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A B S T R A C T

A novel method to integrate the time-dependent Schrödinger equation within the framework of multiresolution analysis is presented. The method is based on
symplectic splitting algorithms to separate the kinetic and potential parts of the corresponding propagator. The semigroup associated with the free-particle
Schrödinger operator is represented in a multiwavelet basis. The propagator is effectively discretised with a contour deformation technique, which overcomes
the challenges presented by previous discretisation methods. The discretised operator is then employed in simple numerical simulations to test the validity of the
implementation and to benchmark its precision.

1. Motivation

This paper is devoted to temporal discretisation of the Schrödinger
type equation

i∂tu= − ∂2xu+ V(x, t)u. (1.1)

Combined together with the spatial discretisation considered in [11], it
constitutes a complete numerical treatment of Equation (1.1) in the
multiresolution analysis (MRA) framework.

We remind that in [11] a thorough description of the semigroup exp
(
it∂2x

)
in multiwavelet bases was given. This exponential is a propagation

operator associated with the free-particle Schrödinger equation

i∂tu+ ∂2xu = 0. (1.2)

As we pointed out in [11], our multiwavelet representation of the
semigroup exp

(
it∂2x

)
can be considered sparse, provided that the time

parameter t is big enough. This in turn limits the range of possible
temporal schemes one can use for numerical simulation of (1.1). With
the mentioned t-size restriction in mind, we make an extended review on
high-order symplectic integrators in Section 2, advocating for those
containing the biggest possible time parameters in their kinetic energy
exponentials. One of the simplest second-order symplectic splitting
methods can be introduced through the following factorisation

eAt+Bt = eBt/2eAteBt/2 + O
(
t3
)
, (1.3)

with A = i∂2x and B = − iV in relation to Equation (1.1). Though the
validity of the asymptotic factorisation (1.3) holds true for small t, we
shall see below that the use of such times can be still considered
acceptable when it comes to spatial multiwavelet representation. In
other words, we argue that by carefully choosing a proper symplectic
integrator one can respect both restrictions: the t-smallness accounting
for validity of exponential factorisation and the t-bigness necessary for
sparsity of the semigroup multiresolution.

The paper is organised as follows. We gather all the necessary in-
formation about high-order symplectic integrators in Section 2. Our
numerical multiwavelet representation of exp

(
it∂2x

)
is tested by running

numerical simulations for toy benchmark models in Section 3. A sum-
mary of the first part [11] and of the current contribution is provided in
Section 4 with some plans for future works.

2. Introduction to exponential integrators

It is known that a fundamental solution of the general linear equation

∂tu=Au+ Bu (2.1)

forms a two-parameter family of operators T (t2, t1) called propagator. It
means that for any solution u = u(t) of (2.1) and time moments t1, t2 we
have u(t2) = T (t2, t1)u(t1). This section serves as a brief summary of
how this propagator can be approximated by the exponential operators
eAt , eBt, providing us with effective numerical schemes for (2.1). Up to
the imaginary unit, A and B will stand for the kinetic and potential
operators below, as in Equation (1.1), for example. Exponential
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integrators form a significant class of splitting methods [4,14] for the
numerical integration of differential equations of the form (2.1). The
applicability of these schemes for nonlinear Schrödinger type equations
is supported by simulations conducted in [22], for example, see also the
references therein.

2.1. Time independent potential

Let A,B be constant. Then the propagator T reduces to the one-
parameter family T (t2, t1) = T (t2 − t1) with T (t) = e(A+B)t called a

semigroup. In general the operators A and B do not commute, and so this
expression cannot be simplified as the multiplication of the two semi-
groups associated with A and B. However, such a substitution is valid to
first order for small values of t, namely,

eAt+Bt = eAteBt + O
(
t2
)
. (2.2)

A subsequent application of the multiplication eAteBt to a given initial
data u(0) would provide us with the solution at a given final time
moment with first order O (t) of accuracy. A more accurate result one
can get with the symmetric symplectic scheme (1.3). General higher
order factorisations of this type were systematically investigated in
[19,26]. For any given positive integer n one can decompose the semi-
group T (t) as

eAt+Bt = eAt1eBt2eAt3eBt4…eAtM + O
(
tn+1

)
(2.3)

with some appropriately chosen parameters t1,…, tM. This allows to set
larger time steps and accelerate computations. However, it turns out
that number of terms M increases exponentially with the order of the
approximation n. In practical applications, the integrator order n does
not usually exceed 8, because the number of terms in (2.3) outweighs the
benefits of a larger time step.

The time parameters t1,…, tM are not unique. Below we pay special
attention to those factorisations that contain the biggest possible abso-
lute values |tj|, which in turn maximises the sparsity of the multiwavelet
(MW) representation of the operators exp

(
itj∂2x

)
in the decomposition

(2.3).
So far we have not employed the fact that A and B stand for the ki-

netic and potential energy operators, respectively. An advantage of this
particular choice was taken in [6,8,21], where several fourth order
schemes were introduced allowing minimal amount of exponents in the
decomposition (2.3). Among them, we extensively use the following
decomposition

eAt+Bt = exp
( t
6
B
)
exp

( t
2
A
)
exp

(
2t
3
B̃
)

exp
( t
2
A
)
exp

( t
6
B
)
+ O

(
t5
)
,

(2.4)

where

B̃= B̃(t) = B+
t2

48
[B, [A,B]].

This double commutator is proportional to the squared gradient of the
potential (∂xV)2, which makes B̃ a potential operator when B = − iV.
Indeed,

B̃= − iṼ, Ṽ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V −
t2

24
(∂xV)2, A = i∂2x , B = − iV

V −
t2

48
(∂xV)2, A =

i
2

∂2x , B = − iV
, (2.5)

where we regarded two of the most used normalisations for the kinetic
energy operator. The fourth order scheme (2.4) requires only two ap-
plications of the free-particle semigroup operator. On the contrary one
needs to know the gradient of the potential. For comparison we mention
an alternative scheme from [8] reading

where B̃ is again defined in (2.5). In the latter scheme, the free-particle

operator exp
(

t
3A

)
appears 3 times instead of two, and the factor 1/3 in

front of tA makes its multiresolution less sparse compared to exp
(

t
2A

)

standing in (2.4). Scheme (2.6) could however be used alongside (2.4)
for precision control. The operator splitting (2.4) is far superior to any
other existing fourth order symplectic algorithm, to our knowledge.

These algorithms can be recursively extended to higher order
schemes [8]. Denoting by T the evolution operator T (t) = eAt+Bt and
by T (n) its n-th order approximation, that is T (t) = T (n)(t)+ O

(
tn+1

)
,

we can express an n+ 2 order scheme as

T
(n+2)(t)=T

(n)(tn)T (n)( − sntn)T (n)(tn), tn =
t

2 − sn
, sn = 21/(n+1).

(2.7)

A proof can be found in [26]. A few remarks can bemade concerning this
recursive formula:

(1) T ( − t) = T − 1(t) that is in connection to the Schrödinger equa-
tion coincides with the adjoint T *(t);

(2) sntn > tn > t, which provides us with a little advantage of
exploiting (2.7), since both precision and sparsity of the free
particle propagator multiresolution increase together with the
time step size;

(3) there is an obvious drawback behind (2.7), as the amount of work
is increasing three times per time step whenever one goes for a
higher order scheme.

As a working example of a sixth order scheme, we iterate T (4) given by
(2.4) using (2.7) to get

T
(6)(t)= exp

(t4
6
B
)
exp

(t4
2
A
)
exp

(
2t4
3

B̃(t4)
)

exp
(t4
2
A

)
exp

(
(1 − s4)t4

6
B
)

exp
(
−

s4t4
2

A
)
exp

(

−
2s4t4
3

B̃(s4t4)
)

exp
(
−

s4t4
2

A
)
exp

(
(1 − s4)t4

6
B
)

exp
(t4
2
A
)
exp

(
2t4
3

B̃(t4)
)

exp
(t4
2
A
)
exp

(t4
6
B
)
.

(2.8)

Here the last 6 operators are identical to the first 6 ones in reverse order,
so that the whole operator T (6)(t) is symmetric. Note that this scheme
demands 6 applications of kinetic energy exponent per time step. If we
continue the recursive procedure (2.7) we will arrive to an eighth order
scheme demanding 18 applications, correspondingly. Although it is still

eAt+Bt = exp
( t
8
B̃
)
exp

( t
3
A
)
exp

(
3t
8

B
)

exp
( t
3
A
)
exp

(
3t
8

B
) exp

( t
3
A
)
exp

( t
8
B̃
)
+ O

(
t5
)
, (2.6)
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a reasonable amount, there is a slightly better alternative derived by
Yoshida [26] that we describe next. It is clear from the iterative pro-
cedure (2.7) that an even order symmetric integrator can have the form

T
(n)(t)=T

(2)(wmt)…T
(2)(w0t)…T

(2)(wmt)

with 2m+ 1 second order integrators T (2)(t) defined by the splitting
(1.3) and some weights w0, w1, …, wm. Number m and these weights
depend on the order n. However, a direct implementation of (2.7) does
not necessarily give the most optimal representation. It turns out that m
can be brought down to m = 3 for the order n = 6 and to m = 7 for the
order n = 8. The choice of weights wj is not unique, and we select those
providing us with the largest value of min

j=0,…,m
|wj|. Their values are re-

ported in Table 1.
Thus both 6th and 8th order Yoshida integrators can be combined

together in the product

T
(n)(t)= exp (c1tB)exp (d1tA)exp (c2tB)⋅…⋅exp (d2m+1tA)exp (c2m+2tB)

(2.9)

where t is the time step and ci, di are constants given by

c1 = c2m+2 =
wm

2
, c2 = c2m+1 =

wm + wm− 1

2
, …

, cm+1 = cm+2 =
w1 + w0

2

and

d1 = d2m+1 = wm, d2 = d2m = wm− 1, …, dm = dm+2 = w1

, dm+1 = w0.

The integrator is symmetric. Moreover, it is quite general, as it does not
require the knowledge of the potential gradient ∂xV(x). The 8th order
scheme demands 15 kinetic exponent applications, less than the 18
corresponding to the twice-iterated (2.4) by (2.7). The weights associ-
ated with the latter lie in the interval [0.65,0.84] in absolute value, as
one can easily deduce from (2.4), (2.7). Thus in the case of stationary
potential V(x) one may anticipate the best performance for a given order
as follows:

order n= 4: Scheme (2.4)
order n= 6: Scheme (2.8)
order n= 8: Scheme (2.9)

Although the difference between Scheme (2.8) and Scheme (2.9)
may seem minor for the case n = 6, in [8] it is claimed that (2.8) out-
performs slightly (2.9), at least for the scattering experiment regarded
there. We confirm their conclusion below on a different numerical
experiment.

2.2. Time dependent potential

Now let B = B(t), the propagator T = T (t+τ, t) can still be
approximated at a small time step τ = Δt by exponential operators. An n-
th order integrator propagating solutions of (2.1) through the interval
[t, t+τ] are denoted by T (n)(t + τ, t), meaning T (t + τ, t) = T (n)(t + τ,
t)+ O

(
τn+1

)
. Using Suzuki’s formal approach [20] we extend the

schemes from the previous subsection to the current situation. Let D be
the forward time derivative operator, called also the super-operator in
[20], that is a time derivative acting on functions standing on the left,
namely,

F(t)eτD G(t)= F(t+ τ)G(t) (2.10)

for any time-dependent functions F(t) and G(t). In particular, eτD G(t) =

G(t). With the help of this super-operator the propagator is reduced to
the exponential representation

T (t+ τ, t)= exp (τ(A+B(t)+D )). (2.11)

Combining A and D together, then approximating this exponent exactly
as was done in the previous subsection with A+ D standing now in
place of A, we can extend all the above schemes. Note that A does not
depend on time, so A and D commute. Therefore, exp (τ(A + D )) =

exp (τA))exp (τD ). Thus approximating the exponent in (2.11) by the
second order scheme (1.3) one deduces

T (t+ τ, t)= exp
(τ
2
B(t)

)
exp (τ(A+D ))exp

(τ
2
B(t)

)
+ O

(
t3
)

which together with the super-operator property (2.10) leads to the
following simple second order splitting

T
(2)(t+ τ, t)= exp

(τ
2
B(t+ τ)

)
exp (τA)exp

(τ
2
B(t)

)
. (2.12)

In the same manner we extend both 6th and 8th order Yoshida in-
tegrators to

T
(n)(t+ τ, t)= exp (c1τB(t+ b1τ))exp (d1τA)exp (c2τB(t+ b2τ))

⋅…⋅exp (d2m+1τA)exp (c2m+2τB(t+ b2m+2τ)), (2.13)

where bk are constants given by

bk =
∑2m+1

j=k
dj = 1 −

∑k− 1

j=1
dj,

in particular, b1 = 1 and b2m+2 = 0.
A scheme for time dependent potentials analogous to (2.4), that is

also provided in [9], reads

T
(4)(t+ τ, t)= exp

(τ
6
B(t+ τ)

)
exp

(τ
2
A
)
exp

(
2τ
3
B̃
(
t+

τ
2
, τ
)

)

exp
(τ
2
A
)
exp

(τ
6
B(t)

)
,

(2.14)

where the modified potential evaluated at the central time step moment
is defined as

B̃(t, τ)=B(t) +
τ2
48

[B(t), [A,B(t)]]. (2.15)

This follows from (2.11), (2.4), (2.10) and the identity [B(t), [D ,B(t)]] =
0. The latter can be checked directly

F(t)[B(t), [D ,B(t)]] =2F(t)B(t)D B(t) − F(t)B2(t)D − F(t)D B2(t) = 0

on any smooth test operator F(t). Scheme (2.14) is very useful, since the
commutator in (2.15) turns out to be proportional to ∂xV(x, t) for the
Schrödinger equation. It is worth to mention that this scheme was
recently extended to the Dirac equation [25]. Similarly, the sixth order
integrator (2.8) turns into

Table 1
The weights for the selected integrators for order n= 6 and n= 8. The numerical
values correspond to set A from Table 1 and set C from Table 2 in [26].

n= 6 n= 8

w0 1.315186320683906 1.65899088454396
w1 -1.17767998417887 0.311790812418427
w2 0.235573213359357 -1.55946803821447
w3 0.784513610477560 -1.67896928259640
w4  1.66335809963315
w5  -1.06458714789183
w6  1.36934946416871
w7  0.629030650210433
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T
(6)(t+ τ, t)= exp

(τ4
6
B(t+(2 − s4)τ4)

)
exp

(τ4
2
A
)

⋅exp
(
2τ4
3

B̃
(

t+
(
3
2
− s4

)

τ4, τ4
))

⋅exp
(τ4
2
A
)
exp

(
(1 − s4)τ4

6
B(t+(1 − s4)τ4)

)

exp
(
−

s4τ4
2

A
)

⋅exp
(

−
2s4τ4
3

B̃
(
t+

(
1 −

s4
2

)
τ4, s4τ4

))

exp
(
−

s4τ4
2

A
)

⋅exp
(
(1 − s4)τ4

6
B(t+ τ4)

)

⋅exp
(τ4
2
A
)
exp

(
2τ4
3

B̃
(
t+

τ4
2
, τ4

))

exp
(τ4
2
A
)
exp

(τ4
6
B(t)

)
.

(2.16)

Note that we first extended the time-independent potential scheme (2.4)
to (2.8) via recursion (2.7). Afterwards we applied the Suzuki decom-
position method (2.11) to deduce (2.16) from (2.8). Integrator (2.14)
can also be directly extended to higher order schemes by the general
Suzuki’s recursive procedure

T
(n+2)(t+ τ, t)=T

(n)(t+ τ, t+(1 − κn)τ)T (n)(t+(1 − κn)τ, t+(1 − 2κn)τ)
⋅T (n)(t+(1 − 2κn)τ, t+2κnτ)T (n)(t+2κnτ, t+ κnτ)T (n)(t+ κnτ, t)

(2.17)

with κn =
(
4 − 41/(n+1)

)− 1
, as mentioned in [24]. However, this pro-

cedure leads rapidly to expensive integrators: for instance, the 8-th order
scheme demands 50 applications of the kinetic energy exponents per
time step. Therefore, we implemented it only to derive T (6) from T (4)

given in (2.14). The corresponding integrator reads

T
(6)(t+ τ, t)= exp

(κ4τ
6

B(t+ τ)
)
exp

(κ4τ
2

A
)

⋅exp
(
2κ4τ
3

B̃
(
t+

(
1 −

κ4
2

)
τ, κ4τ

))

⋅exp
(κ4τ
2

A
)
exp

(κ4τ
3

B(t+(1 − κ4)τ)
)
exp

(κ4τ
2

A
)

⋅exp
(
2κ4τ
3

B̃
(

t+
(

1 −
3
2

κ4
)

τ, κ4τ
))

⋅exp
(κ4τ
2

A
)
exp

(
(1 − 3κ4)τ

6
B(t+(1 − 2κ4)τ)

)

exp
(
(1 − 4κ4)τ

2
A
)

⋅exp
(
2(1 − 4κ4)τ

3
B̃
(
t+

τ
2
, (1 − 4κ4)τ

))

exp
(
(1 − 4κ4)τ

2
A
)

⋅exp
(
(1 − 3κ4)τ

6
B(t+2κ4τ)

)

⋅exp
(κ4τ
2

A
)
exp

(
2κ4τ
3

B̃
(

t+
3κ4τ
2

, κ4τ
))

exp
(κ4τ
2

A
)

⋅exp
(κ4τ
3

B(t+ κ4τ)
)
exp

(κ4τ
2

A
)

⋅exp
(
2κ4τ
3

B̃
(
t+

κ4τ
2
, κ4τ

))

exp
(κ4τ
2

A
)
exp

(κ4τ
6

B(t)
)

(2.18)

with positive κ4 ≈ 0.4 and negative 1 − 4κ4 ≈ − 0.5 weights in front of
kinetic operator. These weights together with the large number of ap-
plications of the kinetic energy exponentials, make (2.18) less conve-
nient to use compared to (2.16), though it may give better results for
some time steps.

We would like to conclude this section with some discussion on
causality. One can notice that several schemes presented above include
negative time steps that is definitely satisfactory from a mathematical
order analysis perspective. As a matter of fact, beyond second order n >

2, every factorisation of the form (2.3) must necessarily contain at least
one negative parameter among t1,…, tM. This was essentially proved by
Sheng [17] and later refined by Suzuki [18]. It was then precised and
extended even more in [12]. Note that Scheme (2.4) represents a
different factorisation from (2.3), since it contains an additional oper-
ator B̃, and it therefore constitutes an exception. Both (2.4) and its non-
autonomous counterpart (2.14) contain only positive time steps. From a
numerical stability perspective it is not a problem, unless one needs to

perform quantum statistical calculations [7]. Though in [6,8] it is
observed that the general integrators (2.3) of the fourth order with
negative times are less precise than the time-positive gradient schemes
(2.4), (2.6). In other words, the simulations provided in [6,8] may
suggest that one needs smaller time steps in order to achieve the same
accuracy, when a schemewith a negative time step is in use, provided, of
course, that the methods under comparison are of the same order. On the
contrary, we believe that Schemes (2.4), (2.6) outperform the general
decomposition (2.3) with n = 4, because (2.4), (2.6) possess more in-
formation about the dynamical system under consideration. In other
words, the additional restriction (2.5) might lead to the better perfor-
mance, whereas the signs of time parameters are irrelevant. Our claim is
supported by numerical simulations below, see the explanation accom-
panying Fig. 4 in Section 3.1.

Finally, we remark that it may seem that negative time steps break
causality. However, one may notice that all the time moments, at which
we evaluate potentials V and Ṽ, in all the schemes given above, are
actually positive. In other words, the wave dynamics of (2.1) is
completely defined by an initial data u(0), and one does not have to
consider solutions at negative time moments, even though the time steps
in the integrators in use may be negative. In fact, the obligatory presence
of negative time steps in the high order schemes has a simple physical
explanation. Indeed, a wave corresponding to the free-particle disperses
with time. The only way to localise the wave is to impose a certain
potential. High order schemes allow the use of bigger time steps.
However, it should be clear that due to the serious dispersion at a longer
time period, the potential may not be strong enough to localise the wave
back into space. So the focusing happens partially due to the inverse
kinetic exponential operator, namely, the free-particle semigroup with a
negative time parameter, necessarily standing in the factorisation (2.3).

3. Numerical experiments

The free-particle semigroup exp
(
it∂2x

)
is encoded in MRCPP (Multi-

resolution Computation Program Package) [1]. MRCPP is a high-
performance C++ library, which provides various tools for working
with Multiwavelets in connection to computational chemistry. It is also
made available in VAMPyR (Very Accurate Multiwavelets Python Rou-
tines) [2], which builds on the MRCPP capabilities, providing an easy to
use interface. As an introduction to this software, we refer to our recent
article [3], where we have already included a simple numerical exper-
iment with the exponential operator exp

(
it∂2x

)
. In [3], we did not exploit

the sparsity analysed thoroughly in the first part of the current

Fig. 1. Matrix element
[
αn
l
]

pj with p= j= 0 at scale n= 8 corresponding to the
time step t= 0.0001 and the MRA order k = 6.
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contribution [11]. In order to construct the adaptive multiresolution
representation of exp

(
it∂2x

)
, the threshold is set to ε/10 for a given

precision ε. In other words, the matrices αn
l , βn

l , γnl having the Frobenius
norm less or equal than ε/10, are ignored in numerical calculations. This
choice of threshold is motivated by oscillatory behaviour of the matrix
entries

[
αn
l
]

pj,
[
βn
l
]

pj,
[
γnl
]

pj with respect to the distance to diagonal l, on
the one hand, see Figs. 1, 2 and compare with figures for the corre-
sponding norms given in the first part of this paper [11]. On the other
hand, the result of operator application was controlled by the free-
particle analytical solution to (1.2) of the form

u(x, t)= exp
(
it∂2x

)
ψ0(x) =

(
1

2πσ2

)1/4 ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4σ2

4it + 4σ2

√

e−
(x− x0)2

4it+4σ2 (3.1)

associated with the initial condition

ψ0(x)=
(

1
2πσ2

)1/4

exp
(

−
(x − x0)2

4σ2

)

(3.2)

in the sense u(x, 0) = ψ0(x). Indeed, let x0 = 0.5 and σ = 0.04, for

example. Then for the MRA order k = 20, time parameter t = 0.0001
and precision ε = 10− 10 the L2-norm of the difference between analyt-
ical and numerically propagated solutions is 2.0⋅10− 11, see Fig. 3.

This concludes the description of the numerical implementation of
the free-particle propagator. Belowwe illustrate its use on two toymodel
problems and we compare its performance to the periodic spectral
method.

3.1. Harmonic potential

Our first numerical example takes the Schrödinger equation

i∂tψ = −
1
2

∂2xψ + V(x)ψ

with the harmonic potential

V(x)=V0

(

x −
1
2

)2

.

It is complemented by the initial condition ψ(0) = ψ0 having the
Gaussian form (3.2). It is well known that in the harmonic potential the
density |ψ(t)|2 oscillates with the period tper = π

̅̅̅̅̅̅̅̅̅̅̅
2/V0

√
, namely,

ψ
(
tper

)
= − ψ0. This comes from the fact that the eigenvalues for the

Hamiltonian are
̅̅̅̅̅̅̅̅̅
2V0

√
(n + 1/2).

Ideally, a choice of parameters like V0 should be physically moti-
vated. Then given some tolerance one can set the computational domain
of size L centred, for our example, at x = 1/2. Transforming the problem
to the unit space interval [0,1], one will obviously get that the final V0

turns out to be proportional to L4. Therefore, we set the following pa-
rameters V0 = 98304, x0 = 0.375 and σ = 0.025 associated with the
domain [0,1].

We conduct numerical simulations with time step τ ranging from
tper/10 to tper/160 up to the final time moment t = tper using the ma-
chinery developed here. The integrators in use are referred as follows

(S2) the simple second order scheme (1.3),
(A4) the Chin-Chen’s scheme A of fourth order (2.4),
(A6) the Chin-Chen’s scheme A of sixth order (2.8),
(Y6) the Yoshida’s scheme (2.9) with the order n = 6,
(Y8) the Yoshida’s scheme (2.9) with the order n = 8.

The accuracy of the obtained solution ψ for each of these schemes is
estimated by the L2-difference

error(t)=
⃦
⃦ψ(t) − ψ ref(t)

⃦
⃦
L2(0,1). (3.3)

Here we calculate the error at the moment t = tper with respect to the
reference ψ ref(tper) = − ψ0. For the multiwavelet calculations we take
the MRA order k = 18 and the tolerance needed for adaptive resolution
to be ε = 10− 10. The performance is compared with the Fourier spectral
method calculations using 1024 grid points inside of the unit interval [0,
1].

The electron dynamics in the harmonic potential well is smooth and
it can be viewed as periodic with very high precision. Therefore, there is
no surprise that the spectral method outperforms the multiresolution
technique in Fig. 4. The accuracy stagnation for the FFT based schemes
reveals itself at four times smaller time steps than the corresponding
stagnation for the MRA based schemes, with τ = tper/640 ≈ 2.2⋅10− 5

compared to τ = tper/160 ≈ 8.9⋅10− 5 for the integrators (A6), (Y6), (Y8).
Otherwise, the precision is consistent and the convergence is optimal for
each scheme, as indicated by the slopes of curves in Fig. 4 corresponding
to their theoretical counterparts. It is also interesting to notice that (Y8)
does not reach the accuracy of the cheaper scheme (A6) in the current
setup. Moreover, the lines (A6) and (Y6) are parallel, as expected, since
they are of the same order. Both splitting methods contain negative

Fig. 2. Matrix element
[
βn
l
]

pj with p= 0, j= 5 at scale n= 8 corresponding to
the time step t= 0.0001 and the MRA order k = 6.

Fig. 3. Difference between the analytical solution (3.1) and the numerically
propagated one at the time moment t= 0.0001 for the MRA order k = 20 and
the precision ε = 10− 10.
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times. However, (A6) lies significantly lower than (Y6). This is probably
due to the fact that (A6) is more specialised towards Schrödinger type
equations by the additional relation (2.5), constraining the double
commutator standing in B̃.

3.2. Walker-Preston model

As a prototype of time dependent Hamiltonian, we consider the
Walker-Preston model [23] for the vibration of a diatomic molecule in a
strong laser field. The equation reads

i∂tψ = −
1
2

∂2xψ + V(x)ψ + E (x, t)ψ,

where V(x) stands for the Morse potential

V(x)=V0(1 − e− αx)
2

with V0 = 0.2251μ, μ = 1745 and α = 1.1741. These parameters
correspond to a model of the HF molecule. Here E (x, t) = Axcos ωt is
the external field with A = 0.011025μ and ω = 0.01787μ. The first 0→1
vibrational frequency difference in theMorse oscillator is 0.01807μ, so ω
is slightly below resonance. As the initial condition ψ(0) = ψ0 we
consider the ground state wave function

ψ0(x)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α ξ2λ− 1(x)
Γ(2λ − 1)

e− ξ(x)

√

, ξ(x) = 2λe− αx, λ =

̅̅̅̅̅̅̅̅
2V0

√

α

having the ground state energy

E0 =α
̅̅̅̅̅̅
V0

2

√

−
α2

8
.

A direct evaluation of ψ0(x) may lead to large round up errors. There-
fore, we rewrite it in a form which is more suitable for numerical cal-
culations. There is an integer m ∈ N such that 2λ − 1 = m+ δλ with
1/2⩽δλ < 3/2. We can factorise ψ0 as

ψ0(x)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α ξδλ

Γ(δλ)
ξe− ξ/m

δλ
ξe− ξ/m

δλ + 1
⋅…⋅

ξe− ξ/m

δλ +m − 1

√

,

thus eliminating the possibility of rounding errors.

All the introduced parameters are associated with the computational
domain [ − 0.8, 4.32] of length L = 5.12, which has been used by several
authors [5,9,13,15,16] for testing different numerical methods. It is
therefore well known that a use of the spectral periodic treatment for
this problem with 64 grid points gives very accurate results, making it
the ideal benchmark for our purposes. However, our multiresolution
technique is working in the computational domain [0, 1] and we need to
adapt the domain with an affine transformation. Henceforth x ∈ [0,1]
and the time scales t = toriginal/L2. All the other units are changed
accordingly: for example, the dissociation energy V0 = Voriginal

0 L2 =

0.2251μL2.
Spectral FFT-based simulations are conducted with a time step τ

ranging from 0.001 to 0.001⋅2− 10. The final time moment is set to tfin =

0.1. The integrators in use are referred to as follows

(S2) the simple second order scheme (2.12),
(A4) the Chin-Chen’s scheme A of fourth order (2.14),
(A6) the Chin-Chen’s scheme A of sixth order (2.16),
(W6) the Chin-Chen’s scheme A of sixth order (2.18) obtained via the

procedure (2.17),
(Y6) the Yoshida’s scheme (2.13) with the order n = 6,
(Y8) the Yoshida’s scheme (2.13) with the order n = 8.

The accuracy of the obtained solution ψ for each of these schemes is
estimated by (3.3) at the final time moment t = tfin. Contrary to the
previous example, we do not have an analytical result that could stand in
place of ψ ref as in the previous experiment. Presuming we do not know a
priori which scheme is the most precise, for each scheme we take the
result obtained with the smallest time step as the corresponding refer-
ence. For example, ψ ref for the (S2) numerical solutions is the (S2) FFT-
based result associated with the time step τ = 0.001⋅2− 10. The same
references are used later on in order to estimate the accuracy of the
corresponding multiwavelet simulations.

In fact, we can again see an obvious accuracy outperformance of the
periodic spectral method in Fig. 5. This time, however, we knew a priori
that the best FFT calculations are achieved with the rough grid con-
sisting of only 64 points. Indeed, with a finer grid of 256 or 1024 points,
one encounters poorer accuracy due to the Gibbs phenomenon, which
causes high oscillations of the numerical solutions close to the boundary
of the computational domain. The Gibbs phenomenon does not affect
the multiresolution approach, of course. We do not include figures

Fig. 4. Convergence comparison between FFT-based schemes (solid lines) and
MRA-based schemes (large dots) in the harmonic potential example. The
convergence rates are indicated by the dashed lines. The legend corresponds to
different integrators: (S2) for (1.3), (A4) for (2.4), (A6) for (2.8), (Y6) for (2.9)
with n= 6 and (Y8) for (2.9) with n= 8. (For interpretation of the colours in the
figure(s), the reader is referred to the web version of this article.)

Fig. 5. Convergence comparison between FFT-based schemes (solid lines) and
MRA-based schemes (large dots) in the Morse potential example. The conver-
gence rates are indicated by the dashed lines. The legend corresponds to
different integrators: (S2) for (2.12), (A4) for (2.14), (A6) for (2.16), (W6) for
(2.18), (Y6) for (2.13) with n= 6 and (Y8) for (2.13) with n= 8.
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corresponding to refined grid FFT calculations here, as they exhibit
behaviour similar to Fig. 5. However, these FFT results demonstrate
poorer convergence, deviating from the theoretically predicted rate,
before the MRA calculations approach stagnation. In other words, FFT-
based spectral calculations can yield inferior results compared to MRA-
based ones in terms of accuracy.

An interesting and noteworthy outcome is that the extensions (2.13)
of Yoshida’s schemes (2.9) for the time-dependent potential case
degenerate to first order, see Fig. 5. According to [24] it may happen
that some exponential integrators lose their theoretically predicted ac-
curacy after the Suzuki’s extension described in Subsection 2.2. It seems
that Yoshida’s schemes (2.9) cannot be efficiently extended to non-
autonomous equations. The author encountered a similar problem
before [10].

4. Conclusion

We have developed a multiresolution analysis of the semigroup exp
(
it∂2x

)
and introduced MRA-based numerical methods for solving the

time-dependent Schrödinger equation. These methods offer several
notable advantages. First of all, they can be seamlessly integrated with
existing tools for solving stationary problems. Specifically, the applica-
tion of singular integral operators arising from the potential V, as uti-
lised in Kohn-Sham and Hartree-Fock theories, is already well-
established in multiwavelet bases. Consequently, these techniques can
be readily adapted to address time evolution problems. Moreover, these
methods offer spatial adaptivity, which is crucial for quantum chemistry
simulations. In these simulations, it is essential to handle Coulomb-type
singularities and solutions with cusps. Therefore, an automatic grid
refinement based on a predefined, arbitrary precision is an advantage.

However, there are some drawbacks to consider. For computational
efficiency, it is essential to achieve sparsity in the multiresolution rep-
resentation of exp

(
it∂2x

)
. This in turn requires large time steps t and a

high MRA order k. However, a large polynomial order k can slow down
simulations, while overly large time steps t may compromise the accu-
racy of the results obtained. The extent to which these issues limit the
applicability of the method proposed here, will have to be thoroughly
investigated.

One strategy to overcome these challenges, which we plan to focus
on soon, is to develop artificial boundary conditions for the MRA-based
methods introduced here. This approach will enable us to use larger time
steps while maintaining accuracy, by confining the computational
domain to a relatively compact size. Additionally, it will also make it
possible to use lower k values, boosting efficiency. The techniques
developed will be applied to problems where FFT-based methods
encounter challenges, specifically in modelling the attosecond dynamics
of electrons in molecules exposed to intense laser pulses.
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