leading to increased energy efficiency
and lower operational costs, and greater system stability and
resilience under dynamic load conditions, ensuring smoother
operations and enhanced reliability.
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