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Abstract
Deep Learning in modern Artificial Intelligence (AI) has witnessed unprece-
dented success on a variety of domains over the past decade, ranging from
computer vision to natural language reasoning tasks. This success is owed
primarily to the availability of large, annotated datasets, the existence of pow-
erful mathematical models, and the mechanism to train large models on such
data with advanced resources of compute. However, this success has led to
increased scrutiny on the failure points of models trained on suspect data.
Issues such as model and data bias, reliance on spurious correlations, and poor
generalization capability on challenging test data, to name a few, have surfaced
in the research community. As a result, it seems imperative to diagnose such
systems for generalization performance on challenging test data, and uncov-
ering potential biases hidden in datasets. In this thesis, we address these key
challenges through the following directions: first, in the generalization capa-
bilities with limited labeled data - few-shot learning, semi-supervised learning,
and unsupervised learning. Second, towards bias discovery in existing models
and datasets, particularly in unsupervised group robust learning, and debiased
synthetic data generation. Our two broad directions are encapsulated by a
common challenge: the paucity of labeled data, since manually annotating
large datasets is a time consuming and expensive process for humans. This
motivation is relevant today due to the exponential growth in the sizes of mod-
els and datasets in use. It is becoming more and more intractable for humans
to annotate billions of data points, leading to large benchmark datasets that
are not well calibrated with human expectations on fairness. These issues, if
left unchecked, are inevitably exacerbated when models train on such datasets.
We consider these two directions, i.e. model generalization with limited labels,
and the existence of biased data, to be two sides of the same coin, and thus coin
the framework encapsulating such research as Model and Data Diagnosis. This
work proposes novel contributions in few-shot learning, semi-supervised learn-
ing, unsupervised learning, and in data diagnosis and debiasing techniques.
Further, we show that model and data diagnosis do not necessarily exist as
disparate entities, and can be viewed in a co-dependent context. Finally, this
thesis hopes to amplify the scrutiny surrounding model capabilities, however
impressive, trained on datasets, however vast.
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1
Introduction
We live in an unprecedented era where machines are proving to be capable at
a variety of cognitive tasks previously relegated to humans. These tasks such
as identifying images, parsing information from text, video understanding,
sentiment understanding, etc. were previously thought to be difficult for non-
humans owing to a belief that a deeper, erstwhile unknown intuition is at
play for such tasks [106, 31, 99, 4]. As a result, near superhuman performance
of computer algorithms on a wide variety of real world tasks invites a fresh
spectrum of scrutiny from a diverse group of institutions: academic, financial,
governmental, policy, and venture capital [17, 1, 13, 100, 57]. While the full
bandwidth of public opinion also accommodates claims from science fiction, in
essence we observe a general unrest in the zeitgeist - some are excited, some
are anxious, others are curious, very few are uninterested. A large part of this
progress is attributable to a list of simple ingredients - hardware, programming,
data, and the existence of powerful mathematical models. It turns out that
all of these ingredients have witnessed an explosive growth in usefulness in
the past decade. Graphics Processing Units (GPUs), previously used in high
performance computing and gaming, began to be adopted widely to carry
out large batches of matrix multiplication, a process at the heart of most of
the progress we see today. This was not possible without the programming of
the CUDA platform [84], and the subsequent development of useful libraries
to programs in, with CUDA running in the backend, such as PyTorch [87].
Finally, it was also possible to curate, annotate, and store large quantities of
data in a structured fashion. One early, successful example of data curation
is ImageNet [30]: a dataset of images encompassing around 21000 unique
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2 chapter 1 introduction

objects. The object names were extracted in a structured, pre-existing hierarchy
called WordNet [36], which allowed for a convenient way to group together
semantically similar classes. ImageNet, in its original form, contains close to
14 million images, all manually annotated by humans. Since then, ImageNet
has turned into among the most frequently used datasets in computer vision
research. In addition to hardware,programming anddata, a set ofmathematical
models also proved to be useful. For images, and sequential data (such as
text) in particular, a variety of older architectures invited renewed interest in
the community, owing to the feasibility of programming such architectures.
Architectures such as the Convolutional Neural Network (CNN) [70], the Long
Short TermMemory (LSTM) [51], and symbolic computation techniques such as
autodifferentiation [7], all techniques from previous decades, suddenly proved
to be computationally feasible. Recently, more novel architectures have been
developed in various modalities, such as the transformer, the vision transformer,
and ConvNeXT, to name a few [113, 33, 78]. TheModel, then, is a parameterized
abstraction that is stored as chunks of a large matrix of vectors. This matrix
contains the internal model representations of the data. To achieve such
representations, the Model is trained on a dataset: an iterative process that
occurs in epochs, where the Model sees the same set of images as time passes
by, constantly updating its internal parameterization. Thus was born the Deep
Learning era, where a model could start from a random parameterization and
iteratively update its parameters to gain improved guesses on the image object
it processes (the learning process). In the case of computer vision, the base
network themodel used, the CNN,was created by stacking a set of convolutional
layers, thus leading to the moniker deep learning - an architecture with many
layers.

AlexNet [65] was among the early successes of the deep learning paradigm,
demonstrating significantly improved results on ImageNet when compared to
its baselines of a bygone era. Over the years, more such architectures were
developed, in addition to more benchmarks, datasets, tasks, domains, and so
on. The exponential adoption of this paradigm is attributable to the flexibility
of the architectures in use — One did not need to preset a list of handwritten
rules to teach a machine how to perform a task. Instead, one could engineer
a way to solve this task: a reasonable parameterization, large quantities of
data and hardware capabilities. More recently, with performance saturation on
standard benchmarks in vision, text, and video [30, 73, 59], the introduction of
foundation models [12] has led to a new, post-ImageNet wave in deep learning.
The post-ImageNet wave is not simply the introduction of new datasets. It is
the introduction of entirely new architectures and tasks as well [16, 77].

In addition to learning and prediction tasks, generative tasks are also witnessing
an exponential growth [39, 63]. One set of models that have captured the public
imagination today are diffusion-based models— given a text prompt, these
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models can generate images that adhere closely to the prompt, leading to
hyperrealistic image generation [50, 93]. Quite clearly, such developments
resemble a space akin to an epistemological wild west - is knowledge simply
a set of vector embeddings? Does knowledge and reasoning emerge from
pure randomness? What are the ontologies learned by modern deep learning
techniques vis-a-vis human ontologies? While this thesis is not concerned about
these questions, we believe these questions necessitate the remarkable interest
generated by such models in the zeitgeist today.

1.1 Learning with limited labels

A natural consequence of such paradigm shifts within the space of a decade is
the price to pay for training: models have gotten exponentially larger, and so
have datasets [16, 58, 52, 123].

This exponential increase in model and dataset sizes begs the central moti-
vation of the thesis: diagnosis of the model, and the data, i.e. investigating
model understanding and generalizability, in addition to understanding key
properties of the datasets such models train on, is of tantamount importance.
This thesis is also concerned with the economy of learning - the proliferation
of deep learning-based architectures in computer vision, language modelling,
and graph-based data in the past decade is owed mostly to the availability
of large-scale datasets in each of these data modalities. These datasets are
often highly curated, and more importantly, annotated (assigning labels to data
samples), for training large models with billions of parameters. However, the
process encompassing dataset collection, curation, and annotation is expensive
[107]. In recent years, therefore, there has emerged an increased focus on de-
veloping novel methodologies to design architectures and training paradigms
that succeed after training on unlabeled/partially labeled data, deeming the
process of learning to be ‘self/semi’-supervised [25, 42, 46, 19]. This training
paradigm involves diverse applications on a variety of downstream tasks such
as recognition, detection, and clustering, to name a few. The broad goal of the
(semi/self)-supervised learning paradigm is to develop methodologies that en-
code a generalized representation in a data modality (for example image, text,
graph), i.e., a representation that can then be used successfully on a variety
of downstream tasks. Additionally, the performance of any such methodology
must be carefully calibrated with understanding why a model makes a certain
prediction in the first place, the domain of explainability research [92, 80, 74].
Models should not only be powerful, but their predictions should also be ex-
plainable to human evaluators in safety-critical applications such as healthcare.
A variety of model explainability techniques have been successful in revealing
previously unknown biases in deep learning models [98, 6].
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1.2 Spurious Correlations and Bias

Models are not necessarily decoupled from the bias of the data they are
trained on. Therefore, in addition to model explainability, we also consider
the issue of dataset bias. In short, what are certain repetitive patterns found
in data that are potentially harmful for a downstream task? These patterns
are called spurious correlations, or biases, and can exist in a variety of forms:
textural [38], shape-based [54], scale-based [103], object-based [37], and social
[18, 11]. An example of a spurious correlation in a dataset is a watermark
[68]. This is a subtle cue that may be ignored by human evaluators, but as
it turned out, models training on such images frequently picked up on the
watermark to make their decisions. This is unreasonable since a watermark
should not causally predict the object present in an image. It is a spurious
feature that should be ignored. This phenomenon exists under various names
in the literature—Shortcut learning [37], Clever Hans effect [68], and a large
body of literature exists to mitigate such spurious correlations [5]. Another,
possibly more serious issue of dataset bias involves the multitude of social biases
that exist in modern datasets. ImageNet, for instance, has a stagnant concept
vocabulary, a limited diversity in objects represented (even though there are
about 21000 unique objects), and a string of racial biases [105]. MS-COCO [124],
another oft-used dataset in machine learning, has significant gender bias in its
images and captions, and CelebA [79], a database of faces, has a set of features
that reinforce racial and gender stereotypes [20]. We note that none of these
three datasets are fringe datasets or rarely used. These are among the most
common datasets being used in a variety of machine learning research areas
today. While some of these biases are, until today, still being discovered, a large
gamut of unknown biases exist. More recent, larger datasets such as LAION-5B
[97], are also under heavy scrutiny for possible biases [9].

1.3 Model and Data Diagnosis

As a result, this thesis is centred around Model and Data Diagnosis under
Limited Supervision - through our contributions, we hope to paint a holistic,
inter-connected picture of how model diagnosis, that includes generalization
and robustness with limited labels, interacts with data diagnosis - uncovering
the spurious correlations and inherent structure of datasets in a principled
examination. As models and datasets grow larger with time, it is imperative to
take a closer look into what large datasets in the wild have in store for us, and
how this affects models that train on such datasets.

Broadly, we hope such an investigation helps shed light on certain directions
of future work in reasoning capabilities and data bias.
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1.4 Thesis objectives and contributions

In summary, the objectives of this thesis are the following:

• To develop new techniques in learning with limited labeled data, i.e.
few-shot learning, semi-supervised learning, and unsupervised learning.

• To develop novel techniques to perform model and data debiasing to
improve generalization and robustness.

• To reframe such objectives within the framework of model and data
diagnosis, and to show that apparently disparate research areas such as
model generalization, debiasing, explainability, can all be encapsulated
in such a framework.

The contributions of this thesis are as follows:

• A novel technique to perform unsupervised group robustness using model
explainability heatmaps. This is the subject of Paper I.

• A novel representation learning method on the geometry of the hy-
persphere to achieve state-of-the-art results in few-shot transductive
classification. This is the subject of Paper II.

• A novel data debiasing framework that represents object co-occurrence-
based biases in visual datasets. This is the subject of Paper III.

• A novel connection between oversmoothing in graph neural networks
and disentangled representations in transductive semi-supervised node
classification. This is the subject of Paper IV.

We present a schematic of the thesis in Figure 1.1.

1.5 List of publications

We present the list of papers that form the core of this thesis. These include
published papers, submission-ready manuscripts, and submissions currently
under review:

Paper I Rwiddhi Chakraborty, Adrian Sletten, and Michael Kampffmeyer.
“ExMap: Leveraging Explainability Heatmaps for Unsupervised Group Robust-



6 chapter 1 introduction

Model and Data Diagnosis under limited supervision

Model 
Diagnosis

Data Diagnosis

Unsupervised

Semi-supervised

Few-Shot

Paper I Paper II

Paper IV

Data Bias

Paper III

Figure 1.1: An outline of this thesis. Here, we relate how the different research con-
tributions connect to each other in the broader framework of model and
data diagnosis under limited supervision.

ness to Spurious Correlations”. In: CVPR. 2024.

Paper II Daniel J. Trosten*, Rwiddhi Chakraborty*, Sigurd Løkse, Kristof-
fer Wickstrøm, Robert Jenssen, and Michael Kampffmeyer. “Hubs and Hyper-
spheres: Reducing Hubness and Improving Transductive Few-shot Learning
with Hyperspherical Embeddings”. In: CVPR. 2023 [* denotes equal contribu-
tion].

Paper III Rwiddhi Chakraborty,OliverWang, Jialu Gao,Cheng Zhang,Runkai
Zheng, and Fernando de la Torre. “Visual Data Diagnosis and Debiasing with
Concept Graphs”. In: (Under Review).

Paper IV Rwiddhi Chakraborty,Benjamin Ricaud,Robert Jenssen,andMichael
Kampffmeyer. “On Disentangled Representations and the Oversmoothing Prob-
lem in Graph Convolutional Networks”. (Submission Ready).

The thesis is structured in the following way: the first section, titled Learning
and Data, discusses relevant topics in statistical learning, deep learning, ex-
plainability, and model and data diagnosis. The second section, titled Summary
of Research, briefly discusses the papers presented in this work. The third sec-
tion, titled Conclusion and Future Work, presents final remarks and interesting
areas of future work. The final section, titled Included Papers, contains the full
papers that form the core of the thesis.
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2
The Learning Problem
Since this work heavily uses terms from deep learning and statistical learning,
here we provide some preliminaries in learning theory. The topics discussed
here are relevant to generalization, robustness, and bias as discussed later in
the thesis.

A learning machine refers to an algorithm that can learn from data. While a
formal, universally accepted definition of learning does not exist, an oft-used
definition that serves most purposes was provided by Mitchell [81]: A computer
program is said to learn from experience E with respect to some class of tasks T
and performance measure P if its performance at tasks in T, as measured by P,
improves with experience E.

The Experience E refers to the dataset under investigation, the task T refers
to the particular problem at hand, and the performance measure P refers to
a quantitative metric to assess the quality of the learning algorithm on the
task-specific dataset at hand.

Since the definition of learning is presupposed by the existence of a task, we
identify two popular examples of tasks of interest: classification and regression.
In the classification problem, the learning machine aims to identify a correct
category of an object from a set of possible categories. For instance, in image
classification, the learning machine may be provided an image of an object, and
asked to identify the object. In the regression problem, the learning machine
aims to output a continuous value relevant to the task at hand, e.g given a set

9



10 chapter 2 the learning problem

of housing prices of a variety of houses, the machine may be asked to predict
the price of a unique house.

In the Classification context, one dataset (Experience) of particular interest is
ImageNet [30]. There are 21000 unique objects in this dataset, and the ImageNet
Challenge taskedmodel designers to unlock state-of-the-art performance on the
data. In recent years, deep learning approaches have achieved human-parity
performance on ImageNet. In the regression context, an example of a dataset
would be the Boston Housing Prices Dataset [44], the challenge of predicting
house prices based on features such as size, location, etc. In regression problems,
tree-based boosting and ensemble methods have proven to be quite popular in
large-scale online applications [24, 60].

The definitions of the Experience and the task T allow us to formalize these
notions further. We assume we are given a dataset 𝑋 = {𝑥1, 𝑥2, . . . 𝑥𝑛} of 𝑁
points. The learning machine then approximates a function 𝑓 (𝑥) on the data,
and outputs a prediction 𝑦. Depending upon T, the performance measure P
can now be defined. In the case of classification, given a set of discrete classes
𝐶, the cross-entropy loss 𝐿𝐶𝐸 is commonly used:

𝐿𝐶𝐸 = − 1
𝑁

𝑁∑︁
𝑗=1

𝐶∑︁
𝑖=1

𝑦𝑖 𝑗 log(𝑦𝑖 𝑗 ). (2.1)

where 𝑦 and 𝑦 are the true labels and predicted labels respectively. The cross-
entropy is the expected loss over all datapoints, for all classes in the data. In
the case of regression, the Mean Squared Error (MSE) is common:

𝑀𝑆𝐸 =
1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2. (2.2)

Both 𝐿𝐶𝐸 and 𝑀𝑆𝐸 can be considered examples of performance measure 𝑃 .
However, these are certainly not the only measures available. The performance
measure is defined completely by the existence of data points, a model that
approximates a certain function of the given data, and based on this approxi-
mation outputs a certain value. The performance measure simply dictates how
good this value is in context of the task at hand.

Learning machines are function approximators of data. A model is said to be
powerful if its function approximates data in an acceptable fashion. As a result,
models are differentiated by the space of functions they encompass. As we will
see in the next section, and in a later part of the thesis, the choice of function
approximator makes a significant difference in the task at hand.
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(a) Linear Fit [w = -0.382, and a = 1.056].

X

y

(b) A four degree polynomial fit.

Figure 2.1: Comparison of Linear and Polynomial Fits on a sinusoidal dataset with a
random normal noise distribution. Choosing a polynomial model results
in a better fit.

Next, we discuss why a correct choice of a function approximation is necessary
for learning machines, i.e. we discuss the impact on generalization capabilities
of such models on given data.

2.1 Generalization

Once a model takes as input a set of data points (training data), how well does
it perform on data points that it has not seen before (test data)? This is the
generalization problem. We illustrate this problem with a simple regression
example.

In Figure 2.1, we plot a series of points using a sinusoidal curve with a random
normal noise distribution. A natural question to ask is what function can
reasonably capture the structure of the data. This process is called fitting the
model to the data. If we assume a linear model family:

𝑓 (𝑥) = 𝑎 +𝑤𝑥. (2.3)

where 𝑎 is a constant (can be interpreted as an error term, or in terms of
statistical learning, the residual), we can see that such a linear family admits
various choices of models, depending upon the parameterization of𝑤 . Given
that we choose a particular model, its generalization capability could then be
measured based on the performance measure (MSE) on the test points, as
shown in the figure.

Further, we are not restricted to choosing a linear model family. In fact, in
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X

y

Figure 2.2: The overfitting phenomenon: the highest degree polynomial starts cap-
turing the random noise in the data by trying to fit exact points in the
training set. The linear model underfits the data, while the polynomial of
degree four seems to be an appropriate compromise.

Figure 2.1, it is intuitively seen that a linear regression may not be appropriate,
given the non-linear structure of the data. In this case, we could choose a
polynomial based approach:

𝑓 (𝑥) = 𝑎 +𝑤1𝑥 +𝑤2𝑥
2. (2.4)

We note the increase in the number of parameters, and the subsequent improve-
ment in the quality of the fit. In principle, one could choose parameters for
even higher orders of the data, but this approach is not guaranteed to infinitely
produce better performance. The reason that over-parameterization fails after
a while is due to the overfitting issue in statistical learning. In general, fitting
an over-parameterized model with low-dimensional data leads to the model
capturing all points, even points which are anomalous, or noise, in the training
data. This leads to a low MSE value. However, since the model has captured
spurious points in the input, it leads to a high MSE when the model is evaluated
on the test data. The growing gap between the training and test MSE is the
overfitting phenomenon, illustrated in Figure 2.2. Conversely, when a model
cannot sufficiently capture the information in the input data and performs
poorly on the test data, we deem the model to underfit the data, and it would
be useful to choose more parameters to fit the training data.

This tradeoff between the amount of parameterization chosen for a model (the
model capacity), and the impact on error-rate is called the bias-variance tradeoff,
illustrated in Figure 2.3. Essentially, under-parameterizedmodels exhibit higher
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Figure 2.3: The bias-variance tradeoff: beyond an optimal model capacity, generaliza-
tion capability on test data worsens.

bias (a linear regression model assumes linearity in the data), while over-
parameterized models exhibit higher variance (a polynomial of a high order),
and the acceptable generalization performance is a tradeoff between these two
choices. Given our chosen function approximator 𝐹 (𝑥), the true function 𝑓 (𝑥),
and a dataset 𝐷, this tradeoff can be formulated as the average MSE on the
test data:

𝐸 (𝑓 (𝑥) − 𝐹 (𝑥))2 = 𝜎2(𝐹 (𝑥)) + [𝐵𝑖𝑎𝑠 (𝐹 (𝑥))]2 + 𝜎2(𝜖) . (2.5)

where [𝐵𝑖𝑎𝑠 (𝐹 (𝑥))]2 = 𝑓 (𝑥) − 𝐸 (𝐹 (𝑥)), and 𝜖 is the inevitable error variance
in estimation. Given that we desire a minimal test MSE, our ideal model should
have low bias and low variance.

In summary, the bias-variance tradeoff has a significant impact on the classifier’s
generalization capabilities. A propensity to pick up spurious training points in
the form of noise or points that are causally unrelated to the labels, will hinder
generalization capabilities.

2.2 Error Bounds

In addition to the expected test error, statistical learning theory has a useful
result to provide tight bounds on the empirical (observed) error rate. This is
defined by the Vapnik-Chernovennkis (VC) Dimension [112]. The VC dimension
measures the complexity of a class of functions. Given the dimensionality of
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a learned machine F with parameterization 𝑤 as 𝑑, the number of training
samples 𝑁 , the dataset 𝐷, the true (unknown) risk is:

𝑅(𝑤) =
∫

1
2
|𝑦 − 𝐹 (𝑥,𝑤) |𝑑𝐷. (2.6)

where 𝐷 represents the probability distribution of the universe of all possible
samples (training and test). Clearly, 𝑅(𝑤) is a purely theoretical measure and
thus needs to be upper bounded by the empirical risk:

𝑅𝑒𝑚𝑝 (𝑤) = 1
𝑁

𝑁∑︁
1

|𝑦 − 𝐹 (𝑥,𝑤) |. (2.7)

The empirical risk is the actual MSE we measure in our experiments. Given
𝑅(𝑤) and 𝑅𝑒𝑚𝑝 (𝑤), and 𝜂, where 0 ≤ 𝜂 ≤ 1, the VC-bound provides a tight
theoretical bound on generalization performance for a learning machine:

𝑅(𝑤) ≤ 𝑅𝑒𝑚𝑝 (𝑤) +

√︄
𝑑𝑙𝑜𝑔( 2𝑁

𝑑
) + 1 − 𝑙𝑜𝑔(𝜂4 )
𝑁

. (2.8)

The second term on the right in equation 2.8 provides a confidence on the
empirical risk. This bound is significant as it is independent of the dataset
being considered, and given a set of functions with computable VC-dimensions,
we are guaranteed an estimate of the true risk (unknown apriori) with a
certain probability. This clearly gives us a theoretical justification for choosing
classifiers with minimal risk. Finally, it is evident from equations 2.7 and 2.8,
that the number of labeled training samples, and model capacity, have a direct
effect on the tightness of the bound. In the absence of a large number of
labeled instances therefore, we must be careful to not select models of higher
complexity, as this increases the risk of overfitting. This is one of the key
challenges in learning with limited labeled data.

2.3 No Free Lunch

The No Free Lunch theorem [118] in statistical learning is a powerful result that
shows that, without underlying assumptions about the structure of the dataset,
over all possible probability distributions over the data, every classifier will achieve
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the same test error. This result signifies two things: first, that the choice of
model (classifier) is significantly dependent on the data at hand, and that no
universally superiormodel irrespective of data, can exist. Second, our underlying
assumptions about the data have a significant impact on model performance
and interpretibility. This is why, in our work, we look at models and datasets
as co-dependent, and not separate entities, as each informs the other.

The topics discussed in this section provide some theoretical intuition for the
work that follows. The growth in dataset sizes and model complexity places
intense scrutiny on further overfitting by models today. In fact, this issue is
even more pertinent in large models today [109]. These theoretical points help
shed more light on our discussions in spurious correlations and bias in later
sections.





3
Learning with limited
labels

The typical learning setup assumes access to a dataset𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . },
where 𝑥𝑖 corresponds to an input data feature, and 𝑦𝑖 the corresponding labels.
In the supervised setup, we assume access to class labels for all data samples
in 𝐷. However, as discussed before, this assumption is unrealistic, as collecting
ground truth labels for all data samples, particularly for large datasets, is time-
consuming and expensive. As a result, learning with limited labels assumes the
partially supervised setup, where a subset 𝐷𝑠𝑢𝑏 ⊂ 𝐷 of samples have labels, or
the unsupervised setup, where the label set for the entire dataset is empty, i.e.
No labels are available for the whole dataset. Clearly, these scenarios are more
challenging for a learning algorithm, as there is no supervisory signal to rely on
for making predictions. As a result, learning with limited labels is essentially
a representation learning problem, since there is a need to design novel repre-
sentations of data in lieu of actual labels. In this chapter, we focus on three
techniques for learning with limited labels: few-shot Learning, semi-supervised
learning, and unsupervised learning.

17
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3.1 Few-Shot Learning

In Paper II, we propose a novel representation learning method for transductive
few-shot learning (FSL) [15, 116]. In this section, we provide some background
and relevant context for our paper. The objective of few-shot learning (FSL) is
to classify a set of novel classes in a test set that a base classifier has not seen
during training. Typically, the classifier is provided a small set of such novel
samples with labels, called the support set, while the test set for evaluation is
called the query set. The number of samples in the support set is typically one
or five, thus giving rise to the nomenclature one-shot or five-shot learning. For
𝑆 shots and 𝐾 novel classes, the scenario is deemed a S-shot-K-way problem. In
the FSL setting, we assume access to a feature extractor (typically a deep neural
network) that has been fit to a set of base classes. Note that the novel classes in
the support and query sets have no commonality with the base classes.

The evaluation of the FSL classifier proceeds in episodes: in each episode,
𝑛𝑠 support samples, and 𝑛𝑞 query samples are sampled from each of the 𝑘
classes. The FSL classifier makes the class predictions on the 𝑛𝑞 samples based
on the support. The average performance (mean and confidence intervals)
over a large number of episodes is computed to evaluate the FSL classifier
performance.

Transductive vs Inductive FSL There are two popular approaches to
FSL in image data today - the transductive approach assumes access to the
query representations both during training and inference, while the inductive
approach assumes access to the query representations only during inference. As
a result, there is a clear difference in the quality of representations available to
the base classifier during training. As such, transductive approaches outperform
inductive approaches on most FSL tasks in ixmage datasets [89, 69]. This is
because the query representations can provide additional information to the
classifier in addition to the support representations during training. In our
work, we assume the transductive setting, i.e. the query representations are
assumed to be available during training. As it turns out, the availability of
these representations provides significant advantages in the embedding setup,
as discussed next.

Normalization in FSL Since the challenge in FSL is to embed representa-
tions in a way that leads to accurate approximations of the data samples, a wide
variety of normalization techniques have been employed in this area, often to
surprisingly strong, state-of-the-art performance. Some examples include the
𝐿2 and Centred 𝐿2 normalizations, and the 𝑍 -score normalization [35].
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Other Embedding approaches In addition to novel normalizations, there
are other, more sophisticated embedding techniques that also demonstrate
strong performance on FSL tasks. ReRep [26], for instance, proceeds in two
stages: in the first stage, the query samples are combined using an attention
mechanism. In the second stage, the support samples are combined linearly
with the aggregated query representations. The intuition is that similar support
representations in the second step would move closer to distinguished query
representations in the first stage. Thus,ReRep is essentially a two-stage, support
and query fusion mechanism mediated via attention. Another method, EASE
[129], fuses the support and query samples into a single set. Next, it learns
a similarity and dissimilarity matrix through an optimization problem where
the similar features are encouraged to be embedded closer to each other,
while dissimilar features are embedded further away. EASE ends with an L2
normalization of the learned embeddings. Finally, TCPR [120] first runs a k-
neighborhood process and filters out the top-k support samples with respect
to the task centroid. Next, it projects out the direction of the task centroid
from these representations, thus ensuring orthogonality in the support set.
By removing feature components in the direction of the task centroid in this
fashion, TCPR is able to alleviate support ambiguity, i.e. supports lying too
close to the centroid decision boundary that leads to harder predictions.

The Hypersphere in FSL One common feature of most embedding meth-
ods discussed above is the presence of the normalization process for the learned
embeddings. Essentially, such a normalization projects the features on to the
unit circle, or the hypersphere, in higher dimensions. This naturally leads us
to ask why embedding representations on the hypersphere is useful for FSL.
In Paper II, we address this question by elucidating how embedding represen-
tations on the hypersphere eliminates the hubness problem [91]. The hubness
problem is a well known result in computational statistics, wherein certain
points embedded in higher dimensional space often appear in the nearest
neighbor lists of other points, leading to increased chances of misclassification.
This is primarily due to the unreliable nature of Euclidean distances in high
dimensional space. In our work in Paper II, we show that the hypersphere not
only provably eliminates hubness, but that the elimination of hubness includes
certain intuitive advantages for FSL classifiers as well.

3.2 Semi-Supervised Learning

The FSL setup is quite useful for learning with limited labels. However, the
framework of support and query images may be unrealistic, since in the real
world, such a clear distinction may not be available. To achieve a stronger step
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in generality, one can loosen the restriction of having support and query sets,
and instead look at the case where a dataset 𝐷 has a subset 𝐷𝑠𝑢𝑏 that contains
labeled samples. The task then is to infer the unlabeled samples from these
labeled samples, and this is the domain of semi-supervised learning (SSL),
or partially supervised learning. Next, we introduce two key approaches in
SSL - the first approach, that of pseudo-labeling, represents among the earliest
methods that leverage unlabeled instances to label test data. The second
approach, the graph-based approaches, is the domain that has been one of
the most successful in modern SSL. In addition, this thesis also provides a
key contribution in the domain of graph-based SSL, as we will discuss in a
following section.

3.2.1 Pseudo-Labeling in SSL

These methods aim to assign pseudo-labels to the unlabeled instances in the
data through some confidence measure. Self-Learning [130, 121], for instance,
is an iterative procedure wherein a classifier predicts a set of unlabeled in-
stances, and the predictions with the highest confidence scores are added
to the (labeled) training data, proceeding to the next round of assignments.
This process continues until all unlabeled instances are classified through this
confidence-based filtering mechanism. Co-training [10, 127], on the other hand,
presents a multi-classifier approach to generating pseudo-labels. Specifically,
only those labels are considered to be estimated accurately if multiple classifiers
are in confident agreement about their classifications. Disagreement between
classifiers on label assignments leads to lower confidence, leading to the labels
being discarded.

3.2.2 Graph-Based SSL

One of the most popular applications of modern SSL is through graph-based
approaches [102]. If a dataset can be represented as a graph, where each node
encodes a feature of a training instance, and each edge represents a similarity
metric between nodes, various methods can be leveraged to estimate the labels
of the unlabeled instances based on the labels available. In the context of
our thesis, we explore graph-based SSL in the domain of Transductive Node
Classification, presented next.

3.2.3 Transductive Node Classification

Given a graph 𝐺 = (𝑉 , 𝐸), where |𝑉 | represents the node set, |𝐸 | the edge set,
𝐺𝐿 represents the labels of each node,𝐺𝑈𝐿 represents the unlabeled nodes, and
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feature matrix 𝐹 ∈ R(𝑉 ×𝑑 ) where 𝑑 is the size of each node feature embedding,
the transductive node classification task aims to estimate𝐺𝑈𝐿 from𝐺𝐿, 𝐹 , and
the adjacency matrix 𝐴 of 𝐺 .

We leverage Graph Neural Networks (GNN) [126] in this task. GNNs are a
certain set of architectures for feature learning on graphs, where in addition to
the node features, the graph topology as described by the adjacency matrix also
comes into play to define the learning rule. In this thesis, Paper IV examines
the effect of graph topology and features in the limited labeled setting on a
variety of unique datasets. We show that the learning capability of a GNN
is heavily mediated by the nature of the dataset, specifically how the graph
topology and feature representations interact implicitly in the data.

3.3 Unsupervised Learning

The most general form of learning with limited labeled data is the scenario
where no labels for any training instance are available. This is in principle
the most general learning scenario, where other than certain fundamental
assumptions, the task of estimating structure from unlabeled data is the most
challenging. We discuss two such fundamental assumptions here, namely the
Cluster Assumption, and the Manifold Assumption. These two assumptions are
important to understand the challenges of estimating labels when no labeled
instance exists.

3.3.1 Cluster Assumption

This assumption states that given a set of data instances, points in high density
areas (that tend to form clusters) are more likely to belong to the same
class. In other words, one could draw short curves that traverse high density
regions across the data, effectively capturing the diverse class information
present [22]. This assumption is important, because in the learning problem,
we assume that points belonging to unique categories must be organized in
unique representations. If this assumption does not hold, the learning problem
cannot be framed appropriately. Recalling the No Free Lunch theorem discussed
in the previous chapter, without underlying assumptions about the data, no
classifier is significantly better than the other on average. This is why the cluster
assumption is fundamental in the learning problem.
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3.3.2 Manifold Assumption

This assumption states that there exists a low dimensional manifold for high
dimensional data [21]. This assumption is useful because the learning problem
struggles in high dimensions owing to the curse of dimensionality - in high
dimensional data, Euclidean distances between points tend to become increas-
ingly uniform, leading to a high risk of misclassification. A related topic in
the curse of dimensionality is the hubness problem, as discussed previously in
this chapter. Essentially, if one can project the data onto a low dimensional
manifold, uncovering density disparities becomes tractable, in turn making the
learning problem tractable.

These two assumptions form the base of all clustering, and SSL algorithms
in use today. Broadly, distances between representations is considered to be
of utmost importance. If distances are rendered meaningless, one looks to
find representations where distances become useful again. Without these two
assumptions, learning with limited labeled data is an intractable problem.
Papers I, II, and III are all implicitly tied to these assumptions and other
theoretical ideas discussed in the previous chapter.

3.3.3 Clusters as Pseudo-Labels

In this thesis, we employ clustering in the field of group robustness, i.e. esti-
mating groups within data that may be biased in the learning task. The group
robustness problem presupposes the existence of groups in the training data.
It can be shown that modern classifiers are biased towards particular groups in
the data, leading to unreliable predictions on the test set. However, assuming
the existence of group labels is unrealistic, since collecting labels is a time-
consuming and expensive endeavor. As a result, one of the contributions of
this thesis is to provide an unsupervised method for group robust learning, one
that leverages the clustering of explainability heatmaps of classifiers. In Paper
I, we show that such a clustering mechanism reliably estimates the underlying
groups in the data in lieu of actual group labels. We experiment with both
K-Means and Spectral clustering techniques. A brief description is provided
here.

K-Means

One of the most popular clustering methods, K-Means [119] proceeds by ran-
domly assigning K centroids in the data, and then iteratively assigning points
to each of these centroids based on the respective Euclidean distances, and
updating the centroids. The algorithm terminates when the centroids do not
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change over a specified number of iterations.

Spectral Clustering

In this technique, instead of directly applying K-Means on the input data, first a
similarity matrix is constructed using the data points. The eigenvectors of the
resultant laplacian of the similarity matrix leads to a reduced dimensionality
of the data. K-Means can be applied on the new embeddings to generate the
clusters. Spectral approaches are useful when handling arbitrary data shapes,
and when the data is naturally inclined to include graph-like structure [56]. In
our thesis, we leverage a spectral clustering method called SPRAY [68], that
clusters explainability heatmaps.

In summary, we have presented three key approaches in learning with lim-
ited labeled data: few-shot learning, semi-supervised learning, and unsupervised
learning, and briefly presented how this thesis contributes in each of these
particular areas.





4
Deep Learning
Deep Learning is the dominant form of function approximation in the modern
age. Its successes have garnered significant attention in popular media and at
the institutional levels of banks, governments, and policy institutes. This is due
to the emergence of strong capabilities in tasks that humans excel at, such as
vision, language, and reasoning. This chapter aims to be an introduction to deep
learning, particularly the architectures we use in the thesis. These architectures
include the ResNet [48], CLIP [90], Stable Diffusion [93], the Graph Neural
Network (GNN) [126], and the multi-layer perceptron (MLP)[45]. We begin by
introducing the simplest architecture among these, i.e. the MLP.

4.1 The Multi-Layer Perceptron

While the history of deep learning is vast and densely annotated [96], the
key architecture for function approximation was the Multi-Layer Perceptron,
which has two fundamental blocks: (i) The linear transformation, and (ii) The
Activation Function.

The linear transformation is a weighted combination:

𝑦 = 𝑤𝑇𝑥 + 𝑏. (4.1)

25
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Figure 4.1: The Multilayer Perceptron: 𝑥𝑖 represents a single input feature, and 𝑦𝑖 rep-
resents the output prediction.𝑊𝑖 represents the weight matrix (learned),
and 𝜎 (.) represents a generic activation function. The bias parameters are
omitted for clarity of presentation.

where the weight 𝑤 represents the strength of the scaling, and 𝑏 is the bias
parameter, similar to a linear model as we have seen before. Next, to admit non-
linearity, we consider 𝜙 (𝑥) to be a mapping from the input to the transformed,
non-linear output. This mapping creates the distinction between linear models
or non-parametric models such as kernels, and deep learning. In deep learning,
the mapping is chosen in terms of a parameterization 𝜃 , i.e. we want to
find a mapping 𝜙 (𝑥 ;𝜃 ), where the parameters 𝜃 are learned through some
optimization process. In the context of Equation 4.1, the parameters 𝜃 are thus
defined in terms of𝑤 and 𝑏, and we must learn these parameters through some
optimization process. The Activation Function is a non-linear transformation
on the input. A common choice of an activation function today is the Rectified
Linear Unit [2] (RELU), where the transformation is defined: ℎ(𝑧) = max (0, 𝑧).
In summary, for the multi-layer perceptron, the transformation of the input
reduces to:

𝑓 (𝑥, ℎ) = ℎ(𝜙 (𝑥 ;𝜃 )). (4.2)

where 𝜃 are the parameters to be learned, and 𝜙 represents the linear trans-
formation over the chosen parameters, i.e. 𝑤 and 𝑏.
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The term "deep" learning can now be intuitively explained. In Equation 4.2,
we note that the transformation is modular, i.e. it can be repeated multiple
times on intermediate outputs using the same transformation and activation
functions.

If the output of the first transformation step is defined as 𝑓 1(𝑥), it is easy to
see that the next transformation can be a function composition 𝑓 2(𝑓 1(𝑥)) and
so on. A chain of such function compositions can thus be created easily. If
each transformation 𝑓 𝑖 (𝑥) is considered a "layer", then the chain of function
compositions can be interpreted as stacking multiple layers on top of each
other, as illustrated in Figure 4.1. This is why the MLP is considered to be the
first architecture in deep learning. It allowed for the stacking of the same affine
transformations on intermediate outputs. In fact, this concept is so fundamental
to deep learning, that modern networks are also called feedforward networks,
and the function compositions are called the forward pass step of the network.
Regardless of the more advanced architectures we cover in the next few sections,
the concept of the forward pass remains the same.

Given our MLP outputs 𝑓 (𝑥 ;𝜃 ), we note that there must be a way to learn
the parameters 𝜃 through an optimization process that fits the data well. In
the previous chapter, we have discussed the cross entropy loss as a useful
metric to evaluate a network prediction. However, given the loss, how do
we update the parameters to minimize the loss over the next forward pass?
We propagate the loss backwards through the network, in a process called
Backpropagation, and update the weights in the direction that minimizes the
loss. We repeat this process of a Forward Pass-Backpropagation multiple times
until our loss converges. This process is called training the deep network. The
popular mechanism to update the weights through backpropagation is to use
Gradient Descent, which we discuss next.

4.1.1 Gradient Descent and Backpropagation

Given the loss 𝐿 on the network output, how do we update the parameters
𝑤𝑖 𝑗 such that the loss equates to zero? Gradient Descent [94] is a line search
algorithm that updates a parameter at the next time step 𝑡 + 1 using the values
at the previous time step 𝑤𝑡 . Specifically, at each time step:

𝛿𝑤𝑘𝑡+1 := 𝑤𝑘𝑡 − 𝜂
𝑑𝐿

𝑑𝑤𝑘
, 𝛿𝑏𝑘𝑡+1 := 𝑏𝑘𝑡 − 𝜂

𝑑𝐿

𝑑𝑏𝑘
. (4.3)

where𝑤𝑘 refers to the weights at layer 𝑘, and 𝑏𝑘 refers to the bias parameters
at layer 𝑘. Assuming the appropriate derivatives are available, gradient descent
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provides a rule to update the parameter values at each successive time step.
To actually find the derivates, we use the Backpropagation algorithm. This
algorithm uses the chain rule of derivatives to calculate 𝑑𝐿

𝑑𝑤𝑘 and 𝑑𝐿

𝑑𝑏𝑘
for each

weight connection across the layers with respect to the output loss.

Given the forward pass:
𝑧𝑘 = 𝑤𝑘 · 𝑎𝑘−1 + 𝑏𝑘 . (4.4)

where 𝑎𝑘−1 = ℎ(𝑧𝑘−1), for each layer 𝑘 = 1, 2, . . . 𝐾 , we can compute the
output error vector 𝑒𝐾 as:

𝑒𝐾 = ∇𝑎𝐿 ⊙ ℎ′(𝑧𝐾 ). (4.5)

Then, the errors through the layers 𝐾 − 1, 𝐾 − 2, . . . , 2 can be calculated
recursively:

𝑒𝑘 = 𝑤𝑘+1 · 𝑒𝑘+1 ⊙ ℎ′(𝑧𝑘 ) . (4.6)

Thus, finally 𝑑𝐿

𝑑𝑤𝑘 can be calculated as ℎ𝑘−1 · 𝑒𝑘 . More specifically, for a weight
connection between neuron 𝑖 at layer 𝑘 − 1 to neuron 𝑗 at layer 𝑘:

𝑑𝐿

𝑑𝑤𝑘
𝑖 𝑗

= 𝑎𝑘−1𝑗 · 𝑒𝑘𝑖 . (4.7)

Using a similar approach, we can calculate 𝑑𝐿

𝑑𝑏𝑘
as well:

𝑑𝐿

𝑑𝑏𝑘
𝑖

= 𝑒𝑘𝑖 . (4.8)

This set of operations occurs for every forward pass and backpropagation step
during the training process, and based on the derivatives calculated in this
manner, the weight updates using gradient descent in Equation 4.3 can be
realized.

All modern deep learning networks are trained using this technique. For practi-
cal optimization purposes, a variant of gradient descent, the Stochastic Gradient
Descent (SGD) [14] is used, owing to stability issues when considering batches
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Figure 4.2: A simple convolution operation: the kernel on the right slides progressively
over the input features on the left, resulting in a single map of output
features. Such convolutions are applied at successive layers for multiple
output maps.

of data inputs, but the fundamental principle of parameter updates using back-
propagation remains consistent across all architectures. Other backpropagation
algorithms are also popular, such as ADAM [62], AdaGrad [34], and RMSProp
[67].

4.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have emerged as the most successful
architecture for computer vision tasks [70]. While, in recent years, vision
transformers [33] have emerged as strong alternatives, most of the major deep
learning successes we observe today can be attributed to the development of
CNNs. In this section, we present the convolution operation on images, and
define the convolution layer. Then, we present how stacks of such layers lead
to multiple levels of granularity in image understanding.

4.2.1 Image Convolutions

An image is a 2D grid of pixels of a certain height and width. An image
can also be 3D if the RGB color channel is introduced. The two key ideas
behind capturing representations of an image are: (i) Locality, i.e. pixels
in a close neighborhood (a patch) should represent similar concepts, and
(ii) Equivariance, i.e. translating the objects in the image reflect an equal
translation in the output. Given an image, the convolution operation on an
image is defined like so:

𝑥 𝑗 = ℎ(
∑︁
𝑖∈𝑊𝑗

𝑥𝑖 · 𝐾𝑖 𝑗 + 𝑏 𝑗 ). (4.9)
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Figure 4.3: A typical CNN consists of a series of convolutional layers, pooling, and
finally dense (MLP) connections to generate a probabilistic, softmax out-
put. We begin with an input image, followed by four convolution kernels.
Next, we apply pooling that effectively halves the dimensions. Next, we
have a fully connected (FC) layer. Finally, we have a softmax output that
covers a probabilistic simplex over the known classes. This network is
only for illustration purposes. Typical, real world networks are larger and
incorporate a combination of these base units.

where 𝐾𝑖 𝑗 represents a kernel function with weights that operate on the image
pixels, and𝑊𝑗 represents a set of input feature maps that progressively sliding
the kernel generates. An illustration is provided in Figure 4.2. For a single
kernel, the weights are shared across the whole image. This greatly reduces
the computation cost of the linear transformation, as well as captures details in
the image at different levels of granularity. For example, a kernel with a larger
receptive field captures high level features in the input maps, while a kernel
with lower receptive fields captures low level features in the input map.

4.2.2 Convolutional Layers, Pooling, and Dense
Connections

The Convolutional Neural Network is defined completely by three broad stages:
(i) Image Convolutions, (ii) Pooling, and (iii) Dense Connections. As defined
previously, a set of image image convolutions defines a single convolutional
layer. To encourage translation invariance to features (since convolution only
guarantees equivariance), pooling layers are introduced after the convolution
operations. A common pooling operation such as max-pooling, simply takes
an output feature map, and filters out the maximum value in the desired area.
This modular application of convolutional and pooling layers is repeated, and
the output is attached through a fully connected MLP. This stage is called the
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Figure 4.4: The Residual Block is exemplified by its usage of the skip connection,
that results in improved long range flow of information through deeper
networks. Such blocks are organized in stacks to create different variants
of residual networks, such as ResNet-18.

Dense stage. While it is not strictly necessary to use fully connected layers at
this stage, for classification tasks, where the output needs to be representated
as a set of probabilities, the MLP connections are necessary. An illustrative
example is provided in Figure 4.3.

4.2.3 Residual Networks

Originally introduced to solve the degradation problem, where deeper convo-
lutional networks saturate in accuracy [47, 104], the core idea of using skip
connections in residual networks (ResNets) [48] has been implemented in a
variety of other architectures such as BERT and GPT [31, 122]. Skip connections,
that are simply identity mappings from a previous layer to the current layer,
allows long range flow of information through a network, that satisfactorily
decreases the learning bottleneck in deep architectures. As a result, residual
networks pre-trained on large datasets such as ImageNet, are the de-facto
networks in deep computer vision today. Owing to their flexible design choice,
there are multiple variants of ResNets at multiple scales of operation available
today. An illustration of the residual block is shown in Figure 4.4.

In the context of our thesis, we use ResNet-based backbones in multiple works
to investigate model diagnosis, such as ourwork on few-shot learning and group



32 chapter 4 deep learning

Input Layer Final Layer

Hidden Layers

Figure 4.5: The Graph Neural Network: for node 𝑖, the features at the input layer is
denoted as 𝑋 0

𝑖 . After 𝐿 steps of graph convolution as defined in equation
4.10, the node features are transformed to 𝑋𝐿𝑖 .

robustness. We will discuss these works in more detail in future sections.

4.3 Graph Neural Networks

Graph Neural Networks (GNNs) [126] operate on graph structured data, which
are inherently different from images. To begin with, graphs exhibit permutation
invariance, i.e. any ordering of the set of nodes is equivalent. Second, the notion
of similarity in graphs is encoded through the existence of edges (and possibly
edge weights). As a result, a different sort of architecture is required to learn
effectively on graphs. Given a node set 𝑉 , an edge set 𝐸, an adjacency matrix
𝐴, and the feature matrix 𝐹 ∈ R𝑉 ×𝑑 where 𝑑 represents the dimensionality of
the feature vectors in each of the nodes, the graph convolution operation on a
particular layer of the GNN 𝑙 is defined like so:

𝐹 𝑙+1 = 𝜎 (�̃�− 1
2𝐴�̃�

1
2 𝐹 𝑙Θ𝑙 ) . (4.10)

where, 𝐴 is the symmetric normalized adjacency matrix, Θ𝑙 are the model
weights at layer 𝑙 , and 𝜎 is a non-linear transformation. Essentially, equation
4.10 represents a weighted mean of features over each node’s neighborhoods,
with a "layer" defining a single hop over such neighborhoods. In this way,
𝐹 2, 𝐹 3, . . . 𝐹𝐿 till the final layer of the network can be computed in an iterative
fashion. We illustrate the GNN architecture in Figure 4.5.

The Graph Convolutional model was proposed as a result of approximating a
spectral filter with Chebysev polynomials, through the 𝑘-localized Chebynet
[64, 29]. The authors showed that the resultant GCN model was a special case
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of the Chebysev polynomial-based approximation. This is interesting since one
can interpret the GCN operation as a form of polynomial interpolation among
the features. As it pertains to classification tasks for graph-based data, GCNs
have proven to powerful function approximators.

4.3.1 Oversmoothing in GCNs

The phenomenon of oversmoothing in GNNs was first demonstrated in [71],
where it was shown that the propagation rule in a standard GCN was a
smoothing (weighted mean) operation equivalent to damping the symmetric
normalized laplacian of the signal. As the number of layers in a GCN net-
work increases, the weighted aggregation of 𝑘-hop nodes rendered more and
more features from nodes with different classes to be similar to each other,
adversely affecting classification performance. Over the years, many mitigation
techniques have been proposed [86, 76, 125], that aim to build deeper GCNs
without adversely affecting performance. In addition to mitigating techniques,
proxy metrics to directly measure the effect of oversmoothing on graph net-
works have also been proposed [127, 23]. This phenomenon is not to be confused
with the CNN bottleneck saturation discussed in the previous section - though
the consequence of degraded accuracy is similar across the two architectures,
oversmoothing refers to a repeated aggregation of features converging to a
uniform representation, while the CNN saturation phenomenon was due to
the difficulty of propagating early layer features to the deeper layers in the
network. In the context of our thesis, we investigate the susceptibility of par-
ticular graph datasets to the oversmoothing phenomenon, and its impact on
the graph learning procedure in transductive node classification. We focus on
graph disentangled representations in particular. As a result, we are able to
provide a holistic study into the importance of both the data and the model
in the learning process, in line with out broader focus on model and data
diagnosis.

4.4 Multimodal Models

The biggest recent shift in deep learning research has occurred in the devel-
opment of multimodal models, models trained on multiple modalities on large
datasets with a large number of parameters, and capable of a broad set of down-
stream generalization tasks [12]. Examples include CLIP [90], Stable Diffusion
[93], MiniGPT [128], LLaVA [75] etc. In modern multimodal models, data sizes
lie in the order of trillions of data points, while model sizes lie in the order of
hundreds of billions of parameters. We briefly present CLIP to illustrate the
capabilities of multimodal models in vision tasks.
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4.4.1 CLIP

The remarkable capability of training on multi-modal data to exhibit strong per-
formance on a broad range of downstream vision tasks was first demonstrated
in CLIP [90]. Using 400 million text-image pairs, the authors use two feature
encoders for images and text respectively. The loss function to encode that sim-
ilar images representations should be assigned to similar text representations
(The image of a dog should be aligned with the text "An image of a dog") was
called the CLIP loss, a contrastive loss. Given the image encoding 𝐼 , and the text
encoding 𝑇 , they first compute the Euclidean distance (can be interpreted as
a form of pairwise similarity) 𝑆 = 𝐼𝑇𝑇𝑒𝑡 , where 𝑡 is a temperature parameter
for scaling. Next given the joint similarity 𝑆 , two separate losses 𝐿𝑖 and 𝐿𝑡 are
computed for the image and text encoding respectively:

𝐿𝑖 = − 1
𝑁

𝑁∑︁
𝑗=1

𝐶∑︁
𝑖=1

𝑦𝑖 𝑗 log(𝑆𝑖 𝑗 ) . (4.11)

with 𝐿𝑡 computed in a similar fashion. The final CLIP loss is simply the mean
of 𝐿𝑖 and 𝐿𝑡 .

Given the contrastive loss, and the existence of a large dataset with text-image
pairs, CLIP demonstrated significant advances in computer vision benchmarks
[90]. This was a remarkable moment since it demonstrated the usefulness
of pairing large quantities of data and multiple modalities, with no signifi-
cant complexities involved in the encoder architectures or the loss function
used.

4.4.2 Diffusion Models

While most of the models we have discussed up to this point are discriminative,
i.e. they are primarily focused on creating decision rules around input data via a
training mechanism, another group of foundation models today are generative,
i.e. these models aim to learn a latent representation of the input data to
generate new samples from this learned distribution. While the literature on
generative models is vast [63], here we focus on a particular kind of generative
model that models a diffusion process to learn the latent representation of an
image dataset. Broadly, given an input image 𝑥0, the diffusion process proceeds
in three steps:

• The forward process: at each time step 𝑡 , a certain noise distribution
is added to the image with a set variance schedule. This step proceeds
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iteratively to transform an image into pure noise.

𝑞(𝑥𝑡 |𝑥0) = N(𝑥𝑡 ;
√
𝛼𝑡 ·𝑥0, (1−𝛼𝑡 ) · I), 𝛼𝑡 = 1− 𝛽𝑡 , 𝛼𝑡 =

𝑡∏
𝑠=1

𝛼𝑠 (4.12)

where𝛼 and 𝛽 are simply parameterizations that define the noise variance
schedule.

• The denoising process: this is the reverse procedure, i.e The objective
here is to learn the noise distribution added at each step to iteratively
reconstruct the input image.

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = N(𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡)). (4.13)

Similarly, the parameters 𝜇𝜃 (𝑥𝑡 , 𝑡) and Σ𝜃 (𝑥𝑡 , 𝑡) are learned by the model.

• Sampling: note that the learned distribution 𝑝𝜃 captures the noise added
at each time step. As a result, to generate new images, one starts from
pure noise, and iteratively denoises using distribution 𝑝𝜃 :

𝑥𝑡−1 ∼ 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ). (4.14)

The sampling repeats until we reach 𝑥0, the desired input image.

Diffusion models have demonstrated stunning success in modern AI [88], but
have also invited fresh scrutiny from multiple key institutions, such as the
media, entertainment, and ethics boards [49, 9].

In the context of our thesis, we use both CLIP and Stable Diffusion in our work
on data diagnosis, where we wish to generate debiased data using a diagnostic
concept graph (Paper III). In the generation phase, we use a stable diffusion-
based inpainting procedure, coupled with a CLIP-based filter to eliminate
unreliable generations.

4.5 Risks and Pitfalls

This presentation of a broad range of architectures serves to support our broader
goal of model and data diagnosis: deep Learning models are not supposed to
be treated as infallible. Like all models, they encode certain inductive biases
that are suitable for the task at hand. However, there should be a stringent
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focus on the weakness of such models - how robust are they? What do they base
their predictions on? How consistent are these predictions? How biased are
these predictions? What are some mitigating strategies for bias? Particularly for
generative models such as diffusion, how do we controllably generate images
with ethical guardrails? How do we quantify such notions of controllability, i.e.
how do we score the outputs of generative models?

The importance of these questions is amplified when considering the models in
use today, and the datasets these models train on, both of which are growing
exponentially in volume, making it more and more difficult for humans to
continuously press for checks and balances. In the next section, we discuss two
approaches to model diagnosis: explainability - explaining classifier predictions,
and robustness - how robust classifier predictions are to different groups of
inputs. We also discuss data diagnosis in the context of generating synthetic,
fair data.



5
Model and Data Diagnosis
In the introductory chapter, we presented Model and Data Diagnosis as fun-
damental, co-dependent frames of reference to reliable AI. In this chapter we
present concrete techniques to understand how this diagnostic framework is
used in modern deep learning. Particularly, we discuss model explainability,
spurious correlations, robustness, and fair data. All the papers presented in this
thesis, are encapsulated within the purview of model and data diagnosis.

5.1 Model Explainability

Why does a model predict what it predicts? How does a human evaluate a
model’s prediction, checking it for correctness and reliability? These questions
are important since no classifier can be deployed in real world tasks without a
degree of reliability (as measured by human evaluators) and strict testing to
check for potential failure cases. The idea of attributing classifier predictions to
neurons, layers, and pixels in the data, include whatwe callModel Explainability
techniques. The research in this area is vast, including but not limited to
adversarial techniques [40], heatmap-based approaches [108, 43, 6, 98], layer
and neuron activation approaches [82], and so on. In the context of our thesis,
we focus on heatmap-based attributions, and present two popular approaches:
GradCAM [98], and LRP [6].
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5.1.1 GradCAM

If we were to consider the task of image classification, a ’good’ classification
is when a classifier exhibits a reasonable explanation of a correct prediction.
Unreasonable explanations for correct predictions are not considered ’good’
since it is hard to determine the factors that caused the classifier to take its
decision. GradCAM is a popular technique to attribute visual explanations to
CNN-based classifiers, which represent the dominant architecture in computer
vision classification tasks. GradCAM proceeds in three simple steps: first, the
image of interest (and its class label) is forward propagated through the net-
work. This results in a network prediction (after the application of a set of fully
connected layers). Second, only the positive gradients associated with predic-
tion are considered, and all other gradients are set to zero. These gradients
are then backpropagated (guided backpropagation) through the intermediate
convolutional feature maps. Finally, the heatmap is pointwise multiplied with
the image of interest, resulting in a fine grained explanation. This technique
provides human-intuitive explanations for classifer predictions. The GradCAM
procedure is detailed below in a step-by-step fashion. We assume we are given
the score 𝑆 (pre-softmax) of an input image 𝐼 , where, and feature maps 𝐹𝑙 at a
particular layer 𝑙 .

• Compute the gradients 𝜕𝑆
𝜕𝐹𝑙

for the score with respect to each feature
map.

• Compute importance weights 𝑤𝑘 = 1
𝐻×𝑊

∑
𝑖

∑
𝑗
𝜕𝑆

𝜕𝐹𝑘
𝑖 𝑗

, where 𝐻 and𝑊
are the height and width of the image respectively.

• Finally, the GradCAM attributions 𝐴 = 𝑅𝑒𝐿𝑈 (∑𝑘 𝑤𝑘𝐹
𝑘).

5.1.2 Layerwise Relevance Propagation (LRP)

The basic idea in LRP is to enforce a score conservation property across
neurons at a particular layer, for all layers. By doing so, LRP uncovers how
much a particular neuron activation contributes to another neuron activation
in the successive layer. By redistributing neuron relevance scores in this way
backwards through the network, one can generate heatmap-based attributions
on input images as a result of classifier predictions. Specifically, for each data
point 𝑥 , the relevance score is defined on a per-neuron-per layer basis. For an
input neuron 𝑛𝑘 at layer 𝑘, and an output neuron 𝑛𝑙 at the following layer 𝑙 ,
the relevance score 𝑅𝑘 is intuitively a measure of how much this particular
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input 𝑛𝑘 contributed to the output value 𝑛𝑙 :

𝑅𝑘 =
∑︁
𝑙 :𝑘−→𝑙

𝑧𝑘𝑙

𝑧𝑙 + 𝜖 · sign(𝑧𝑙 )
(5.1)

where 𝑧𝑙 = 𝑛𝑘𝑤𝑘𝑙 for the weight connection 𝑤𝑘𝑙 . 𝑅𝑘 is computed for all the
neurons at layer 𝑘, and backpropagated from the output layer to the input layer
to generate pixel level relevance scores 𝑟𝑥 for each data input 𝑥 . In our work on
group robustness (discussed below), we cluster explainability heatmaps using
LRP to generate pseudo-labels for groups within the training data. Our method
ExMap, however, is not constrained by the choice of an explainability method,
and any other popular technique such as GradCAM would also apply.

5.2 Spurious Correlations and Group Robustness

A spurious correlation is any feature that a classifier uses to make a prediction,
even though the feature is causally unrelated to the task. Following our discus-
sion before on model explainability, a reliable analogy would be the following:
assuming that the task is classify a dog in an image, if a significantly high
number of images in the training set contain dogs in urban backgrounds, the
classifier should not rely on background cues to make an object prediction.
Interestingly enough, modern CNN-based image classifiers are significantly
susceptible to such spurious cues [38] - the reason for this is baked into the
CNN architecture. Since the idea of locality is important in the convolution
operation, feature maps produced from image kernels will frequently contain
spurious features, which are then aggregated with the object level features
deeper into the network. As a result of this reliance, a wide variety of biases
have been uncovered in CNN-based classifiers, such as texture bias [38], short-
cut learning [37], color bias [28, 61], and so on. Many works over the recent
years have aimed to mitigate such issues, usually by encoding some shape-based
feature information into the network over simply textures [53, 72].

In addition to such mitigation techniques, a separate field of research has
emerged in recent years that also investigate the reliance on spurious correla-
tions: group robustness [55, 83]. The assumption here is that, a dataset can be
segmented into groups of interest, with each group representing a particular
spurious correlation of interest. For example, in the dataset Waterbirds [95],
the task is to distinguish between a landbird and a waterbird (Figure 5.1). The
spurious correlation is the background, which is either Land or Water. As a
result, there are four groups of interest: [(Landbird, Land), (Landbird, Water),
(Waterbird, Land), (Waterbird, Water)]. If there is a strong imbalance in the
number of images in the training set for each group, this imbalance would
constitute a bias, and a classifier would pick up on this bias, leading to worse
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Figure 5.1: The Waterbirds Dataset consists of landbirds and waterbirds in land and
water-based backgrounds. The reliance of pretrained classifiers on the
spurious background feature can be reliably tested on this dataset. (Left
to Right) Waterbird on water, Landbird on land, Waterbird on land, and
Landbird on water respectively.

generalization capabilities. In fact, the Waterbirds dataset is intentionally bi-
ased - 95% images of Landbirds have land backgrounds, and 95% images of
Waterbirds have water backgrounds, and any ResNet trained pre-trained model
fails on a test set where this imbalance is absent [95].

As a result, group robustness strategies aim to mitigate classifier reliance on
imbalanced groups, and encourages a balanced performance across all groups
within the data during evaluation. In the context of our thesis, our contribution
is in the domain of unsupervised group robustness, i.e. developing a technique for
group robustness when the group labels are absent. Assuming access to group
labels in the training data is unrealistic, since the collection and segmentation
of data into such pre-defined labels would be time-consuming and expensive.

5.3 Fair Data

At this point, we have discussed model diagnosis in the limited labeled setting
- few-shot learning, explainability, semi-supervised learning, and robustness.
However,we note that in the end, everymodel trains on data, and any discussion
on model capabilities on generalization tasks is constrained by the data it
trains on. As a simple example, consider the tench class in ImageNet. A simple,
manual browsing of the dataset immediately points to a certain discrepancy:
most images have the tench being held by a man, in the centre of the frame,
surrounded by a rural environment. This strong correlation may be irrelevant
at first to the human curator, but a model picks up on all cues it can efficiently
find to reach a prediction (the shortcut learning mechanism, as described in
[37]). In Figure 5.2, we show what happens when we manually remove the
fish from the man, and yet the model predicts the class to be fish with high
confidence. In fact, on inspecting the explainability heatmaps, we find that
the model focuses on the man in the background to make the prediction. This
leads to a fascinating question of how the model will pick up on spurious
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Top 3 predictions (with confidence):

Tench: 99.46%
Barracouta: 0.5%
Garfish: 0.02%

Top 3 predictions (with confidence):

Tench: 57.02%
Coho: 8.12%
Courgette: 4.47%

Figure 5.2: Simple object-based bias in ImageNet: the tench class images appear
frequently with men holding them at the centre of the frame. We use
a pretrained ResNet18 to infer each image, one with the fish (Left), and
the same image without the fish (Right). We observe that the model, in
addition to predicting tenchwith high confidence in both cases, also focuses
on the spurious feature in the image, i.e. the man. Blue represents higher
relevance scores, and Red represents lower relevance scores.

correlations that are not readily apparent to the human eye. Note the major
constraint in this case. The dataset, ImageNet, contains millions of images from
tens of thousands of classes. What other such spurious correlations exist in
this dataset that may hinder model generalization capabilities? In short, how
does dataset diagnosis affect model performance? This is not a strictly recent
question. The early works on dataset bias [111, 110] elucidate the ways in which
visual datasets can be biased in multiple, nefarious ways. Such biases, such as
object location, object co-occurrence and scale [85, 101], may not be readily
apparent to the human eye, but may be acting as confounders for the learning
process. Placed in the current context of datasets of increasing size, fair and
debiased datasets are therefore crucial for model generalizability. Some tools
for dataset diagnosis exist today [115], and dataset benchmarks are growing
more popular by the day [32]. As part of this thesis, keeping in mind the limited
labeled data context, we present a work on generating de-biased data based
on a certain framework of data diagnosis. We show that this framework of
dataset diagnosis and debiasing, is successful in significantly improving the
state-of-the-art in model generalizability across classification and robustness
metrics.
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Paper I

ExMap: Leveraging Explainability 
Heatmaps for Unsupervised Group 
Robustness to Spurious Correlations 
Rwiddhi Chakraborty, Adrian Sletten, Michael Kampffmeyer

IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR) 2024.

• Code:   https://github.com/rwchakra/exmap
• Paper:  https://shorturl.at/Howm3
• Talk:      https://t.ly/qlmkR

In Paper I, our contribution includes proposing a new, unsupervised method for
group robust learning in deep learning classifiers that mitigates the reliance
on spurious correlations in the data. Spurious correlations are any features in
the datasets that the model relies on to make a prediction, but these features
are causally unrelated to the task. Our unsupervised method to mitigate such
spurious correlations proceeds in two steps:

Extract Heatmaps We use LRP to extract heatmaps of images in the valida-
tion dataset. LRP outputs pixel-wise relevance scores, which illustrate the rele-
vant image regions for a frozen ResNet model pre-trained on ImageNet.
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ExMap

(B) Clustering

(C) Pseudo-Labels

Input Data

(A) Heatmap Extraction

Frozen ERM Model Retrain

Figure 6.2: Ourproposedmethod: ExMap achieves group-robustness by first extracting
explainability heatmaps from the frozen base ERMmodel for the validation
data (A). Next, we cluster the heatmaps (B) to obtain pseudo-labels for
the underlying groups. These labels are used for the retraining strategy
(C).

Clustering Given the explainability heatmaps, we use a spectral clustering
method called SPRAY [68], automatically estimating the clusters based on the
eigengap heuristic [56]. The clustering module aims to highlight the dominant
model strategies adopted towards the classification task. The outputs of the
clustering module are the underlying groups as discovered by our method.
Then, using a balanced sampling technique, we retrain the base classifier on
the given features, using the estimated pseudo-labels as the guiding validation
loss. We provide an illustration in Figure 6.2.

As we demonstrate in the work, this unsupervised strategy is quite successful
in estimating underlying groups in the data.

In both single shortcut and multi-shortcut (datasets where there are multiple
types of spurious correlations), our method results in state-of-the-art perfor-
mance on a variety of datasets in the literature.

Additional findings from our experiments include:

• Demonstration of how our method circumvents background reliance of
the classifier on Waterbirds.

• Demonstration of how our method improves model explanations.

• Robustness to the choice of clustering algorithm and learning strategy.

Contributions

• I proposed the research direction and conducted the initial literature
review.
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• The methodology was developed in collaboration with all the co-authors.

• I jointly ran experiments in the paper with AS.

• I wrote the first draft of the manuscript. The final polished version was
achieved with the help of AS, and MK.
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Paper II

Hubs and Hyperspheres: Reducing 
Hubness and Improving Transductive 
Few-shot Learning with Hyperspherical 
Embeddings
Daniel Trosten*, Rwiddhi Chakraborty,*, Sigurd Lokse, Kristoffer 
Wickstrom, Robert Jenssen, Michael Kampffmeyer

IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR) 2023.

• Code:   https://github.com/rwchakra/exmap
• Paper:  https://shorturl.at/Howm3
• Talk:      https://t.ly/qlmkR
• * denotes equal contribution

In Paper I, we investigate the hubness problem in transductive few-shot learn-
ing (FSL).

The hubness problem is a consequence of the curse of dimensionality [8],where
certain exemplar points embedded in higher dimensional space often appear in
the nearest neighbor lists of other points. These exemplar points are called hubs.
A negative consequence of hubness is that points from different classes may
appear in the same nearest neighbor lists, leading to increasedmisclassifications.
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Sincemany approaches in FSL adopt distance-based approaches, themotivation
was to design a new embedding space where hubness is eliminated.

Consequently, we proved that an uniform distribution of points on the hyper-
sphere are hubness-free, and as a result, hold intuitive advantages in the few
shot setup. Motivated by this finding, we propose two methods that at once
reduce hubness (by imposing uniformity on the hypersphere), and preserve the
inherent class structure of the embedded points, leading to a novel tradeoff that
can be encoded as a loss function. We describe the two methods below:

noHub We first provably optimize a tradeoff between local similarity preser-
vation (points in similar classes should remain close in the embedded space),
and uniformity (points in different classes must be separated in the embedding
space). We show that the frequently-used Kullback-Leibler divergence [66]
decomposes naturally into these two properties.

noHub-S Recalling that the support labels are available in the FSL setup, we
extend noHub by modifying the loss function to contain the signal from these
labels. In this way, our method becomes partially supervised, which intuitively
promises stronger results.

Since noHub and noHub-S are both embedding methods, they are flexible.
They can be used on any off-the shelf FSL classifier in use today, on a variety of
backbone architectures. These are the major results in our work, i.e. we show
that by reducing hubness using our embedding method,we achieve state-of-the-
art FSL classification accuracy on a wider variety of backbone architectures and
FSL classifiers. An illustration of the method is provided in Figure 7.2.

Other experimental findings from our work include:

• Ablating the amount of tradeoff between local similarity preservation
and uniformity.

• Showing that the features learned through our methods results in a
clearer separation between representations of different classes.

• Demonstrating the usefulness of incorporating the partial supervision
from the support labels.
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(a) Reducing hubness improves FSL classi-
fier accuracy. Our methods (noHub and
noHub-S) compared with baseline em-
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(b) Our method optimizes a tradeoff be-
tween local similarity preservation
and uniformity (L𝐿𝑆𝑃 and L𝑈𝑛𝑖𝑓 ) of
points on the hypersphere.

Figure 7.2: The two key takeways of our paper - (Left): we show the importance
of eliminating hubness, and (Right): we show the principle guiding our
method.

Contributions

• The design of the methodology was achieved in collaboration with all
the co-authors in the paper.

• I conducted initial exploratory analysis, and jointly conducted all experi-
ments in the paper with DT.

• I jointly wrote the first draft of the manuscript with DT. The final polished
version was achieved with DT and MK, and I.
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Paper III

Visual Data Diagnosis and Debiasing 
with Concept Graphs
Rwiddhi Chakraborty, Yinong Wang, Jialu Gao, Runkai Zheng, 
Cheng Zhang, Fernando de la Torre

Under Review

In Paper III, we address the issue of data diagnosis, i.e. directly probing the
dataset for inherent biases, rather than using the model that trains on it as a
proxy. We propose a novel end-to-end framework that simultaneously diagnoses
the data for spurious correlations, discovers imbalanced (biased) concept cor-
relations, and generates a synthetic dataset using a uniform distribution of the
discovered concepts, effectively debiasing the data. Our results show that train-
ing the classifier on the augmented, debiased dataset results in state-of-the-art
performance on a variety of benchmark datasets.

Briefly, our method proceeds in three stages:

• Concept Graph Construction: we construct a knowledge graph from the
dataset based on object co-occurrences.
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Figure 8.2: ConBias: given a visual dataset (a), we build a concept graph from ground
truth metadata such as captions/segmentation labels (b). Line thickness
indicates the weight of a co-occurrence. Next, we diagnose the concept
graph by discovering class-concept imbalances, using a graph-clique enu-
meration (c). The imbalanced cliques are precisely the biases in the data.
Given the diagnosis, we generate a uniform concept-class distribution of
images using a generative model with inpainting (d), to output the final
debiased data (e). The base classifier retraining operates on this dataset.

• Concept Graph Diagnosis: we analyze the graph for combinations of
classes and concepts that are heavily imbalanced. These are the co-
occurrence-based biases in the data.

• Concept Graph Debiasing: upon discovery of biased combinations, we
enumerate graph cliques to sample balanced concept-class combinations
from the graph. By imposing a balanced sampling strategy, we ensure a
uniform representation of concepts and classes in the new data.

This method, ConBias, allows for a principled and controllable way to simul-
taneously diagnose a visual dataset for biases, and correct such biases by
generating concept balanced data. We show that retraining on the generated
dataset significantly improves upon existent data debiasing baseline methods.
An illustration of our method is provided in Figure 8.2.

Other experimental findings from our work include:

• Demonstrating the usefulness of the method on multi-shortcut tasks as
well.

• Showing how ConBias helps the classifier to learn relevant features for
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the task, ignoring the spurious features.

• Demonstrating the use of the graph structure as opposed to using simple
object co-occurrence statistics.

Contributions

• The methodology was developed in collaboration with all the co-authors.

• I ran all the experiments jointly with YW, and help from JG.

• I wrote the first draft of the manuscript. The final polished version was
achieved with the help of YW, CZ.
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Paper IV

On Disentangled Representations and 
the Oversmoothing Problem in Graph 
Convolutional Networks
Rwiddhi Chakraborty, Benjamin Ricaud, Robert Jenssen,
 Michael Kampffmeyer

Submission Ready

In Paper IV, we address the issue of transductive node classification in graph
convolutional networks (GCNs), which is a semi-supervised learning problem.
Specifically, we show that graph datasets can be encoded as a tradeoff between
feature informativeness, and structure informativeness, i.e. there are varying
degrees of information held in the node features of a graph dataset relative
to the topology of the graph. Subsequently, we show that such a tradeoff has
an inherent effect on the oversmoothing phenomenon in GCNs, a well studied
phenomenon that adversely affects GCN performance as the number of layers
in the model progressively increases. Our analysis provides novel insights into
the learning mechanism of GCNs on different types of graph datasets.

This work exists as a bridge between the model and data diagnosis framework
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Figure 9.2: Our proposed framework, SplitGCN, frames the graph learning process as
a tradeoff between leveraging the node features and the graph structure in
the dataset. This tradeoff is quantified by a novel metric that we propose,
called the Latent Dirichlet Energy (LDE).

that we have presented in this thesis. The data diagnosis aspect is contained in
the proposal of a metric to quantify the tradeoff between feature importance
and structure importance in a graph dataset, without relying on labels. Our
metric, the Latent Dirichlet Energy (LDE), naturally estimates this tradeoff. As
a result, we are able to diagnose datasets into high LDE regions, which means
that the graph connections do not hold much information, and low LDE regions,
where the graph structure can be leveraged for learning.

Next, we propose a novel architecture called the SplitGCN (Figure 9.2), which
frames the learning process as a loss function that trades off between the
node features and the graph structure in the dataset. We show that such a
framework has benefits in graph based learning, and mitigate the phenomenon
of oversmoothing in GCNs.

Other experimental findings include:

• Ablating the effect of the tradeoff between node feature information and
graph structure information.

• Ablating each branch of our architecture to test the effect on the learning
process. We show that both the node features and graph structure are
important information that need to be leveraged.

• Providing an analysis of oversmoothing mitigation in GCNs using our
method.
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Contributions

• The methodology was developed in collaboration with all co-authors. BR,
in particular, developed one of the main metrics used in the paper.

• I ran all experiments in the paper.

• I wrote the first draft of the manuscript. The final version was achieved
with the help of BR and MK.
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The success of deep learning-based frameworks in the past decade has impacted
diverse areas in modern computing. The impact of this research area extends
far beyond performance on certain vision and language benchmarks. Over the
last decade, the significant developments in programming libraries, compute
capabilities, and the advent of new mathematical models have invited fascinat-
ing questions into the nature of human learning, and what it means to truly
outperform humans in certain tasks. The next decade is brimming with further
optimism: companies today are developing novel chips tailor-made to train AI
based models. There is a broad, ambitious vision of revamping the entire LLVM
compiler architecture that all modern computers are built on [27]. The success
of ChatGPT has, in addition to receiving a plethora of media attention, also
led researchers to ask deep questions on the nature of reasoning. The debates
are frequent, sometimes heated, almost always interesting. Broad questions
on whether reasoning is emergent, inherently stochastic, or pre-programmed
in learning machines have invited further scrutiny from the research commu-
nity. Ethical questions have emerged as well, with nation states scrambling
to formalize guidelines and enact regulations [114, 117]. In the introductory
section, we referred to this panoply of events as an epistemological “wild west”,
where a principled investigation is necessary into how models behave, and
what possible issues the datasets these models train on, contain.

The key areas of intrigue in learning machines - generalization, bias, limited
supervision, are encapsulated within the purview of model diagnosis. The key
areas of inspection for data - bias and spurious correlations, are encapsulated
within the purview of data diagnosis. This thesis shed light into this unified
framework, eventually demonstrating that they are not necessarily mutually
exclusive. In each of the areas inspecting model diagnosis (limited supervision
and generalization capabilities), this thesis presented novel contributions with
respect to both representation learning, and to model debiasing. In the area
inspecting data diagnosis, this thesis proposed a novel contribution towards the
automatic debiased generation of data based on intrinsic object co-occurrence
based biases in the dataset. Finally, we also demonstrate how model and data
diagnosis can inform each other, with our systematic study of disentangled
graph representations in the semi-supervised setup.

The need to reframe research objectives within this framework arose primarily
due to the observation that, as models and datasets keep growing in scale, the
following issues will grow proportionally:

• Annotation of large datasets, which is time-consuming and expensive.

• Generalization capabilities in settings where reliable labels are not avail-
able.
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• Large datasets may contain unknown spurious correlations and biases
that go undetected by human observers.

We briefly summarize our contributions with respect to each of the issues
described above.

Generalization capabilities under limited supervision

In Paper I, we present a novel unsupervised mechanism to mitigate spurious
correlations in the group robustness framework. We show that clustering
explainability heatmaps provides a two-fold improvement in unsupervised
group robustness: first, that such heatmaps demonstrate the model focus during
classification and second, that the method only focuses on the relevant features
as decided by the model, resulting in significant improvements over various
datasets in both single and multi-shortcut domains.

In Paper II, we present a novel representation learning method that in principle
eliminates the hubness problem by projecting classifier features on the hyper-
sphere. Further, we show that the elimination of hubness harbors the positive
consequence of state-of-the-art capabilities in both 1-shot and 5-shot learning
settings. Finally, we show the strong correlation between the reduction in
hubness and the improvement in few-shot classification accuracy over a variety
of classifier backbones and datasets.

In Paper IV, we present a systematic study of the effect of disentangled graph
representations on the oversmoothing problem in transductive semi-supervised
node classification tasks. We present a novel metric that captures the informa-
tion trade-off between the node features and the graph topology, which sheds
insight on the learning capabilities of graph convolutional models, particularly
disentangled models. Further, we provide connections between our proposed
metric and common metrics used today such as node homophily. While ho-
mophily characteristics are useful, they require node labels to be computed,
while our metric only requires the features and the graph laplacian, both of
which are always available.

Data Diagnosis and Debiasing

In Paper III, we present a novel concept graph-based framework that encapsu-
lates object co-occurrence-based biases in visual datasets. By inspecting the
concept graph, we show that significant spurious correlations emerge in a vari-
ety of datasets. Using this diagnostic framework,we are then able to debias such
features in a systematic way, by generating data with a uniform combination of
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such previously biased concepts. By retraining on the new generated data, we
observe significant improvements in the current state-of-the-art data debiasing
approaches. In fact, our method also leads to improvements in multi-shortcut
metrics, which is a second order positive consequence of the framework.

In Paper IV, we address dataset diagnosis by proposing a metric based on
node features and the graph laplacian. This metric circumvents the need to
access the node labels of the graph, thus providing a flexible approach to
understanding how node features and graph structure interact in datasets. In
particular, we show the effect of such a tradeoff on disentangled graph models
and the oversmoothing phenomenon in transductive semi-supervised node
classification.

Future Work

There are several avenues of future work that excite us. Firstly, this thesis was
focused on computer vision architectures and datasets. However, as described
in the introductory section, we are effectively in a post-ImageNet era where
the most capable models are not unimodal, but multimodal. We are excited
about extending the model and data diagnosis framework to the multimodal
learning perspective, given how this paradigm is the dominant approach in
current research. Further, the addition of a new modality such as text, would
provide new challenges and insights into the framework.

Second, we are also excited about other approaches to model diagnosis. While
this thesis primarily evaluated classification performance and robustness met-
rics, these are certainly not the exclusive hallmarks of model diagnosis. In
fact, with the advent of large multimodal models, it is perhaps amusing that
we are witnessing a phenomenon akin to Goodhart’s Law in modern AI as
well [41]. The vast plethora of benchmarks, and marginal improvements for
each successive model, leads to the measure becoming the target, as Goodhart
warned all those decades ago. What other forms of model diagnosis could
exist? Could there be simple benchmarks to test reasoning capabilities of these
models [131]? Could there be simple synthetic data that could be generated
to inspect the possibility of deriving universal laws of model behaviour [3]?
These are the broad questions that interest us moving forward.
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ExMap: Leveraging Explainability Heatmaps for Unsupervised Group
Robustness to Spurious Correlations

Rwiddhi Chakraborty, Adrian Sletten, Michael C. Kampffmeyer
Department of Physics and Technology, UiT The Arctic University of Norway

firstname[.middle initial].lastname@uit.no

Abstract

Group robustness strategies aim to mitigate learned bi-
ases in deep learning models that arise from spurious cor-
relations present in their training datasets. However, most
existing methods rely on the access to the label distribution
of the groups, which is time-consuming and expensive to
obtain. As a result, unsupervised group robustness strate-
gies are sought. Based on the insight that a trained model’s
classification strategies can be inferred accurately based on
explainability heatmaps, we introduce ExMap, an unsuper-
vised two stage mechanism designed to enhance group ro-
bustness in traditional classifiers. ExMap utilizes a cluster-
ing module to infer pseudo-labels based on a model’s ex-
plainability heatmaps, which are then used during training
in lieu of actual labels. Our empirical studies validate the
efficacy of ExMap - We demonstrate that it bridges the per-
formance gap with its supervised counterparts and outper-
forms existing partially supervised and unsupervised meth-
ods. Additionally, ExMap can be seamlessly integrated with
existing group robustness learning strategies. Finally, we
demonstrate its potential in tackling the emerging issue of
multiple shortcut mitigation1.

1. Introduction
Deep neural network classifiers trained for classification
tasks, have invited increased scrutiny from the research
community due to their overreliance on spurious correla-
tions present in the training data [4, 5, 9, 31, 38]. This is
related to the broader aspect of Shortcut Learning [10], or
the Clever Hans effect [15], where a model picks the path
of least resistance to predict data, thus relying on shortcut
features that are not causally linked to the label. The con-
sequence of this phenomenon is that, although such models
may demonstrate impressive mean accuracy on the test data,
they may still fail on challenging subsets of the data, i.e. the
groups [7, 8, 27]. As a result, group robustness is a natural

1Code available at https://github.com/rwchakra/exmap

objective to be met to mitigate reliance on spurious corre-
lations. Thus, instead of evaluating models based on mean
test accuracy, evaluating them on worst group accuracy has
been the recent paradigm [12, 21, 25, 40], resulting in the
emergence of group robustness techniques. By dividing a
dataset into pre-determined groups of spurious correlations,
classifiers are then trained to maximize the worst group ac-
curacy - As a result, the spurious attribute that the model is
most susceptible to is considered the shortcut of interest.

In Figure 1, we illustrate the group robustness paradigm.
Given a dataset, a robustness strategy takes as input the
group labels and retrains a base classifier (such as Expected
Risk Minimization, i.e. ERM) to improve the worst group
accuracy (G3 in this case). GroupDRO [28] was one of the
early influential works that introduced the group robustness
paradigm. Further, it demonstrated a strategy that could in-
deed improve worst group accuracy. One limitation of this
approach was the reliance on group labels in the training
data, which was replaced with the reliance on group labels
in the validation data in successive works [13, 19]. How-
ever, while these efforts have made strides in enhancing the
accuracy of trained classifiers for underperforming groups,
many hinge on the assumption that the underlying groups
are known apriori and that the group labels are available,
which is often impractical in real-world contexts. An unsu-
pervised approach, as illustrated in Figure 1, would ideally
estimate pseudo-labels that could be inputs to any robust-
ness strategy, leading to improved worst group robustness.
An example of such a fully unsupervised worst group ro-
bustness approach is (GEORGE) [32]. GEORGE clusters
the penultimate layer features in a UMAP reduced space,
demonstrating impressive results on multiple datasets. In
this work, we instead show that clustering explainability
heatmaps instead, is more beneficial in improving worst
group robustness. Intuitively, this stems from the fact that a
pixel-attribution based explainability method in input space
focuses only on the relevant image features (pixel space) in
the task, discarding other entangled features irrelevant for
the final prediction.

In our work, we circumvent the need for a group labeled

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. To improve the original models worst group accuracy, most current approaches rely on supervised group labels (a), which
requires extensive annotation processes. Unsupervised approaches have relied on extracting pseudo labels based on the models feature
representations (b), where information can be highly entangled. ExMap instead infers group pseudo labels based on explainability heatmaps
(c), leading to improved worst group performance.

dataset by introducing ExMap, a novel two stage mech-
anism: First, we extract explainability heatmaps from a
trained (base) model on the dataset of interest (we use the
validation set without group labels). Next, we use a clus-
tering module to produce pseudo-labels for the validation
data. The resulting pseudo-labels can then be used for any
off-the-shelf group robustness learning strategy in use to-
day. ExMap is also flexible in the choice of clustering al-
gorithm. We show that attaching the ExMap mechanism to
baseline methods leads to improved performance over the
unsupervised counterparts, and further closes the gap to su-
pervised and partially supervised counterparts. Addition-
ally, we demonstrate that ExMap is also useful in the re-
cent multiple shortcut paradigm [18], where current popu-
lar supervised approaches have been shown to struggle. We
conclude with an extended analysis on why clustering ex-
plainability heatmaps is more beneficial than raw features.
In summary, our contributions include:

1. ExMap: A simple but efficient unsupervised, strategy ag-
nostic mechanism for group robustness that leverages ex-
plainability heatmaps and clustering to generate pseudo-
labels for underlying groups.

2. An extended analysis that provides intuition and insight
into why clustering explainability heatmaps leads to su-
perior results over other group-robustness baseline meth-
ods.

3. Demonstrating the usefulness of ExMap in improving
worst group robustness in both the single shortcut and
multiple shortcut settings.

2. Related Work

Single shortcut mitigation with group labels The
paradigm of taking a frozen base model and proposing a
shortcut mitigation strategy to maximise worst group accu-
racy was introduced in Group-DRO (gDRO) [28]. How-
ever, the requirement of group labels in both training and
validation data motivated the proposal of mitigation strate-

gies without training labels. This has resulted partially su-
pervised approaches [33] that only require a small set of
group labels as well as in several methods that only re-
quire the validation group labels [13, 19, 26]. One such
example is DFR[13], which re-trains the final layer of a
base ERM model on a balanced, reweighting dataset. Most
relevant to our work, GEORGE [32] proposes an unsuper-
vised mechanism to generate pseudo-labels for retraining
by clustering raw features, and can therefore be considered
the closest method to our proposed ExMap. We show that
clustering heatmaps is a more beneficial and intuitive tech-
nique for generating pseudo-labels, as attributing the model
performance on the input data pixels leads to a more in-
tuitive interpretation of which features are relevant for the
task, and which are not. Our method, ExMap, leverages
this insight and clusters the heatmaps instead, leading to
improved performance over GEORGE and its two variants
- GEORGE(gDRO) trained with the Group-DRO strategy,
and GEORGE(DFR), trained with the DFR strategy.

Other Strategies for Shortcut Mitigation There are
other extant works that mitigate spurious correlations with-
out adopting the group-label based paradigm directly.
MaskTune [2], for instance, learns a mask over discrimi-
natory features to reduce reliance on spurious correlations.
CVar DRO [17] proposes an efficient robustness strategy us-
ing conditional value at risk (CVar). DivDis [16], on the
other hand, proposes to train multiple functions on source
and target data, identifying the most informative subset
of labels in the target data. Discover-and-Cure (DISC)
[37] discovers spurious concepts using a predefined con-
cept bank, then intervenes on the training data to mitigate
the spurious concepts, while ULA [35] uses a pretrained
self-supervised model to train a classifier to detect and mit-
igate spurious correlations. While these approaches do not
directly adopt the group-label, we show that the proposed
explainability heatmap-based approach is more efficient in
improving the worst-group accuracy.
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Multi-Shortcut Mitigation The single shortcut setting
is a simpler benchmark as the label is spuriously corre-
lated with only a single attribute. However, real world
datasets are challenging, and may contain multiple spuri-
ous attributes correlated with an object of interest. As a
result, when one spurious attribute is known, mitigating the
reliance on this attribute may exacerbate the reliance on an-
other. The recently introduced Whac-A-Mole [18] dilemma
for multiple shortcuts demonstrates this phenomenon with
datasets containing multiple shortcuts (e.g. background and
co-occurring object). Single shortcut methods fail to miti-
gate both shortcuts at once, leading to a spurious conserva-
tion principle, where if one shortcut is mitigated, the other
is exacerbated. The authors introduce Last Layer Ensem-
ble (LLE) to mitigate multiple shortcuts in their datasets,
by training a separate classifier for each shortcut. How-
ever, LLE’s reliance on apriori knowledge of dataset short-
cuts is impractical in the real world. We evaluate ExMap in
this context and show that it is effective as an unsupervised
group robustness approach to the multi-shortcut setting.

Heatmap-based Explainability The challenge of at-
tributing learned features to the decision making of a model
in the image space has a rich history. The techniques ex-
plored can be differentiated on a variety of axes. LIME,
SHAP, LRP [3, 11, 22] are early model-agnostic methods,
while Grad-CAM and Integrated Gradients[30, 34] are gra-
dient based attribution methods. We use LRP in this work
owing to its popularity, but in principle, the heatmap extrac-
tion module can incorporate any other method widely in use
today. LRP is a backward propagation based technique re-
lying on the relevance conservation principle across each
neuron in each layer. The output is a set of relevance scores
that can be attributed to a pixel wise decomposition of the
input image. Heatmap-based explainability techniques have
also been used in conjunction with clustering, in the con-
text of discovering model strategies for classification, and
disparate areas such as differential privacy [6, 15, 29].

3. Worst Group Robustness
In this section, we provide notation and brief background
of the group robustness problem. We are given a dataset D
with image-label pairs being defined as D “ tpxi, yiquN

i“1,
where xi represents an image, yi is its corresponding la-
bel, and N is the number of pairs in the dataset. The
model’s prediction for an image x is ypred “ f̂pxq. The
cross-entropy loss for true label y and predicted label ypred

is given by Lpy, ypredq “ ´ ∞C
c“1 yc logpypred,cq, where C

is the number of classes. Then, an ERM classifier simply
minimizes the average loss over the training data:

f̂ “ arg min
f

1

N

Nÿ

i“1

Lpyi, fpxiqq (1)

where f̂ is the model obtained after training. Next, given
the validation data D, we assume that for the class label
set L “ tc1, c2, ..., cku there exists a corresponding spuri-
ous attribute set A “ ta1, a2, ..., amu, such that the group
label set G : L

ë
A. For example, in CelebA, typically

a : Gender (Male/Female), and c: Blonde Hair (Blonde/Not
Blonde). In this case L “ t0, 1u, and A “ t0, 1u. Then,
the optimization can be described as the worst-expected loss
over the validation set, conditioned on the group labels and
the spurious attributes:

f̂˚ “ arg min
f

max
pci,ajqPG

Epx,yqPDrLpy, fpxqq|ci, ajs (2)

As discussed before, recent works aim to design strate-
gies over the (base) trained model to minimize this objec-
tive. For example, JTT collects an error set from the train-
ing data, and then upweights misclassified examples dur-
ing the second training phase. DFR reweights the features
responsible for misclassifications during the first phase in
its finetuning stage. Note, however, that both these meth-
ods rely on the validation set group labels Gval to finetune
the network. We consider the case where Gtrain “ � and
Gval “ �. We do not have access to group labels, and must
therefore infer pseudo-labels in an unsupervised manner so
that existing group robustness methods can be used.

4. Leveraging Explainability Heatmaps for
Group Robustness – ExMap

In this section, we describe ExMap, an intuitive and effi-
cient approach for unsupervised group robustness to spuri-
ous correlations. ExMap is a two-stage method, illustrated
in Figure 2. In the first stage, we extract explainability
heatmaps for the model predictions. In the second stage,
we cluster the heatmaps to generate pseudo-labels. These
pseudo-labels can then be used on any off-the-shelf group
robustness strategy in use today. In our work, we demon-
strate the strategy agnostic nature of ExMap by running it
on two popular strategies - JTT and DFR.

4.1. Explainability Heatmaps

We use LRP [3] in this stage to generate pixel attributions in
the input space. This allows us to focus only on the relevant
features for the task. Specifically, given the validation data
Dval “ tpxi, yiquM

i“1, we use pixel wise relevance score
rx “ pLRPpxqq@x P Dval. Specifically, for each data
point x, the relevance score is defined on a per-neuron-per
layer basis. For an input neuron nk at layer k, and an output
neuron nl at the following layer l, the relevance score Rk is
intuitively a measure of how much this particular input nk

contributed to the output value nl:

Rk “
ÿ

l:k›Ñl

zkl

zl ` " ¨ signpzlq (3)
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ExMap

(B) Clustering

(C) Pseudo-Labels

Input Data

(A) Heatmap Extraction

Frozen ERM Model Retrain

Figure 2. Our Proposed Method: ExMap facilitates group-robustness by extracting explainability heatmaps from the frozen base ERM
model for the validation data (A). These heatmaps are then clustered (B) to obtain pseudo-labels for the underlying groups, which are
subsequently chosen for the retraining strategy (C).

Algorithm 1 Generating Pseudo-labels using G-ExMap

1: Input: Dataset Dval, ERM Model M, DataLoader L
2: Output: Pseudo-labels Ĝ
3: procedure GENERATEPSEUDOLABELS(D, M, L)
4: R – H ô Initialize heatmap set
5: for each batch x in L do
6: pred – arg maxi Mpxqi

7: for each layer k, l do
8: Compute zl – nkwkl

9: end for
10: Compute LRP relevance rx for x using Eq. 3
11: Add rx to R
12: end for
13: Cluster R using G-ExMap method:
14: Â – ClusterpRq ô Estimated spurious labels
15: Combine class labels L with Â

Ĝ – L ˆ Â

16: return Pseudo-labels Ĝ
17: end procedure

where zl “ nkwkl for the weight connection wkl. Rk is
computed for all the neurons at layer k, and backpropagated
from the output layer to the input layer to generate pixel
level relevance scores rx for each data input x. We can thus
build the heatmap set R “ trx|x P Dvalu. This process is
summarized in Algorithm 1.

4.2. Clustering

In the second stage, we cluster the LRP representations
from the first stage. The intuition here is that over the data,
the heatmaps capture the different strategies undertaken by
the model for the classification task [15]. The clustering
module helps identify dominant model strategies used for
the classification task. By identifying such strategies and
resampling in a balanced manner, ExMap guides the model
to be less reliant on the dominant features across the data,

i.e. the spurious features. The heatmaps serve as an effec-
tive proxy to describe model focus areas. We have two op-
tions in choosing how to cluster: Local-ExMap (L-ExMap),
where we cluster heatmaps on a per-class basis, and Global-
ExMap (G-ExMap), where we cluster all the heatmaps at
once, and segment by class labels. We present the G-ExMap
results in this paper, owing to better empirical results.

Specifically, given the Heatmap set R as described in
Algorithm 1, the estimated spurious labels are generated
by the global clustering method, Â “ ClusterpRq where
Cluster (.) represents a clustering function. Now, given
class label set L and estimated spurious label set Â, we can
generate our pseudo-group label set Ĝ “ L

ë
A by select-

ing each ai P Â, and each ck P L, to create tck, aiu @k, i.
In principle, it doesn’t matter what clustering method

we use, but that the clustering process itself outputs use-
ful pseudo-labels. For our work, we leverage spectral clus-
tering with an eigengap heuristic, inspired by SPRAY [15].
Later, we show that the choice of the clustering method does
not have a significant effect on the results. The outputs,
which are the pseudo group labels for the validation data
Dval, can now be used as labels in lieu of ground truth la-
bels to train any group robustness strategy in use. Note how
in principle, any method that uses group labels (training or
validation) would benefit from this approach. To apply this
to the training set D, one would simply repeat Algorithm 1
on D. In this work, we apply ExMap to two common group
robustness strategies - JTT [19] and DFR [13]. Thus, we
demonstrate the strategy-agnostic nature of our approach
that can be applied to any off-the-shelf method using group
labels today.

5. Experiments

In this section we first present the datasets, baselines, and
experimental setup. Next, we present the results and dis-
cussion2.

2A discussion of the limitations and societal impact can be found in the
supplementary material.
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y: <=4
s: Red

y: > 4
s: Green

y: Landbird
s: Land

y: Landbird
s: Water

C-MNIST Waterbirds

y: Country Car
s1: Country Background
s2: Country Co-occuring 

                 Object

y: Country Car
s1: Country Background
s2: Urban Co-occuring 

                 Object

UrbanCars

y: Blonde
s: Woman

y: Not Blonde
s: Man

CelebA

Figure 3. The datasets used in our work, visualized with respect to the class labels, and the shortcuts s. For the complete list of datasets
and more details, please refer to the supplementary material.

Datasets We use CelebA [20], Waterbirds [28, 36, 39],
C-MNIST [1], and Urbancars [18]. In CelebA, the class la-
bel to be predicted is hair colour (Blonde/Not Blonde), and
the spurious attribute is gender (Male/Female). For Water-
birds, the class label is the bird type (waterbird/landbird),
and the spurious attribute is the background (land/water).
In C-MNIST, the class label is if the number is smaller
than or equal to four. Any number lesser than or equal
to four is assigned blue, while all numbers greater than
four are assigned the color red, with a correlation of 99%.
Thus, the spurious attribute is the color. For Urbancars, the
class label is the car type (country/urban), and the spuri-
ous attributes are the background and co-occuring object
(both country/urban). We create two variants of Urbancars:
The first variant is Urbancars (BG), where only the back-
ground object is the spurious attribute. The second vari-
ant is Urbancars (CoObj), where the co-occuring object is
the spurious attribute. We present single shortcut results
on CelebA, Waterbirds, C-MNIST, Urbancars (BG) and Ur-
bancars (CoObj). For the multiple shortcut setting, we use
the original UrbanCars dataset with both shortcuts [18]. An
overview over the considered datasets can be found in Fig-
ure 3. We present more dataset details in the supplementary.

Baselines We use the unsupervised approaches DivDis,
MaskTune, and two variants of GEORGE (with gDRO and
DFR) as the baselines in our work. We also adapt LfF, JTT,
and CVar DRO to the unsupervised setting as additional
baselines. We train the ERM model using an Imagenet-
pretrained Resnet-50, and use the open source implemen-
tations of the baselines to generate our results. Specifically,
we implement GEORGE(DFR), ExMap, and JTT. Remain-
ing results are reported from [2], [19], and [16].

Setup We make sure to use the same hyperparameters
from the baseline papers to reproduce the results. We utilise
a composite of LRP rules to get the explainability heatmaps
as recommended by [14, 23]. Following their recommenda-
tions we use LRP-✏ for the dense layers near the output of
the model with small epsilon (✏ ! 1), followed by LRP-�

for the convolutional layers.
For the spectral clustering, we use the affinity matrix,

and cluster-QR [29] to perform the clustering. The eigen-
gap heuristic is applied to the 10 smallest eigenvalues of the
Laplacian matrix to select the number of significant clusters
to use. We demonstrate later that using a simpler cluster-
ing approach such as k-means can also emit reasonable re-
sults. For more details on the affinity matrix, clustering and
pseudo-label generation, please see the supplementary.

5.1. Results: Single Shortcut

In Table 1 we present the single shortcut results for the
datasets. First, we note that with no supervision, ExMap
based DFR improves significantly upon ERM. Second, we
note the improved performance of ExMap based DFR over
the unsupervised baselines, including GEORGE, our clos-
est baseline. Further, since the DFR-based GEORGE and
ExMap significantly outperforms the other baselines, we
present results comparing these two methods on C-MNIST,
Urbancars (BG) and Urbancars (CoObj) in Table 2. In
both tables, we demonstrate the superiority of clustering
heatmaps to generate pseudo-labels instead of the raw fea-
tures as in GEORGE. These results also show that the
groups inferred by ExMap are indeed useful for worst group
robustness to spurious correlations. Third, we note the gap
in performance between DFR and ExMap based DFR. Since
the former uses validation labels, we expect an increased
accuracy, but we can report better performance on Water-
birds, and within 3% 2% 8% and 6% of the DFR results on
the remaining datasets. On CelebA, our results are within
5% of Group-DRO, which demonstrates the best overall re-
sults. However, note that Group-DRO is a fully supervised
approach, using labels from both the training and validation
sets. For all datasets, we are able to outperform GEORGE,
our closest baseline. As discussed before, while mean ac-
curacy is not the appropriate metric to track in the group
robustness setting (ERM has the best overall mean accu-
racy but the worst overall worst group accuracy), we can
still confirm that ExMap based DFR does not witness sig-
nificant drops in performance.
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Methods Group Info Waterbirds CelebA

Train/Val WGA(%)Ò Mean(%) WGA(%)Ò Mean(%)

Base (ERM) 7/7 76.8 98.1 41.1 95.9
Group DRO 3/3 91.4 93.5 88.9 92.9
EIIL 3/3 87.3 93.1 81.3 89.5
BARACK 3/3 89.6 94.3 83.8 92.8
CVar DRO 7/3 75.9 96.0 64.4 82.5
LfF 7/3 78.0 91.2 77.2 85.1
JTT 7/3 86.7 93.3 81.1 88.0
DFR 7/3 92.1 96.7 86.9 91.1
GEORGE (gDRO) 7/7 76.2 95.7 53.7 94.6
CVar DRO 7/7 62.0 96.0 36.1 82.5
LfF 7/7 44.1 91.2 24.4 85.1
JTT 7/7 62.5 93.3 40.6 88.0
DivDis* 7/7 81.0 - 55.0 -
MaskTune 7/7 86.4 93.0 78.0 91.3
GEORGE (DFR) 7/7 91.7 96.5 83.3 89.2
DFR+ExMap (ours) 7/7 92.5 96.0 84.4 91.8

Table 1. Worst group and mean accuracy on the test sets of the different datasets. The Group Info column showcases for each method
whether group labels are used for that split of the data (7= does not use group labels, 3= uses group labels). We report the average results
over 5 runs after hyperparameter tuning. Gray rows represent supervised approaches. *DivDis does not report mean test accuracy results.

Methods Group Info C-MNIST Urbancars (BG) Urbancars (CoObj)

Train/Val WGA(%)Ò Mean(%) WGA(%)Ò Mean(%) WGA(%)Ò Mean(%)

Base (ERM) 7/7 39.6 99.3 55.6 90.2 50.8 92.7
DFR 7/3 74.2 93.7 77.5 81.0 84.7 88.2
GEORGE (DFR) 7/7 71.7 95.2 69.1 83.6 76.9 91.4
DFR+ExMap (ours) 7/7 72.5 94.9 71.4 93.2 79.2 93.2

Table 2. Worst Group accuracy and mean accuracy on C-MNIST, Urbancars (BG), and Urbancars (CoObj). We use GEORGE as the
baseline, since both GEORGE and ExMap significantly outperform other unsupervised methods on Waterbirds and CelebA. Gray rows
represent supervised approaches.

5.2. Results: Multiple Shortcuts

Here, we present the results on the UrbanCars data, which
contains multiple shortcuts in the images - the background
and the co-occurring object in the image. This dataset was
introduced in the recent work on multiple shortcut miti-
gation [18], where the authors show that mitigating one
shortcut may lead to a reliance on another shortcut in the
data, rendering the single shortcut setting incomplete (the
Whac-a-Mole problem). The authors introduce a new set
of metrics for the task - The BG Gap, which is the drop
in accuracy between mean and cases when only the back-
ground is uncommon, the CoObj Gap which is the drop
in accuracy between mean and cases when only the co-
occurring object is uncommon, and the BG+CoObj Gap,
the drop when both the background and the co-occurring
object are uncommon. A mitigation strategy should witness

a smaller drop from the original accuracy when compared
to others. In Table 3, we present the ExMap based DFR re-
sults with respect to DFR, ERM, and GEORGE(DFR). We
also present results of three variants of DFR: DFR (Both),
which is retraining on the original UrbanCars data with both
shortcuts. DFR(BG) retrains on UrbanCars with only the
background shortcut, and DFR(CoObj) retrains with only
the co-occuring object shortcut. Red values indicate an
increase in gap when compared to ERM, which is unde-
sirable (the Whac-A-Mole dilemma). Note that the first
three DFR methods have access to the group labels, while
GEORGE and ExMap do not. Table 3 demonstrates some
important results: First, that DFR + ExMap consistently
posts lower drops than the base ERM model. Second, that
ExMap does not witness an increase in gap on any of the
metrics compared to ERM, unlike GEORGE(DFR), which
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Method BG Gap Ò CoObj Gap Ò BG+CoObj Gap Ò
ERM -8.2 -14.2 -69.0
DFR (Both) -4.6 -5.4 -14.2
DFR (BG) -0.3 -29.2 (ˆ 2.06) -33.2
DFR (CoObj) -16.3 (ˆ 1.99) -0.5 -19.1

GEORGE (DFR) -7.0 -15.4 (ˆ1.08) -63.4
DFR+ExMap (ours) -5.9 -9.9 -30.7

Table 3. Multiple Shortcuts on UrbanCars. Red values indicate
the Whac-A-Mole dilemma: Mitigating one shortcut exacerbates
reliance on the other (compared to ERM). ExMap proves to be the
most robust in this setting, and outperforms GEORGE, its direct
unsupervised counterpart.

Input Data ERM ExMap

Figure 4. ERM and ExMap Heatmaps - Left: The Input images.
Middle: ERM model explanations. Right: Improved group ro-
bustness using ExMap. Our method helps improve the focus on
relevant attributes, in turn improving the pseudo-label estimation
for retraining.

exhibits the Whac-A-Mole dilemma for the CoObj Gap. Fi-
nally, the DFR variants exhibit the Whac-A-Mole dilemma:
For a DFR variant retrained on a particular shortcut, the re-
liance on that shortcut is mitigated (e.g. DFR (BG) miti-
gates the BG Gap), but the other shortcut reliance is exacer-
bated (DFR (BG) exhibits a higher CoObj Gap than ERM).
Note that DFR uses the validation group labels, and hence
will be more useful in mitigating shortcuts than our unsu-
pervised setting. In fact, as demonstrated in [18], training
separate classifiers for each shortcut is the best approach to
mitigating multiple shortcuts, which explains DFR’s best
overall results. However, this setting assumes availabil-
ity to the shortcut labels, which ExMap does not assume.
Yet, it demonstrates a robust performance for the multi-
shortcut setting even in the unsupervised setting, outper-
forming GEORGE, its closest unsupervised competitor.

6. Analysis
In this section, we present analysis and ablations along five
axes: First, we demonstrate how the clustering of heatmaps
is more useful than the clustering of features. Second,
we demonstrate the usefulness of the ExMap representa-

Group 1: (Non-Blonde/Female) Group 2: (Blonde/Female) 

Group 3: (Non-Blonde/Male) Group 4: (Blonde/Male) 

Figure 5. ExMap Heatmaps on CelebA: Each entry represents a
group. The positive and negative attributions help interpret which
features the model considers spurious (Blue), and which features
are helpful (Red).

Methods Mean (FG-Only %) Mean (%) Drop Ó
ERM 44.2 98.1 53.9
DFR 64.7 94.6 29.9
GEORGE (DFR) 73.2 96.5 23.3
DFR+ExMap (ours) 78.5 96.0 17.5

Table 4. Waterbirds (FG-Only). All methods exhibit a reliance
on the background shortcut in Waterbirds, but ExMap posts the
lowest drop, demonstrating its robustness.

tions when compared to ERM with respect to the classifi-
cation task. Third, we provide more insight into what the
learned clusters by ExMap capture in the data. Fourth, we
demonstrate that ExMap is robust to the choice of clustering
method, by performing an ablation on the clustering method
using k-means instead of spectral clustering. Finally, to
demonstrate that ExMap is strategy-agnostic, we use JTT
as a retraining strategy using ExMap pseudo-labels, and are
able to demonstrate robust performance with respect to JTT
trained on true validation labels.

6.1. The benefit of heatmaps over features

In this section we add more insight into why leveraging
heatmaps for worst group robustness is more useful over
features, as for example done in GEORGE. Specifically, we
illustrate how heatmap based clustering mitigates reliance
on the image background, the spurious attribute in the Wa-
terbirds dataset. The results illustrate a common intuition -
Explainability heatmaps highlight only the features relevant
for prediction, ignoring those that are not.

Circumventing background reliance Here, we present
results on Waterbirds with the spurious attribute, i.e. back-
ground, removed. We call this variant Waterbirds (FG-
Only), following [13]. Please refer to the supplementary
section for examples. An effective group robustness method
would not witness a sharp drop in test accuracy if the model
does not rely on the background. In Table 4, we present
these results.

We can clearly see that the heatmap clustering strategy
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Methods Group Info WGA(%) Ò Mean(%) Ò
Base (ERM) 7/7 76.8 98.1
DFR 7/3 92.1 96.7
DFR+ExMap (SC) 7/7 92.6 96.0
DFR+ExMap (KMeans) 7/7 92.5 95.9

Table 5. Worst group accuracy and mean accuracy on Waterbirds
with two different clustering methods - kmeans and Spectral.

mitigates the background reliance better than the feature
based clustering strategy of GEORGE (lowest drop among
all methods). This is also intuitive as the heatmap attribu-
tions focus on only the relevant features for prediction, dis-
carding the rest (see Figure 4).

6.2. Qualitative Analysis

ExMap improves explanations upon retraining We vi-
sualize the heatmaps and predictions of ERM and Exmap
based DFR in Figure 4. This is an image of the Water-
birds dataset that ERM misclassifies. This is reflected on
the heatmap, as ERM fails to capture the relevant features.
On the other hand, ExMap based DFR correctly classifies
the image and focuses on the correct object region of inter-
est (bird), instead of the spurious attribute (background).

ExMap improves Model Strategy In Figure 5, each en-
try represents a particular group. The positive and negative
relevance scores correspond to the features that the model
considers relevant and spurious respectively. ExMap un-
covers the strategy used to make the prediction: In all four
groups, we see ExMap helps the model uncover the hair
color as a strategy. In fact, in Group 4, the model also
learns that the facial features (Gender) are negatively asso-
ciated with the prediction task (Hair Color), which is what
we desire from our method. The model has learned the
shortcut between man and not-blonde hair, hence ExMap
uncovers the negative relevance in the face, effectively un-
covering this shortcut. These examples impart a notion of
interpretability to our results, as we are able to explain why
the model made a particular prediction, and what shortcuts
are uncovered.

6.3. Ablation Analysis

Robustness to choice of clustering method Our pro-
posed method does not depend on any particular clustering
algorithm. Although we used spectral clustering, one can
also use the simpler K-means [24] to capture the clusters for
pseudo-labelling. In Table 5, we present the results on Wa-
terbirds. We are able to demonstrate that there is no signif-
icant difference in the worst group robustness performance
for the clustering method we choose3. Both improve upon
the base ERM and DFR models, and hence, both are useful.

3Note, empirical results illustrated that k-means results were robust to
the number of clusters, K, given that K was chosen sufficiently large.

Methods Group Info WGA(%) Ò Mean(%) Ò
Base (ERM) 7/7 41.1 95.9
DFR 7/3 92.1 96.7
DFR+ExMap (ours) 7/7 92.6 96.0
JTT 7/3 86.7 93.3
JTT+ExMap (ours) 7/7 86.9 90.0

Table 6. Worst group and mean accuracy on Waterbirds for two
different retraining strategies - JTT and DFR.

Thus, ExMap is more about demonstrating the usefulness of
a heatmap clustering pseudo-labelling module rather than
the specifics of the clustering method itself.

Robustness to choice of learning strategy All the results
presented until now focus on the DFR backbone for shortcut
mitigation. We mention previously that ExMap is strategy-
agnostic, meaning that it can be applied to any off-the shelf
method in use today. In Table 6, we show the results af-
ter applying ExMap to the JTT method on Waterbirds. We
demonstrate similar performance to using JTT (originally
uses validation labels) simply by using the pseudo labels
proposed by ExMap. Additionally, we are able to improve
over ERM’s poor worst group accuracy as well.

7. Conclusion
The group robustness paradigm for deep learning classifiers
raises important questions for when deep learning models
succeed, but more importantly, when they fail. However,
most of current research focuses on the setting where group
labels are available. This assumption is impractical for real-
world scenarios, where the underlying spurious correlations
in the data may not be known apriori. While recent work
investigating unsupervised group robustness mechanisms
have shown promise, we show that further improvements
are possible. In our work, we propose ExMap, where we
cluster explainable heatmaps to generate pseudo-labels for
the validation data. These pseudo-labels are then used on
off-the-shelf group robustness learning mechanisms in use
today. In addition to showing why using heatmaps over raw
features is useful in this setting, our results demonstrate the
efficacy of this approach on a range of benchmark datasets,
in both the single and multi-shortcut settings. We are able to
further close the gap to supervised counterparts, and outper-
form partially supervised and unsupervised baselines. Fi-
nally, ExMap opens up interesting avenues to further lever-
age explainability heatmaps in group robust learning.
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ExMap: Leveraging Explainability Heatmaps for Unsupervised Group
Robustness to Spurious Correlations

Supplementary Material

In this supplementary material, we present additional de-
tails about the following:
• The datasets used - C-MNIST, Waterbirds, CelebA, Ur-

bancars, Urbancars single shortcut variants, Waterbirds
(FG-Only).

• Experimental Setup - The details on the heatmap extrac-
tion and clustering phase in ExMap.

• Additional results providing further intuition on how
ExMap captures underlying group information.

• More results on the robustness of our method with stan-
dard errors.

• The connection between group robustness and fair clus-
tering.

• Limitations and Societal Impact.

1. Datasets
We present the number of examples from each group for
all the datasets, and the process of generating them. For C-
MNIST, we used the same setup as in [2]. For Waterbirds
and CelebA, we use the same setup as in [6, 8]. For Urban-
cars we use the same setup as in [7].

1.1. C-MNIST

We create a dataset where we have control of the number of
elements in each group and what the spurious attribute is.

The Colored-MNIST dataset is a synthetic dataset based
on the well-known MNIST. The MNIST dataset is a collec-
tion of several thousands of examples of handwritten digits
(0-9). The images are single-channelled (black and white)
and have a size of 28x28 pixels, and are accompanied by a
label giving the ground truth.

We use the original data split, 60000 train and 10000
test. Since the original dataset does not have a validation
set, we use the last 10000 images of the training set as the
validation set.

We convert the dataset into a 2 class problem by modify-
ing the task. This is done by simply going over to classify
the numbers as smaller or equal to 4 (y “ 0 : value ă“ 4),
and larger than 4 (y “ 1 : value ą 4). To create the spuri-
ous attributes we make use of colors. Red is used as the first
spurious attribute (s “ 0 : RGB “ p255, 0, 0q), and green
is used as the second spurious attribute (s “ 1 : RGB “
p0, 255, 0q). Naturally, the images will need to be made 3-
channeled to account for this change.

As we are interested in combating spurious correlations
we create the dataset in a way such that there are correla-
tions between the classes and spurious attributes. We use

Split Total Data Groups
Group
0
(y=0,
s=0)

Group
1
(y=0,
s=1)

Group
2
(y=1,
s=0)

Group
3
(y=1,
s=1)

Train 50,000 254 25,284 24,231 231
Val 10,000 45 5,013 4,893 49
Test 10,000 48 5,091 4,815 46

Table 1. Data splits in the Colored-MNIST dataset.

99% correlation. That means that 99% of images from one
class will have the same colour, while the remaining 1%
will have the other colour. The amount of correlation was
deliberately chosen so that ERM worst group accuracy is
low. Table 1 shows the number of images in each group for
each split.

1.2. Waterbirds

Waterbirds [10] is a synthetic dataset created with the pur-
pose of testing a model’s reliance on background. The
dataset consists of RGB images depicting different types
of birds on different types of backgrounds. The different
types of birds are divided into 2 classes, landbirds (y “ 0)
and waterbirds (y “ 1). The different backgrounds are also
divided into 2 and represent the spurious attributes of this
dataset: land background (s “ 0) and water background
(s “ 1). The group distributions across the different splits
are presented in Table 2.

The Waterbirds dataset is created by using 2 other
datasets, the Caltech-UCSD Birds-200-2011 (CUB) dataset
[13] and the Places dataset [14]. The CUB dataset contains
images of birds labelled by species and their segmentation
masks. To construct the Waterbirds dataset the labels in the
CUB dataset are split into 2 groups, where waterbirds are
made up of seabirds (albatross, auklet, cormorant, frigate-
bird, fulmar, gull, jaeger, kittiwake, pelican, puffin, or tern)
and waterfowls (gadwall, grebe, mallard, merganser, guille-
mot, or Pacific loon), while the remaining classes are la-
belled as landbirds. The birds are cropped using the pixel-
level segmentation masks and pasted onto a water back-
ground (categories: ocean or natural lake) or land back-
ground (categories: bamboo forest or broadleaf forest) from
the Places dataset.

The official train-test split of the CUB dataset is used,
and 20% of the training set is used to create the validation
set. The group distribution for the training set is such that



Split Total Data Groups
Group
0
(y=0,
s=0)

Group
1
(y=0,
s=1)

Group
2
(y=1,
s=0)

Group
3
(y=1,
s=1)

Train 4,795 3,498 184 56 1,057
Val 1,199 467 466 133 133
Test 5,794 2,255 2,255 642 642

Table 2. Data splits in the Waterbirds dataset.

most images (95%) depict bird types with corresponding
backgrounds, to represent a distribution that may arise from
real-world data. This distribution turns the background into
a spurious feature. Take note that there is a distribution shift
from the training split to the validation and test splits which
are both more balanced, and include many more elements
for the minority group. The creators of the dataset argue
that they do this to more accurately gauge the performance
of the minority groups, something that might be difficult if
there are too few examples. They also do this to allow for
easier hyperparameter tuning.

1.3. Celeb-A

CelebA here is a reference to a part of the CelebA celebrity
face dataset [9] that was introduced by [10] as a group
robustness dataset. From the original dataset, the feature
Blond Hair is used as the class, meaning that the images
are divided into people who are not blonde (y “ 0) and
blonde (y “ 1). Meanwhile, as a spurious attribute, we use
the feature Male from the original dataset, which divides
into female (s “ 0) and male (s “ 1). The official train-
val-test split of the CelebA dataset is used. Note in Table 3,
that the splits are likely randomly created, which results in
equally group-distributed splits. Across all splits the group
(blonde, male) is the smallest.

This dataset tests for model reliance on strongly corre-
lated features in a real-world dataset. Observe in Table 3
that g3 “ py “ 1, s “ 1q which represents blonde males
is severely underrepresented compared to the other groups,
hence we expect the model to learn gender as a spurious
feature for the class blonde.

Split Total Data Group
0
(y=0,
s=0)

Group
1
(y=0,
s=1)

Group
2
(y=1,
s=0)

Group
3
(y=1,
s=1)

Train 162,770 71,629 66,874 22,880 1,387
Val 19,867 8,535 8,276 2,874 182
Test 19,962 9,767 7,535 2,480 180

Table 3. Data splits in the CelebA dataset.

1.4. Urbancars

We use Urbancars, as proposed by [7]. There are 4000 im-
ages per target class, i.e. 8000 images in total. The target
class is the car type (country/urban), while the two shortcuts
are the background type (country/urban), and co-occurring
object (country/urban). For the exact list of the cars, ob-
jects, and background, please see [7].

1.5. Urbancars single shortcut variants

The original Urbancars data has eight group combinations
due to two classes, and two shortcuts (Background and
Co-Occurring object). For the single shortcut variants, we
merge the 4 extra groups for one particular shortcut, to leave
4 groups for the other. For example: To create Urban-
cars (BG), we merge the 4 groups from the other shortcut
(CoObj), to create four groups containing the single short-
cut of background for each of the two classes. A similar
procedure is adopted to create Urbancars (CoObj).

1.6. Waterbirds (FG-Only)

This dataset is created to evaluate how well the trained
models circumvent background reliance on the Waterbirds
dataset, since background is the shortcut in the data. We re-
move the backgrounds in all the images only on the test set.
In Figure 1, we present some examples.

Original Data Foreground Only 

Figure 1. Waterbirds (FG Only)

2. Experimental Setup
In this section, we present more details on the heatmap ex-
traction phase, clustering choice, and the hyperparameters
used.

2.1. Heatmap Extraction

Following SPRAY [3], which reports good results across
different downsizing of heatmaps, we sweep predominantly



Methods Group Info C-MNIST Urbancars (BG) Urbancars (CoObj)

Train/Val WGA(%)Ò Mean(%) WGA(%)Ò Mean(%) WGA(%)Ò Mean(%)

Base (ERM) ✗/✗ 39.6 99.3 55.6 90.2 50.8 92.7
GEORGE (DFR) ✗/✗ 71.7˘0.1 95.2˘0.3 69.1˘0.9 83.6˘1.0 76.9˘0.9 91.4˘1.0
DFR+ExMap (ours) ✗/✗ 72.5˘0.2 94.9˘0.3 71.4˘0.8 93.2˘0.2 79.2˘0.7 93.2˘0.3

Table 4. Group/mean test accuracy with std. Results over 5 runs.

Figure 2. ExMap based misclassifications on challenging exam-
ples (Waterbirds): In each of these images, the object of interest
(bird) is co-habited by dominant peripheral objects such as humans
and other birds. These situations are challenging for the classifier
to discern the relevant object from the irrelevant ones.

over the following downsizings: [224, 112, 100, 56, 28, 14,
7, 5, 3]. The downsizing of heatmaps additionally helps in
speeding up the clustering process and mitigating potential
out-of-memory issues.

2.2. Clustering choice

Since ExMap if flexible to the choice of clustering algo-
rithm, we experiment with spectral clustering, UMap re-
duced KMeans [6], and KMeans. We use the eigengap
heuristic with spectral to automatically choose the number
of clusters, and sweep over different cluster sizes for the
KMeans based methods. We look for the largest gap in
among the first 10 eigenvalues. Otherwise we test for 2-15
clusters for kmeans (overclustering as practiced in [12]).

2.3. Hyperparameters

We use the same hyperparameters for DFR and JTT as in
the original papers [6, 8].

For DFR, we perform the following steps:
• Given (pseudo)group labels we create a retraining set by

subsampling each group to the size of the smallest group.
These are then used to retrain the last layer. After being
passed through the feature extractor, each sample is nor-
malised based on the data used to retrain the last layer.

• Similar to [6], we use logistic regression with L1-loss.
• The strength of L1 is swept over [1.0, 0.7, 0.3, 0.1, 0.07,

0.03, 0.01]. The sweep is performed by randomly split-
ting the retraining dataset in 2, and performing retrain-
ing with one half and evaluating the performance with
the other. This is performed 5 times with different splits
and the best strength is chosen based on highest worst
(pseudo)group accuracy.

Method Accuracy (%)
Waterbirds CelebA

WGA / Mean WGA / Mean

Base (ERM) 76.8 / 98.1 41.1 / 95.9
GEORGE (DFR) 91.7 ˘ 0.2 / 96.5 ˘ 0.1 83.3 ˘ 0.2 / 89.2 ˘ 0.2
DFR+ExMap 92.5 ˘ 0.1 / 96.0 ˘ 0.3 84.4 ˘ 0.5 / 91.8 ˘ 0.2

Table 5. Group / mean test accuracy with std. Results over 5 runs.

• When L1 strength has been selected, we retrain using the
whole retrain set. This is performed 20 times with differ-
ent subsamplings. The weights from each subsampling
are averaged (this is viable according to DFR authors) to
yield the final last layer weights. The normalisation of
data is also averaged across the 20 runs.
For the ERM model, we perform the following steps:

• We use Resnet-18 for CMNIST, Resnet-50 for the others.
We start with imagenet-pretrained Resnet-50 similar to
previous work as it was observed to perform better. For
all settings we replace the final fully connected layer to
reflect the nature of our problems, i.e. 2 classes.

• Learning rate: 3e-3, weight decay: 1e-4, cosine learning
rate scheduler.

• Batch size:We use batch size of 32 for Waterbirds and
Urbancars, 100 for CelebA, and 128 for C-Mnist.

• Epochs: We train for 100 epochs on Waterbirds and Ur-
bancars, 20 for CelebA, and 10 for C-Mnist.

• We use early stopping using the best mean (weighted) val-
idation accuracy
For GEORGE, we perform the following steps:

• Acquire feature extractor (base ERM) outputs.
• Max normalise features.
• Cluster features as exmap or using UMAP+kmeans. We

use 2 dimensions for the UMAP reduction, and high num-
ber of clusters (overclustering regime following [12]).

3. Capturing of Group Information
In addition to why ExMap representations are better for
downstream group robustness over raw classifier features,
we are also interested in what kind of group information the
ExMap representations capture. The advantage of heatmaps
are that they capture only the relevant features, while previ-
ous approaches that cluster in the feature space are prone
to be effected by features that are irrelevant for the fi-
nal prediction. To further substantiate our findings, we
generate additional results to demonstrate that ExMap in-



Methods Group Info Waterbirds CelebA

Train/Val WGA(%)Ò Mean(%) WGA(%)Ò Mean(%)

Base (ERM) ✗/✗ 76.8 98.1 41.1 95.9
BPA ✗/✗ 71.3 87.1 83.3 90.1
DFR+ExMap (ours) ✗/✗ 92.5 96.0 84.4 91.8

Table 6. Comparison with Fair Clustering: Worst group and mean accuracy on Waterbirds and CelebA.

Group 0 (Class 1)

Group 0 (Class 0)

Group 1 (Class 0)

Group 1 (Class 1)

Cluster 0

Cluster 1

Cluster 3

Cluster 5

Cluster 4

Cluster 2

Figure 3. Groups in UrbanCars: (Left) Ground truth group la-
bels per class. We observe minority groups (the spurious corre-
lations) in the highlighted bottom right corner. (Right) Pseudo-
labels learned by ExMap based clustering reveals a similar over-
all structure, conserving the dominant groups (green and yellow),
while capturing the minority groups (blue cross and circle) as well.

deed captures the underlying group information. In Fig-
ure 3, we plot the pseudo-labels for UrbanCars (CoObj)
after ExMap based clustering. ExMap captures both the
dominant groups and the minority groups in the dataset,
as indicated by the pseudo-labels learned. We also note
that ExMap does not necessarily learn the same number of
groups as in the ground truth data, since this information
is assumed unavailable. The key observation from this fig-
ure is that ExMap is successful in identifying the dominant
and minority group structure in the data. The group robust
learner (such as DFR) can then sample across these groups
in a balanced manner while retraining, leading to mitigation
against spurious correlations.

4. Robustness Analysis
Our results in Table 1 and Table 2 in the main text are pre-
sented as the average of five runs. To illustrate the robust-
ness of the compared approaches, we further provide the
standard deviation for the ExMap and the main competitor
in Table 4 and Table 5. We observe that results are robust
across runs.

5. Connections to Fair Clustering
Given the close relationship between group robustness and
the domain of fair clustering [1, 4, 5], we briefly com-
ment on their connection and the potential of the insights
of ExMap in the fair clustering setting. The domains of fair
clustering and group robustness differ slightly, with the for-

mer aiming to improve mean accuracy independent of sensi-
tive attributes, while the latter aim to maximize worst group
accuracy. Therefore, there is a natural connection between
these two research areas. Sensitive attributes in fair cluster-
ing can be regarded as a special type of spurious correlation,
causally unrelated to the task. Recent work in fair clustering
has therefore adopted some of the insights from the field of
group robustness [11]. However, these approaches adopt a
GEORGE inspired approach (cluster in raw features space),
which we demonstrate to be sub-optimal in the context of
group robustness. While an in-depth exploration of this is
out-of-scope for this work, it could present an interesting
avenue of future work. In Table 6, we present the ExMap re-
sults on Waterbirds and CelebA with respect to the method
introduced in [11].

6. Limitations and Societal Impact
There are certain intuitive failure cases where the ExMap
approach is not as efficient. This occurs when the images
themselves are quite challenging to discern the objects of in-
terest (the class), from other peripheral objects in the scene.
In Figure 2, we present some examples of misclassifications
by ExMap based DFR. In these images, we can see that the
object of interest (bird), is co-habited by other dominant ob-
jects in the scene, such as humans and other birds. This cre-
ates an exceptionally challenging task for the classifier to
discern the relevant features for the task. We recognise the
need for robustness across challenging examples in datasets
as motivation for future work. With regard to social impact,
we recognise that model robustness to spurious correlations
is an important first step in ensuring fair, transparent, and
reliable AI that can be deployed in safety critical domains
in the real world. Elucidating why models classify as they
do, and specific failure cases uncovers shortcomings in ex-
clusively choosing mean test accuracy as a metric. As a
result, probing models for their weaknesses is as important
as exemplifying their strengths.
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Abstract

Distance-based classification is frequently used in trans-
ductive few-shot learning (FSL). However, due to the high-
dimensionality of image representations, FSL classifiers are
prone to suffer from the hubness problem, where a few points
(hubs) occur frequently in multiple nearest neighbour lists
of other points. Hubness negatively impacts distance-based
classification when hubs from one class appear often among
the nearest neighbors of points from another class, degrading
the classifier’s performance. To address the hubness prob-
lem in FSL, we first prove that hubness can be eliminated by
distributing representations uniformly on the hypersphere.
We then propose two new approaches to embed representa-
tions on the hypersphere, which we prove optimize a tradeoff
between uniformity and local similarity preservation – reduc-
ing hubness while retaining class structure. Our experiments
show that the proposed methods reduce hubness, and signifi-
cantly improves transductive FSL accuracy for a wide range
of classifiers1.

1. Introduction
While supervised deep learning has made a significant

impact in areas where large amounts of labeled data are
available [6, 11], few-shot learning (FSL) has emerged as
a promising alternative when labeled data is limited [3, 12,
14, 16, 21, 26, 28, 31, 33, 39, 40]. FSL aims to design
classifiers that can discriminate between novel classes based
on a few labeled instances, significantly reducing the cost of
the labeling procedure.

In transductive FSL, one assumes access to the entire

*Equal contributions.
†UiT Machine Learning group (machine-learning.uit.no) and

Visual Intelligence Centre (visual-intelligence.no).
‡Norwegian Computing Center.
§Department of Computer Science, University of Copenhagen.
¶Pioneer Centre for AI (aicentre.dk).
1Code available at https://github.com/uitml/noHub.

Figure 1. Few-shot accuracy increases when hubness decreases.
The figure shows the 1-shot accuracy when classifying different
embeddings with SimpleShot [33] on mini-ImageNet [29].

query set during evaluation. This allows transductive FSL
classifiers to learn representations from a larger number of
samples, resulting in better performing classifiers. However,
many of these methods base their predictions on distances
to prototypes for the novel classes [3, 16, 21, 28, 39, 40].
This makes these methods susceptible to the hubness prob-
lem [10, 22, 24, 25], where certain exemplar points (hubs)
appear among the nearest neighbours of many other points.
If a support sample is a hub, many query samples will be
assigned to it regardless of their true label, resulting in low
accuracy. If more training data is available, this effect can
be reduced by increasing the number of labeled samples in
the classification rule – but this is impossible in FSL.

Several approaches have recently been proposed to embed
samples in a space where the FSL classifier’s performance
is improved [4, 5, 7, 17, 33, 35, 39]. However, only one of
these directly addresses the hubness problem. Fei et al. [7]
show that embedding representations on a hypersphere with
zero mean reduces hubness. They advocate the use of Z-
score normalization (ZN) along the feature axis of each
representation, and show empirically that ZN can reduce
hubness in FSL. However, ZN does not guarantee a data
mean of zero, meaning that hubness can still occur after ZN.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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In this paper we propose a principled approach to em-
bed representations in FSL, which both reduces hubness
and improves classification performance. First, we prove
that hubness can be eliminated by embedding representa-
tions uniformly on the hypersphere. However, distributing
representations uniformly on the hypersphere without any
additional constraints will likely break the class structure
which is present in the representation space – hurting the
performance of the downstream classifier. Thus, in order
to both reduce hubness and preserve the class structure in
the representation space, we propose two new embedding
methods for FSL. Our methods, Uniform Hyperspherical
Structure-preserving Embeddings (noHub) and noHub with
Support labels (noHub-S), leverage a decomposition of the
Kullback-Leibler divergence between representation and em-
bedding similarities, to optimize a tradeoff between Local
Similarity Preservation (LSP) and uniformity on the hyper-
sphere. The latter method, noHub-S, also leverages label
information from the support samples to further increase the
class separability in the embedding space.

Figure 1 illustrates the correspondence between hubness
and accuracy in FSL. Our methods have both the least hub-
ness and highest accuracy among several recent embedding
techniques for FSL.

Our contributions are summarized as follows.

• We prove that the uniform distribution on the hyper-
sphere has zero hubness and that embedding points uni-
formly on the hypersphere thus alleviates the hubness
problem in distance-based classification for transduc-
tive FSL.

• We propose noHub and noHub-S to embed representa-
tions on the hypersphere, and prove that these methods
optimize a tradeoff between LSP and uniformity. The
resulting embeddings are therefore approximately uni-
form, while simultaneously preserving the class struc-
ture in the embedding space.

• Extensive experimental results demonstrate that noHub
and noHub-S outperform current state-of-the-art em-
bedding approaches, boosting the performance of a
wide range of transductive FSL classifiers, for multiple
datasets and feature extractors.

2. Related Work

The hubness problem. The hubness problem refers to
the emergence of hubs in collections of points in high-
dimensional vector spaces [22]. Hubs are points that appear
among the nearest neighbors of many other points, and are
therefore likely to have a significant influence on e.g. near-
est neighbor-based classification. Radovanovic et al. [22]
showed that points closer to the expected data mean are more

likely be among the nearest neighbors of other points, indi-
cating that these points are more likely to be hubs. Hubness
can also be seen as a result of large density gradients [9], as
points in high-density areas are more likely to be hubs. The
hubness problem is thus an intrinsic property of data distribu-
tions in high-dimensional vector spaces, and not an artifact
occurring in particular datasets. It is therefore important to
take the hubness into account when designing classification
systems in high-dimensional vector spaces.
Hubness in FSL. Many recent methods in FSL rely on
distance-based classification in high-dimensional representa-
tion spaces [1, 3, 19, 33, 36, 38, 40], making them vulnerable
to the hubness problem. Fei et al. [7] show that hyperspher-
ical representations with zero mean reduce hubness. Moti-
vated by this insight, they suggest that representations should
have zero mean and unit standard deviation (ZN) along the
feature dimension. This effectively projects samples onto
the hyperplane orthogonal to the vector with all elements
= 1, and pushes them to the hypersphere with radius

p
d,

where d is the dimensionality of the representation space.
Although ZN is empirically shown to reduce hubness, it
does not guarantee that the data mean is zero. The normal-
ized representations can therefore still suffer from hubness,
potentially decreasing FSL performance.
Embeddings in FSL. FSL classifiers often operate on em-
beddings of representations instead of the representations
themselves, to improve the classifier’s ability to generalize
to novel classes [5, 33, 35, 39]. Earlier works use the L2
normalization and Centered L2 normalization to embed rep-
resentations on the hypersphere [33]. Among more recent
embedding techniques, ReRep [5] performs a two-step fus-
ing operation on both the support and query features with an
attention mechanism. EASE [39] combines both support and
query samples into a single sample set, and jointly learns
a similarity and dissimilarity matrix, encouraging similar
features to be embedded closer, and dissimilar features to be
embedded far away. TCPR [35] computes the top-k neigh-
bours of each test sample from the base data, computes the
centroid, and removes the feature components in the direc-
tion of the centroid. Although these methods generally lead
to a reduction in hubness and an increase in performance
(see Figure 1), they are not explicitly designed to address
the hubness problem resulting in suboptimal hubness reduc-
tion and performance. In contrast, our proposed noHub and
noHub-S directly leverage our theoretic insights to target the
root of the hubness problem.
Hyperspherical uniformity. Benefits of uniform hyper-
spherical representations have previously been studied for
contrastive self-supervised learning (SSL) [32]. Our work
differs from [32] on several key points. First, we study a
non-parametric embedding of support and query samples
for FSL, which is a fundamentally different task from con-
trastive SSL. Second, the contrastive loss studied in [32] is a
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combination of different cross-entropies, making it different
from our KL-loss. Finally, we introduce a tradeoff-parameter
between uniformity and LSP, and connect our theoretical
results to hubness and Laplacian Eigenmaps.

3. Hyperspherical Uniform Eliminates Hubness
We will now show that hubness can be eliminated com-

pletely by embedding representations uniformly on the hy-
persphere2.

Definition 1 (Uniform PDF on the hypersphere.). The uni-
form probability density function (PDF) on the unit hyper-
sphere Sd = {x 2 Rd | ||x|| = 1} ⇢ Rd is

uSd
(x) = A�1

d �(||x|| � 1) (1)

where Ad = 2⇡d/2

�(d/2) is the surface area of Sd, and �(·) is the
Dirac delta distribution.

We then have the following propositions3 for random
vectors with this PDF.

Proposition 1. Suppose X has PDF uSd
(x). Then

E(X) = 0 (2)

Proposition 2. Let ⇧p be the tangent plane of Sd at an
arbitrary point p 2 Sd. Then, for any direction ✓⇤ in ⇧p the
directional derivative of uSd

along ✓⇤ is

r✓⇤uSd
= 0 (3)

These two propositions show that the hyperspherical uni-
form has (i) zero mean; and (ii) zero density gradient along
all directions tangent to the hypersphere’s surface, at all
points on the hypersphere. The hyperspherical uniform thus
provably eliminates hubness, both in the sense of having a
zero data mean, and having zero density gradient everywhere.
We note that the latter property is un-attainable in Euclidean
space, as it is impossible to define a uniform distribution over
the whole space. It is therefore necessary to embed points on
a non-Euclidean sub-manifold in order to eliminate hubness.

4. Method
In the preceding section, we proved that uniform em-

beddings on the hypersphere eliminate hubness. However,
naïvely placing points uniformly on the hypersphere does
not incorporate the inherent class structure in the data, lead-
ing to poor FSL performance. Thus, there exists a tradeoff
between uniformity on the hypersphere and the preservation
of local similarities. To address this tradeoff, we introduce

2Our results assume hyperspheres with unit radius, but can easily be
extended to hyperspheres with arbitrary radii.

3The proofs for all propositions are included in the supplementary.
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Rk

Figure 2. Illustration of the noHub embedding. Given represen-
tations 2 Rk, LLSP preserves local similarities. LUnif simulta-
neously encourages uniformity in the embedding space Sd. This
feature embedding framework helps reduce hubness while improv-
ing classification performance.

two novel embedding approaches for FSL, namely noHub
and noHub-S. noHub (Sec. 4.1) incorporates a novel loss
function for embeddings on the hypersphere, while noHub-
S (Sec. 4.2), guides noHub with additional label informa-
tion, which should act as a supervisory signal for a class-
aware embedding that leads to improved classification per-
formance. Figure 2 provides an overview of the proposed
noHub method. We also note that, since our approach gener-
ates embeddings, they are compatible with most transductive
FSL classifier.
Few-shot Preliminaries. Assume we have a large la-
beled base dataset XBase = {(xi, yi) | yi 2 CBase; i =
1, . . . , nBase}, where xi and yi denotes the raw features and
labels, respectively. Let CBase denote the set of classes for the
base dataset. In the few–shot scenario, we assume that we
are given another labeled dataset XNovel = {(xi, yi) | yi 2
CNovel; i = 1, . . . , nNovel} from novel, previously unseen
classes CNovel, satisfying CBase \ CNovel = ;. In addition, we
have a test set T , T \ XNovel = ;, also from CNovel.

In a K–way NS–shot FSL problem, we create randomly
sampled tasks (or episodes), with data from K randomly
chosen novel classes. Each task consists of a support set
S ⇢ XNovel and a query set Q ⇢ T . The support set contains
|S| = NS ·K random examples (NS random examples from
each of the K classes). The query set contains |Q| = NQ ·K
random examples, sampled from the same K classes. The
goal of FSL is then to predict the class of samples x 2 Q by
exploiting the labeled support set S , using a model trained on
the base classes CBase. We assume a fixed feature extractor,
trained on the base classes, which maps the raw input data
to the representations xi.

4.1. noHub: Uniform Hyperspherical Structure-
preserving Embeddings

We design an embedding method that encourages uni-
formity on the hypersphere, and simultaneously preserves
local similarity structure. Given the support and query rep-
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resentations x1, . . . , xn 2 Rk, n = K(NS + NQ) , we
wish to find suitable embeddings z1, . . . , zn 2 Sd, where
local similarities are preserved. For both representations and
embeddings, we quantify similarities using a softmax over
pairwise cosine similarities

pij =
pi|j + pj|i

2
, pi|j =

exp(i
x>

i xj

||xi||·||xj || )
P
l,m

exp(i
x>

l xm

||xl||·||xm|| )
(4)

and

qij =
exp(z>

i zj)P
l,m

exp(z>
l zm)

, (5)

where i is chosen such that the effective number of neigh-
bours of xi equals a pre-defined perplexity4. As in [27, 30],
local similarity preservation can now be achieved by mini-
mizing the Kullback-Leibler (KL) divergence between the
pij and the qij

KL(P ||Q) =
X

i,j

pij log
pij

qij
. (6)

However, instead of directly minimizing KL(P ||Q), we find
that the minimization problem is equivalent to minimizing
the sum of two loss functions5

arg min
z1,...,zn2Sd

KL(P ||Q) = arg min
z1,...,zn2Sd

LLSP + LUnif (7)

where

LLSP = �
X

i,j

pijz
>
i zj , (8)

LUnif = log
X

l,m

exp(z>
l zm). (9)

In Sec. 5 we provide a thorough theoretical analysis of
these losses, and how they relate to LSP and uniformity on
the hypersphere. Essentially, LLSP is responsible for the
local similarity preservation by ensuring that the embedding
similarities (z>

i zj) are high whenever the representation
similarities (pij) are high. LUnif on the other hand, can be
interpreted as a negative entropy on Sd, and is thus mini-
mized when the embeddings are uniformly distributed on Sd.
This is discussed in more detail in Sec. 5.

Based on the decomposition of the KL divergence, and
the subsequent interpretation of the two terms, we formulate
the loss in noHub as the following tradeoff between LSP and
uniformity

LnoHub = ↵LLSP + (1 � ↵)LUnif (10)
4Details on the computation of the i are provided in the supplementary.
5Intermediate steps are provided in the supplementary.

Input: Features 2 Rk, {x1, . . . , xn}; perplexity, P ;
number of iterations, T ; learning rate, ⌘.

Output: Embeddings 2 Sd, {z1, . . . , zn}
Compute pij from Eq (4)
Initialize solution Z0 = {z1, . . . , zn} with PCA
for i 1 to T do

Compute qij from Eq. (5)
Compute gradients dLnoHub

dZ
, using loss from Eq. (10)

Update Zt using the ADAM optimizer with learning
rate ⌘ [15]

Re-normalize elements of Zt using L2 normalization
end
return ZT

Algorithm 1: noHub algorithm for embeddings on
the hypersphere

where ↵ is a weight parameter quantifying the tradeoff.
LnoHub can then be optimized directly with gradient descent.
The entire procedure is outlined in Algorithm 1.

4.2. noHub-S: noHub with Support labels

In order to strengthen the class structure in the embed-
ding space, we modify LLSP and LUnif by exploiting the
additional information provided by the support labels. For
LLSP, we change the similarity function in pij such that

pi|j =
exp(isx(xi, xj))P

l,m

exp(isx(xl, xm))
(11)

where

sx(xi, xj) =

8
><
>:

1 if xi, xj 2 S , and yi = yj

�1 if xi, xj 2 S , and yi 6= yj

x>
i xj otherwise

. (12)

With this, we encourage embeddings for support samples in
the same class to be maximally similar, and support samples
in different classes to be maximally dissimilar. Similarly, for
LUnif

LUnif = log
X

l,m

exp(sz(zi, zj)) (13)

where

sz(zi, zj) =

8
><
>:

�1, if zi, zj 2 S , and yi = yj

" z>
i zj , if zi, zj 2 S , and yi 6= yj

z>
i , zj otherwise

(14)

where " is a hyperparameter. This puts more emphasis on
between-class uniformity by weighting the similarity higher
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for embeddings belonging to different classes (" > 1), and
ignoring the similarity between embeddings belonging to
the same class6. The final loss function is the same as
Eq. (10), but with the additional label-informed similarities
in Eqs. (11)–(14).

5. Theoretical Results
In this section we provide a theoretical analysis of LLSP

and LUnif . Based on our analysis, we interpret these losses
with regards to the Laplacian Eigenmaps algorithm and
Rényi entropy, respectively.

Proposition 3. Let Wij = 1
2pij , where

P
i,j

pij = 1, and let

z1, . . . , zn 2 Sd. Then we have

LLSP =
X

i,j

kzi � zjk2Wij � . (15)

Proposition 4 (Minimizing LUnif maximizes entropy). Let
H2(·) be the 2-order Rényi entropy, estimated with a kernel
density estimator using a Gaussian kernel. Then

arg min
z1,...,zn2Sd

LUnif = arg max
z1,...,zn2Sd

H2(z1, . . . , zn). (16)

Definition 2 (Normalized counting measure). The normal-
ized counting measure associated with a set B on A is

⌫B(A) =
|B \ A|

|B| (17)

Definition 3 (Normalized surface area measure on Sd). The
normalized surface area measure on the hyperspehere Sd ⇢
Rd, of a subset S0 ⇢ Sd is

�d(S
0) =

R
S0 dSR
Sd

dS
= A�1

d

Z

S0
dS (18)

where Ad is defined as in Eq. (1), and
R

dS denotes the
surface integral on Sd.

Definition 4 (Weak⇤ convergence of measures [32]). A
sequence of Borel measures {µn}1n=1 in Rd converges
weak⇤ to a Borel measure µ, if for all continuous functions
f : Rd ! R,

lim
n!1

Z
f(x)dµn(x) =

Z
f(x)dµ(x) (19)

Proposition 5 (Minimizer of LUnif ). For each n > 0, the n
point minimizer of LUnif is

z?
1, . . . , z

?
n = arg min

z1,...,zn2Sd

LUnif . (20)

Then ⌫{z?
1 ,...,z?

n} converge weak⇤ to �d as n ! 1.

6Although any constant value would achieve the same result, we set the
similarity to �1 in this case to remove the contribution to the final loss.

Interpretation of Proposition 3–5. Proposition 3 states
an alternative formulation of LLSP, under the hyperspheri-
cal assumption. We recognize this formulation as the loss
function in Laplacian Eigenmaps [2], which is known to
produce local similarity-preserving embeddings from graph
data. When unconstrained, this loss has a trivial solution
where the embeddings for all representations are equal. This
is avoided in our case since LnoHub (Eq. (10)) can be inter-
preted as the Lagrangian of minimizing LLSP subject to a
specified level of entropy, by Proposition 4.

Finally, Proposition 5 states that the normalized counting
measure associated with the set of points that minimize
LUnif , converges to the normalized surface area measure
on the sphere. Since uSd

is the density function associated
with this measure, the points that minimize LUnif will tend
to be uniform on the sphere. Consequently, minimizing
LLSP also minimizes hubness, by Propositions 1 and 2.

6. Experiments
6.1. Setup
Implementation details. Our implementation is in Py-
Torch [20]. We optimize noHub and noHub-S for T = 150
iterations, using the Adam optimizer [15] with learning rate
⌘ = 0.1. The other hyperparameters were chosen based
on validation performance on the respective datasets7. We
analyze the effect of ↵ in Sec. 6.2. Analyses of the  and "
hyperparameters are provided in the supplementary.
Initialization. Since noHub and noHub-S reduce the em-
bedding dimensionality (d = 400), we initialize embeddings
with Principal Component Analysis (PCA) [13], instead of a
naïve, random initialization. The PCA initialization is com-
putationally efficient, and approximately preserves global
structure. It also resulted in faster convergence and better
performance, compared to random initialization.
Base feature extractors. We use the standard networks
ResNet-18 [11] and Wide-Res28-10 [37] as the base fea-
ture extractors with pretrained weights from [28] and [18],
respectively.
Datasets. Following common practice, we evaluate FSL per-
formance on the mini-ImageNet (mini) [29], tiered-ImageNet
(tiered) [23], and CUB-200 (CUB) [34] datasets.
Classifiers. We evaluate the baseline embeddings and
our proposed methods using both established and recent
FSL classifiers: SimpleShot [33], LaplacianShot [40],
↵�TIM [28], Oblique Manifold (OM) [21], iLPC [16], and
SIAMESE [39].
Baseline Embeddings. We compare our proposed method
with a wide range of techniques for embedding the base fea-
tures: None (No embedding of base features), L2 [33], Cen-
tered L2 [33], ZN [7], ReRep [5], EASE [39], and TCPR [35].

7Hyperparameter configurations for all experiments are included in the
supplementary.
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mini tiered CUB
Embedding Feature Extractor 1-shot" 5-shot" 1-shot" 5-shot" 1-shot" 5-shot"

None ResNet-18 20.0 (0.0)⇤ 20.0 (0.0)⇤ 20.0 (0.0)⇤ 20.0 (0.0)⇤ 20.0 (0.0)⇤ 20.0 (0.0)⇤

L2 (ARXIV’19 [33]) ResNet-18 73.77 (0.24) 83.14 (0.14) 80.46 (0.26) 87.04 (0.16) 83.1 (0.23) 89.48 (0.12)
CL2 (ARXIV’19 [33]) ResNet-18 75.56 (0.26) 84.04 (0.15) 82.1 (0.26) 87.9 (0.16) 84.35 (0.24) 90.14 (0.12)

ZN (ICCV’21 [7]) ResNet-18 20.0 (0.0)⇤ 20.0 (0.0)⇤ 20.0 (0.0)⇤ 20.0 (0.0)⇤ 20.0 (0.0)⇤ 20.0 (0.0)⇤

ReRep (ICML’21 [5]) ResNet-18 20.0 (0.0)⇤ 20.0 (0.0)⇤ 20.0 (0.0)⇤ 20.0 (0.0)⇤ 20.0 (0.0)⇤ 20.0 (0.0)⇤

EASE (CVPR’22 [39]) ResNet-18 76.05 (0.27) 84.61 (0.15) 82.57 (0.27) 88.33 (0.16) 85.24 (0.24) 90.42 (0.12)
TCPR (NEURIPS’22 [35]) ResNet-18 75.99 (0.26) 84.39 (0.15) 82.65 (0.26) 88.26 (0.16) 85.34 (0.23) 90.5 (0.11)

noHub (OURS) ResNet-18 76.65 (0.28) 84.05 (0.16) 82.94 (0.27) 87.87 (0.17) 85.88 (0.24) 90.34 (0.12)
noHub-S (OURS) ResNet-18 76.68 (0.28) 84.67 (0.15) 83.09 (0.27) 88.43 (0.16) 85.81 (0.24) 90.52 (0.12)

None WideRes28-10 45.69 (0.31) 58.82 (0.31) 75.29 (0.28) 82.56 (0.22) 61.36 (0.55) 82.22 (0.37)
L2 (ARXIV’19 [33]) WideRes28-10 80.2 (0.23) 87.11 (0.13) 80.89 (0.26) 87.34 (0.15) 91.98 (0.18) 94.15 (0.1)

CL2 (ARXIV’19 [33]) WideRes28-10 75.23 (0.27) 83.99 (0.16) 79.59 (0.27) 86.71 (0.16) 92.17 (0.18) 94.48 (0.09)
ZN (ICCV’21 [7]) WideRes28-10 20.0 (0.0)⇤ 20.0 (0.0)⇤ 20.0 (0.0)⇤ 20.0 (0.0)⇤ 20.0 (0.0)⇤ 20.0 (0.0)⇤

ReRep (ICML’21 [5]) WideRes28-10 36.69 (0.28) 36.41 (0.3) 67.41 (0.29) 76.49 (0.24) 57.62 (0.56) 60.36 (0.6)
EASE (CVPR’22 [39]) WideRes28-10 81.19 (0.25) 87.82 (0.13) 82.04 (0.26) 88.06 (0.16) 91.99 (0.19) 94.36 (0.09)

TCPR (NEURIPS’22 [35]) WideRes28-10 81.27 (0.24) 87.8 (0.13) 81.89 (0.26) 87.95 (0.16) 91.91 (0.18) 94.25 (0.1)
noHub (OURS) WideRes28-10 81.97 (0.25) 87.78 (0.14) 82.8 (0.27) 87.99 (0.17) 92.53 (0.18) 94.56 (0.09)

noHub-S (OURS) WideRes28-10 82.0 (0.26) 88.03 (0.13) 82.85 (0.27) 88.31 (0.16) 92.63 (0.18) 94.69 (0.09)

Table 1. Accuracies (Confidence interval) with the SIAMESE [39] classifier for different embedding approaches. Best and second best
performance are denoted in bold and underlined, respectively. ⇤The SIAMESE classifier is sensitive to the norm of the embedding, thus
leading to detrimental performance for some of the embedding approaches.

Evaluation protocol. We follow the standard evaluation
protocol in FSL and calculate the accuracy for 1-shot and
5-shot classification with 15 images per class in the query
set. We evaluate on 10000 episodes, as is standard prac-
tice in FSL. Additionally, we evaluate the hubness of the
representations after embedding using two common hub-
ness metrics, namely the skewness (Sk) of the k-occurrence
distribution [22] and the hub occurrence (HO) [8], which
measures the percentage of hubs in the nearest neighbour
lists of all points.

6.2. Results

Comparison to the state-of-the-art. To illustrate the effec-
tiveness of noHub and noHub-S as an embedding approach
for FSL, we consider the current state-of-the-art FSL method,
which leverages the EASE embedding and obtains query
predictions with SIAMESE [39]. We replace EASE with
our proposed embedding approaches noHub and noHub-S,
as well as other baseline embeddings, and evaluate perfor-
mance on all datasets in the 1 and 5-shot setting. As shown
in Table 1, noHub and noHub-S outperform all baseline
approaches in both settings across all datasets, illustrating
noHub’s and noHub-S’ ability to provide useful FSL em-
beddings, and updating the state-of-the-art in transductive
FSL.
Aggregated FSL performance. To further evaluate the
general applicability of noHub and noHub-S as embedding
approaches, we perform extensive experiments for all classi-
fiers and all baseline embeddings on all datasets. Tables 2a
and 2b provide the results averaged over classifiers8. To

8The detailed results for all classifiers are provided in the supplementary.

clearly present the results, we aggregate the accuracy and a
ranking score for each embedding method across all classi-
fiers. The ranking score is calculated by performing a paired
Student’s t-test between all pairwise embedding methods for
each classifier. We then average the ranking scores across all
classifiers. A high ranking score then indicates that a method
often significantly outperforms the competing embedding
methods. We set the significance level to 5%. noHub and
noHub-S consistently outperform previous embedding ap-
proaches – sometimes by a large margin. Overall, we further
observe that noHub-S outperforms noHub in most settings
and is particular beneficial in the 1-shot setting, which is
more challenging, given that fewer samples are likely to
generate noisy embeddings.

Hubness metrics. To further validate noHub’s and noHub-
S’ ability to reduce hubness, we follow the same procedure
of aggregating results for the hubness metrics and average
over classifiers. Compared to the current state-of-the-art
embedding approaches, Table 3 illustrates that noHub and
noHub-S consistently result in embeddings with lower hub-
ness.

Visualization of similarity matrices. As discussed in
Sec. 4, completely eliminating hubness by distributing points
uniformly on the hypersphere is not sufficient to obtain good
FSL performance. Instead, representations need to also cap-
ture the inherent class structure of the data. To further eval-
uate the embedding approaches, we therefore compute the
pairwise inner products for the embeddings of a random
5-shot episode on tiered-ImageNet with ResNet-18 features
in Figure 3. It can be observed that the block structure is
considerably more distinct for noHub and noHub-S, with
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mini tiered CUB
Embedding Acc" Score" Acc" Score" Acc" Score"

R
es

N
et

18

None 55.74 0.17 62.61 0.0 63.78 0.17
L2 (ARXIV’19 [33]) 68.22 2.33 75.94 2.17 78.09 2.33

CL2 (ARXIV’19 [33]) 69.56 2.83 76.97 3.0 78.26 2.83
ZN (ICCV’21 [7]) 60.0 2.33 66.21 2.5 67.43 2.67

ReRep (ICML’21 [5]) 60.76 4.0 67.07 3.67 69.6 4.17
EASE (CVPR’22 [39]) 69.63 3.67 77.05 4.0 78.84 3.67

TCPR (NEURIPS’22 [35]) 69.97 4.0 77.18 3.33 78.83 4.0
noHub (OURS) 72.58 6.83 79.77 6.83 81.91 6.83

noHub-S (OURS) 73.64 7.67 80.6 7.67 83.1 7.67

W
id

eR
es

28
-1

0

None 63.59 1.0 71.29 0.83 79.23 1.17
L2 (ARXIV’19 [33]) 74.3 3.0 76.19 2.67 88.61 3.5

CL2 (ARXIV’19 [33]) 71.32 1.33 75.17 2.0 88.52 3.33
ZN (ICCV’21 [7]) 64.27 2.5 65.64 2.5 76.0 1.5

ReRep (ICML’21 [5]) 65.51 3.0 71.83 3.17 83.1 3.5
EASE (CVPR’22 [39]) 74.95 4.33 76.59 3.67 88.51 3.5

TCPR (NEURIPS’22 [35]) 75.64 4.83 76.51 4.0 88.22 2.5
noHub (OURS) 78.22 7.0 79.76 7.0 90.25 5.67

noHub-S (OURS) 79.24 7.67 80.46 7.67 90.82 7.67

(a) 1-shot

mini tiered CUB
Acc" Score" Acc" Score" Acc" Score"

R
es

N
et

18

None 69.83 0.83 74.38 0.67 76.01 1.17
L2 (ARXIV’19 [33]) 81.58 2.33 86.05 1.83 88.43 2.83

CL2 (ARXIV’19 [33]) 81.95 2.67 86.43 3.0 88.49 2.5
ZN (ICCV’21 [7]) 71.49 4.0 75.32 3.83 76.92 3.5

ReRep (ICML’21 [5]) 70.25 2.5 74.52 1.83 76.43 2.5
EASE (CVPR’22 [39]) 81.84 3.5 86.4 3.17 88.57 3.5

TCPR (NEURIPS’22 [35]) 82.1 4.0 86.54 3.83 88.79 4.33
noHub (OURS) 82.58 5.5 86.9 4.5 89.13 6.0

noHub-S (OURS) 82.61 6.5 87.13 6.67 88.93 5.33

W
id

eR
es

28
-1

0

None 78.77 1.5 84.1 1.67 89.49 1.67
L2 (ARXIV’19 [33]) 85.65 4.0 86.29 3.83 93.47 3.67

CL2 (ARXIV’19 [33]) 83.14 1.33 85.47 1.5 93.49 4.0
ZN (ICCV’21 [7]) 74.61 4.33 75.34 5.0 81.02 3.17

ReRep (ICML’21 [5]) 73.86 1.83 81.51 1.67 87.2 2.0
EASE (CVPR’22 [39]) 85.51 3.5 86.29 3.33 93.34 3.5

TCPR (NEURIPS’22 [35]) 86.03 6.0 86.37 4.0 93.3 3.0
noHub (OURS) 86.44 5.67 87.07 5.5 93.65 4.17

noHub-S (OURS) 85.95 5.5 87.05 5.83 93.76 5.0

(b) 5-shot

Table 2. Aggregated FSL performance for all embedding ap-
proaches on the mini-ImageNet, tiered-ImageNet, and CUB-200
datasets. Results are averaged over FSL classifiers. Best and second
best performance are denoted in bold and underlined, respectively.

noHub-S slightly improving upon noHub. These results
indicate that (i) samples are more uniform, indicating the
reduced hubness; and (ii) classes are better separated, due to
the local similarity preservation.

Tradeoff between uniformity and similarity preserva-
tion. We analyze the effect of ↵ on the tradeoff between
LSP and Uniformity in the loss function in Eq. (10), on
tiered-ImageNet with ResNet-18 features in the 5-shot set-
ting and with the SIAMESE [39] classifier. The results are
visualized in Figure 4. We notice a sharp increase in perfor-
mance when we have a high emphasis on uniformity. This

mini tiered CUB
Sk# HO# Sk# HO# Sk# HO#

R
es

N
et

18

None 1.349 0.407 1.211 0.408 0.887 0.341
L2 (ARXIV’19 [33]) 0.937 0.301 0.812 0.265 0.691 0.236

CL2 (ARXIV’19 [33]) 0.667 0.233 0.679 0.249 0.549 0.201
ZN (ICCV’21 [7]) 0.68 0.231 0.698 0.264 0.564 0.216

ReRep (ICML’21 [5]) 3.655 0.548 3.604 0.549 3.565 0.513
EASE (CVPR’22 [39]) 0.521 0.16 0.479 0.158 0.466 0.153

TCPR (NEURIPS’22 [35]) 0.651 0.228 0.65 0.25 0.532 0.204
noHub (OURS) 0.315 0.095 0.303 0.102 0.32 0.112

noHub-S (OURS) 0.276 0.13 0.283 0.127 0.296 0.162

W
id

eR
es

28
-1

0

None 1.6 0.459 1.81 0.494 1.073 0.369
L2 (ARXIV’19 [33]) 0.781 0.296 0.737 0.275 0.475 0.228

CL2 (ARXIV’19 [33]) 0.981 0.288 0.817 0.307 0.52 0.267
ZN (ICCV’21 [7]) 0.73 0.287 0.769 0.302 0.517 0.263

ReRep (ICML’21 [5]) 3.56 0.704 3.55 0.777 3.026 0.47
EASE (CVPR’22 [39]) 0.47 0.177 0.477 0.175 0.437 0.213

TCPR (NEURIPS’22 [35]) 0.589 0.236 0.685 0.264 0.477 0.231
noHub (OURS) 0.29 0.111 0.301 0.111 0.188 0.108

noHub-S (OURS) 0.258 0.148 0.274 0.135 0.162 0.13

(a) 1-shot

mini tiered CUB
Sk# HO# Sk# HO# Sk# HO#

R
es

N
et

18

None 1.436 0.422 1.339 0.432 0.987 0.364
L2 (ARXIV’19 [33]) 1.04 0.318 0.914 0.287 0.812 0.263

CL2 (ARXIV’19 [33]) 0.786 0.264 0.821 0.28 0.698 0.236
ZN (ICCV’21 [7]) 0.806 0.264 0.839 0.296 0.716 0.25

ReRep (ICML’21 [5]) 1.631 0.863 1.721 0.872 1.432 0.869
EASE (CVPR’22 [39]) 0.624 0.186 0.598 0.183 0.607 0.186

TCPR (NEURIPS’22 [35]) 0.78 0.259 0.796 0.283 0.687 0.235
noHub (OURS) 0.286 0.096 0.289 0.104 0.329 0.12

noHub-S (OURS) 0.25 0.074 0.213 0.078 0.433 0.097

W
id

eR
es

28
-1

0

None 1.709 0.473 1.937 0.51 1.16 0.395
L2 (ARXIV’19 [33]) 0.887 0.322 0.86 0.305 0.632 0.266

CL2 (ARXIV’19 [33]) 1.12 0.318 0.956 0.337 0.701 0.31
ZN (ICCV’21 [7]) 0.858 0.32 0.912 0.335 0.699 0.305

ReRep (ICML’21 [5]) 1.597 0.819 1.617 0.846 1.299 0.549
EASE (CVPR’22 [39]) 0.579 0.199 0.585 0.193 0.572 0.241

TCPR (NEURIPS’22 [35]) 0.717 0.27 0.815 0.294 0.634 0.264
noHub (OURS) 0.294 0.115 0.298 0.115 0.195 0.1

noHub-S (OURS) 0.494 0.103 0.407 0.12 0.421 0.127

(b) 5-shot

Table 3. Aggregated hubness metrics for all embedding approaches
on the Mini-ImageNet, Tiered-ImageNet and CUB-200 dataset.
Results are averaged over FSL classifiers. Best and second best
performance are denoted in bold and underlined, respectively.

demonstrates the impact of hubness on accuracy in FSL
performance. As we keep increasing the emphasis on LSP,
however, after a certain point we notice a sharp drop off
in performance. This is due to the fact that the classifier
does not take into account the uniformity constraint on the
features, resulting in a large number of misclassifications.
In general, we observe that noHub-S is slightly more robust
compared to noHub.

Increasing number of classes. We analyze the behavior
of noHub and noHub-S for an increasing number of classes
(ways) on the tiered-ImageNet dataset with SIAMESE [39]
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Figure 3. Inner product matrices between features for a random episode for all embedding approaches.
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Figure 4. Accuracies for different values of the weighting parame-
ter, ↵, which quantifies the tradeoff between LLSP and LUnif .

Figure 5. Accuracies for an increasing number of classes (ways)
for noHub and noHub-S.

as classifier. While classification accuracy generally de-
creases with an increasing number of classes, which is ex-
pected, we observe from Figure 5 that noHub-S has a slower
decay and is able to leverage the label guidance to obtain
better performance for a larger number of classes.
Effect of label information in LLSP and LUnif . To vali-
date the effectiveness of using label guidance in noHub-S,
we study the result of including label information in LLSP

and LUnif (Eqs. (11)–(14)). We note that the default set-
ting of noHub is that none of the two losses include la-
bel information. Ablation experiments are performed on
tiered-ImageNet with the ResNet-18 feature extractor and
the SimpleShot and SIAMESE classifier [39]. In Table 4,
we generally see improvements of noHub-S when both the
loss terms are label-informed, indicating the usefulness of
label guidance.

We further observe that incorporating label information
in LUnif tends to have a larger contribution than doing the
same for LLSP. This aligns with our observations in Figure 4,

Label-informed SimpleShot [33] SIAMESE [39]
LLSP LUnif 1-shot" 5-shot" 1-shot" 5-shot"

noHub – – 76.72 (0.23) 86.31 (0.16) 82.94 (0.27) 87.87 (0.17)
noHub-S 3 – 78.25 (0.24) 85.46 (0.16) 82.56 (0.28) 88.07 (0.17)
noHub-S – 3 78.33 (0.23) 86.15 (0.15) 82.81 (0.27) 88.43 (0.16)
noHub-S 3 3 78.35 (0.23) 86.22 (0.15) 83.09 (0.27) 88.43 (0.16)

Table 4. Ablation study with the label-informed losses in noHub-S.
Check marks (3) indicate that the loss uses information from the
support labels.

where a small ↵ yielded the best performance.

7. Conclusion
In this paper we have addressed the hubness problem

in FSL. We have shown that hubness is eliminated by em-
bedding representations uniformly on the hypersphere. The
hyperspherical uniform distribution has zero mean and zero
density gradient at all points along all directions tangent to
the hypersphere – both of which are identified as causes of
hubness in previous work [9, 22]. Based on our theoreti-
cal findings about hubness and hyperspheres, we proposed
two new methods to embed representations on the hyper-
sphere for FSL. The proposed noHub and noHub-S leverage
a decomposition of the KL divergence between similarity
distributions, and optimize a tradeoff between LSP and uni-
formity on the hypersphere – thus reducing hubness while
maintaining the class structure in the representation space.
We have provided theoretical analyses and interpretations
of the LSP and uniformity losses, proving that they opti-
mize LSP and uniformity, respectively. We comprehensively
evaluate the proposed methods on several datasets, features
extractors, and classifiers, and compare to a number of recent
state-of-the-art baselines. Our results illustrate the effective-
ness of our proposed methods and show that we achieve
state-of-the-art performance in transductive FSL.
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1. Introduction
Here we provide proofs for our theoretical results on the

hyperspherical uniform and hubness; the decomposition of
the KL divergence; and the minima of our methods’ loss
functions. We also give additional details on the implemen-
tation and hyperparameters for noHub and noHub-S– and
include the complete tables of 1-shot and 5-shot results for
all classifiers, datasets and feature extractors. Finally, we
briefly reflect on potential negative societal impacts of our
work.

2. Hyperspherical Uniform Eliminates Hubness
Definition 1 (Uniform PDF on the hypersphere.). The uni-
form probability density function (PDF) on the unit hyper-
sphere Sd = {x 2 Rd | ||x|| = 1} ⇢ Rd is

uSd
(x) = A�1

d �(||x|| � 1) (1)

where Ad = 2⇡d/2

�(d/2) is the surface area of Sd, and �(·) is the
Dirac delta distribution.

Lemma 1 (Trisection of hypersphere). The trisection of the
hypersphere along coordinate i is given by the three-tuple of
disjoint sets (Si,+

d , Si,�
d , Si,0

d ) where

Si,+
d = {x = [x1, . . . , xd]> 2 Sd | xi > 0} (2)

Si,�
d = {x = [x1, . . . , xd]> 2 Sd | xi < 0} (3)

Si,0
d = {x = [x1, . . . , xd]> 2 Sd | xi = 0} (4)

and

Si,+
d [ Si,�

d [ Si,0
d = Sd (5)

*Equal contributions.
†UiT Machine Learning group (machine-learning.uit.no) and

Visual Intelligence Centre (visual-intelligence.no).
‡Norwegian Computing Center.
§Department of Computer Science, University of Copenhagen.
¶Pioneer Centre for AI (aicentre.dk).

Then we have

Si,+
d = �Si,�

d = {�x | x 2 Si,�
d } (6)

Proof. Let x 2 Si,+
d , then

||(�x)|| = ||x|| = 1, (7)

and

�(xi) < 0. (8)

Hence x 2 �Si,�
d , and Si,+

d ✓ �Si,�
d .

Similarly, let �x 2 �Si,�
d , then

|| � (�x)|| = ||x|| = 1, (9)

and

�(�xi) = xi > 0. (10)

Hence x 2 Si,+
d , and �Si,�

d ✓ Si,+
d .

It then follows that Si,+
d = �Si,�

d .

Proposition 1. Suppose X has PDF uSd
(x). Then

E(X) = 0 (11)

Proof. The expectation E(X) is given by

E(X) =

Z

Rd

xuSd
(x)dx (12)

Since uSd
is non-zero only on the hypersphere Sd, the inte-

gral can be rewritten as a surface integral over Sd

E(X) =

Z

Sd

xA�1
d dS. (13)

1



Decomposing the integral over the trisection of Sd along
coordinate i gives

Z

Sd

xA�1
d dS = (14)

A�1
d

 Z

Si,+
d

xdS +

Z

Si,�
d

xdS +

Z

Si,0
d

xdS

!
. (15)

By Lemma 1 we have

Si,+
d = �Si,�

d )
Z

Si,+
d

xdS = �
Z

Si,�
d

xdS. (16)

Furthermore, since the set Si,0
d has zero width along coordi-

nate i,
R

Si,0
d

xdS = 0. Hence

E(X) = (17)

A�1
d

 Z

Si,+
d

xdS �
Z

Si,+
d

xdS +

Z

Si,0
d

xdS

!
= 0 (18)

Proposition 2. Let ⇧p be the tangent plane of Sd at an
arbitrary point p 2 Sd. Then, for any direction ✓⇤ in ⇧p the
directional derivative of uSd

along ✓⇤ is

r✓⇤uSd
= 0 (19)

Proof. uSd
(x) can be written in polar coordinates as

uSd
(x(r,✓)) = uPolar

Sd
(r,✓) = A�1

d �(r � 1) (20)

The gradient of uPolar
Sd

(r,✓) is then

r(r,✓)u
Polar
Sd

(r,✓) =

2
66664

@
@r uPolar

Sd
(r,✓)

0
...
0

3
77775

(21)

For an arbitrary point p 2 Sd, an arbitrary unit vector
(direction), ✓⇤, in the tangent plane ⇧p is given by

✓⇤ =

2
6664

0
✓⇤1
...

✓⇤d�1

3
7775 (22)

The directional derivative of uSd
(x) along ✓⇤ is then

r✓⇤uSd
(x) =

2
66664

@
@r uPolar

Sd
(r,✓)

0
...
0

3
77775

>

·

2
6664

0
✓⇤1
...

✓⇤d�1

3
7775 = 0 (23)

3. Method
Computing i. Following [5], we compute i using a
binary search such that

| log2(P ) � H(Pi)|  0.1 · log2(P ) (24)

where P is a hyperparameter, and H(Pi) is the Shannon
entropy of similarities for representation i

H(Pi) =
nX

j=1

pi|j log2(pi|j). (25)

Decomposition of KL(P ||Q). Recall that

pij =
pi|j + pj|i

2
, pi|j =

exp(ix
>
i xj)P

l,m

exp(ix>
l xm)

(26)

and

qij =
exp(z>

i zj)P
l,m

exp(z>
l zm)

. (27)

Since pij is constant w.r.t. qij , we have

arg min
z1,...,zn2Sd

KL(P ||Q) = arg min
z1,...,zn2Sd

X

i,j

pij log
pij

qij
(28)

= arg min
z1,...,zn2Sd

X

i,j

pij log pij

| {z }
constant

�
X

i,j

pij log qij (29)

= arg min
z1,...,zn2Sd

�
X

i,j

pij log qij

| {z }
=:L̃

(30)

Minimizing KL(P ||Q) over z1, . . . , zn 2 Sd is therefore
equivalent to minimizing L̃.

Decomposing L̃ gives

L̃ = �
X

i,j

pijz>
i zj+ (31)

X

i,j

0
@pij log

X

l,m

exp(z>
l zm)

1
A (32)

= �
X

i,j

pijz>
i zj (33)

+

0
@log

X

l,m

exp(z>
l zm)

1
A ·

0
@X

i,j

pij

1
A

| {z }
=1

(34)

= �
X

i,j

pijz>
i zj

| {z }
=: LLSP

+ log
X

l,m

exp(z>
l zm)

| {z }
=: LUnif

(35)



Thus, we have shown that

arg min
z1,...,zn2Sd

KL(P ||Q) = arg min
z1,...,zn2Sd

LLSP + LUnif . (36)

4. Theoretical Results

Proposition 3. Let Wij = 1
2pij , where

P
i,j

pij = 1, and let

z1, . . . , zn 2 Sd. Then we have

LLSP =
X

i,j

kzi � zjk2Wij � . (37)

Proof. We have

LLSP = �
X

i,j

pijz
>
i zj (38)

= �2
X

i,j

1

2
pijz

>
i zj +

X

i,j

2
1

2
pij �  (39)

(
X

i,j

pij = 1)

= �2
X

i,j

z>
i zjWij +

X

i,j

(kzik + kzjk)Wij � 

(40)

(kzik = kzjk = 1)

=
X

i,j

(kzik � 2z>
i zj + kzjk)Wij �  (41)

=
X

i,j

|zi � zjk2Wij � . (42)

Proposition 4 (Minimizing LUnif maximizes entropy). Let
H2(·) be the 2-order Rényi entropy, estimated with a kernel
density estimator using a Gaussian kernel. Then

arg min
z1,...,zn2Sd

LUnif = arg max
z1,...,zn2Sd

H2(z1, . . . , zn). (43)

Proof. Using a Gaussian kernel, the 2-order Rényi entropy
can be estimated as [4, Eq. (2.13)]

H2(z1, . . . , zn) = � log

0
@ 1

n2

X

l,m

exp(�1

2
kzl � zmk2)

1
A

(44)

Thus, we have

arg max
z1,...,zn2Sd

H2(z1, . . . , zn) (45)

= arg max
z1,...,zn2Sd

� log

 
1

n2

X

l,m

exp(�1

2
kzl � zmk2)

!

(46)

= arg min
z1,...,zn2Sd

log

 X

l,m

exp(�1

2
kzl � zmk2)

!

(47)

= arg min
z1,...,zn2Sd

log

 X

l,m

exp(�1

2
(kzlk2 (48)

� 2z>
l zm + kzmk2)

!
(49)

= arg min
z1,...,zn2Sd

log

 X

l,m

exp(�(1 � z>
l zm))

!
(50)

(kzlk = kzmk = 1)

= arg min
z1,...,zn2Sd

log

 
exp(�)

X

l,m

exp(z>
l zm)

!

(51)

= arg min
z1,...,zn2Sd

log
X

l,m

exp(z>
l zm) (52)

= arg min
z1,...,zn2Sd

LUnif . (53)

Definition 2 (Normalized counting measure). The normal-
ized counting measure associated with a set B on A is

⌫B(A) =
|B \ A|

|B| (54)

Definition 3 (Normalized surface area measure on Sd). The
normalized surface area measure on the hyperspehere Sd ⇢
Rd, of a subset S0 ⇢ Sd is

�d(S
0) =

R
S0 dSR
Sd

dS
= A�1

d

Z

S0
dS (55)

where Ad is defined as in Eq. (1), and
R

dS denotes the
surface integral on Sd.

Definition 4 (Weak⇤ convergence of measures [8]). A se-
quence of Borel measures {µn}1n=1 in Rd converges weak⇤

to a Borel measure µ, if for all continuous functions f :
Rd ! R,

lim
n!1

Z
f(x)dµn(x) =

Z
f(x)dµ(x) (56)



mini tiered CUB
Arch. Param. Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ResNet18

P
noHub 45 45 45 45 45 45

noHub-S 45 45 40 45 45 45

T
noHub 50 50 50 50 50 50

noHub-S 150 150 150 150 150 150

↵
noHub 0.2 0.2 0.2 0.2 0.2 0.2

noHub-S 0.3 0.2 0.2 0.2 0.3 0.2

⌘
noHub 0.1 0.1 0.1 0.1 0.1 0.1

noHub-S 0.1 0.1 0.1 0.1 0.1 0.1


noHub 0.5 0.5 0.5 0.5 0.5 0.5

noHub-S 0.5 0.5 0.5 0.5 0.5 0.5

"
noHub – – – – – –

noHub-S 8 8 5 8 8 8

d
noHub 400 400 400 400 400 400

noHub-S 400 400 400 400 400 400

WideRes28-10

P
noHub 45 45 45 45 45 45

noHub-S 45 45 40 35 45 30

T
noHub 50 50 50 50 50 50

noHub-S 150 150 150 150 150 150

↵
noHub 0.2 0.2 0.2 0.2 0.2 0.2

noHub-S 0.3 0.2 0.2 0.1 0.3 0.1

⌘
noHub 0.1 0.1 0.1 0.1 0.1 0.1

noHub-S 0.1 0.1 0.1 0.1 0.1 0.1


noHub 0.5 0.5 0.5 0.5 0.5 0.5

noHub-S 0.5 0.5 0.5 0.2 0.5 0.2

"
noHub – – – – – –

noHub-S 8 8 5 12 8 8

d
noHub 400 400 400 400 400 400

noHub-S 400 400 400 400 400 400

Table 1. Hyperparameter values used in our experiments.

5.2. Results

FSL performance. The complete lists of accuracies and
hubness metrics for all embeddings, classifiers, and feature
extractors, are given in Tables 2, 3, 4, and 5. The exhaustive
results in these tables form the basis of Table 1, Table 2
and Table 3 in the main text. The two proposed approaches
consistently outperform prior embeddings across several
classifiers, feature extractors and datasets.

Effect of the  and " hyperparameters. The plots in
Figure 1 show accuracy on tiered 5-shot with SIAMESE for
increasing  and ". Neither method is particularly sensitive
to the choice of  and ", and noHub-S is less sensitive to
variations in , than noHub. Choosing  2 [0.5, 1] and
" 2 [3, 20] will result in high classification accuracy

6. Potential Negative Societal Impacts
As is the case with most methodological research in ma-

chine learning, the methods developed in this work could be
used in downstream applications with potential negative so-
cietal impacts. Real world machine learning-based systems
that interact with humans, or the environment in general,
should therefore be properly tested and equipped with ade-
quate safety measures.

Since our work relies on a large number of labeled ex-
amples from the base classes, un-discovered biases from
the base dataset could be transferred to the trained models.
Furthermore, the small number of examples in the inference
stage could make the query predictions biased towards the
included support examples, and not accurately reflect the
diversity of the novel classes.



Proposition 5 (Minimizer of LUnif ). For each n > 0, the n
point minimizer of LUnif is

z?
1, . . . , z

?
n = arg min

z1,...,zn2Sd

LUnif . (57)

Then ⌫{z?
1 ,...,z?

n} converge weak⇤ to �d as n ! 1.

Proof. We have

arg min
z1,...,zn2Sd

LUnif (58)

= arg min
z1,...,zn2Sd

log
X

l,m

exp(z>
l zm) (59)

= arg min
z1,...,zn2Sd

X

l,m

exp(z>
l zm) (60)

(monotonicity of logarithm)

= arg min
z1,...,zn2Sd

X

1l<mn

exp(z>
l zm) (61)

(symmetry of inner product)

= arg min
z1,...,zn2Sd

X

1l<mn

exp(�||zl � zm||22)| {z }
=: G(zl,zm)

(62)

(multiplication by positive constant)

= arg min
z1,...,zn2Sd

X

1l<mn

G(zl, zm) (63)

The result then follows directly from [8, Proposition 2].

5. Experiments
5.1. Implementation details

This section covers the additional implementation details
not provided in the main paper. These include the initial-
ization of the embeddings in Algorithm 1, hyperparameters,
additional transformations wherever required, the architec-
tures used, and a note on accessing the code, datasets, and
dataset splits.
Initialization and normalization. Instead of a random
initialization of our embeddings Z0, we follow a PCA based
initialization, as in [5]. The weights are computed using
the cached features from the base classes, the support and
query features are then transformed using these weights.
This procedure is also fast as we do not need to compute the
PCA weights on every episode. To ensure that the resulting
features lie on the hypersphere after each gradient update in
noHub and noHub-S, we re-normalize the embeddings using
L2 normalization.
Hyperparameters. noHub and noHub-S have the following
hyperparameters.

• P – perplexity for computing the i.
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Figure 1. Accuracy for different values for  and ". Neither noHub
nor noHub-S are particularly sensitive the the choice of these pa-
rameters.

• T – number of iterations.

• ↵ – tradeoff parameter in the loss (LnoHub = ↵LLSP +
(1 � ↵)LUnif ).

• ⌘ – learning rate for the Adam optimizer.

•  – concentration parameter for the embeddings.

• " – exaggeration of similarities between supports from
different classes.

• d – dimensionality of embeddings.

All hyperparameter values used in in noHub and noHub-S
are given in Table 1
Code. The code for our experiments is available at: https:
//github.com/uitml/noHub
Data splits. Details to access the datasets used with the
requisite splits (both are consistent with [6]) are available in
the code repository.
Base feature extractors.

• Resnet-18: As in [1, 6], we use the weights from [6].
The model is trained using a cross-entropy loss on the
base classes.

• WideRes28-10: Following [3, 9], we use the weights
from [3]. The model is pre-trained using a combination
of cross-entropy and rotation prediction [2], and then
fine-tuned with Manifold Mixup [7].



mini tiered CUB
Acc Skew Hub. Occ. Acc Skew Hub. Occ. Acc Skew Hub. Occ.

Arch. Clf. Emb.

R
es

N
et

18

IL
PC

None 64.07 (0.28) 1.411 (0.01) 0.408 (0.001) 75.5 (0.28) 1.213 (0.009) 0.41 (0.001) 76.06 (0.27) 0.886 (0.006) 0.34 (0.001)
L2 69.28 (0.27) 0.966 (0.007) 0.298 (0.001) 77.84 (0.28) 0.811 (0.007) 0.267 (0.001) 79.91 (0.26) 0.688 (0.006) 0.236 (0.001)
CL2 71.48 (0.27) 0.661 (0.005) 0.229 (0.001) 79.8 (0.27) 0.679 (0.006) 0.249 (0.001) 80.97 (0.26) 0.553 (0.005) 0.203 (0.001)
ZN 71.48 (0.27) 0.677 (0.006) 0.227 (0.001) 79.95 (0.27) 0.694 (0.006) 0.263 (0.001) 81.49 (0.25) 0.57 (0.005) 0.217 (0.001)
ReRep 65.49 (0.28) 3.688 (0.007) 0.559 (0.001) 76.75 (0.28) 3.61 (0.01) 0.55 (0.001) 77.73 (0.26) 3.563 (0.007) 0.512 (0.001)
EASE 71.79 (0.28) 0.515 (0.005) 0.157 (0.001) 80.2 (0.27) 0.48 (0.005) 0.158 (0.001) 81.88 (0.25) 0.463 (0.004) 0.153 (0.001)
TCPR 71.77 (0.28) 0.647 (0.005) 0.223 (0.001) 80.01 (0.28) 0.652 (0.006) 0.249 (0.001) 81.75 (0.25) 0.534 (0.004) 0.203 (0.001)
noHub 73.18 (0.28) 0.308 (0.005) 0.094 (0.001) 80.76 (0.28) 0.296 (0.004) 0.101 (0.001) 82.74 (0.26) 0.32 (0.004) 0.112 (0.001)
noHub-S 74.02 (0.28) 0.276 (0.004) 0.13 (0.001) 81.34 (0.27) 0.281 (0.004) 0.127 (0.001) 83.92 (0.25) 0.296 (0.003) 0.163 (0.001)

L
ap

la
ci

an
Sh

ot

None 68.92 (0.23) 1.341 (0.009) 0.408 (0.001) 76.43 (0.25) 1.214 (0.009) 0.41 (0.001) 79.17 (0.23) 0.887 (0.006) 0.34 (0.001)
L2 69.3 (0.23) 0.945 (0.007) 0.302 (0.001) 77.2 (0.25) 0.808 (0.007) 0.265 (0.001) 79.65 (0.23) 0.682 (0.006) 0.236 (0.001)
CL2 70.68 (0.23) 0.661 (0.005) 0.231 (0.001) 77.98 (0.24) 0.689 (0.006) 0.248 (0.001) 79.99 (0.22) 0.547 (0.005) 0.201 (0.001)
ZN 70.51 (0.23) 0.688 (0.006) 0.233 (0.001) 77.51 (0.24) 0.697 (0.006) 0.264 (0.001) 79.86 (0.22) 0.564 (0.005) 0.217 (0.001)
ReRep 72.75 (0.24) 3.653 (0.007) 0.548 (0.001) 78.95 (0.25) 3.605 (0.011) 0.549 (0.001) 82.38 (0.22) 3.565 (0.007) 0.512 (0.001)
EASE 72.19 (0.23) 0.526 (0.005) 0.161 (0.001) 79.34 (0.24) 0.481 (0.005) 0.158 (0.001) 81.5 (0.22) 0.459 (0.004) 0.152 (0.001)
TCPR 71.79 (0.23) 0.654 (0.005) 0.228 (0.001) 78.41 (0.24) 0.651 (0.005) 0.249 (0.001) 80.86 (0.22) 0.537 (0.004) 0.203 (0.001)
noHub 73.63 (0.25) 0.305 (0.005) 0.094 (0.001) 80.84 (0.25) 0.3 (0.005) 0.101 (0.001) 83.23 (0.22) 0.318 (0.004) 0.112 (0.001)
noHub-S 73.79 (0.25) 0.276 (0.004) 0.13 (0.001) 80.83 (0.25) 0.275 (0.004) 0.125 (0.001) 83.47 (0.22) 0.299 (0.003) 0.164 (0.001)

O
bl

iq
ue

M
an

if
ol

d

None 68.89 (0.23) 1.412 (0.01) 0.407 (0.001) 77.07 (0.25) 1.21 (0.009) 0.409 (0.001) 79.4 (0.22) 0.887 (0.006) 0.341 (0.001)
L2 68.92 (0.23) 0.964 (0.007) 0.299 (0.001) 77.17 (0.25) 0.806 (0.007) 0.266 (0.001) 79.32 (0.22) 0.691 (0.006) 0.237 (0.001)
CL2 70.86 (0.24) 0.66 (0.005) 0.228 (0.001) 78.92 (0.25) 0.68 (0.006) 0.249 (0.001) 80.29 (0.23) 0.547 (0.005) 0.202 (0.001)
ZN 71.25 (0.24) 0.679 (0.006) 0.227 (0.001) 79.54 (0.25) 0.697 (0.006) 0.263 (0.001) 81.38 (0.23) 0.562 (0.005) 0.216 (0.001)
ReRep 73.3 (0.25) 3.682 (0.007) 0.559 (0.001) 80.26 (0.26) 3.608 (0.01) 0.551 (0.001) 83.84 (0.23) 3.559 (0.008) 0.513 (0.001)
EASE 68.4 (0.24) 0.516 (0.005) 0.156 (0.001) 77.33 (0.25) 0.477 (0.004) 0.158 (0.001) 79.03 (0.24) 0.461 (0.004) 0.152 (0.001)
TCPR 70.74 (0.24) 0.646 (0.005) 0.223 (0.001) 78.92 (0.25) 0.649 (0.005) 0.249 (0.001) 80.18 (0.23) 0.537 (0.004) 0.204 (0.001)
noHub 72.55 (0.26) 0.309 (0.005) 0.095 (0.001) 79.97 (0.26) 0.302 (0.005) 0.102 (0.001) 82.21 (0.24) 0.319 (0.004) 0.112 (0.001)
noHub-S 74.24 (0.26) 0.274 (0.004) 0.13 (0.001) 80.84 (0.26) 0.282 (0.004) 0.127 (0.001) 83.67 (0.23) 0.294 (0.003) 0.162 (0.001)

SI
A

M
E

SE

None 20.0 (0.0) 1.345 (0.009) 0.407 (0.001) 20.0 (0.0) 1.222 (0.009) 0.41 (0.001) 20.0 (0.0) 0.885 (0.006) 0.339 (0.001)
L2 73.77 (0.24) 0.949 (0.007) 0.301 (0.001) 80.46 (0.26) 0.811 (0.007) 0.265 (0.001) 83.1 (0.23) 0.691 (0.006) 0.237 (0.001)
CL2 75.56 (0.26) 0.666 (0.005) 0.232 (0.001) 82.1 (0.26) 0.68 (0.006) 0.248 (0.001) 84.35 (0.24) 0.549 (0.005) 0.201 (0.001)
ZN 20.0 (0.0) 0.686 (0.006) 0.232 (0.001) 20.0 (0.0) 0.69 (0.006) 0.262 (0.001) 20.0 (0.0) 0.565 (0.005) 0.217 (0.001)
ReRep 20.0 (0.0) 3.653 (0.007) 0.549 (0.001) 20.0 (0.0) 3.616 (0.01) 0.549 (0.001) 20.0 (0.0) 3.559 (0.007) 0.512 (0.001)
EASE 76.05 (0.27) 0.529 (0.005) 0.162 (0.001) 82.57 (0.27) 0.485 (0.005) 0.159 (0.001) 85.24 (0.24) 0.464 (0.004) 0.153 (0.001)
TCPR 75.99 (0.26) 0.655 (0.005) 0.227 (0.001) 82.65 (0.26) 0.651 (0.005) 0.249 (0.001) 85.34 (0.23) 0.535 (0.004) 0.203 (0.001)
noHub 76.65 (0.28) 0.308 (0.005) 0.095 (0.001) 82.94 (0.27) 0.303 (0.004) 0.101 (0.001) 85.88 (0.24) 0.322 (0.004) 0.112 (0.001)
noHub-S 76.68 (0.28) 0.275 (0.004) 0.13 (0.001) 83.09 (0.27) 0.281 (0.004) 0.128 (0.001) 85.81 (0.24) 0.295 (0.003) 0.161 (0.001)

Si
m

pl
eS

ho
t

None 56.14 (0.2) 1.349 (0.009) 0.407 (0.001) 63.34 (0.23) 1.211 (0.009) 0.408 (0.001) 64.02 (0.21) 0.887 (0.006) 0.341 (0.001)
L2 60.15 (0.2) 0.937 (0.007) 0.301 (0.001) 68.02 (0.23) 0.812 (0.007) 0.265 (0.001) 69.05 (0.21) 0.691 (0.006) 0.236 (0.001)
CL2 63.1 (0.2) 0.667 (0.005) 0.233 (0.001) 69.76 (0.22) 0.679 (0.006) 0.249 (0.001) 70.16 (0.2) 0.549 (0.005) 0.201 (0.001)
ZN 63.39 (0.2) 0.68 (0.005) 0.231 (0.001) 70.04 (0.22) 0.698 (0.006) 0.264 (0.001) 71.03 (0.2) 0.564 (0.005) 0.216 (0.001)
ReRep 66.66 (0.22) 3.655 (0.007) 0.548 (0.001) 73.23 (0.23) 3.604 (0.01) 0.549 (0.001) 76.8 (0.21) 3.565 (0.007) 0.513 (0.001)
EASE 64.0 (0.2) 0.521 (0.005) 0.16 (0.001) 71.0 (0.21) 0.479 (0.005) 0.158 (0.001) 72.38 (0.2) 0.466 (0.004) 0.153 (0.001)
TCPR 63.33 (0.2) 0.651 (0.005) 0.228 (0.001) 69.82 (0.22) 0.65 (0.005) 0.25 (0.001) 70.75 (0.2) 0.532 (0.004) 0.204 (0.001)
noHub 69.38 (0.22) 0.315 (0.005) 0.095 (0.001) 76.72 (0.23) 0.303 (0.004) 0.102 (0.001) 78.21 (0.21) 0.32 (0.004) 0.112 (0.001)
noHub-S 71.1 (0.22) 0.276 (0.004) 0.13 (0.001) 78.35 (0.23) 0.283 (0.004) 0.127 (0.001) 80.31 (0.21) 0.296 (0.003) 0.162 (0.001)

↵
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None 56.39 (0.2) 1.342 (0.009) 0.406 (0.001) 63.32 (0.23) 1.216 (0.009) 0.411 (0.001) 64.02 (0.22) 0.886 (0.006) 0.341 (0.001)
L2 67.91 (0.23) 0.942 (0.007) 0.301 (0.001) 74.94 (0.24) 0.814 (0.007) 0.266 (0.001) 77.49 (0.23) 0.694 (0.006) 0.236 (0.001)
CL2 65.68 (0.21) 0.665 (0.005) 0.232 (0.001) 73.23 (0.23) 0.681 (0.006) 0.248 (0.001) 73.79 (0.21) 0.552 (0.005) 0.202 (0.001)
ZN 63.36 (0.2) 0.682 (0.005) 0.232 (0.001) 70.19 (0.22) 0.693 (0.006) 0.263 (0.001) 70.85 (0.21) 0.566 (0.005) 0.215 (0.001)
ReRep 66.37 (0.22) 3.656 (0.007) 0.55 (0.001) 73.24 (0.24) 3.605 (0.011) 0.55 (0.001) 76.86 (0.21) 3.555 (0.007) 0.514 (0.001)
EASE 65.32 (0.2) 0.526 (0.005) 0.163 (0.001) 71.88 (0.22) 0.477 (0.005) 0.158 (0.001) 73.03 (0.21) 0.459 (0.004) 0.151 (0.001)
TCPR 66.19 (0.21) 0.65 (0.005) 0.227 (0.001) 73.24 (0.23) 0.649 (0.005) 0.25 (0.001) 74.07 (0.21) 0.532 (0.004) 0.203 (0.001)
noHub 70.08 (0.23) 0.312 (0.005) 0.094 (0.001) 77.39 (0.24) 0.304 (0.004) 0.101 (0.001) 79.19 (0.22) 0.319 (0.004) 0.112 (0.001)
noHub-S 72.04 (0.23) 0.273 (0.004) 0.13 (0.001) 79.13 (0.24) 0.282 (0.004) 0.126 (0.001) 81.42 (0.22) 0.296 (0.003) 0.161 (0.001)

Table 2. Resnet-18: 1-shot.



mini tiered CUB
Acc Skew Hub. Occ. Acc Skew Hub. Occ. Acc Skew Hub. Occ.

Arch. Clf. Emb.
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None 71.27 (0.28) 1.595 (0.01) 0.46 (0.001) 75.01 (0.28) 1.807 (0.01) 0.494 (0.001) 89.75 (0.19) 1.072 (0.009) 0.367 (0.001)
L2 76.41 (0.26) 0.773 (0.006) 0.295 (0.001) 78.25 (0.27) 0.731 (0.006) 0.274 (0.001) 90.27 (0.2) 0.473 (0.004) 0.228 (0.001)
CL2 74.13 (0.27) 0.993 (0.009) 0.29 (0.001) 78.2 (0.27) 0.815 (0.006) 0.306 (0.001) 90.34 (0.2) 0.524 (0.004) 0.267 (0.001)
ZN 77.76 (0.26) 0.728 (0.005) 0.287 (0.001) 79.42 (0.27) 0.776 (0.006) 0.302 (0.001) 90.21 (0.2) 0.516 (0.004) 0.263 (0.001)
ReRep 62.51 (0.34) 3.56 (0.002) 0.704 (0.001) 60.66 (0.37) 3.55 (0.002) 0.776 (0.001) 87.44 (0.25) 3.033 (0.008) 0.472 (0.001)
EASE 78.01 (0.26) 0.47 (0.004) 0.176 (0.001) 79.64 (0.27) 0.479 (0.004) 0.175 (0.001) 90.76 (0.19) 0.437 (0.003) 0.212 (0.001)
TCPR 78.37 (0.26) 0.584 (0.005) 0.237 (0.001) 79.55 (0.28) 0.683 (0.006) 0.265 (0.001) 90.77 (0.19) 0.476 (0.004) 0.23 (0.001)
noHub 78.84 (0.27) 0.293 (0.004) 0.112 (0.001) 80.75 (0.28) 0.3 (0.004) 0.112 (0.001) 90.91 (0.2) 0.189 (0.004) 0.109 (0.001)
noHub-S 79.77 (0.26) 0.262 (0.004) 0.148 (0.001) 81.24 (0.27) 0.278 (0.004) 0.135 (0.001) 91.28 (0.19) 0.16 (0.004) 0.13 (0.001)
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None 72.56 (0.23) 1.599 (0.01) 0.459 (0.001) 75.58 (0.25) 1.795 (0.01) 0.495 (0.001) 88.71 (0.19) 1.071 (0.009) 0.369 (0.001)
L2 75.18 (0.23) 0.777 (0.006) 0.296 (0.001) 77.03 (0.24) 0.732 (0.006) 0.274 (0.001) 89.73 (0.17) 0.474 (0.004) 0.229 (0.001)
CL2 71.29 (0.24) 0.987 (0.009) 0.29 (0.001) 75.42 (0.25) 0.819 (0.006) 0.309 (0.001) 89.61 (0.18) 0.52 (0.004) 0.268 (0.001)
ZN 75.18 (0.22) 0.724 (0.005) 0.286 (0.001) 77.0 (0.24) 0.768 (0.006) 0.301 (0.001) 89.22 (0.18) 0.517 (0.004) 0.263 (0.001)
ReRep 75.25 (0.22) 3.562 (0.002) 0.704 (0.001) 77.12 (0.24) 3.548 (0.002) 0.776 (0.001) 88.98 (0.18) 3.024 (0.008) 0.47 (0.001)
EASE 77.29 (0.22) 0.473 (0.004) 0.177 (0.001) 78.97 (0.24) 0.475 (0.004) 0.175 (0.001) 90.06 (0.17) 0.435 (0.003) 0.213 (0.001)
TCPR 76.77 (0.22) 0.593 (0.005) 0.236 (0.001) 77.49 (0.24) 0.686 (0.006) 0.264 (0.001) 89.42 (0.17) 0.475 (0.004) 0.231 (0.001)
noHub 79.13 (0.23) 0.29 (0.004) 0.111 (0.001) 80.5 (0.25) 0.302 (0.004) 0.112 (0.001) 90.73 (0.18) 0.19 (0.004) 0.109 (0.001)
noHub-S 79.13 (0.23) 0.259 (0.004) 0.147 (0.001) 80.59 (0.24) 0.277 (0.004) 0.135 (0.001) 90.61 (0.17) 0.164 (0.004) 0.13 (0.001)
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None 76.02 (0.22) 1.599 (0.01) 0.46 (0.001) 77.75 (0.25) 1.801 (0.01) 0.494 (0.001) 90.82 (0.18) 1.07 (0.009) 0.368 (0.001)
L2 76.11 (0.22) 0.779 (0.006) 0.295 (0.001) 77.74 (0.25) 0.731 (0.006) 0.274 (0.001) 90.89 (0.18) 0.475 (0.004) 0.228 (0.001)
CL2 74.43 (0.24) 0.985 (0.009) 0.289 (0.001) 77.98 (0.25) 0.816 (0.007) 0.307 (0.001) 90.6 (0.18) 0.523 (0.004) 0.267 (0.001)
ZN 77.69 (0.23) 0.724 (0.005) 0.286 (0.001) 79.32 (0.24) 0.767 (0.006) 0.301 (0.001) 90.73 (0.18) 0.519 (0.004) 0.263 (0.001)
ReRep 78.08 (0.23) 3.56 (0.002) 0.703 (0.001) 79.46 (0.25) 3.549 (0.002) 0.777 (0.001) 91.16 (0.18) 3.032 (0.008) 0.471 (0.001)
EASE 74.77 (0.23) 0.472 (0.004) 0.178 (0.001) 77.07 (0.25) 0.473 (0.004) 0.174 (0.001) 89.2 (0.18) 0.439 (0.003) 0.212 (0.001)
TCPR 77.39 (0.23) 0.587 (0.005) 0.236 (0.001) 78.75 (0.24) 0.687 (0.006) 0.265 (0.001) 89.93 (0.19) 0.474 (0.004) 0.23 (0.001)
noHub 78.44 (0.24) 0.292 (0.004) 0.112 (0.001) 79.99 (0.26) 0.302 (0.004) 0.113 (0.001) 90.59 (0.19) 0.185 (0.004) 0.108 (0.001)
noHub-S 79.89 (0.24) 0.259 (0.004) 0.148 (0.001) 80.67 (0.26) 0.279 (0.004) 0.137 (0.001) 91.37 (0.18) 0.162 (0.004) 0.13 (0.001)
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None 45.69 (0.31) 1.594 (0.009) 0.459 (0.001) 75.29 (0.28) 1.801 (0.01) 0.495 (0.001) 61.36 (0.55) 1.074 (0.009) 0.37 (0.001)
L2 80.2 (0.23) 0.776 (0.006) 0.296 (0.001) 80.89 (0.26) 0.735 (0.006) 0.275 (0.001) 91.98 (0.18) 0.476 (0.004) 0.23 (0.001)
CL2 75.23 (0.27) 0.988 (0.009) 0.289 (0.001) 79.59 (0.27) 0.82 (0.006) 0.307 (0.001) 92.17 (0.18) 0.518 (0.004) 0.266 (0.001)
ZN 20.0 (0.0) 0.726 (0.005) 0.286 (0.001) 20.0 (0.0) 0.775 (0.006) 0.302 (0.001) 20.0 (0.0) 0.517 (0.004) 0.264 (0.001)
ReRep 36.69 (0.28) 3.561 (0.002) 0.705 (0.001) 67.41 (0.29) 3.55 (0.002) 0.776 (0.001) 57.62 (0.56) 3.027 (0.008) 0.472 (0.001)
EASE 81.19 (0.25) 0.474 (0.004) 0.178 (0.001) 82.04 (0.26) 0.476 (0.004) 0.176 (0.001) 91.99 (0.19) 0.436 (0.003) 0.213 (0.001)
TCPR 81.27 (0.24) 0.582 (0.005) 0.236 (0.001) 81.89 (0.26) 0.681 (0.006) 0.264 (0.001) 91.91 (0.18) 0.477 (0.004) 0.232 (0.001)
noHub 81.97 (0.25) 0.291 (0.004) 0.111 (0.001) 82.8 (0.27) 0.298 (0.004) 0.112 (0.001) 92.53 (0.18) 0.189 (0.004) 0.109 (0.001)
noHub-S 82.0 (0.26) 0.258 (0.004) 0.148 (0.001) 82.85 (0.27) 0.278 (0.004) 0.137 (0.001) 92.63 (0.18) 0.159 (0.004) 0.13 (0.001)
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None 55.66 (0.21) 1.6 (0.01) 0.459 (0.001) 54.71 (0.22) 1.81 (0.01) 0.494 (0.001) 70.92 (0.23) 1.073 (0.009) 0.369 (0.001)
L2 65.78 (0.2) 0.781 (0.006) 0.296 (0.001) 68.75 (0.22) 0.737 (0.006) 0.275 (0.001) 82.85 (0.19) 0.475 (0.004) 0.228 (0.001)
CL2 64.33 (0.2) 0.981 (0.009) 0.288 (0.001) 67.66 (0.22) 0.817 (0.006) 0.307 (0.001) 82.8 (0.19) 0.52 (0.004) 0.267 (0.001)
ZN 67.31 (0.2) 0.73 (0.005) 0.287 (0.001) 69.14 (0.22) 0.769 (0.006) 0.302 (0.001) 82.79 (0.19) 0.517 (0.004) 0.263 (0.001)
ReRep 67.38 (0.2) 3.56 (0.002) 0.704 (0.001) 70.17 (0.22) 3.55 (0.002) 0.777 (0.001) 84.86 (0.19) 3.026 (0.008) 0.47 (0.001)
EASE 68.62 (0.2) 0.47 (0.004) 0.177 (0.001) 70.26 (0.21) 0.477 (0.004) 0.175 (0.001) 84.14 (0.18) 0.437 (0.003) 0.213 (0.001)
TCPR 68.45 (0.2) 0.589 (0.005) 0.236 (0.001) 68.68 (0.22) 0.685 (0.006) 0.264 (0.001) 82.28 (0.19) 0.477 (0.004) 0.231 (0.001)
noHub 75.06 (0.21) 0.29 (0.004) 0.111 (0.001) 76.7 (0.23) 0.301 (0.004) 0.111 (0.001) 88.06 (0.18) 0.188 (0.004) 0.108 (0.001)
noHub-S 76.86 (0.21) 0.258 (0.004) 0.148 (0.001) 78.4 (0.23) 0.274 (0.004) 0.135 (0.001) 89.25 (0.18) 0.162 (0.004) 0.13 (0.001)
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None 60.31 (0.2) 1.603 (0.01) 0.458 (0.001) 69.42 (0.25) 1.811 (0.01) 0.494 (0.001) 73.83 (0.21) 1.072 (0.009) 0.369 (0.001)
L2 72.11 (0.22) 0.778 (0.006) 0.295 (0.001) 74.45 (0.23) 0.73 (0.006) 0.275 (0.001) 85.96 (0.19) 0.476 (0.004) 0.229 (0.001)
CL2 68.5 (0.21) 0.988 (0.009) 0.29 (0.001) 72.17 (0.23) 0.811 (0.006) 0.306 (0.001) 85.6 (0.18) 0.522 (0.004) 0.267 (0.001)
ZN 67.69 (0.2) 0.73 (0.005) 0.287 (0.001) 68.94 (0.22) 0.769 (0.006) 0.302 (0.001) 83.03 (0.19) 0.518 (0.004) 0.263 (0.001)
ReRep 73.15 (0.23) 3.56 (0.002) 0.704 (0.001) 76.19 (0.25) 3.551 (0.002) 0.778 (0.001) 88.55 (0.18) 3.027 (0.008) 0.472 (0.001)
EASE 69.83 (0.2) 0.468 (0.004) 0.176 (0.001) 71.54 (0.22) 0.481 (0.004) 0.175 (0.001) 84.9 (0.19) 0.436 (0.003) 0.213 (0.001)
TCPR 71.6 (0.21) 0.586 (0.005) 0.237 (0.001) 72.71 (0.22) 0.689 (0.006) 0.264 (0.001) 84.99 (0.19) 0.479 (0.004) 0.231 (0.001)
noHub 75.87 (0.22) 0.29 (0.004) 0.111 (0.001) 77.83 (0.23) 0.302 (0.004) 0.112 (0.001) 88.7 (0.17) 0.189 (0.004) 0.108 (0.001)
noHub-S 77.76 (0.22) 0.259 (0.004) 0.147 (0.001) 79.04 (0.24) 0.276 (0.004) 0.136 (0.001) 89.77 (0.17) 0.163 (0.003) 0.13 (0.001)

Table 3. WideRes28-10: 1-shot.



mini tiered CUB
Acc Skew Hub. Occ. Acc Skew Hub. Occ. Acc Skew Hub. Occ.
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None 76.46 (0.18) 1.503 (0.01) 0.421 (0.001) 84.46 (0.18) 1.334 (0.008) 0.433 (0.001) 85.86 (0.14) 0.981 (0.005) 0.364 (0.001)
L2 80.9 (0.16) 1.051 (0.007) 0.314 (0.001) 86.23 (0.17) 0.912 (0.006) 0.289 (0.001) 88.03 (0.13) 0.808 (0.005) 0.264 (0.001)
CL2 81.64 (0.16) 0.778 (0.005) 0.262 (0.001) 86.88 (0.17) 0.823 (0.006) 0.281 (0.001) 88.44 (0.13) 0.695 (0.005) 0.235 (0.001)
ZN 81.61 (0.16) 0.793 (0.005) 0.258 (0.001) 86.9 (0.17) 0.841 (0.006) 0.297 (0.001) 88.44 (0.12) 0.717 (0.004) 0.25 (0.001)
ReRep 74.83 (0.19) 1.623 (0.003) 0.871 (0.001) 83.96 (0.19) 1.722 (0.004) 0.873 (0.001) 84.54 (0.15) 1.432 (0.003) 0.869 (0.001)
EASE 81.75 (0.16) 0.618 (0.005) 0.182 (0.001) 86.84 (0.17) 0.593 (0.004) 0.181 (0.001) 88.85 (0.12) 0.606 (0.004) 0.186 (0.001)
TCPR 81.76 (0.16) 0.766 (0.005) 0.254 (0.001) 86.78 (0.17) 0.801 (0.005) 0.284 (0.001) 88.69 (0.13) 0.683 (0.004) 0.237 (0.001)
noHub 82.09 (0.16) 0.295 (0.004) 0.097 (0.001) 86.81 (0.17) 0.289 (0.004) 0.102 (0.001) 88.85 (0.13) 0.333 (0.004) 0.12 (0.001)
noHub-S 82.33 (0.16) 0.488 (0.006) 0.086 (0.001) 87.05 (0.17) 0.475 (0.006) 0.091 (0.001) 89.12 (0.13) 0.438 (0.006) 0.097 (0.001)
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None 81.97 (0.15) 1.442 (0.009) 0.422 (0.001) 86.17 (0.16) 1.336 (0.008) 0.432 (0.001) 88.58 (0.12) 0.985 (0.005) 0.365 (0.001)
L2 81.89 (0.14) 1.035 (0.007) 0.319 (0.001) 86.19 (0.16) 0.913 (0.006) 0.289 (0.001) 88.52 (0.11) 0.811 (0.005) 0.264 (0.001)
CL2 81.93 (0.14) 0.786 (0.005) 0.265 (0.001) 86.16 (0.16) 0.82 (0.006) 0.282 (0.001) 88.46 (0.12) 0.7 (0.005) 0.235 (0.001)
ZN 82.57 (0.14) 0.803 (0.005) 0.263 (0.001) 86.67 (0.16) 0.838 (0.006) 0.296 (0.001) 88.88 (0.11) 0.714 (0.004) 0.25 (0.001)
ReRep 82.32 (0.14) 1.633 (0.003) 0.863 (0.001) 86.09 (0.16) 1.721 (0.004) 0.873 (0.001) 88.74 (0.12) 1.431 (0.002) 0.869 (0.001)
EASE 82.57 (0.14) 0.627 (0.005) 0.186 (0.001) 86.82 (0.15) 0.596 (0.004) 0.182 (0.001) 88.94 (0.11) 0.608 (0.004) 0.185 (0.001)
TCPR 82.24 (0.14) 0.781 (0.005) 0.259 (0.001) 86.27 (0.16) 0.797 (0.005) 0.284 (0.001) 88.63 (0.11) 0.687 (0.004) 0.236 (0.001)
noHub 82.55 (0.15) 0.285 (0.004) 0.096 (0.001) 86.75 (0.16) 0.29 (0.004) 0.103 (0.001) 89.08 (0.11) 0.329 (0.004) 0.12 (0.001)
noHub-S 82.81 (0.14) 0.25 (0.005) 0.073 (0.001) 87.12 (0.16) 0.214 (0.005) 0.077 (0.001) 88.99 (0.11) 0.438 (0.006) 0.096 (0.001)
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None 83.53 (0.15) 1.497 (0.01) 0.421 (0.001) 87.85 (0.15) 1.334 (0.009) 0.433 (0.001) 90.28 (0.11) 0.987 (0.005) 0.364 (0.001)
L2 83.66 (0.15) 1.051 (0.007) 0.314 (0.001) 87.83 (0.15) 0.922 (0.006) 0.289 (0.001) 90.21 (0.11) 0.81 (0.005) 0.263 (0.001)
CL2 83.62 (0.15) 0.775 (0.005) 0.261 (0.001) 88.1 (0.15) 0.823 (0.006) 0.281 (0.001) 90.09 (0.11) 0.701 (0.005) 0.236 (0.001)
ZN 83.86 (0.15) 0.795 (0.005) 0.258 (0.001) 88.47 (0.15) 0.835 (0.006) 0.296 (0.001) 90.47 (0.11) 0.716 (0.004) 0.251 (0.001)
ReRep 82.44 (0.15) 1.62 (0.003) 0.871 (0.001) 86.85 (0.16) 1.725 (0.004) 0.872 (0.001) 89.83 (0.11) 1.431 (0.003) 0.869 (0.001)
EASE 82.83 (0.15) 0.628 (0.005) 0.185 (0.001) 87.63 (0.16) 0.597 (0.005) 0.182 (0.001) 89.74 (0.12) 0.609 (0.004) 0.186 (0.001)
TCPR 83.51 (0.15) 0.766 (0.005) 0.255 (0.001) 88.09 (0.15) 0.795 (0.005) 0.283 (0.001) 90.28 (0.11) 0.687 (0.004) 0.236 (0.001)
noHub 83.28 (0.15) 0.287 (0.004) 0.096 (0.001) 87.58 (0.16) 0.288 (0.004) 0.102 (0.001) 89.89 (0.12) 0.334 (0.004) 0.121 (0.001)
noHub-S 83.25 (0.16) 0.487 (0.006) 0.086 (0.001) 87.82 (0.16) 0.469 (0.006) 0.091 (0.001) 89.38 (0.17) nan (nan) 0.097 (0.001)
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None 20.0 (0.0) 1.441 (0.009) 0.421 (0.001) 20.0 (0.0) 1.339 (0.009) 0.433 (0.001) 20.0 (0.0) 0.984 (0.005) 0.364 (0.001)
L2 83.14 (0.14) 1.035 (0.007) 0.319 (0.001) 87.04 (0.16) 0.912 (0.006) 0.288 (0.001) 89.48 (0.12) 0.808 (0.005) 0.264 (0.001)
CL2 84.04 (0.15) 0.788 (0.005) 0.264 (0.001) 87.9 (0.16) 0.816 (0.006) 0.28 (0.001) 90.14 (0.12) 0.698 (0.005) 0.235 (0.001)
ZN 20.0 (0.0) 0.8 (0.005) 0.263 (0.001) 20.0 (0.0) 0.84 (0.006) 0.296 (0.001) 20.0 (0.0) 0.713 (0.004) 0.251 (0.001)
ReRep 20.0 (0.0) 1.633 (0.003) 0.863 (0.001) 20.0 (0.0) 1.724 (0.004) 0.872 (0.001) 20.0 (0.0) 1.428 (0.002) 0.869 (0.001)
EASE 84.61 (0.15) 0.63 (0.005) 0.187 (0.001) 88.33 (0.16) 0.594 (0.004) 0.182 (0.001) 90.42 (0.12) 0.607 (0.004) 0.185 (0.001)
TCPR 84.39 (0.15) 0.772 (0.005) 0.259 (0.001) 88.26 (0.16) 0.791 (0.005) 0.283 (0.001) 90.5 (0.11) 0.686 (0.004) 0.235 (0.001)
noHub 84.05 (0.16) 0.292 (0.004) 0.096 (0.001) 87.87 (0.17) 0.291 (0.004) 0.103 (0.001) 90.34 (0.12) 0.334 (0.004) 0.12 (0.001)
noHub-S 84.67 (0.15) 0.247 (0.005) 0.074 (0.001) 88.43 (0.16) 0.473 (0.006) 0.092 (0.001) 90.52 (0.12) 0.443 (0.006) 0.097 (0.001)

Si
m
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eS
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t

None 78.5 (0.14) 1.436 (0.009) 0.422 (0.001) 83.95 (0.16) 1.339 (0.008) 0.432 (0.001) 85.65 (0.12) 0.987 (0.005) 0.364 (0.001)
L2 79.89 (0.14) 1.04 (0.007) 0.318 (0.001) 84.5 (0.16) 0.914 (0.006) 0.287 (0.001) 86.46 (0.12) 0.812 (0.005) 0.263 (0.001)
CL2 80.0 (0.14) 0.786 (0.005) 0.264 (0.001) 84.66 (0.16) 0.821 (0.006) 0.28 (0.001) 86.3 (0.12) 0.698 (0.005) 0.236 (0.001)
ZN 80.57 (0.14) 0.806 (0.005) 0.264 (0.001) 84.97 (0.16) 0.839 (0.006) 0.296 (0.001) 86.76 (0.12) 0.716 (0.005) 0.25 (0.001)
ReRep 80.86 (0.14) 1.631 (0.003) 0.863 (0.001) 85.05 (0.16) 1.721 (0.004) 0.872 (0.001) 87.83 (0.12) 1.432 (0.002) 0.869 (0.001)
EASE 80.13 (0.14) 0.624 (0.005) 0.186 (0.001) 84.74 (0.16) 0.598 (0.004) 0.183 (0.001) 86.76 (0.12) 0.607 (0.004) 0.186 (0.001)
TCPR 80.15 (0.14) 0.78 (0.005) 0.259 (0.001) 84.86 (0.15) 0.796 (0.005) 0.283 (0.001) 86.8 (0.12) 0.687 (0.004) 0.235 (0.001)
noHub 82.13 (0.14) 0.286 (0.004) 0.096 (0.001) 86.31 (0.16) 0.289 (0.004) 0.104 (0.001) 88.46 (0.11) 0.329 (0.004) 0.12 (0.001)
noHub-S 81.22 (0.14) 0.25 (0.005) 0.074 (0.001) 86.22 (0.15) 0.213 (0.005) 0.078 (0.001) 87.6 (0.12) 0.433 (0.006) 0.097 (0.001)

↵
-T

IM

None 78.51 (0.15) 1.45 (0.009) 0.42 (0.001) 83.86 (0.16) 1.341 (0.009) 0.433 (0.001) 85.7 (0.12) 0.981 (0.005) 0.363 (0.001)
L2 80.02 (0.16) 1.036 (0.007) 0.318 (0.001) 84.49 (0.18) 0.92 (0.006) 0.288 (0.001) 87.88 (0.13) 0.812 (0.005) 0.264 (0.001)
CL2 80.46 (0.16) 0.784 (0.005) 0.264 (0.001) 84.86 (0.17) 0.82 (0.006) 0.281 (0.001) 87.53 (0.13) 0.701 (0.005) 0.235 (0.001)
ZN 80.32 (0.14) 0.802 (0.005) 0.263 (0.001) 84.93 (0.16) 0.834 (0.006) 0.295 (0.001) 86.95 (0.12) 0.715 (0.004) 0.25 (0.001)
ReRep 81.05 (0.14) 1.63 (0.003) 0.863 (0.001) 85.18 (0.16) 1.718 (0.004) 0.872 (0.001) 87.63 (0.12) 1.43 (0.002) 0.87 (0.001)
EASE 79.13 (0.15) 0.632 (0.005) 0.188 (0.001) 84.04 (0.17) 0.596 (0.004) 0.181 (0.001) 86.7 (0.13) 0.607 (0.004) 0.186 (0.001)
TCPR 80.52 (0.16) 0.776 (0.005) 0.259 (0.001) 85.01 (0.17) 0.796 (0.005) 0.283 (0.001) 87.81 (0.13) 0.681 (0.004) 0.234 (0.001)
noHub 81.39 (0.15) 0.29 (0.004) 0.096 (0.001) 86.09 (0.16) 0.292 (0.004) 0.103 (0.001) 88.16 (0.12) 0.336 (0.004) 0.121 (0.001)
noHub-S 81.37 (0.15) 0.253 (0.005) 0.074 (0.001) 86.14 (0.16) 0.219 (0.005) 0.078 (0.001) 87.97 (0.12) 0.437 (0.006) 0.096 (0.001)

Table 4. Resnet-18: 5-shot.



mini tiered CUB
Acc Skew Hub. Occ. Acc Skew Hub. Occ. Acc Skew Hub. Occ.

Arch. Clf. Emb.

W
id

eR
es

28
-1

0

IL
PC

None 81.93 (0.16) 1.717 (0.01) 0.473 (0.001) 84.34 (0.17) 1.927 (0.011) 0.509 (0.001) 93.18 (0.11) 1.164 (0.008) 0.396 (0.001)
L2 85.74 (0.14) 0.888 (0.005) 0.322 (0.001) 86.26 (0.17) 0.859 (0.005) 0.306 (0.001) 93.77 (0.1) 0.636 (0.004) 0.266 (0.001)
CL2 83.33 (0.16) 1.12 (0.009) 0.318 (0.001) 85.99 (0.17) 0.957 (0.006) 0.338 (0.001) 93.79 (0.1) 0.703 (0.004) 0.309 (0.001)
ZN 85.96 (0.14) 0.858 (0.005) 0.32 (0.001) 86.77 (0.16) 0.909 (0.006) 0.335 (0.001) 93.73 (0.1) 0.696 (0.004) 0.305 (0.001)
ReRep 72.11 (0.27) 1.601 (0.003) 0.819 (0.001) 71.68 (0.3) 1.616 (0.004) 0.845 (0.001) 91.52 (0.13) 1.301 (0.005) 0.548 (0.002)
EASE 85.89 (0.14) 0.577 (0.004) 0.198 (0.001) 86.83 (0.17) 0.583 (0.004) 0.193 (0.001) 93.87 (0.1) 0.576 (0.004) 0.242 (0.001)
TCPR 86.29 (0.14) 0.715 (0.004) 0.27 (0.001) 86.96 (0.17) 0.819 (0.005) 0.295 (0.001) 93.82 (0.1) 0.634 (0.004) 0.265 (0.001)
noHub 86.07 (0.15) 0.295 (0.004) 0.115 (0.001) 86.75 (0.17) 0.299 (0.004) 0.115 (0.001) 93.72 (0.1) 0.2 (0.004) 0.101 (0.001)
noHub-S 86.41 (0.14) 0.499 (0.006) 0.104 (0.001) 87.31 (0.17) 0.406 (0.005) 0.121 (0.001) 93.79 (0.1) 0.416 (0.005) 0.126 (0.001)
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None 85.23 (0.13) 1.711 (0.01) 0.474 (0.001) 86.14 (0.15) 1.921 (0.011) 0.509 (0.001) 92.61 (0.1) 1.164 (0.008) 0.395 (0.001)
L2 85.9 (0.13) 0.892 (0.006) 0.321 (0.001) 86.47 (0.15) 0.867 (0.006) 0.304 (0.001) 93.17 (0.09) 0.635 (0.004) 0.267 (0.001)
CL2 82.08 (0.15) 1.112 (0.009) 0.318 (0.001) 84.62 (0.16) 0.954 (0.006) 0.34 (0.001) 93.01 (0.1) 0.702 (0.004) 0.309 (0.001)
ZN 85.97 (0.13) 0.86 (0.005) 0.319 (0.001) 86.67 (0.15) 0.912 (0.006) 0.335 (0.001) 93.3 (0.1) 0.698 (0.004) 0.305 (0.001)
ReRep 84.34 (0.14) 1.599 (0.003) 0.819 (0.001) 85.61 (0.16) 1.615 (0.004) 0.845 (0.001) 92.2 (0.1) 1.304 (0.005) 0.549 (0.002)
EASE 86.24 (0.13) 0.573 (0.004) 0.198 (0.001) 86.74 (0.15) 0.582 (0.004) 0.194 (0.001) 93.31 (0.09) 0.578 (0.004) 0.243 (0.001)
TCPR 86.16 (0.13) 0.712 (0.004) 0.269 (0.001) 85.72 (0.16) 0.813 (0.005) 0.293 (0.001) 92.99 (0.1) 0.638 (0.004) 0.264 (0.001)
noHub 86.25 (0.13) 0.292 (0.004) 0.115 (0.001) 86.78 (0.16) 0.299 (0.004) 0.115 (0.001) 93.38 (0.09) 0.197 (0.004) 0.1 (0.001)
noHub-S 85.79 (0.13) 0.494 (0.006) 0.103 (0.001) 86.44 (0.16) 0.397 (0.005) 0.12 (0.001) 93.36 (0.1) 0.42 (0.005) 0.126 (0.001)
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None 87.46 (0.13) 1.712 (0.01) 0.472 (0.001) 88.16 (0.15) 1.913 (0.01) 0.509 (0.001) 94.75 (0.09) 1.161 (0.008) 0.395 (0.001)
L2 87.61 (0.13) 0.889 (0.005) 0.321 (0.001) 88.14 (0.15) 0.862 (0.006) 0.306 (0.001) 94.8 (0.09) 0.642 (0.004) 0.268 (0.001)
CL2 86.03 (0.14) 1.112 (0.009) 0.317 (0.001) 87.64 (0.16) 0.949 (0.006) 0.338 (0.001) 94.67 (0.09) 0.703 (0.004) 0.31 (0.001)
ZN 87.88 (0.13) 0.852 (0.005) 0.32 (0.001) 88.43 (0.15) 0.908 (0.006) 0.335 (0.001) 94.77 (0.08) 0.697 (0.004) 0.306 (0.001)
ReRep 87.62 (0.12) 1.599 (0.003) 0.819 (0.001) 88.15 (0.15) 1.616 (0.004) 0.845 (0.001) 94.48 (0.09) 1.302 (0.005) 0.547 (0.002)
EASE 86.75 (0.13) 0.573 (0.004) 0.198 (0.001) 87.78 (0.15) 0.583 (0.004) 0.193 (0.001) 94.16 (0.09) 0.57 (0.004) 0.24 (0.001)
TCPR 87.94 (0.12) 0.718 (0.004) 0.271 (0.001) 88.15 (0.15) 0.816 (0.005) 0.294 (0.001) 94.47 (0.09) 0.635 (0.004) 0.265 (0.001)
noHub 87.23 (0.13) 0.297 (0.004) 0.115 (0.001) 87.95 (0.16) 0.296 (0.004) 0.114 (0.001) 94.13 (0.09) 0.197 (0.004) 0.1 (0.001)
noHub-S 87.13 (0.14) 0.495 (0.006) 0.103 (0.001) 87.84 (0.16) 0.399 (0.005) 0.12 (0.001) 94.06 (0.09) 0.421 (0.005) 0.126 (0.001)

SI
A

M
E
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None 58.82 (0.31) 1.722 (0.01) 0.473 (0.001) 82.56 (0.22) 1.93 (0.01) 0.511 (0.001) 82.22 (0.37) 1.154 (0.008) 0.396 (0.001)
L2 87.11 (0.13) 0.894 (0.006) 0.321 (0.001) 87.34 (0.15) 0.861 (0.005) 0.305 (0.001) 94.15 (0.1) 0.638 (0.004) 0.266 (0.001)
CL2 83.99 (0.16) 1.107 (0.009) 0.318 (0.001) 86.71 (0.16) 0.953 (0.006) 0.339 (0.001) 94.48 (0.09) 0.704 (0.004) 0.31 (0.001)
ZN 20.0 (0.0) 0.856 (0.005) 0.319 (0.001) 20.0 (0.0) 0.913 (0.006) 0.334 (0.001) 20.0 (0.0) 0.702 (0.004) 0.305 (0.001)
ReRep 36.41 (0.3) 1.597 (0.003) 0.818 (0.001) 76.49 (0.24) 1.613 (0.004) 0.846 (0.001) 60.36 (0.6) 1.299 (0.005) 0.547 (0.002)
EASE 87.82 (0.13) 0.579 (0.004) 0.199 (0.001) 88.06 (0.16) 0.586 (0.004) 0.192 (0.001) 94.36 (0.09) 0.571 (0.004) 0.241 (0.001)
TCPR 87.8 (0.13) 0.717 (0.004) 0.27 (0.001) 87.95 (0.16) 0.822 (0.005) 0.295 (0.001) 94.25 (0.1) 0.637 (0.004) 0.266 (0.001)
noHub 87.78 (0.14) 0.29 (0.004) 0.114 (0.001) 87.99 (0.17) 0.297 (0.004) 0.115 (0.001) 94.56 (0.09) 0.196 (0.004) 0.1 (0.001)
noHub-S 88.03 (0.13) 0.492 (0.006) 0.103 (0.001) 88.31 (0.16) 0.398 (0.005) 0.12 (0.001) 94.69 (0.09) 0.416 (0.005) 0.127 (0.001)

Si
m
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t

None 78.56 (0.14) 1.709 (0.01) 0.473 (0.001) 80.32 (0.16) 1.937 (0.01) 0.51 (0.001) 89.27 (0.11) 1.16 (0.008) 0.395 (0.001)
L2 83.81 (0.13) 0.887 (0.005) 0.322 (0.001) 84.82 (0.15) 0.86 (0.006) 0.305 (0.001) 92.06 (0.1) 0.632 (0.004) 0.266 (0.001)
CL2 81.05 (0.14) 1.12 (0.009) 0.318 (0.001) 83.82 (0.16) 0.956 (0.006) 0.337 (0.001) 92.19 (0.1) 0.701 (0.004) 0.31 (0.001)
ZN 83.92 (0.13) 0.858 (0.005) 0.32 (0.001) 85.1 (0.15) 0.912 (0.006) 0.335 (0.001) 92.17 (0.1) 0.699 (0.004) 0.305 (0.001)
ReRep 79.26 (0.16) 1.597 (0.003) 0.819 (0.001) 82.7 (0.16) 1.617 (0.004) 0.846 (0.001) 91.48 (0.11) 1.299 (0.005) 0.549 (0.002)
EASE 83.65 (0.13) 0.579 (0.004) 0.199 (0.001) 84.47 (0.15) 0.585 (0.004) 0.193 (0.001) 92.01 (0.1) 0.572 (0.004) 0.241 (0.001)
TCPR 83.77 (0.13) 0.717 (0.004) 0.27 (0.001) 84.81 (0.15) 0.815 (0.005) 0.294 (0.001) 91.84 (0.1) 0.634 (0.004) 0.264 (0.001)
noHub 85.73 (0.13) 0.294 (0.004) 0.115 (0.001) 86.58 (0.15) 0.298 (0.004) 0.115 (0.001) 93.21 (0.09) 0.195 (0.004) 0.1 (0.001)
noHub-S 84.39 (0.13) 0.494 (0.006) 0.103 (0.001) 86.38 (0.15) 0.407 (0.005) 0.12 (0.001) 93.39 (0.09) 0.421 (0.005) 0.127 (0.001)
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None 80.61 (0.15) 1.711 (0.01) 0.473 (0.001) 83.05 (0.18) 1.928 (0.01) 0.51 (0.001) 84.89 (0.29) 1.153 (0.008) 0.396 (0.001)
L2 83.71 (0.16) 0.892 (0.005) 0.323 (0.001) 84.69 (0.18) 0.863 (0.005) 0.304 (0.001) 92.88 (0.1) 0.633 (0.004) 0.266 (0.001)
CL2 82.35 (0.16) 1.111 (0.009) 0.318 (0.001) 84.06 (0.18) 0.949 (0.006) 0.339 (0.001) 92.81 (0.1) 0.7 (0.004) 0.31 (0.001)
ZN 83.93 (0.13) 0.857 (0.005) 0.321 (0.001) 85.07 (0.15) 0.912 (0.006) 0.336 (0.001) 92.15 (0.1) 0.698 (0.004) 0.306 (0.001)
ReRep 83.4 (0.14) 1.596 (0.003) 0.82 (0.001) 84.4 (0.16) 1.615 (0.004) 0.845 (0.001) 93.19 (0.09) 1.302 (0.005) 0.547 (0.002)
EASE 82.72 (0.14) 0.576 (0.004) 0.2 (0.001) 83.86 (0.16) 0.583 (0.004) 0.193 (0.001) 92.31 (0.1) 0.572 (0.004) 0.242 (0.001)
TCPR 84.21 (0.15) 0.718 (0.004) 0.27 (0.001) 84.63 (0.18) 0.814 (0.005) 0.293 (0.001) 92.44 (0.1) 0.635 (0.004) 0.265 (0.001)
noHub 85.56 (0.13) 0.293 (0.004) 0.115 (0.001) 86.37 (0.16) 0.3 (0.004) 0.115 (0.001) 92.89 (0.1) 0.193 (0.004) 0.099 (0.001)
noHub-S 83.96 (0.15) 0.496 (0.006) 0.102 (0.001) 86.01 (0.16) 0.395 (0.005) 0.12 (0.001) 93.24 (0.1) 0.422 (0.005) 0.126 (0.001)

Table 5. WideRes28-10: 5-shot.
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Abstract

The widespread success of deep learning models today is owed to the curation
of extensive datasets significant in size and complexity. However, such models
frequently pick up inherent biases in the data during the training process, leading
to unreliable predictions. Diagnosing and debiasing datasets is thus a necessity
to ensure reliable model performance. In this paper, we present CONBIAS, a
novel framework for diagnosing and mitigating Concept co-occurrence Biases
in visual datasets. CONBIAS represents visual datasets as knowledge graphs of
concepts, enabling meticulous analysis of spurious concept co-occurrences to
uncover concept imbalances across the whole dataset. Moreover, we show that by
employing a novel clique-based concept balancing strategy, we can mitigate these
imbalances, leading to enhanced performance on downstream tasks. Extensive
experiments show that data augmentation based on a balanced concept distribution
augmented by CONBIAS improves generalization performance across multiple
datasets compared to state-of-the-art methods. We will make our code and data
publicly available.

1 Introduction

Over the last decade we have witnessed an unparalleled growth in the capabilities of deep learning
models across a wide range of tasks, such as image classification [17, 47, 7], object detection [41, 55],
semantic segmentation [20, 26, 43], and so on. More recently, with the introduction of large multi-
modal models, these capabilities have improved further [25, 15]. However, such models, while
demonstrating impressive performance on a wide range of tasks, have been shown to be biased in their
predictions [30, 13]. These biases come in various forms, based in texture [14], shape [39, 32], object
co-occurrence [51, 52, 48], and so on. In addition to exploring model biases, dataset diagnosis, or
evaluating biases directly within the dataset, is particularly crucial as large datasets available today are
beyond the scope of human evaluation, owing to their size and complexity. For example, ImageNet
[6], a widely used dataset in deep learning literature, is known to have thousands of erroneous labels
and a lack of diversity in its class hierarchy [33, 57]. Other popular datasets such as MS-COCO [23]
and CelebA [27], have problematic social biases with respect to gendered captions and prejudicial
attributes of people from different races. As a result, frameworks that effectively diagnose and debias
these datasets are sought.

While multiple works exist in the categorization and exploration of biases in visual data [9, 30], an
end-to-end pipeline incorporating both diagnosis and debiasing has received relatively scant attention.
ALIA [8] is the closest and most recent work exploring such a data-augmentation-based approach to
debiasing, but it has two shortcomings - first, it does not diagnose the dataset which it aims to debias.

⇤Correspondence to: rwiddhi.chakraborty@uit.no

Preprint. Under review.
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Figure 1: The conventional data diagnosis and augmentation pipeline begins with an original (biased) dataset.
Existing methods address these biases via object frequency calibration [52], metadata analysis [8], or traditional
augmentation techniques [59, 5]. In contrast, our framework models visual data as a knowledge graph of
concepts, with orange nodes representing classes and blue nodes representing concepts, facilitating a systematic
diagnosis of class-concept imbalances for debiasing object co-occurrences in vision datasets.

Without such a diagnosis, it is challenging to identify the biases to be mitigated in the first place.
Second, the method relies on a large language model (ChatGPT-4 [4]) to generate diverse, unbiased,
in-domain descriptions. This approach is potentially confounding since there is no reliable way to
ensure that the biases of the large language model itself do not affect the quality of such domain
descriptions. In this work, we address both these shortcomings.

We present CONBIAS, our framework for diagnosis and debiasing of visual data. Our key contribution
is in representing a visual dataset as a knowledge graph of concepts. Analyzing this graph for
imbalanced class-concept combinations leads to a principled diagnosis of biases present in the dataset.
Once identified, we generate images to address under-represented class-concept combinations,
promoting a more uniform concept distribution across classes. By using a concept graph, we
circumvent the reliance on a large language model to generate debiased data. Figure 1 illustrates the
core idea of our approach in contrast with existing methods. We target object co-occurrence bias,
a human-interpretable issue known to confound downstream tasks [34, 10]. Object co-occurrence
bias refers to any spurious correlation between a label and an object causally unrelated to the label.
Representing the dataset as a knowledge graph of object co-occurrences provides a structured and
controllable method to diagnose and mitigate these spurious correlations.

Our framework proceeds in three steps: (1) Concept Graph Construction: We construct a knowledge
graph of concepts from the dataset. These concepts are assumed to come from dataset ground
truth such as captions or segmentation masks. (2) Concept Diagnosis: This stage then analyzes
the knowledge graph for concept imbalances, revealing potential biases in the original dataset. (3)
Concept Debiasing: We sample imbalanced concept combinations from the knowledge graph using
graph cliques, each representing a class-concept combination identified as imbalanced. Finally,
we generate images containing under-represented concept combinations to supplement the dataset.
The image generation protocol is generic and uses an off-the-shelf inpainting process with a text-
to-image generative model. This principled approach ensures that the concept distribution in our
augmented data is uniform and less biased. Our experiments validate this approach, showing that
data augmentation based on a balanced concept distribution improves generalization performance
across multiple datasets compared to existing baselines. In summary, our contributions include:

• We propose a new concept graph-based framework to diagnose biases in visual datasets, which
represents a principled approach to diagnosing datasets for biases, and to mitigating them.

• Based on our graph construction and diagnosis, we propose a novel clique-based concept balancing
strategy to address detected biases.

• We demonstrate that balanced concept generation in data augmentation enhances classifier gener-
alization across multiple datasets, over baselines.
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2 Related Work

Bias discovery in deep learning models. The identification of biases in trained deep learning
models has a rich history, with early works exploring the texture and shape-bias tradeoff in ImageNet-
pretrained ResNets [14, 21, 32, 39]. More recently, the field of worst group robustness has emerged,
aiming to generalize classifier performance across multiple groups in the data that correspond to
known spurious correlations [49, 45, 24, 42]. Debiasing and concept discovery in the feature space
of the learned classifier is also common [1, 54, 58]. Testing model performance sensitivity to the
presence of particular attributes has also been explored [53, 36]. With the recent rise in popularity
of large language models, efforts have been made to identify learned biases using off-the-shelf
captioning models [56], adaptive testing [11], and language guidance [19, 37]. Traditional data
augmentation approaches such as CutMix [59], and RandAug [5], are used as baselines as well. Our
work intervenes on the dataset directly, instead of operating in the model feature space or testing
model sensitivity. This allows for a more intuitive and principled approach to bias discovery.

Data diagnosis. Our work is placed in the context of data diagnosis, i.e. identifying biases directly
from the data without using the model as a proxy. One of the early influential works expounding the
importance of datasets in deep learning research was a systematic review of the popular datasets in
computer vision [51]. A modern appraisal categorizing more diverse types of biases in visual datasets
exists in [9]. Additionally, works investigating possible issues with dataset labels have also received
interest [33, 57]. Data diagnosis tools such as REVISE [52] compute object statistics (including
co-occurrence) to generate high-level insights of the data. However, REVISE is not an end-to-end
framework that at once diagnoses and debiases data. It is rather an exploratory tool for an overview
of common concepts in the dataset. A more recent method, ALIA, uses a language model to populate
diverse descriptions of the given dataset, consequently generating images from such descriptions. A
more critical look on dataset bias lies in the field of fairness, particularly with regards to societal bias
[12, 16]. Finally, benchmark datasets for data diagnosis have also been proposed [29, 28].

Object co-occurrence bias in visual recognition. Objects are biased in the company they keep.
This adage is well known in the computer vision literature, as outlined in [34, 10]. Modern efforts
to mitigate object co-occurrence bias involve feature decorrelation [48], object aware contrastive
representations [31], causal interventions [38], and fusing object and contextual information via
attention [2]. The common theme in tackling contextual and co-occurrence bias lies entirely in
using better models (feature representations) rather than intervening in the dataset directly. We place
our debiasing method along the data augmentation direction, allowing for better controllability and
interpretability of the debiasing stage, rather than relying on semantic features learned by a classifier,
which may be difficult for humans to interpret.

3 Approach

Figure 2 illustrates the overall pipeline of our method. In this section, we begin with the problem
statement in Section 3.1, and move to the three major stages in our method definition. Section 3.2
describes the procedure of concept graph construction. Section 3.3 illustrates the details of concept
diagnosis. Finally, Section 3.4 presents our method for concept debiasing.

3.1 Problem Statement

We are given a dataset D = {(xi, yi)}N
i=1, a set of images and their corresponding labels. We also

assume access to a concept set C = {c1, c2, . . . , ck} that describes unique objects present in the data.
An example concept set looks like the following: {alley, crosswalk, downtown, ..., gas
station}, i.e. a list of unique objects present in each image in addition to the class label. Finally, we
are given a classifier f✓(X) parameterized by network parameters ✓. The central hypothesis of this
work is that the class labels exhibit co-occurring bias with the concept set C, affecting downstream
task performance. In this light, we wish to generate an augmented dataset Daug that is debiased
with respect to the concepts and their corresponding class labels. Thus, given the new dataset
D0 = D [ Daug, we wish to retrain f✓(X) in the standard classification setup:

f̂⇤ = arg min
f

E(x,y)2D0 [L(y, f✓(x))], (1)
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Figure 2: Overview of our framework CONBIAS. (a) Given a dataset and its concept metadata which
contains the objects present in each image, (b) we build the concept graph using object co-occurrences. The
line thickness indicates the co-occurrence frequencies of particular concepts with their respective classes. (c)
Next, the clique-based sampling strategy generates under-represented class-concept combinations, which yield
(d) the dataset diagnosis result. (e) Finally, with biases discovered, we generate images of classes containing
under-represented concept combinations in the dataset with a standard text-to-image generative model.

where L(y, f✓(x)) is the cross entropy loss between the class label and classifier prediction. Our
framework consists of three stages: Concept Graph Construction, Concept Diagnosis, and Concept
Debiasing. Next, we provide details on each step.

3.2 Concept Graph Construction

We construct a concept graph G = (V, E, W ) from the data, where |V | is the node set of the graph,
|E| is the edge set, and |W | is the set of weights for each edge in the graph. We first construct the
node set V as a union of the label set Y and concept set C:

V = Y [ C.

Next, we construct the edge set E:

E = {(i, j) | 9 image Dk such that both i and j appear in Dk}.

Finally, we construct the weight set W by computing the weights wij for each edge (i, j) in G:

wij =
NX

n=1

I(i 2 Dn and j 2 Dn),

where I is the indicator function that returns 1 if both i and j are present in the n-th image in D, and
0 otherwise, and N is the total number of images in the dataset.

The concept graph G encapsulates co-occurrence counts between nodes, thus providing an alternative
representation of the (originally visual) data. As we show in the next section, this representation
helps uncover novel imbalances (bias) contained in the dataset.

3.3 Concept Graph Diagnosis

In the previous section, we define how to build the concept graph. Here, we present how to leverage the
concept graph for discovering co-occurrence biases. We present a principled approach to discovering
concept-combinations across classes that co-occur in an imbalanced fashion.
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(Forest, Man, Woman, Bamboo) (Man, Woman, Bamboo) (Tree, Grass) (Man, Woman)

Figure 3: Examples of concept clique sets for Landbird class in Waterbirds dataset uncovered by our diagnosis.
Concepts such as Tree, Forest, Man, Woman, Bamboo are overwhelmingly associated with this class,
indicating strong co-occurrence bias. All these concepts are causally unrelated to the bird type.

Definition (Class Clique Sets) For each class Yi 2 Y , we construct a set of k-cliques using the
concept graph G. The set of all possible k-cliques for class Yi is denoted as Kk

i :

Kk
i = {{cj1 , cj2 , . . . , cjk

} | cj1 , cj2 , . . . , cjk
2 C and j1 < j2 < . . . < jk},

where j1, j2, . . . are the indices of concepts in C. Then, Ki for class Yi can be successfully con-
structed for k = 1, 2, . . . , K, where K is the size of the largest clique in G containing Yi. We
construct class clique sets for every class in the dataset. An illustration of concept cliques in the
Waterbirds dataset that help in bias diagnosis is provided in Figure 3.

Definition (Common Class Clique Sets) Given Ki for each class, we then compute the cliques
common to all classes. These are the cliques of interest, whose imbalances we want to investigate:

K =
\

i

Ki,

where K encapsulates all common cliques enumerated across the dataset for all classes. Refer to
Figure 2 for a broad illustration of the k-clique set construction from the concept graph G.

Definition (Imbalanced Common Cliques) Given the set of common cliques across all classes K,
we compute the imbalanced class-concept combinations, i.e. the imbalanced clique set I:

I[K]Mm=1
= {(|FKm

yi
� FKm

yj
|, arg min(FKm

yi
, FKm

yj
))}, 8i, j,

where FKm
yi

and FKm
yj

indicates the co-occurrence frequency of concepts in clique m with respect to
class yi and yj respectively, and the arg min operator identifies the underrepresented class for the
particular concept clique. Thus, each element in I is a number representing the imbalance of each
common clique across all classes. For the special case where the size of clique m is 1, this equates to
simply looking up the value wij in G. For the case where the size of m > 2, it is straightforward to
compute the co-occurrence of class yi with respect to concepts in m:

wij...k =
NX

n=1

I(i 2 Dn and j 2 Dn . . . and k 2 Dn),

for each image Dn in the data. The set I holds rich information about the data. In addition to holding
the imbalanced counts of concept combinations across all classes, the set I also holds which is the
underrepresented class with respect to a particular concept clique.

Intuitively, concept combinations that are common across all the classes, but do not co-occur
uniformly across the classes are likely biased concept combinations. We provide an example from
the Waterbirds dataset in Figure 4. The training set in Waterbirds is intentionally biased to the
background: 95% of landbirds appear with land backgrounds, and 95% of waterbirds appear with
water backgrounds. First, we find common cliques of varying sizes across the classes (Landbird,
Waterbird). One example of a common clique of size 3 is (Landbird, Beach, Ocean) and
(Waterbird, Beach, Ocean). We compute the co-occurrence of (Landbird, Beach, Ocean)
and (Waterbird, Beach, Ocean) from the extracted metadata, and the imbalance is clear. Since
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waterbirds are far more prone to appear on water, there are significantly more images of waterbirds
containing concepts Beach and Ocean than landbirds, which are more prone to be in land-based
environments. If we look at the co-occurence of Landbird with a land-based concept such as Grass,
we see the opposite imbalance. There are significantly more images of landbirds containing trees over
waterbirds. Similarly, for the water-based concept of Ocean, we see a strong imbalance towards the
Waterbird class. In our debiasing stage, we should therefore generate more images of waterbirds
with tree-based backgrounds, and landbirds with beach/water-based backgrounds. Using the clique-
based approach, we have successfully uncovered the known background bias in the Waterbirds
dataset. This approach is generalizable to multiple classes. All we need are common cliques, and the
computation of concept co-occurrences across the dataset. In this way, our concept graph approach
uncovers interesting concept combinations across the whole dataset that appear in an imbalanced and
spurious fashion. More examples of such imbalances are provided in the supplementary material.

3.4 Concept Graph Debiasing
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Figure 4: Examples of concept imbalances in the Water-
birds dataset. We show the frequencies of concepts cliques as
discovered in the dataset. We see imbalances across not only
single concepts (e.g., Ocean, Grass) but also concept combi-
nations (e.g., (Beach, Ocean), (Tree, Forest)). These
are the biases we aim to mitigate for the downstream task.

We have, to this point, constructed a knowl-
edge graph of the visual data, and diag-
nosed it for concept-based co-occurrence
biases. Once the imbalanced clique set I is
identified in G, we debias the data by gener-
ating images containing under-represented
concepts across classes.

Recall that I = {fi, Yi} inherently holds
the underrepresented class Yi and the fre-
quency fi by which the original dataset
needs to be adjusted with new images of
class Yi with respect to concept clique i.
Following the example in the previous sec-
tion, we notice that the concepts (Beach,
Ocean) are significantly over-represented
in the Waterbird class than Landbird. Similarly, the concept Tree is significantly over-represented
with the Landbird class than the Waterbird class. As a result, we sample fi instances of these
under-represented cliques with respect to their classes, and prompt a text-to-image generative model
for more images of the Waterbird class with the concept Tree. Similarly, we would prompt
the model to generate images of Landbird with the concept Beach, Ocean. We generate images
for all class based imbalances following this upsampling protocol.Typical prompts for our image-
inpainting model would look like: An image of a ocean and a beach, An image of a tree,
An image of a forest, etc. We use an inpainting-based method to make sure that the original
object is not modified in the image, and that the new concepts are only injected into the non-object
space in the image. See the supplementary material for the generated images and the prompts.

Using this upsampling protocol, we generate a set of images that leads to our augmented, debiased
dataset Daug. The original training data D can now be augmented using this data, and the classifier
f✓(X) can be retrained on the dataset D[Daug. In the next section, we conduct experiments on three
datasets to demonstrate our method’s significant improvements of baselines.

4 Experiments

We validate our method on vision datatset diagnosis and debiasing across various scenarios. We begin
by introducing the experimental setup including the datasets, baselines, tasks, and implementation
details in Section 4.1. Section 4.2 presents the main results of our proposed framework, CONBIAS,
compared with state-of-the-art methods. Finally, Section 4.3 details ablation studies and analyses.

4.1 Setup

Datasets. We use three datasets in our work: Waterbirds [45], UrbanCars [22], and COCO-GB [50],
that are commonly used in the bias mitigation domain. We tackle background bias in the Waterbirds
dataset, background and co-occuring object bias in the UrbanCars dataset, and finally gender bias in

6



Table 1: State-of-the-art comparison on different datasets. Results are averaged over three training runs. CB:
class balanced split. OOD: out-of-distribution split. Binary class classification accuracy is used as the metric.
Our method outperforms previous approaches across multiple datasets.

Method
Waterbirds [45] UrbanCars [22] COCO-GB [50]

CB " OOD " CB " OOD " CB" OOD "
Baseline [17] 67.1 44.9 73.5 40.5 58.5 51.9

+ RandAug [5] 73.7 60.2 76.3 46.1 55.8 50.2
+ CutMix [59] 67.9 45.6 74.4 39.3 57.4 51.2
+ ALIA [8] 69.6 48.2 74.0 42.5 58.7 52.4
+ CONBIAS (Ours) 77.9 69.3 78.3 52.9 58.8 51.4

COCO-GB. All the tasks are binary classification tasks. More details on the training splits and class
labels are provided in the supplementary material.

Baseline methods. Our baselines are include a vanilla Resnet-50 model pre-trained on ImageNet,
two typical data augmentation based debiasing methods: (1) CutMix, a technique where we cut
and paste patches between different training images to generate diverse discriminative features, and
(2) RandAug, which creates random transformations on the training data during the learning phase.
Finally, we compare against the recently proposed and state-of-the-art ALIA[8], which uses a large
language model to generate diverse, in-distribution prompts for a text-to-image generative model.

Evaluation protocols. We compute the mean test accuracy over the class-balanced test data and
the out-of-distribution (OOD) test data, similar to [8]. The class-balanced data contains an even
distribution of classes and their respective spurious correlations, while the OOD data contains coun-
terfactual concepts. For example, in Waterbirds dataset, for the class-balanced test data 50% images
of Landbirds have Land backgrounds, while 50% images of Waterbirds have Water backgrounds.
The OOD test set contains Landbirds on Water, and Waterbirds on Land. More details on the test sets
are presented in the supplementary material.

Implementation details. We use existing implementations to train our models. Our Base model
is a Resnet-50 pretrained on ImageNet [17]. We generate the same number of images per data-
augmentation protocol to ensure a fair comparison. For comparison with ALIA on Waterbirds, we
directly use their generated dataset available here. For the other datasets, we used the existing ALIA
implementation to generate the augmented data. Following previous work, we use validation loss
based checkpointing to choose the best model, the Adam optimizer with a learning rate of 10�3, a
weight decay of 10�5, and a cosine learning schedule over 100 epochs. To generate images, we use
Stable Diffusion [44] with a CLIP [40]-based filtering mechanism to ensure reliable image generation.
Finally, we inpaint the object onto the generated image using ground truth masks (available for all
datasets). All code was written in PyTorch [35].

4.2 Main Results

In Table 1 we present the main results, averaged over three training runs. First, we note that for
Waterbirds and UrbanCars, we observe significant improvements in both the Class-Balanced and
OOD test sets over the typical augmentation methods such as CutMix and RandAug. Second, we
note the significant improvement in performance over the most recent state-of-the-art augmentation
method, ALIA. Third, for COCO-GB, while we notice slightly smaller difference in the CB and OOD
accuracies between our method and the baselines, our hypothesis is that this happens because of
limited number of samples used for augmentation. ALIA uses a confidence based filtering mechanism
to remove generated samples. This leads to a small final number of 260 samples to be added for the
retraining part. In the ablation section, we show this hypothesis to be true, and further demonstrate
that on adding more images for the retraining step, we progressively increase the performance gap
between our method and the baselines. These three observations taken together validate the usefulness
of our approach. The next section provides additional insights on the usefulness of our method and
the effect of ablating its components.
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Table 2: Benefit of the graph structure in CON-
BIAS. Leveraging the graph structure is beneficial as
opposed to simply computing single concept-class fre-
quency counts on UrbanCars.

Model CB " OOD "
Base 73.4 40.4
Base + ALIA 74.0 42.5

Base (BG) 78.5 51.9
Base (CoObj) 77.0 47.3
Base (Both) 78.1 51.3
Base (CONBIAS) 79.4 53.2

Table 3: Performance for the IP2P variant of
CONBIAS with respect to base, ALIA, and our
original model on Waterbirds. Our method signifi-
cantly improves over ALIA even when using IP2P,
although the best results are still achieved when us-
ing the stable diffusion based inpainting protocol.

Models CB " OOD "
Base 67.1 44.9
Base + ALIA 69.6 48.2

Base + CONBIAS (IP2P) 72.9 60.5
Base + CONBIAS 77.9 69.3

4.3 Ablations and Analyses

We further analyze our method along five axes: (1) The usefulness of the graph structure, (2)
Robustness of our method to other evaluation metrics, (3) The impact on CB and OOD performance
by increasing the number of added samples for the retraining step, (4) The usefulness of discovered
concepts by our method on the trained classifier, and (5) The impact of the generative component in
our work compared to ALIA, since the latter uses InstructPix2Pix [3] while we use a Stable Diffusion
based inpainting protocol.

Effect of the graph structure. Recalling the definition of Class Clique Sets, in principle one could
only use cliques sizes of 1, i.e., the direct neighbors of each class node. This would be equivalent
to computing the frequency of co-occurrence over a single hop neighborhood of the class node
in the graph. In this ablation we show that one should use larger cliques, i.e. leverage the graph
structure, instead of a simple direct neighborhood based frequency calculation. We trained three
separate models on three different types of Daug: Ours (BG), trained on images containing only
background shortcuts, Ours (CoObj), images containing only the co-occurrence shortcuts, and Ours
(Both), images containing both shortcuts, but not simultaneously.

Table 2 shows the results. First, our approach of leveraging the graph structure provides improvement
over simply using the frequency of a 1-hop neighborhood. Second, we note that all the methods
outperform the baseline and ALIA, which shows that incorporating frequency based co-occurrences
is in a broader sense much more useful than relying on diverse prompts generated by ChatGPT-4,
which is the approach taken by ALIA.

Robustness to evaluation metrics. The CB and OOD test accuracies test for generalization capa-
bilities, but more direct evaluators of shortcut learning exist in the literature. In [22], for instance,
the authors propose (i) The ID Accuracy - which is the accuracy when the test set contains common
background and co-occurring objects, (ii) The BG-GAP - which is the drop in ID accuracy when
the test set contains common co-occurring objects, but uncommon background objects, (iii) The
CoObj-GAP, which is the drop in ID accuracy when the test set contains uncommon co-occurring
objects, but common background objects, and finally (iv) The BG + CoObj GAP, which is the case
when both background and co-occurring objects are uncommon in the test set. A multiple shortcut
mitigation method should minimize the BG + CoOBj GAP metric, and also make sure it does not
exacerbate any shortcut that the base model relies on. In Table 4, we present results of Base, Base
(BG), Base (CoObj), Base(Both), and Base (CONBIAS) on these metrics for UrbanCars. We are
able to post the lowest drops among all baselines on the CoObj-GAP and BG + CoOBj GAP metrics,
suggesting mitigation of multiple shortcut reliance. This places our method in a more realistic context,
as it is infeasible to assume that real world data will only have a single type of bias in them.

Scaling the number of images in Daug. In Table 1, we commented on the fact that our method
provides marginal improvement over the baselines in the COCO-GB dataset. Our hypothesis was that
this was due to the low number of images in the augmented dataset. In Figure 5, we demonstrate the
impact of adding more images to Daug for retraining. Clearly, our method benefits from this protocol,
leading to significant differences over ALIA as we keep increasing the number of images. Note that,
infinite enrichment is not recommended and has been found to be detrimental to classifier performance,
as progressive addition of synthetic images will likely lead to addition of out-of-distribution examples
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Table 4: Robustness of our method to evaluation metrics In addition to CB and OOD performance, we also
report metrics evaluating multiple shortcut mitigation. Results on UrbanCars (Average of three training runs).

Model BG-GAP " CoObj-GAP " BG+CoObj GAP "
Base -11.2 -21.5 -54.8
Base (BG) -5.0 -19.4 -38.0
Base (CoObj) -6.3 -19.2 -47.3
Base (Both) -5.6 -23.2 -47.6
Base (CONBIAS) -6.0 -18.4 -41.4
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Figure 5: Performance on COCO-GB. We show the accuracies on (a) Class-Balanced (CB) and (b)
Out-of-Distribution (OOD) splits. We observe that increasing number of images in Daug improves
performance up to a certain point (1000 images).

in the training data. This explains why, after an inflexion point, the accuracy suffers from adding
more images. Similar observations have been made in [8] and [18].

Discovered concept imbalances and feature attributions. To verify that the model indeed debiases
the imbalanced concepts that our method discovers, we present GradCAM [46] attributions of the
model predictions after retraining. In Figure 6, we show results on all datasets. While other methods
frequently focus on the spurious feature , CONBIAS helps the model focus only on the relevant,
object level features of the data.

The impact of the generative model. ALIA uses an InstructPix2Pix (IP2P) based generation
procedure, while we use stable diffusion with a mask-inpainting procedure to make sure the objects
remain consistent in the image. To ablate the effect of the generation, we present results of our
method with IP2P as the generative model instead, on Waterbirds dataset, in Table 3. First, we note
that even with IP2P as the generative component, we are able to outperform ALIA, which suggests
that it is actually the superior quality of our concept discovery method that leads to the improved
results. Second, our inpainting based method outperforms our IP2P based method, which we argue is
due to the objects being preserved in the generated image, as opposed to traditional image editing
methods, where the object may transform arbitrarily, hurting the quality of augmented data.

5 Conclusion, Limitations, and Future Works

While CONBIAS is the first end-to-end pipeline to both diagnose and debias visual datasets, there are
some limitations: First, that the enumeration of cliques grows exponentially with the size of the graph.
For larger real world graphs, there could be more efficient strategies to find the concept combinations.
Second, in this work we focus on biases emanating out of object co-occurrences. A variety of other
biases exist in vision datasets, and future work would look to address the same. We add an extended
section on broader impact of our work in the supplementary material. In summary, datasets in the
real world are biased, and the exponential increase in dataset sizes over the past decade amplifies
the challenge of investigating model and dataset biases. While both dataset and model diagnosis are
exciting areas of research, an end-to-end diagnosis and debiasing pipeline such as CONBIAS offers
a principled approach to diagnosing and debiasing visual datasets, in turn improving downstream
classification performance. Our state-of-the art results open up numerous interesting possibilities
for future work - incorporating more novel graph structures, and diagnosis under the regime where
concept sets may be wholly or partially unavailable, remain interesting directions to pursue.
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Figure 6: Visualization of the heatmaps for different methods. Top row: Waterbirds. Middle row: UrbanCars.
Bottom row: COCO-GB. Our method enforces the base model to focus on only the relevant features in the data,
and removing reliance on shortcut features, i.e. the background for Waterbirds, the background and co-occurring
object for UrbanCars, and the gender for COCO-GB.
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In this supplementary materials, we provide details and additional results omitted in the main text.1

• Section A: Broader Impact.2

• Section B: Dataset details - Splits and image examples.3

• Section C: Full Concept Set for each dataset.4

• Section D: Dataset Imbalances.5

• Section E: The Generative Model.6

• Section F: Examples of Generated Images using CONBIAS.7

• Section G: Results with standard deviations.8

• Section H: Compute details and runtime.9

A Broader Impact10

Fairness in AI is rapidly gaining priority in current research as models and datasets grow exponentially11

larger, thus making it more and more complicated to diagnose them for biases. It is imperative to12

focus on understanding and mitigating biases learned by models, and inherent biases in the data, to13

ensure reliable and transparent predictions in the real world. The advent of generative models in14

particular, including large language models, and image generative models, invites new questions15

into how to reliably regulate such technologies. These models are trained on datasets in the order of16

hundreds of billions of data points. How do we ensure that problematic aspects of the data do not pass17

onto the models learning from them? How do we ensure that models do not generate synthetic data18

that is potentially harmful, misleading, and misinformative in nature? How do we evaluate the quality19

of generated data by such models? These are the pressing questions that our research direction is20

interested in.21

B Dataset Details22

We use three datasets in our work - Waterbirds [8], UrbanCars [4], and COCO-GB [9].23

For Waterbirds, the class labels are Landbird, Waterbird. The Waterbirds dataset has the background24

bias, i.e. 95% images of landbirds have land-based backgrounds, and 95% images of waterbirds have25

water-based backgrounds. For the concept set annotations, we use the captions extracted by authors26

of [2] captions available here.27

For UrbanCars, the class labels are Urban, Country, defining the type of car. There are multiple28

biases in UrbanCars - (1) Background Bias, i.e. Urban cars appear with 95% correlation with29

urban backgrounds, and Country cars appear with 95% correlation with country backgrounds. (2)30
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Co-Occurring object, i.e. Urban cars appear with 95% correlation with urban objects, and Country31

cars appear with 95% correlation with country objects.32

For COCO-GB, the class labels are Man, Woman. The bias for the dataset are the set of objects in the33

MS-COCO dataset [5]. The authors of [9] find a strong bias of most objects in the data with respect34

to the "Man" class, and design a secret, gender-balanced test set to evaluate gender bias in classifiers.35

B.1 Waterbirds36

In Fig A1 we present examples from the Waterbirds training data. The classes are heavily biased to37

the backgrounds, i.e. Landbirds on Land, Waterbirds on Water.

Figure A1: Examples of training data in Waterbirds dataset. Waterbirds (Top) are 95% biased towards
water backgrounds, while Landbirds (Bottom) are 95% biased towards land backgrounds.

38

B.2 UrbanCars39

In Fig A2 we present examples from the UrbanCars training data. The classes are heavily biased to40

multiple shortcuts - Background and Co-Occurring objects.

Figure A2: Examples of training data in UrbanCars dataset. Urban cars (Top) are 95% biased towards
urban backgrounds and urban co-occurring objects. Country cars (Bottom) are 95% biased towards
country backgrounds and country co-occurring objects.

41

B.3 COCO-GB42

In Fig A3 we present examples from the COCO-GB training data. The "Man" class is known to be43

heavily biased in MS-COCO to everyday objects.

Figure A3: Examples of training data in MS-COCO dataset. Images of men are heavily biased
towards common, everyday objects, as opposed to women. Authors of [9] find over a 90% in all
object correlations towards men.

44
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B.4 Splits45

In Table A1 we present the train, validation, and test splits for our three datasets.

Dataset Train Test Validation

Waterbirds 4795 1199 5794
UrbanCars 8000 1000 1000
COCO-GB 32582 1331 1000

Table A1: Dataset sizes for Train, Test, and Validation sets

46

C Concept Sets47

In Table A2 we present the full concept sets for each dataset. The Waterbirds dataset has 64 unique48

concepts, the UrbanCars dataset has 17 unique concepts, and COCO-GB has 81 unique concepts, all49

from the MS-COCO dataset. Note that both MS-COCO and UrbanCars have ground truth concepts,50

while for Waterbirds, we use the extracted captions here.51

Dataset Concepts

Waterbirds duck, pond, tree, grass, post, ocean, bridge, surfer, surfboard, beach,
people, forest, beak, sailboat, bamboo, sunlight, boy, foot, boat, mountain,
seagull, field, rock, crab, wall, woman, cell phone, man, wing, deer, leaf,
backpack, hillside, statue, display, wave, lake, pen, palm tree, shirt,
sign, bamboo forest, grass plant, tree branch, bushes, horse, sidewalk,
parrot, sun, cup, town, snowy forest, red eye, twig, wooden fence, path,
penguin, fishing rod, pelican, kayak, wine glass, lighthouse, mountain
landscape, wooden path

UrbanCars alley, crosswalk, downtown, gas station, garage-outdoor, driveway, forest
road, field road, desert road, fireplug, stop sign, street sign, parking
meter, traffic light, cow, horse, sheep

COCO-GB stop sign, tie, knife, car, bicycle, fire hydrant, cow, motorcycle,
umbrella, sports ball, cat, surfboard, elephant, skateboard, skis, backpack,
couch, bed, wine glass, carrot, cup, airplane, handbag, cake, cell phone,
woman, refrigerator, potted plant, sandwich, vase, chair, bus, frisbee,
parking meter, bench, horse, truck, snowboard, train, clock, keyboard,
scissors, man, bottle, kite, traffic light, book, dining table, sheep,
fork, spoon, tennis racket, dog, bowl, suitcase, boat, donut, baseball
bat, orange, toothbrush, banana, oven, laptop, toilet, sink, pizza, mouse,
baseball glove, tv, teddy bear, hot dog, broccoli, remote, bird, microwave,
apple, zebra, bear, toaster, giraffe, hair drier

Table A2: Concepts for Waterbirds, UrbanCars, and COCO-GB datasets

D Dataset Imbalances52

In this section we shed more insight into what sort of concept imbalances ConBias discovers. These53

object level insights are also, to the best of our knowledge, the first of its kind, shedding more light54

on the secret co-ocurrence biases hidden in data.55

D.1 Waterbirds56

In addition to the main paper, we list some other category imbalances in Waterbirds in Figure A4.57

Some of these extreme imbalances appear in diverse 2-clique/3-clique combinations. For example, we58

see that concepts like forest, man, woman are significantly biased towards the Landbird class,59
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while concepts like beach, man, sun, lake, mountain are biased towards the Waterbird60

class. This is the background bias that is known in the Waterbirds dataset, that ConBias successfully61

uncovers.62

Figure A4: Extreme imbalance of particular concepts in Waterbirds dataset, as discovered by ConBias.

D.2 UrbanCars63

In UrbanCars, the class labels (country car, urban car) are intentionally biased towards background64

and co-occurring objects. In Figure A5, we see that there exists an extreme imbalance betwee65

urban concepts such as driveway, traffic light towards urban cars, and country concepts66

such as forest road, field road, cow, horse towards country cars. These are exactly the67

background and co-occurring biases in the construction of the data, that ConBias successfully68

uncovers.69

Figure A5: Extreme imbalance of particular concepts in UrbanCars dataset, as discovered by ConBias.

D.3 COCO-GB70

The gender bias in COCO-GB has been extensively studied in [9]. In Figure A6, we show the extreme71

imbalance towards specific concepts in the MS-COCO dataset. Concepts such as baseball bat,72
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sports ball, motorcycle, truck overwhelmingly correlate with images of men, which may73

be problematic for the classifier to learn.74

Figure A6: Extreme imbalance of particular concepts in MS-COCO dataset, as discovered by
ConBias.

E Generative Model75

Here we present more details of our generative model. We use Stable Diffusion based inpainting, as76

illustrated in Figure A7. Given the prompt, we first generate an image using Stable Diffusion [7].77

Next, using ground truth masks of the object, we paste the object at the foreground of the generated78

image. In this way, we preserve the original object in the image, which is a challenge for traditional79

image editing methods such as InstructPix2Pix. We believe the inpainting method is a more principled80

approach to synthetic image generation, particularly if the downstream task is classification in nature.81

Sample Concepts 
and Class

Text-to-Image 
Generation 

Model

Inpaint

 

Bamboo, Forest, Man

“Waterbird”

Clip-based
Filter

Ground Truth Mask

Original Image

Image Foreground

Synthetic Image

A photo of a bird and 
bamboo forest and man

Prompt

Figure A7: Image generation Pipeline: Given concepts to be upsampled as discovered ConBias, we
sample the concept combinations and images from the class to be upsampled. We prompt Stable
Diffusion for an image containing such concepts. We extract the object of interest using ground truth
masks, and inpaint the object over the generated image. This ensures that the object features are not
harmed during generation. We use a CLIP-based scoring filter to make sure the generated image
contains the concepts requested in the prompt. We have found a score of 0.6 to be satisfactory as a
threshold.
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The generation process of a single image takes the followings as input: The sampled concept82

combination and the class for which this concept combination needs to be generated. The output of83

the generative model is the final image with the specified concepts in the background and an instance84

of the specified category in the foreground.85

The process will first transform the concept list [concept 1, concept 2, . . . , concept N] into a prompt:86

“a photo of concept 1, concept 2, . . . , and concept N.” The prompt is then passed into the text-to-image87

generation model (stable diffusion) to get the generated image as background. We apply a clip-score88

filtering after the generation process to only keep the images with a CLIP-score over 0.6 to make sure89

that the generated images can accurately represent the concept list. Next, the process will sample an90

image of the specified category from the original dataset, and use the mask to segment out the desired91

object. Finally, inpainting is performed to clip the desired object as foreground onto the generated92

image to obtain the final image.93

F Generated Images by ConBias94

In this section we present examples of synthetic data generated by ConBias for Waterbirds, UrbanCars,95

and COCO-GB.96

F.1 Waterbirds97

In Figure A8 we present diverse images generated by ConBias for the two classes of Landbird and98

Waterbird. Due to the bias diagnosis stage where we found the overwhelming correlation between99

landbirds with land based backgrounds such as tree, forest, field, grass, etc, and waterbirds with water100

based backgrounds such as beach, ocean, boat, etc, ConBias was automatically able to decide which101

concept combinations to use to generate new, debiased images.102

Figure A8: (Top) Generated images of waterbirds with land-based backgrounds. (Bottom) Generated
images of landbirds with water-based backgrounds, as discovered by ConBias. Note the consistency
in object preservation.

F.2 UrbanCars103

In Figure A9 we present diverse images generated by ConBias for the two classes of Urban and104

Country cars. Due to the bias diagnosis stage, we were able to discover the overwhelming correlation105

between urban cars with urban based backgrounds such as gas station, driveway, alley, etc and urban106

co-occurring objects such as fireplug, stop sign, etc. Similarly, for country cars, we discovered107

bias towards country backgrounds such as desert road, field road, forest road, and, and country108

co-occurring objects such as cow, sheep, horse. As a result, ConBias helps generate urban cars with109

country based backgrounds and co-occurring objects, and vice versa.110

F.3 COCO-GB111

In Figure A10 we present diverse images generated by ConBias for the two classes of Man and112

Woman in COCO-GB. In this dataset, we were able to discover significant under-representation of113

women with respect to common, everyday objects in the MS-COCO dataset. Some examples include114

skateboard, motorcycle, car, truck, etc. These objects could have gendered assumptions115

and it is imperative for debiased datasets to have uniform representation across classes for such116

concepts.117
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Figure A9: (Top) Generated images of country cars with urban-based backgrounds and co-ocurring
objects. (Bottom) Generated images of urban cars with urban-based backgrounds and co-occurring
objects, as discovered by ConBias. Note the consistency in object preservation.

Figure A10: Generated images of COCO-GB using everyday, common objects that are discovered
to be biased towards men by ConBias. Example concepts include skateboard, motorcycle,
truck, sports ball, etc. Note the consistency in object preservation.

We would also like to bring to the attention of our readers the successful nature of the inpainting118

procedure. We are able to consistently preserve the class label of interest in the synthetic images.119

This is imperative to ensure that the generative pipeline does not create unreasonable objects that120

make it infeasible for the classifier to learn.121

G Confidence Intervals122

In Table A3 we present the averaged results with standard deviations over three training runs. For123

both Waterbirds and UrbanCars, our improvements are large and significant. For COCO-GB, while124

originally did not observe statistically significant results, in the main paper we showed that increasing125

the number of images in Daug leads to significant improvements over the baselines.

Table A3: State-of-the-art comparison on different datasets. Results are averaged over three training runs.
CB: class balanced split. OOD: out-of-distribution split. Binary class classification accuracy is used as the
metric. CONBIAS outperforms previous approaches across multiple datasets. Standard deviations included.

Method
Waterbirds [8] UrbanCars [4] COCO-GB [9]

CB OOD CB OOD CB OOD

Baseline [3] 67.1 ± 0.5 44.9 ± 0.8 73.5 ± 0.6 40.5 ± 0.8 58.5± 0.7 51.9± 0.7
+ RandAug [1] 73.7 ± 0.8 60.2± 0.7 76.3 ± 0.8 46.1 ± 0.9 55.8± 0.4 50.2 ± 0.6
+ CutMix [10] 67.9 ± 0.7 45.6 ± 0.7 74.4± 0.7 39.3 ± 0.9 57.4± 0.5 51.2± 0.6
+ ALIA [2] 69.6 ± 1.2 48.2 ± 1.0 74.0 ± 0.9 42.5 ± 0.9 58.7± 0.4 52.4± 0.6
+ ConBias (ours) 77.9 ± 0.9 69.3 ± 0.8 78.3 ± 0.7 52.9± 0.7 58.8 ± 0.6 51.4 ± 0.4

126

H Compute Details127

We trained all models on a single NVIDIA RTX A4000 and used PyTorch [6] for all experiments.128

With the early stopping cosine learning scheduled described in the main paper, we observed fast129

training times, with 90 minutes for three runs on Waterbirds and UrbanCars, and 180 minutes for130

three runs on COCO-GB.131
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Abstract

Disentangled graph convolutional models have recently
demonstrated superior performance on a variety of datasets.
It has been hypothesized that the improved performance em-
anates from a mitigation of the oversmoothing problem, a
fundamental problem in graph based learning. However, no
systematic study exists to verify this hypothesis. In this work,
we show that this hypothesis is dependent on a tradeoff be-
tween the graph structure and feature representations in the
data. We propose a Dirichlet Energy-based estimator that ef-
fectively quantifies this tradeoff, and demonstrate that disen-
tanglement mitigates oversmoothing on datasets with infor-
mative graph structure, as opposed to datasets with informa-
tive node features. Finally, we leverage an intuitive experi-
mental framework to illustrate the importance of explicitly
taking into account this tradeoff to mitigate the oversmooth-
ing problem in graph convolutional networks. 1

Introduction
Graph Convolutional Networks(GCNs) have emerged as the
popular choice of learning algorithms for graph-structured
data (Kipf and Welling 2016; Velickovic et al. 2017; Fan
et al. 2019; Gao et al. 2023). The graph propagation typical
in GCNs is a weighted aggregation of features over node
neighborhoods, defined over the (usually) symmetric nor-
malized adjacency matrix. This inductive bias has success-
fully led to impressive performance on learning tasks such
as graph classification (Lee, Rossi, and Kong 2018; Liang
et al. 2021; Chen et al. 2022), node classification (Zhang
et al. 2022; Zhao, Zhang, and Wang 2021; Ji et al. 2023),
and even in multi-modal learning, where graph and image-
(or text) based data have been used in conjunction for diverse
embeddings (Chen et al. 2019b; Chen, Zou, and Chen 2022;
Zhou et al. 2022; Yuan et al. 2023).

However, the inductive bias of GCNs renders them sus-
ceptible to the oversmoothing problem(Li, Han, and Wu
2018), where features from distant neighborhoods get more
similar to each other as the number of layers increases.
While this is useful for learning distinct class representa-
tions, an excess of this effect has been shown to have adverse
consequences on classification tasks, as features of nodes
from different classes in distant neighborhoods may mix to-
gether, leading to sub-optimal representations. This has led

1We will open source our code for better reproducibility.

to a challenge in building deep graph convolutional models,
and over the years, many works have aimed at mitigating
this issue, leading to deeper models and lesser oversmooth-
ing (Zhao and Akoglu 2019; Wu et al. 2022; Zheng, Fu, and
He 2021; Rusch, Bronstein, and Mishra 2023). In addition,
measures to calculate the degree of oversmoothing have also
been proposed, allowing for better interpretability of the ef-
fect (Chen et al. 2019a; Zhou et al. 2021).

Recently, the introduction of a family of disentangled
graph convolutional models (Ma et al. 2019; Li et al. 2021,
2023) has led to impressive performance on tasks in semi-
supervised learning. Such models leverage mechanisms to
separate the GCN feature space into distinct chunks, based
on the assumption that a node is connected to its neighbor-
hood due to distinct factors. While it has been hypothesized
that the performance improvement and oversmoothing mit-
igation stems from the use of disentangled representations
(Ma et al. 2019; Guo et al. 2022), no systematic study exists
to verify this hypothesis as such.

In this work, we shed more insight on the effect of dis-
entangled representations on oversmoothing in GCNs. We
find that, in addition to the process of disentanglement, the
datasets being used are also of immense importance when
studying the effect of oversmoothing - particularly with re-
spect to the graph structure and node feature representations,
both of which are inherent properties of the data. To study
the effect of disentanglement on graph data, we design a
novel estimator using the Dirichlet Energy, which allows us
to quantify the relative importance of graph structure with
respect to feature representations in graph propagation. This
estimator, the Latent Dirichlet Energy (LDE) ratio, is an in-
tuitive and useful metric for two reasons:
• It allows us to demonstrate that in datasets with low LDE

ratios, where the graph structure is relatively more im-
portant, disentangled models are successful in mitigating
the oversmoothing effect. However, in datasets with high
LDE ratios where the graph structure does not hold use-
ful information, disentanglement proves to be unsuccess-
ful in mitigating oversmoothing.

• Our estimator allows us to observe and quantify a trade-
off between graph structure and feature representations
in the dataset. Based on these observations, we show-
case a learning framework that explicitly leverages this
tradeoff, and helps alleviate the oversmoothing problem



in datasets with high LDE ratios, leading to more stable
results when increasing the number of layers.

Our work is similar in spirit to (Abel, Benami, and
Louzoun 2019), but crucial differences exist, particularly
that this work does not involve the the use of disentangled
models, and it does not study the use of disentangling the
feature representations and graph topology with respect to
the oversmoothing problem. Our proposed framework pro-
vides insights into the relationship between datasets, disen-
tangled models, and the oversmoothing problem, in addition
to how more stable aggregated results on increasing layers
can be achieved by explicitly learning the graph structure
and feature representation tradeoff.

In summary, our contributions include:

1. The first systematic study of the effect of disentangled
representations on oversmoothing in GCNs.

2. The design of a novel, Dirichlet-Energy based estimator
that quantifies the tradeoff between graph structure in-
formativeness and node feature informativeness in graph
datasets.

3. Showcasing a novel experimental framework that ex-
plicitly leverages such a tradeoff, leading to a learning
mechanism that alleviates oversmoothing on challenging
datasets.

Related Work
Oversmoothing in GCNs
Oversmoothing in graph neural networks was first demon-
strated in (Li, Han, and Wu 2018), where it was shown that
the propagation rule in a standard GCN was a smoothing
(weighted mean) operation equivalent to damping the sym-
metric normalized laplacian of the signal. As the number of
layers in a GCN network increases, the weighted aggrega-
tion of k-hop nodes rendered more and more features from
nodes with different classes to be similar to each other, ad-
versely affecting classification performance. Over the years,
many mitigation techniques have been proposed (Oono and
Suzuki 2019; Zhao and Akoglu 2019; Liu, Gao, and Ji
2020), that aim to build deeper GCNs without adversely af-
fecting performance. In addition to mitigating techniques,
proxy metrics to directly measure the effect of oversmooth-
ing on graph networks have also been proposed (Chen et al.
2019a; Zhou et al. 2021). We use the Mean Average Dis-
tance (MAD) in our work, which is a measure that indicates
how close the features from different nodes are.

Disentangled Representations
The DisenGCN (Ma et al. 2019) proposed a neighborhood
routing mechanism to disentangle node representations into
k latent factors. The assumptions were that nodes are con-
nected to their neighborhoods as a result of distinct, dis-
entangled relations, and the neighborhood routing mecha-
nism aimed at uncovering these relations. The neighborhood
mechanism outputs node representations that are disentan-
gled into k-distinct factors. Using the DisenGCN as a back-
bone, IPGDN (Liu et al. 2019) adds an additional HSIC
based pairwise independence criterion on the latent factors.

The independence constraint further forces disentangled fac-
tors to assume orthogonality, leading to better separation be-
tween features, and discriminative quality. The LGD-GCN
(Guo et al. 2022) builds a knn graph out of the features and
propagates as an additional step on the disentangled repre-
sentations. This is done to reinforce the feature representa-
tions over the graph structure. All these baselines improve
the richness of feature representations, and therefore are use-
ful to study in relation to how they affect oversmoothing in
different datasets. We use these three disentangled models in
our systematic study.

Table 1: Dataset Statistics

Datasets Cora Citeseer Pubmed Flickr Blogcatalog

Nodes 2708 3327 19717 7575 5196
Edges 5429 4732 44338 239738 171743
Features 1433 3703 500 12047 8189
Classes 7 6 3 9 6
Train 140 120 60 757 519
Validation 500 500 500 1515 1039
Test 1000 1000 1000 5303 3638

Table 2: The different Dirichlet energy ratios computed for
each dataset. The social networks have systematically higher
values and give evidence for a stronger oversmoothing prob-
lem.

Cora Citeseer Pubmed Flickr Blogcatalog

s 0.95 1.84 0.04 3.23 3.17

sER 0.92 0.83 0.84 1.01 1

sBA 0.94 0.83 0.84 0.99 0.98

Preliminaries
We briefly introduce some notation to ensure consistency
across the work. Next, we discuss the basics of disentangled
models, and the metric for calculating the degree of over-
smoothing in node representations.

Notation
A Graph G = (V, E) is defined over two sets, V , and E,
the vertex set and edge set respectively. The edge set E de-
fines the adjacency matrix A 2 Rn⇥n, where n = |V |.
Each node v 2 V has a feature representation xv 2 Rd.
For convenience, we denote the feature matrix X 2 Rn⇥d

that collects the feature representations for all nodes. For G,
we denote the degree matrix as D, the normalized adjacency
matrix Â = A+I and normalized degree matrix D̂ = D+I .
The graph laplacian is L = D � A.

Neighborhood Routing in Disentangled GCNs
The disentanglement mechanism proceeds first by a
k-subspace projection, and second, an expectation-
maximisation (EM) framework to update and aggregate



the node representations in the k-disentangled spaces.
Given each node xi and the latent factor zik, the subspace
projection is defined:

zik =
�(wT

k xi + bk)

kzikk2
(1)

where � is a non-linearity, and wk the weights of each latent
factor. Next the EM framework updates the probabilities that
nodes are connected due to latent factor k. For a particular
node i, a neighboring node j, and the edge list of the graph
E:

pjk = softmax
⇣zjk · ck

⌧

⌘
(2)

where ck is initialized with zik and updated iteratively:

ck = zik +
X

j2E

pjkzjk (3)

Eq (2) and (3) define the EM framework and the neighbor-
hood routing mechanism, the output of which is a feature
matrix of nodes with k-disentangled latent factors.

Mean Average Distance
In addition to mitigating techniques, proxy metrics to di-
rectly measure the effect of oversmoothing on graph net-
works have also been proposed. One well used metric is the
Mean Average Distance (MAD), which computes how simi-
lar features get to each other as graph propagation continues.

Given a layer representation X 2 Rn⇥d, where n is the
number of nodes, d the number of features, the distance ma-
trix D̄ 2 Rn⇥n is calculated using cosine similarity

D̄ij = 1 � Xi,: · Xj,:

|Xi,:| · |Xj,:|
(4)

Then, the MAD is computed as the global mean of the ma-
trix D̄ in Eq 4. We use the MAD in our work to calculate the
degree of oversmoothing in the different models.

Disentangled Graph Convolutional Models
and Oversmoothing

While previous works have hypothesized that disentangled
models mitigate the oversmoothing problem (Ma et al. 2019;
Liu et al. 2019; Guo et al. 2022), there has been no sys-
tematic study to verify the claim. In this section, we begin
our investigation into the relationship between disentangled
models and the oversmoothing phenomenon. We introduce
a novel Dirichlet energy-based estimator, the LDE ratio, that
allows us to quantify the oversmoothing potential in a graph
dataset.

Next, we conduct a preliminary empirical study2, where
we produce aggregated results (of ten runs) on commonly
used datasets in the graph learning literature. We observe a
clear pattern that emerges - Disentanglement helps mitigate

2For details, see the Experiments section.

oversmoothing on datasets with low LDE ratios, while dis-
entanglement suffers from strong oversmoothing on datasets
with high LDE ratios (Figure 1). The insights from our novel
estimator provide clarity on when disentanglement is useful,
and when it may not be enough.

Estimating the Oversmoothing Potential
We propose using the Dirichlet energy as a natural estimator
to capture the smoothing tendency in a graph. Our estimator,
the LDE ratio, reports the Dirichlet energy of a dataset rela-
tive to a random Erdos-Renyi graph. The intuition for doing
this is two-fold: First, the Dirichlet energy is a well used
estimator of feature smoothness over a graph (Smith et al.
2017) and captures the effect of Laplacian smoothing in gen-
eral (Zhou et al. 2021; Cai and Wang 2020), and second, we
compare the result to a baseline containing no structural in-
formation, a random graph with the same number of node
and edges as in the tested graph. The ratio thus allows us
to capture how much the graph topology plays a role in the
evaluation, as opposed to the feature representations, since a
random graph has no information in its topology at all. We
use common datasets in the graph learning literature, whose
details are in Table 1.

Given the graph Laplacian L, and a single feature f on
the nodes of the graph, the Dirichlet energy is defined as
sf = (fT Lf)/kfk2, where kfk is the l2 norm of f . This
quantity captures the variations of the feature values over
the graph. A high value of the Dirichlet energy for a given
graph means large variations of its features between con-
nected nodes. This signals that node neighborhoods may not
be connected due to similar features, which is an implicit as-
sumption of the disentangled models. We compare different
graphs with multiple features per node and different number
of edges. We generalize the definition in our context. Given
X̄ the feature matrix X where each column has been nor-
malized (l2-norm), the mean Dirichlet energy per edge of
the feature data as

s =
Tr(X̄T LX̄)

m
,

where m is the number of edges , and Tr(.) is the trace func-
tion. Further, we want to evaluate the impact of the graph
structure to feature variations by comparing to a random
model. For each graph, we compute the ratio sr relative to
the Dirichlet energy of a random graph with the same num-
ber of nodes but randomly assigned edges. Therefore, the
Dirichlet energy ratio sr is defined as

sr =
Tr(X̄T LX̄)

Tr(X̄T LrX̄)
, (5)

and Lr is the Laplacian of the random graph. We use 2 ran-
dom graphs in the experiments, an Erdos-Renyi graph and a
Barabasi-Albert graph giving sER and sBA respectively.

Intuitively, a small sr suggests that the graph structure
connects neighbors with similar feature values more than a
random graph, meaning that the graph topology is poten-
tially useful in representation learning and less susceptible
to oversmoothing. On the contrary, the case where sr is close



(a) Low LDE (b) High LDE

Figure 1: Aggregated performance of 10 runs on the low LDE and high LDE datasets

to one shows that the graph does not contain more informa-
tion than a random graph, which would make it susceptible
to oversmoothing. We report the complete LDE ratios in Ta-
ble 2. Flickr and Blogcatalog have a higher value for the
LDE ratios, some close or even surpassing one, suggesting
less informative graph structure. On the contrary, Cora, Cite-
seer, and Pubmed have relatively lower LDE ratios, all less
than one, suggesting more informative graph structure.

Analysis of Oversmoothing in Disentangled
Models

The LDE ratios in the previous section suggest that disen-
tangled models on datasets with high LDE ratios may be
prone to stronger oversmoothing. In this first analysis sec-
tion, we tackle the following research question - When does
disentanglement mitigate oversmoothing? In Figure 1, we
present aggregated results separately on the low LDE ratio
data - Cora, Citeseer, Pubmed(Sen et al. 2008), and the high
LDE data - Flickr, BlogCatalog(Huang, Li, and Hu 2017).
Individual results for the interested reader can be found in
the supplementary material. Typically, oversmoothing is in-
dicated by a sharp drop in accuracy as the number of layers
increases. In Figure 1a, for the low LDE ratio data, we do not
observe an adverse drop in performance for the disentangled
models, suggesting a mitigation against the oversmoothing
issue.

However, for the high LDE data in Figure 1b, we observe
a strong oversmoothing effect for all the models. Despite
having the best overall performance with a single layer, the
drop is significant for LGD-GCN with 3 or more layers.
While the DisenGCN is relatively more stable than the other
models, it still cannot avoid the oversmoothing issue. These
results are interesting as Cora, Citeseer, Pubmed belong to
the so called citation datasets, while Flickr and BlogCatalog
belong to the so called social media datasets. The poor per-
formance of the disentangled models when increasing layers
on social media data indicates that the graph based aggrega-
tion leads to strong oversmoothing. We recall that disentan-
gled models operate on the assumption that each node in a
graph is connected to its neighborhood as a result of distinct
factors, and that similar nodes would display similar dis-
tinct factors. Intuitively, then, it would seem that the perfor-
mance of disentangled models would be adversely affected
if node neighborhoods did not hold useful information, i.e.

the graph structure was not sufficiently informative. A cita-
tion dataset contains links between academic publications -
it would seem natural that papers on similar topics would
be connected to each other in the graph. For social media
data (eg: Flickr), users may be connected to each other and
yet belong to multiple groups at the same time, making the
graph structure and label relationship more complex. These
results help answer our first research question - Disentan-
glement helps mitigate oversmoothing in datasets with low
LDE ratio, but is adversely affected by oversmoothing in
datasets with high LDE ratio, i.e. datasets with insufficient
structural information.

The Tradeoff between Graph Structure and
Feature Representations
The results for our first analysis indicate a tradeoff between
the information held in node feature representations, and
the information held in the graph structure. Since the over-
smoothing effect was considerably strong on the social me-
dia data, such an observation immediately leads to our sec-
ond analysis - Can a learning mechanism explicitly leverage
this tradeoff to mitigate oversmoothing?

Learning the Tradeoff between Graph
Structure and Feature Representations

The results from the previous section indicate that disentan-
gled models are susceptible to stronger oversmoothing in
graph datasets where the graph structure is not sufficiently
meaningful, as opposed to node feature representations. The
results also point to the possible benefit of leveraging a
tradeoff between the graph structure and feature representa-
tions during the learning process. To investigate this hypoth-
esis, we propose an experimental framework that uses two
branches in its training process, followed by a fusion oper-
ation. To encode the information in the graph structure, we
can simply use the original adjacency matrix Ag (the topol-
ogy branch) of the graph dataset. To encode feature affinity,
we construct a k-nn graph Af of the feature representations
in the original graph (the feature branch), similar to LGD-
GCN, but a crucial difference exists - The feature aggrega-
tion on the knn graph occurs in parallel, as opposed to in
sequence for the LGD-GCN, which does not have this ex-
plicit tradeoff in its learning process.



Figure 2: SplitGCN Architecture: Learning the tradeoff between feature representations and graph topology. Given the graph
G, and the feature matrix X , the layers marked with Af receive the k-nn graph as the input adjacency matrix, which we call the
feature branch. The layers marked with Ag receive the original adjacency matrix as input, which we call the topology branch.
The outputs from each layer are fused with the learnable parameter ↵, and passed as input to the next layer. The region marked
in orange is the generic SplitGCNConv layer that we propose.

We have two model variants: The SplitDisenGCN, where
the topology branch propagates on a DisenGCN layer, and
the SplitGCN, where the topology branch operates on a
GCN layer. In addition to learning the tradeoff between the
topology (structure) and feature representations, these vari-
ants allow us to isolate the effects of disentanglement and
the knn graph, shedding insight on which factor plays the
key role in oversmoothing. To implement the tradeoff, we in-
troduce the fusion parameter ↵ that is learnable. This allows
the network to optimally learn the weights needed to assign
to each branch at each layer. The SplitGCN, illustrated in
Figure 2, helps split the feature learning and graph learning
through two separate paths. We show that a simple weighted
combination of the feature and topology branches, leads to
more stable results. Note that this framework is not meant
to be a state-of-the-art model. It is designed to demonstrate
that oversmoothing can be mitigated if the tradeoff between
graph structure and node feature representations is explicitly
accounted for during the learning process. In this way, we
provide a synergistic discourse on the relationships between
datasets, disentangled graph convolutional models, and the
oversmoothing problem.

The SplitGCNConv Layer
Given the adjacency matrix Ag 2 Rn⇥n, the input feature
matrix X 2 Rn⇥d, the output at a particular GCN layer l,
parameterized by ⇥l is

zl+1
g = �(D̂� 1

2 ÂgD̂
� 1

2 X l⇥l). (6)

Similarly, given the knn feature matrix Af 2 Rn⇥n, the
input feature matrix X 2 Rn⇥d, the output at a particular
GCN layer l, parameterized by ⇥̃l is

zl+1
f = �(D̂� 1

2 Âf D̂� 1
2 X l⇥̃l). (7)

The generalized SplitGCNConv layer is a weighted combi-
nation of the outputs zg and zf in Equations (6) and (7)

ẑl+1 = ↵l · zl+1
g + (1 � ↵l) · zl+1

f . (8)

Equation (8) represents the output of a single SplitGCN-
Conv layer. For the SplitDisenGCN variant, Eq. (6) is re-
placed with the disentanglement process described in Eq.
(1), (2), and (3). This operation is repeatable over many
layers. Over the course of training, the parameter ↵ learns
the optimal weights to be assigned to each branch, reflect-
ing the differing importance of the features and graph topol-
ogy. It is important to note the difference between such a
joint-learning based, dynamic architecture, over a disentan-
gled framework. For example, in the LGD-GCN, the current
state-of-the-art disentangled model, at each node the neigh-
bors are assigned and contribute to different latent factors in
the node representation depending on their feature values.
For SplitGCN, nodes are connected if they have similar fea-
ture vectors wherever they are on the graph, they do not need
to be neighbors on the original graph. Moreover, in Split-
GCN, the parameter ↵ allowing to combine the graph and
feature point of views is a learned real valued number. As
the results will show, such modifications significantly stabi-
lize overall model performance.

Experiments
Setup
Our baselines are the DisenGCN(Ma et al. 2019), IPGDN
(Liu et al. 2019), and LGD-GCN(Guo et al. 2022). For
all the models, we use publicly available implementations,
and the best hyperparameters as shared by the original pa-
pers. Where hyperparameters were not available, we used a
Bayesian hyperparameter search and then evaluated on the
best values on the validation sets. We use the same dataset
splits and hyperparameters as used in (Guo et al. 2022) to



Table 3: Aggregate performance on all datasets (Rounded to 2 decimal places)

Blogcatalog Flickr

Model 1 layer 3 layers 5 layers 1 layer 3 layers 5 layers

GCN 0.66 ± 0.00 0.61 ± 0.02 0.32 ± 0.02 0.50 ± 0.00 0.21 ± 0.00 0.10 ± 0.01
DisenGCN 0.86 ± 0.01 0.68 ± 0.01 0.62 ± 0.02 0.77 ± 0.01 0.57 ± 0.01 0.49 ± 0.01
IPGDN 0.43 ± 0.02 0.38 ± 0.01 0.36 ± 0.03 0.34 ± 0.02 0.30 ± 0.03 0.21 ± 0.02
LGD-GCN 0.91 ± 0.01 0.38 ± 0.06 0.31 ± 0.05 0.85 ± 0.01 0.23 ± 0.04 0.18 ± 0.01
SplitGCN (ours) 0.91 ± 0.00 0.84 ± 0.01 0.66 ± 0.03 0.78 ± 0.01 0.75 ± 0.01 0.73 ± 0.01
Split-Disgcn (ours) 0.87 ± 0.00 0.89 ± 0.01 0.85 ± 0.01 0.79 ± 0.00 0.75 ± 0.01 0.65 ± 0.01

Cora Citeseer

Model 1 layer 3 layers 5 layers 1 layer 3 layers 5 layers

GCN 0.77 ± 0.00 0.79 ± 0.02 0.76 ± 0.02 0.66 ± 0.01 0.66 ± 0.01 0.65 ± 0.02
DisenGCN 0.71 ± 0.01 0.80 ± 0.01 0.82 ± 0.02 0.65 ± 0.01 0.69 ± 0.01 0.71 ± 0.01
IPGDN 0.71 ± 0.02 0.81 ± 0.01 0.82 ± 0.03 0.63 ± 0.02 0.69 ± 0.03 0.70 ± 0.02
LGD-GCN 0.79 ± 0.01 0.83 ± 0.06 0.84 ± 0.05 0.71 ± 0.01 0.73 ± 0.04 0.70 ± 0.01
SplitGCN (ours) 0.78 ± 0.01 0.78 ± 0.01 0.71 ± 0.03 0.68 ± 0.01 0.67 ± 0.01 0.62 ± 0.02
Split-Disgcn (ours) 0.72 ± 0.01 0.78 ± 0.01 0.80 ± 0.00 0.67 ± 0.01 0.70 ± 0.01 0.71 ± 0.01

calculate the aggregate performance. For the SplitGCN, we
run a Bayesian hyperparameter sweep on the the number of
neighbors to be used in the k-nn graph to build Af , the learn-
ing rate, dropout, and weight decay. We train for 500 epochs,
but use early stopping wherever appropriate. For exact val-
ues, see supplementary material. To ensure fair comparisons,
we use the best overall hyperparameters when evaluating the
results over the layers. The implementation is in PyTorch
(Paszke et al. 2019) and PyG(Fey and Lenssen 2019).

Results
We present the results on the low LDE and high LDE
datasets in Table 3 (see supplementary for Pubmed results).
For the low LDE data, we observe that disentanglement does
indeed mitigate the oversmoothing, with improving model
accuracy over increasing layers. This is expected, since the
graph structure is informative in this case. It is interesting to
note the benefit of disentanglement between SplitDisGCN
and SplitGCN. Without disentanglement, performance is ad-
versely affected for all three datasets for five layers in the
case of SplitGCN, while for the SplitDisGCN, this is not the
case. For the high LDE data, where we originally observed
the strong oversmoothing by exclusively using the disen-
tangled models, we observe significantly improved perfor-
mance on increasing the number of layers (when comparing
across models comprising the same number of layers), both
for the SplitGCN and SplitDisGCN. This demonstrates the
importance of reinforcing the knn feature graph based prop-
agation, as opposed to using only the graph structure. These
results also validate the intuition of our framework. While
all the models drop in accuracy on increasing the number of
layers, we demonstrate that both the SplitDisGCN and Split-
GCN are the most robust to these drops.

Ablations
The benefit of the feature-topology tradeoff To verify
that using a combination of both the feature and topology

branches are important, instead of using either of the two
branches exclusively, we present the results on BlogCatalog
and Flickr datasets using just the feature branch (Af only),
and the topology branch (Ag only) separately. We compare
against the SplitGCN which uses both the branches, and also
add the SplitDisGCN variant as well for completeness, in
Table 4. We are able to demonstrate that both the variants
benefit from learning an optimal combination of the feature
and topology representations, as the accuracies and stability
is considerably better than using each branch in isolation.

The evolution of ↵
We are also interested in how the fusion parameter ↵ in
SplitGCN evolves over training, since it is this parameter
that quantifies the tradeoff during the learning process. In-
tuitively, we expect that for the social media datasets, the
network should learn to emphasize the feature branch more
than the topology branch, since for these datasets, the graph
topology is not as important as the feature representations.
We present the BlogCatalog results in Figure 3 (For Flickr,
see supplementary material). Over the epochs, we find that

Figure 3: The evolution of ↵: BlogCatalog



Table 4: Ablating against topology branch only and feature branch only variants. (Results rounded to 2 decimal places)

Blogcatalog Flickr

Model Ag Af 1 layer 3 layers 5 layers 1 layer 3 layers 5 layers

SplitGCN 7 7 0.86 ± 0.01 0.68 ± 0.01 0.62 ± 0.02 0.50 ± 0.00 0.21 ± 0.00 0.10 ± 0.01
SplitGCN 7 X 0.80 ± 0.01 0.76 ± 0.01 0.58 ± 0.02 0.66 ± 0.01 0.60 ± 0.02 0.33 ± 0.04
SplitGCN X X 0.91 ± 0.0 0.84 ± 0.01 0.66 ± 0.03 0.78 ± 0.01 0.75 ± 0.01 0.73 ± 0.01
SplitDisGCN X X 0.87 ± 0.0 0.89 ± 0.01 0.85 ± 0.01 0.79 ± 0.0 0.75 ± 0.01 0.65 ± 0.0

(a) BlogCatalog (b) Flickr

Figure 4: MAD Analysis on social media datasets

the network eventually learns to weight the feature branch
more than the topology branch, validating our intuition.

Mitigating Oversmoothing
The MAD scores serve as proxies to measure the effect
of oversmoothing. To capture the stabilising effect of the
SplitGCN and SplitDisGCN variants, we calculate the MAD
scores on the social network datasets, shown on Fig. 4. For
both variants, we observe progressively higher values of
MAD as the number of layers increases. These results, cou-
pled with the accuracy results in Table 3, indicate a stronger
mitigation in oversmoothing as opposed to the disentangled-
only models.

Conclusion
The purported benefits of disentanglement in mitigating
oversmoothing had been hypothesized in multiple earlier
works. In this work, we presented the first systematic anal-
ysis of the effect of disentangled representations on the
oversmoothing problem in GCNs. Our proposed Dirichlet
Energy-based estimator, the LDE ratio, allowed a natural
quantification of the inherent tradeoff between graph struc-
ture and feature representations in the data. We then demon-
strated the usefulness of disentangled representations on
datasets with informative graph structure (low LDE data),
and the susceptibility of disentangled models to the over-
smoothing phenomenon on datasets with less informative

graph structure (high LDE data). The usefulness of the dis-
entangled models lay primarily in the neighborhood routing
procedure - processing node feature affinities in a better way
over vanilla graph convolutional models (similar features
suggest similar node neighborhoods). This is the reason why
disentangled representations were useful on low LDE data.
On the contrary, the same reliance on node neighborhoods
rendered these models susceptible to oversmoothing in high
LDE data, owing to no discernible information in the graph
structure. These insights allowed us to showcase an intuitive
experimental framework, that explicitly leveraged the trade-
off between the topology and the feature representations in
the learning mechanism, thereby mitigating the oversmooth-
ing phenomenon. We achieved this using a linear combina-
tion of the original adjacency matrix based feature aggrega-
tion, and the k-nn feature affinity graph based feature aggre-
gation, learning the importance of each branch during the
training process for each dataset. Further, we were able to
demonstrate the effectiveness of using both branches dur-
ing training, as opposed to a single branch. In addition to the
more overall stable results across layers for the datasets, mit-
igating oversmoothing in high LDE data, the framework al-
lowed us to shed insights on when disentanglement is useful
for learning, and when disentanglement may not be enough.
We hope our investigations lead to more promising future
research in the interesting connections between disentangle-
ment, oversmoothing, dataset properties, and the develop-
ment of new models.
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Supplementary material
In this supplementary, we present additional results as well
as experimental details. Specifically, we present the indi-
vidual aggregate results of the disentangled models on each
dataset, the detailed tables for hyperparameters, and the evo-
lution of ↵ in SplitGCN for the Flickr dataset.

Aggregate Results for all datasets
In Figure 1 in the main paper, we computed the aggre-
gated results for low LDE and high LDE datasets for each
model. In Table 1 here, we present the complete results on
each dataset. Overall, we confirm the benefit of disentan-
gled representations on low LDE datasets (Cora, Citeseer,
Pubmed), and the susceptibility of these models on the high
LDE datasets (BlogCatalog, Flickr).

Hyperparameters
We list the complete hyperparameters for SplitGCN and
SplitDisGCN in Table 2 and Table 3 respectively. We ran
a Bayesian hyperparameter search for the learning rate,
dropout, number of layers, number of neighbors, and regu-
larization strength. Given the best parameters, we fixed these
for all the layers to maintain a fair comparison, and to ensure
that the best hyperparemeters are not just tuned for a partic-
ular layer, but robust to results across layers. We refer to the
learning rate as LR, regularization as Reg., the feature di-
mensionality as dim, and the number of neighbors in the
knn graph as k. For SplitDisGCN, we refer to the number of
disentangled factors as n, and number of routing iterations
as r

Table 2: Hyperparams: SplitGCN

Datasets Cora Citeseer Pubmed Flickr Blogcatalog

LR 7e-4 0.01 0.003 0.008 0.002
Dropout 0.44 0.13 0.19 0.25 0.39
Reg. 0.002 0.002 4e-4 9e-6 2e-4
k 12 2 12 2 2
dim 112 112 112 112 112

Table 3: Hyperparams: SplitDisGCN

Datasets Cora Citeseer Pubmed Flickr Blogcatalog

LR 0.002 0.007 0.02 0.01 3e-4
Dropout 0.43 0.13 0.35 0.22 0.23
Reg. 5e-6 0.05 0.03 0.001 2e-9
k 12 6 4 8 2
dim 112 112 112 112 112
n 7 7 7 7 7
r 7 7 7 7 7

Evolution of ↵
In addition to the BlogCatalog results for the behaviour of ↵
during training, presented in the main paper for SplitGCN,
we also present the Flickr results in Fig 1. Here, we also no-
tice overall decrease in the emphasis on the topology branch,

Figure 1: The evolution of ↵: Flickr

as was expected, since the high LDE do not have informative
graph structures. SplitGCN learns to weigh heavily the fea-
ture branch over all the layers, especially in the first phases
of training. It eventually stabilises to high emphasis on the
feature branch (negative values indicate the emphasis on the
topology branch).

Connections to Homophily
The LDE ratio can be considered an implicit measure of
node homophily. We can compute the homophily by using
the pairwise cosine similarity of the vectors between con-
nected nodes and taking the average over the number of
edges. In Figure 2, we present these homophily values for
all datasets. Low scores (close to zero) mean on average,
connected nodes are slightly more similar than random pairs
would be, but they are not highly similar. We notice the so-
cial media datasets have considerably lower homophily than
the citation dataset. This supports the intuition from the LDE
ratios that suggest that social network datasets do not have
graph structure better than random connections. The LDE,
unlike homophily, provides an unsupervised way to measure
graph dataset quality.

Figure 2: Homophily values for different datasets: Lower
homophily indicates poorer quality of graph connectivity.
We observe this in social media datasets BlogCatalog (BC)
and Flickr (FK).



Table 1: Aggregate performance on all datasets (Rounded to 2 decimal places)

Blogcatalog Flickr

Model 1 layer 3 layers 5 layers 1 layer 3 layers 5 layers

GCN 0.66 ± 0.00 0.61 ± 0.02 0.32 ± 0.02 0.50 ± 0.00 0.21 ± 0.00 0.10 ± 0.01
DisenGCN 0.86 ± 0.01 0.68 ± 0.01 0.62 ± 0.02 0.77 ± 0.01 0.57 ± 0.01 0.49 ± 0.01
IPGDN 0.43 ± 0.02 0.38 ± 0.01 0.36 ± 0.03 0.34 ± 0.02 0.30 ± 0.03 0.21 ± 0.02
LGD-GCN 0.91 ± 0.01 0.38 ± 0.06 0.31 ± 0.05 0.85 ± 0.01 0.23 ± 0.04 0.18 ± 0.01

Cora Citeseer

Model 1 layer 3 layers 5 layers 1 layer 3 layers 5 layers

GCN 0.77 ± 0.00 0.79 ± 0.02 0.76 ± 0.02 0.66 ± 0.01 0.66 ± 0.01 0.65 ± 0.02
DisenGCN 0.71 ± 0.01 0.80 ± 0.01 0.82 ± 0.02 0.65 ± 0.01 0.69 ± 0.01 0.71 ± 0.01
IPGDN 0.71 ± 0.02 0.81 ± 0.01 0.82 ± 0.03 0.63 ± 0.02 0.69 ± 0.03 0.70 ± 0.02
LGD-GCN 0.79 ± 0.01 0.83 ± 0.06 0.84 ± 0.05 0.71 ± 0.01 0.73 ± 0.04 0.70 ± 0.01

Pubmed

Model 1 layer 3 layers 5 layers

GCN 0.74 ± 0.01 0.72 ± 0.01 0.62 ± 0.02
DisenGCN 0.75 ± 0.01 0.77 ± 0.01 0.78 ± 0.01
IPGDN 0.75 ± 0.02 0.77 ± 0.03 0.79 ± 0.02
LGD-GCN 0.78 ± 0.01 0.77 ± 0.01 0.78 ± 0.01
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