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A B S T R A C T

The free-particle propagator, a key operator in various algorithms for simulating the time evolution of the Schrödinger equation, is studied. A multiscale approximation 
of this propagator is constructed, representing the semigroup associated with the free-particle Schrödinger operator in a multiwavelet basis. This representation 
involves integrals of highly oscillatory functions. These integrals are efficiently discretized using a contour deformation technique, which addresses the challenges 
posed by earlier discretization methods.
1. Introduction

Let us consider the one-dimensional time-dependent Schrödinger 
equation

𝑖𝜕𝑡𝑢 = −𝜕2𝑥𝑢+ 𝑉 (𝑥, 𝑡)𝑢, (1.1)

complemented by the initial condition given at 𝑡 = 0 by

𝑢(0) = 𝑢0 ∈𝐿2(ℝ). (1.2)

The space variable 𝑥 ∈ℝ and the time variable 𝑡 > 0. In general a real-

valued potential 𝑉 (𝑥, 𝑡) can depend on the solution, as for example, in 
water waves and Hartree-Fock theories.

The main objective of this work is to provide an effective numer-

ical discretization of the exponential operator exp
(
𝑖𝑡𝜕2𝑥

)
, where 𝑡 ∈ ℝ

is a small parameter, not necessarily positive. In what follows we as-

sume that 𝑡 ≠ 0. Our goal is to construct a numerical representation of 
this operator to solve Equation (1.1) adaptively. It is known that a use 
of multiwavelet bases [4] may lead to adaptive numerical solutions for 
some partial differential equations [5]. However, the time-evolution op-

erator exp
(
𝑖𝑡𝜕2𝑥

)
falls outside this operator class, that are known to give 

sparse representations in this type of bases [7,14]. Nevertheless, it turns 
out that exp

(
𝑖𝑡𝜕2𝑥

)
exhibits a unique peculiarity that can be leveraged 

in adaptive calculations, as we demonstrate below.

We recall that the 𝑡-dependent exponential operator under consider-

ation here forms a semigroup representing solutions of the free particle 
equation

✩ The review of this paper was arranged by Prof. Blum Volker.
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𝑖𝜕𝑡𝑢+ 𝜕2𝑥𝑢 = 0. (1.3)

In other words, for any square integrable 𝑢0 ∈ 𝐿2(ℝ), the function 
𝑢 = exp

(
𝑖𝑡𝜕2𝑥

)
𝑢0 solves Equation (1.3). In numerical simulations, the 

parameter 𝑡 usually plays the role of a time (sub)step. The importance 
of an effective discretization of this exponential operator, at least for a 
time-independent potential 𝑉 , can be exemplified as follows. Let 𝐴, 𝐵
be time independent linear operators. One of the simplest second-order 
splitting methods can be expressed as follows

𝑒𝐴𝑡+𝐵𝑡 = 𝑒𝐵𝑡∕2𝑒𝐴𝑡𝑒𝐵𝑡∕2 +(
𝑡3
)
. (1.4)

Taking 𝐴 = 𝑖𝜕2𝑥 and 𝐵 = −𝑖𝑉 , one can evolve Equation (1.1) by applying 
the multiplication operator 𝑒𝐵𝑡∕2 twice and the pseudo-differential op-

erator 𝑒𝐴𝑡 once at each time step starting from the initial function (1.2). 
Such operator splitting simplifies the problem (1.1), (1.2) significantly: 
the exponential of the multiplicative operator is straightforward and the 
problem reduces to finding an efficient representation for the exponen-

tial of the kinetic energy. Below we will also make use of higher order 
schemes than (1.4). They will permit larger time steps, which turns out 
to be especially crucial for multiwavelet representation of the semigroup 
exp

(
𝑖𝑡𝜕2𝑥

)
, due to some limitations on how small a time step 𝑡 might be 

taken.

We are motivated by the desire of simulating attosecond electron 
dynamics. In recent years there has been a growing interest in studying 
the electronic structure of molecules under strong and ultra-fast laser 
pulses [22]. This is clearly testified by the 2018 and 2023 Nobel prizes 
in Physics [21,23]. This could potentially lead to reaction control by 
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attosecond laser pulses in the future. From a computational perspec-

tive, electron dynamics in atoms and molecules is challenging: standard 
atomic orbital approaches routinely used in Quantum Chemistry can-

not be applied in strong laser pulses, as simple numerical experiments 
suggest that ionization plays a significant role and cannot be neglected 
[10]. In other words, the coupling with continuum or unbound states 
complicates the use of atomic orbitals for the problem discretization. 
Inevitably it demands the use of grid based methods, such as finite ele-

ments, for example.

In the case of hydrogen atom subjected to a laser field we have the 
following three-dimensional Schrödinger equation

𝑖𝜕𝑡𝜓 = −1
2
Δ𝜓 − 1|𝑥|𝜓 + (𝑥, 𝑡)𝜓, (1.5)

where the second term −|𝑥|−1 stands for the Coulomb potential and 
(𝑥, 𝑡) stands for the external electric field generated by a laser. It is 
normally complemented by the ground state 𝜓0(𝑥) = 𝑒−|𝑥|∕√𝜋 serving 
as an initial condition 𝜓(𝑥, 0) = 𝜓0(𝑥).

It can be advantageous to make use of adaptive methods to de-

scribe the singular Coulomb interaction between the electron and the 
nucleus, as well as the cusp in the eigenfunctions which follows from it. 
This, however, sets some limitations on the method development. Ad-

ditionally, for many-body systems (atoms and molecules), the potential 
becomes nonlinear due to the presence of electron-electron interactions. 
The corresponding nonlinearities are normally presented in equations 
as singular integral convolutions. One such method is constituted by a 
multiwavelet (MW) representation, within the framework of multireso-

lution analysis [5]. This approach has demonstrated excellent results in 
achieving fast algorithms and high precision for static quantum chem-

istry problems [16,17,15]. However, discussing these static results is 
beyond the scope of the current contribution. Furthermore, the research 
field is rapidly evolving, and we recommend referring to a comprehen-

sive review paper for a broader perspective [8]. An overview of the most 
recent advancements will also be available in an upcoming paper [24].

We aim to extend the multiwavelet approach to address time-

dependent scenarios. The first step in integrating the generic time-

dependent Schrödinger equation, similar to (1.5), involves discretizing 
the semigroup 𝑒𝑖𝑡Δ. Due to the limitations highlighted above, the fast 
Fourier transform (FFT) cannot be relied upon for quantum chemistry 
applications. This is why we find the multiscale approach promising. To 
our knowledge, the only work on multiwavelet representation of the dy-

namical Shrödinger type equations was conducted by Vence et al. [25]. 
They view the semigroup as a convolution and mitigate the errors aris-

ing from its oscillatory behavior by damping high-frequency oscillations 
in Fourier space. The resulting kernel approximation can be seamlessly 
integrated into the multiwavelet framework developed for static prob-

lems.

In contrast, we adopt a different approach by leveraging the smooth-

ing property of the semigroup instead of damping it. It enables us to 
achieve a highly accurate multiscale approximation of the free-particle 
propagator. Moreover, it turns out that this representation can be re-

garded as sparse, as long as particular restrictions are met during numer-

ical simulations. Since we do not treat the semigroup as a convolution 
suitable for chemistry applications, unlike the mentioned above method 
employed by Vence et al., further development is necessary to fully ex-

ploit our representation for studying electron dynamics in molecules. 
Therefore, this article focuses exclusively on the one-dimensional case. 
In the future, we plan to extend our results and simulate the three-

dimensional quantum mechanical problems. It is here difficult to predict 
if a multiresolution representation of oscillatory operators such as the 
free particle propagator considered here is going to be practical in 3D, 
due to its computational cost. However, we demonstrate below a signifi-

cant improvement of the results by Vence et al., at least in 1D. Therefore, 
we believe that our approach will show an efficiency comparable to 
2

other grid methods for small molecules in strong laser fields.
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The paper is organized as follows. In Section 2 we introduce some 
preliminary notions and recall the theory behind multiwavelet bases. In 
Section 3 we lay out the problem with some insights into the difficulties 
that we aim to overcome. In Section 4, the multiresolution represen-

tation of exp
(
𝑖𝑡𝜕2𝑥

)
is reduced to the evaluation of a special kind of 

integrals. In Section 4 these integrals are evaluated by deforming the 
integration contour in a way that allows to exploit the smoothing prop-

erty of this exponential operator. Furthermore, we demonstrate that by 
carefully selecting the time parameter 𝑡 and polynomial approximation 
order, its multiresolution representation will display an unusual sparsity 
pattern. More specifically, the matrices used in calculations have non-

zero elements away from their main diagonals. This sparsity depends 
significantly on the value of 𝑡, necessitating the use of high-order nu-

merical schemes for accurate wave propagation simulations. To address 
this requirement, we introduce high-order symplectic integrators in the 
second part of this work [12].

2. Multiwavelet bases

This section provides a concise theoretical background on multi-

wavelet bases. We are interested in approximations of functions in 
𝐿2(ℝ). However, for practical reasons, we have to restrict ourselves to 
a sufficiently large interval. Equation (1.1) can always be normalized

in such a way that the unit computational domain [0, 1] will suit our 
needs, while keeping the constant in front of the second derivative to 
be −1. Note that any function 𝑢 ∈ 𝐿2(0, 1) can be trivially extended to 
a function in 𝐿2(ℝ), by setting it to zero outside (0, 1). On the contrary, 
any function from 𝐿2(ℝ) can be projected into 𝐿2(0, 1), by multiplying 
it with the characteristic function of the unit interval (0, 1). This remark 
allows us to make sense of the inclusion 𝐿2(0, 1) ⊂ 𝐿2(ℝ). Now for any 
k ∈ ℕ = {1, 2, …} and any 𝑛 ∈ ℕ0 = {0, 1, 2, …} we introduce a space of 
piecewise polynomials 𝑉 k

𝑛 as follows. A function 𝑓 ∈ 𝑉 k
𝑛 provided that 

on each dyadic interval (𝑙∕2𝑛, (𝑙 + 1)∕2𝑛) with 𝑙 = 0, 1, … , 2𝑛 − 1 it is a 
polynomial of degree less than k and it is zero elsewhere. Note that the 
space 𝑉 k

𝑛 has dimension 2𝑛k and

𝑉 k

0 ⊂ 𝑉 k

1 ⊂… ⊂ 𝑉 k

𝑛 ⊂… ⊂𝐿2(0,1) ⊂𝐿2(ℝ),

which defines a multiresolution analysis (MRA) [19,20], since the union ⋃∞
𝑛=0 𝑉

k
𝑛 is dense in 𝐿2(0, 1). We refer to the given fixed number k as the 

order of MRA and to the integer variable 𝑛 as a scaling level.

Let 𝜙0, … , 𝜙k−1 be a basis of 𝑉 k

0 that will be called scaling functions. 
The space 𝑉 k

𝑛 is spanned by 2𝑛k functions which are obtained from the 
scaling functions by dilation and translation

𝜙𝑛
𝑗𝑙
(𝑥) = 2𝑛∕2𝜙𝑗 (2𝑛𝑥− 𝑙), 𝑗 = 0,… , k− 1, 𝑙 = 0,… ,2𝑛 − 1. (2.1)

There is some freedom in choosing a basis in 𝑉 k

0 , at least for k > 1. The 
first example appeared in [4], and it consists of the Legendre scaling 
functions

𝜙𝑗 (𝑥) =
√
2𝑗 + 1𝑃𝑗 (2𝑥− 1), 𝑥 ∈ (0,1), 𝑗 = 0,… , k− 1, (2.2)

where 𝑃𝑗 are standard Legendre polynomials. Outside the unit inter-

val (0, 1) they are set to zero. An alternative basis, proved to be more 
efficient that is especially crucial in multi-dimensional numerical cal-

culations, was presented in [5]. It consists of the interpolating scaling 
functions

𝜑𝑗 (𝑥) =
√
𝑤𝑗

k−1∑
𝑚=0

𝜙𝑚(𝑥𝑗 )𝜙𝑚(𝑥), 𝑗 = 0,… , k− 1, (2.3)

where 𝜙𝑚 are the Legendre scaling functions (2.2). Here 𝑥0, … , 𝑥k−1
denote the roots of 𝑃k(2𝑥 − 1) and the quadrature weights 𝑤𝑗 =
1∕(k𝑃 ′

k
(2𝑥𝑗 − 1)𝑃k−1(2𝑥𝑗 − 1)). The expansion coefficients of a general 
function 𝑓 in a scaling basis are the integrals
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𝑠𝑛
𝑗𝑙
(𝑓 ) = ∫

ℝ

𝑓 (𝑥)𝜙𝑛
𝑗𝑙
(𝑥)𝑑𝑥 = 2−𝑛∕2

1

∫
0

𝑓 (2−𝑛(𝑥+ 𝑙))𝜙𝑗 (𝑥)𝑑𝑥, (2.4)

that can be evaluated numerically using the Gauss-Legendre quadrature

𝑠𝑛
𝑗𝑙
(𝑓 ) ≈ 2−𝑛∕2

k−1∑
𝑚=0

𝑤𝑚𝑓 (2−𝑛(𝑥𝑚 + 𝑙))𝜙𝑗 (𝑥𝑚),

𝑗 = 0,… , k− 1, 𝑙 = 0,… ,2𝑛 − 1. (2.5)

Note that the interpolating scaling functions (2.3) satisfy 𝜑𝑗 (𝑥𝑚) =
𝑤

−1∕2
𝑗

𝛿𝑗𝑚 and so (2.5) simplifies to

𝑠𝑛
𝑗𝑙
(𝑓 ) ≈ 2−𝑛∕2

√
𝑤𝑗𝑓 (2−𝑛(𝑥𝑚 + 𝑙)) (2.6)

for this particular choice of a basis.

The multiwavelet space 𝑊 k
𝑛 is defined as the orthogonal complement 

of 𝑉 k
𝑛 in 𝑉 k

𝑛+1, so we have

𝑉 k

𝑛+1 = 𝑉 k

𝑛 ⊕𝑊 k

𝑛 = 𝑉 k

0 ⊕𝑊 k

0 ⊕𝑊 k

1 ⊕…⊕𝑊 k

𝑛 .

As above it is enough to define a basis 𝜓0, … , 𝜓k−1 in 𝑊 k

0 and then trans-

form it in line with the general rule (2.1), in order to get an orthonormal 
basis in each 𝑊 k

𝑛 . The construction of a specific multiwavelet basis that 
satisfies certain given restrictions is more involved. We are using the 
one that was constructed in [4], since it provides us with an additional 
vanishing moment property, namely,

1

∫
0

𝜓𝑗 (𝑥)𝑥𝑚𝑑𝑥 = 0, 𝑚 = 0,1,… , 𝑗 + k− 1. (2.7)

The multiwavelet expansion coefficients of a general function 𝑓 are the 
integrals

𝑑𝑛
𝑗𝑙
(𝑓 ) = ∫

ℝ

𝑓 (𝑥)𝜓𝑛
𝑗𝑙
(𝑥)𝑑𝑥, (2.8)

that could in principal be also evaluated with the help of the Gauss-

Legendre quadrature. However, there are precision issues connected to 
this approach. The multiwavelet coefficients (2.8) are instead obtained 
from the higher level scaling coefficients 𝑠𝑛+1

𝑗𝑙
(𝑓 ), where the latter are 

calculated by the quadrature rule (2.5). This is possible thanks to the so 
called forward wavelet transform [11](
𝜙𝑛
𝑙

𝜓𝑛
𝑙

)
=𝑈

(
𝜙𝑛+12𝑙
𝜙𝑛+12𝑙+1

)
(2.9)

where the two bases of 𝑉 k

𝑛+1 are grouped in accordance with the short 
notation agreement

𝜙𝑛
𝑙
=
⎛⎜⎜⎝
𝜙𝑛0,𝑙(𝑥)
…

𝜙𝑛
k−1,𝑙(𝑥)

⎞⎟⎟⎠ , 𝜓𝑛
𝑙
=
⎛⎜⎜⎝
𝜓𝑛
0,𝑙(𝑥)
…

𝜓𝑛
k−1,𝑙(𝑥)

⎞⎟⎟⎠
and 𝑈 stands for the unitary matrix

𝑈 =
(
𝐻 (0) 𝐻 (1)

𝐺(0) 𝐺(1)

)
(2.10)

consisting of k × k-size filter blocks 𝐻 (0) =
(
ℎ
(0)
𝑝𝑗

)
, … , 𝐺(1) =

(
𝑔
(1)
𝑝𝑗

)
de-

pending only on the type of scaling basis (Legendre or interpolating) in 
use [5]. Integrating (2.9) together with 𝑓 , we immediately obtain the 
following relation(
𝑠𝑛
𝑙
𝑑𝑛
𝑙

)
=𝑈

(
𝑠𝑛+12𝑙
𝑠𝑛+12𝑙+1

)
(2.11)

with vectors 𝑠𝑛
𝑙
, 𝑑𝑛

𝑙
consisting of coefficients 𝑠𝑛

𝑗𝑙
, 𝑑𝑛

𝑗𝑙
, 𝑗 = 0, … , k − 1, 
3

accordingly.
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There are two main advantages with multiwavelets, compared to 
other discretization methods: (1) the disjont support of the basis func-

tions combined with the vanishing moments of the wavelets enables 
sparse and adaptive function representations, with a rigorous preci-

sion control; (2) some pseudo-differential operators have sparse mul-

tiwavelet representations [4], leading to fast (ideally linearly scaling) 
algorithms.

Let 𝑃 𝑛, 𝑄𝑛 be the orthogonal projectors of 𝐿2(ℝ) into 𝑉 k
𝑛 , 𝑊

k
𝑛 , re-

spectively. Clearly, 𝑄𝑛 = 𝑃 𝑛+1 − 𝑃 𝑛. Moreover, 𝑃 𝑛 converges strongly 
to the projection 𝑃 ∶𝐿2(ℝ) →𝐿2(0, 1), whereas 𝑄𝑛 tends to zero. Then 
any bounded operator  can be represented on the computational do-

main [0, 1] as

𝑃 𝑃 = lim
𝑛→∞

𝑛 = 0 +
∞∑
𝑛=0

(𝑛 +𝑛 + 𝑛) , (2.12)

where we introduced the multiresolution restrictions

𝑛 =𝑄𝑛 𝑄𝑛, 𝑛 =𝑄𝑛 𝑃 𝑛, 𝑛 = 𝑃 𝑛 𝑄𝑛, 𝑛 = 𝑃 𝑛 𝑃 𝑛. (2.13)

In other words, each approximation 𝑛 of  on [0, 1] is defined by its 
restriction 0 in 𝑉 k

0 and by the collection of triplets (0, 0, 0), … ,
(𝑛, 𝑛, 𝑛). We refer to this representation as the nonstandard form 
and write shortly

𝑛 ≅ {0, (0,0,0),… , (𝑛,𝑛,𝑛)}. (2.14)

This form is very useful for some classes of operators. In particular, 
Calderón-Zygmund operators have sparse representations for the matri-

ces associated with 𝑛, 𝑛, 𝑛, leading to fast effective algorithms [6]. 
Another advantage of the nonstandard form is the absence of coupling 
between scales when the operator is applied (such a coupling results 
from a post-processing step which relies only on the fast multiwavelet 
transform [6,15]). This is a key-feature as one wants to preserve the 
adaptivity of functions while the operator is applied.

Before proceeding to concrete examples of operators  , we introduce 
the following matrices, defined in the 𝑉 k

𝑛 ⊕𝑊 k
𝑛 basis, as

[
𝜎𝑛
𝑙′𝑙

]
𝑗′𝑗

=

1

∫
0

𝜙𝑛
𝑗′𝑙′

(𝑥) 𝜙𝑛
𝑗𝑙
(𝑥)𝑑𝑥,

[
𝛾𝑛
𝑙′𝑙

]
𝑗′𝑗

=

1

∫
0

𝜙𝑛
𝑗′𝑙′

(𝑥) 𝜓𝑛
𝑗𝑙
(𝑥)𝑑𝑥,

[
𝛽𝑛
𝑙′𝑙

]
𝑗′𝑗

=

1

∫
0

𝜓𝑛
𝑗′𝑙′

(𝑥) 𝜙𝑛
𝑗𝑙
(𝑥)𝑑𝑥,

[
𝛼𝑛
𝑙′𝑙

]
𝑗′𝑗

=

1

∫
0

𝜓𝑛
𝑗′𝑙′

(𝑥) 𝜓𝑛
𝑗𝑙
(𝑥)𝑑𝑥.

(2.15)

For every scale 𝑛 ∈ ℕ0, symbol 𝜎𝑛 stands for a table of 2𝑛×2𝑛-size, where 
each element is itself a matrix of k × k-size. Similarly, the blocks 𝛼𝑛, 𝛽𝑛
and 𝛾𝑛, associated with the triple (𝑛, 𝑛, 𝑛), have the same forms. 
Making use of the wavelet transform (2.9) one can easily deduce the 
following relation(
𝜎𝑛
𝑙′𝑙

𝛾𝑛
𝑙′𝑙

𝛽𝑛
𝑙′𝑙

𝛼𝑛
𝑙′𝑙

)
=𝑈

(
𝜎𝑛+12𝑙′ ,2𝑙 𝜎𝑛+12𝑙′ ,2𝑙+1
𝜎𝑛+12𝑙′+1,2𝑙 𝜎𝑛+12𝑙′+1,2𝑙+1

)
𝑈𝑇 . (2.16)

Finally, we can describe a practical algorithm for the operator appli-

cation in the nonstandard form. Let us for a given arbitrary 𝑓 ∈𝐿2(0, 1)
consider the sequences 𝑑𝑛

𝑙
, ̃𝑠𝑛
𝑙
, ̂𝑠𝑛
𝑙

with 𝑛 ∈ ℕ0, 𝑙 = 0, 1, … , 2𝑛 − 1 of ele-

ments from ℂk defined by the following iterative procedure

𝑑𝑛
𝑙′
=

2𝑛−1∑
𝑙=0

(
𝛼𝑛
𝑙′𝑙
𝑑𝑛
𝑙
(𝑓 ) + 𝛽𝑛

𝑙′𝑙
𝑠𝑛
𝑙
(𝑓 )

)
, 𝑠̃𝑛

𝑙′
=

2𝑛−1∑
𝑙=0

𝛾𝑛
𝑙′𝑙
𝑑𝑛
𝑙
(𝑓 )

and

𝑠̂𝑛2𝑚 =𝐻 (0) (𝑠̂𝑛−1𝑚 + 𝑠̃𝑛−1𝑚

)
+𝐺(0)𝑑𝑛−1𝑚

, 𝑛 ⩾ 1, where 𝑠̂0 = 𝜎0 𝑠0(𝑓 ).

𝑠̂𝑛2𝑚+1 =𝐻 (1) (𝑠̂𝑛−1𝑚 + 𝑠̃𝑛−1𝑚

)
+𝐺(1)𝑑𝑛−1𝑚

0 00 0
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Lemma 1. Let 𝑓 ∈ 𝐿2(0, 1), n ∈ ℕ0 and 𝑔 = n+1𝑓 . Then its coefficients 
can be obtained by the above iterative procedure as

𝑑n

𝑙
(𝑔) = 𝑑n

𝑙
, 𝑠n

𝑙
(𝑔) = 𝑠̃n

𝑙
+ 𝑠̂n

𝑙
(2.17)

at the finest scale n. The rest coefficients, at scales 𝑛 = 0, … , n −1, are found 
by (2.11).

Proof. It is enough to prove (2.17), since the scale relation (2.11) is 
already known. Moreover, the first equality in (2.17) is obvious. Now 
we can notice that the second equality in (2.17) clearly holds for the 
finest scale n = 0. Thus the statement follows by induction over n from 
the equalities

1

∫
0

𝜙𝑛
𝑝𝑙
(𝑥)𝜙𝑛+1

𝑗,2𝑚(𝑥)𝑑𝑥 = ℎ
(0)
𝑝𝑗
𝛿𝑙𝑚,

1

∫
0

𝜓𝑛
𝑝𝑙
(𝑥)𝜙𝑛+1

𝑗,2𝑚(𝑥)𝑑𝑥 = 𝑔
(0)
𝑝𝑗
𝛿𝑙𝑚

1

∫
0

𝜙𝑛
𝑝𝑙
(𝑥)𝜙𝑛+1

𝑗,2𝑚+1(𝑥)𝑑𝑥 = ℎ
(1)
𝑝𝑗
𝛿𝑙𝑚,

1

∫
0

𝜓𝑛
𝑝𝑙
(𝑥)𝜙𝑛+1

𝑗,2𝑚+1(𝑥)𝑑𝑥 = 𝑔
(1)
𝑝𝑗
𝛿𝑙𝑚

that are straightforward to check. Further details are omitted. □

3. Review on time evolution operators in multiwavelet bases

There are two main examples of the operator  that we regard here, 
namely, the heat exp

(
𝑡𝜕2𝑥

)
and Schrödinger exp

(
𝑖𝑡𝜕2𝑥

)
evolution opera-

tors. The former one is probably the most used and studied operator in 
relation to application of multiwavelets. In this section we review how 
the heat propagation operator exp

(
𝑡𝜕2𝑥

)
is discretized in a multiwavelet 

basis, and which problems arise when the same techniques are directly 
adapted to the Schrödinger semigroup exp

(
𝑖𝑡𝜕2𝑥

)
.

3.1. Finite interval representation with Dirichlet boundary conditions

The Laplacian 𝜕2𝑥 together with the Direchlet boundary conditions, 
or more precisely, defined on the domain

Dom
(
𝜕2𝑥
)
=
{
𝑢 ∈𝐻2

2 (0,1)
|||𝑢(0) = 𝑢(1) = 0

}
,

constitute an unbounded self-adjoint operator in 𝐿2(0, 1).
The collection of functions 

{
𝑥↦

√
2 sin(𝜋𝜈𝑥)

}
𝜈∈ℕ

forms an or-

thonormal basis in 𝐿2(0, 1). Let 𝔽 be the Fourier transform associated 
with this basis, that is

𝔽𝑢(𝜈) =
1

∫
0

𝑢(𝑥)
√
2 sin(𝜋𝜈𝑥)𝑑𝑥.

The elements of this basis are eigenfunctions of the Laplacian 𝜕2𝑥 , with 
eigenvalues −(𝜋𝜈)2, 𝜈 = 1, 2, …. Therefore, according to the general 
spectral theory for any function Ψ we can define the following oper-

ator

Ψ
(
𝜕2𝑥
)
𝑢(𝑥) =

∞∑
𝜈=1

Ψ
(
−(𝜋𝜈)2

) 1

∫
0

𝑢(𝑥′)
√
2 sin(𝜋𝜈𝑥′)𝑑𝑥′

√
2 sin(𝜋𝜈𝑥)

on functions 𝑢 ∈𝐿2(0, 1). Alternatively, this can be written as a Fourier 
transform, followed by multiplication by Ψ 

(
−(𝜋𝜈)2

)
and inverse Fourier 

transform:

Ψ
(
𝜕2𝑥
)
= 𝔽−1Ψ

(
−(𝜋𝜈)2

)
𝔽 .

The Fourier transform 𝔽 is an isomorphism and its inverse is defined 
as

−1 2
∞∑ √

2

4

𝔽 ∶ 𝓁 (ℕ) ∋ 𝛼↦
𝜈=1

𝛼𝜈 2 sin(𝜋𝜈𝑥) ∈𝐿 (0,1).
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The main example we are interested in is Ψ(𝜆) = exp(𝑖𝑡𝜆). The heat ex-

ponent with Ψ(𝜆) = exp(𝑡𝜆) has been previously considered in [5]. The 
propagator exp

(
𝑖𝑡𝜕2𝑥

)
is defined through the symbol exp

(
−𝑖𝑡(𝜋𝜈)2

)
as 

described above. We would like to represent this operator in a multi-

wavelet basis in the same spirit as in [5]. Following the same logic we 
start with the projection of 𝑢(𝑥) in a MW basis:

𝑃 𝑛𝑢(𝑥) =
𝑁−1∑
𝑙=0

k−1∑
𝑗=0

𝑠𝑛
𝑗𝑙
𝜙𝑛
𝑗𝑙
(𝑥), 𝑁 = 2𝑛,

and then consider its time evolution under the action of the operator 
 = Ψ 

(
𝜕2𝑥
)
. The function  𝑢 is approximated by 𝑛𝑢 which lies in the 

span of piecewise Legendre polynomials. We have

𝑛𝑢 =
𝑁−1∑
𝑙=0

k−1∑
𝑗=0

𝑠̃𝑛
𝑗𝑙
𝜙𝑛
𝑗𝑙
,

where the coefficients ̃𝑠𝑛
𝑗𝑙

are obtained by applying Ψ 
(
𝜕2𝑥
)

onto 𝑃 𝑛𝑢(𝑥), 
and then taking the inner product with the scaling function 𝜙𝑛

𝑗𝑙
(𝑥),

𝑠̃𝑛
𝑗𝑙
=

1

∫
0

Ψ
(
𝜕2𝑥
)
𝑃 𝑛𝑢(𝑥)𝜙𝑛

𝑗𝑙
(𝑥)𝑑𝑥

=

1

∫
0

𝔽−1 (Ψ(
−(𝜋𝜈)2

)
𝔽𝑃 𝑛𝑢(𝜈)

)
(𝑥)𝜙𝑛

𝑗𝑙
(𝑥)𝑑𝑥.

The rightmost integral is the inner product in 𝐿2(0, 1). It can be rewritten 
in terms of the inner product in 𝓁2(ℕ) by noticing that 𝔽 ∗ = 𝔽−1 which 
follows immediately from the Parseval’s identity. Thus

𝑠̃𝑛
𝑗′𝑙′

=
∞∑
𝜈=1

Ψ
(
−(𝜋𝜈)2

)
𝔽𝑃 𝑛𝑢(𝜈)𝔽𝜙𝑛

𝑗′𝑙′
(𝜈)

=
𝑁−1∑
𝑙=0

k−1∑
𝑗=0

𝑠𝑛
𝑗𝑙

∞∑
𝜈=1

Ψ
(
−(𝜋𝜈)2

)
𝔽𝜙𝑛

𝑗𝑙
(𝜈)𝔽𝜙𝑛

𝑗′𝑙′
(𝜈).

Here we make a first remark on the convergence of this series. Our main 
example Ψ 

(
−(𝜋𝜈)2

)
= exp

(
−𝑖𝑡(𝜋𝜈)2

)
is a function bounded with re-

spect to 𝜈 ∈ ℕ. Both 𝔽𝜙𝑛
𝑗𝑙

and 𝔽𝜙𝑛
𝑗′𝑙′

are 𝓁2-sequences. Therefore the 
series is absolutely convergent by the Cauchy-Schwarz’s inequality. So 
far we do not have much information about the rate of convergence, 
though one can anticipate a significant cancellation effect at high fre-

quencies 𝜈 due to oscillations caused by the exponent.

Let us simplify further the expression for 𝔽𝜙𝑛
𝑗𝑙
(𝜈) in the following 

way

𝔽𝜙𝑛
𝑗𝑙
(𝜈) =

1

∫
0

𝜙𝑛
𝑗𝑙
(𝑥)

√
2 sin(𝜋𝜈𝑥)𝑑𝑥 = 1√

𝑁

1

∫
0

𝜙𝑗 (𝑥)
√
2 sin

(
𝜋𝜈

𝑥+ 𝑙

𝑁

)
𝑑𝑥

= − 𝑖√
2𝑁

1

∫
0

𝜙𝑗 (𝑥)
(
exp

(
𝑖𝜋𝜈

𝑥+ 𝑙

𝑁

)
− exp

(
−𝑖𝜋𝜈 𝑥+ 𝑙

𝑁

))
𝑑𝑥.

If we introduce the usual Fourier transform as

𝑓 (𝜉) = 𝑓 (𝜉) = ∫
ℝ

𝑓 (𝑥)𝑒−𝑖𝜉𝑥𝑑𝑥 (3.1)

then after simple algebraic manipulations we get

𝔽𝜙𝑛
𝑗𝑙
(𝜈)𝔽𝜙𝑛

𝑗′𝑙′
(𝜈) = 1

𝑁
Re

(
𝜙𝑗

(
𝜋𝜈

𝑁

)𝜙𝑗′ (−𝜋𝜈𝑁 )
exp 𝑖𝜋𝜈(𝑙

′ − 𝑙)
𝑁

−𝜙𝑗
(
−𝜋𝜈
𝑁

)𝜙𝑗′ (−𝜋𝜈𝑁 )
exp 𝑖𝜋𝜈(𝑙

′ + 𝑙)
𝑁

)
.

Summing up we obtain
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𝑠̃𝑛
𝑗′𝑙′

=
𝑁−1∑
𝑙=0

k−1∑
𝑗=0

𝑠𝑛
𝑗𝑙

([
𝜎1𝑛
𝑙′−𝑙

]
𝑗′𝑗

−
[
𝜎2𝑛
𝑙′+𝑙

]
𝑗′𝑗

)
, 𝑁 = 2𝑛,

which shows that the matrix elements of 𝑛 can be written as 𝜎𝑛
𝑙′𝑙

=
𝜎1𝑛
𝑙′−𝑙 − 𝜎2𝑛

𝑙′+𝑙 in {𝜙𝑛
𝑗𝑙
}, where we introduced the following notations

[
𝜎1𝑛
𝑙

]
𝑗′𝑗 =

∞∑
𝜈=1

Ψ
(
−(𝜋𝜈)2

) 1
𝑁

Re
(
𝜙𝑗

(
𝜋𝜈

𝑁

)𝜙𝑗′ (𝜋𝜈𝑁 )
exp 𝑖𝜋𝜈𝑙

𝑁

)
,

[
𝜎2𝑛
𝑙

]
𝑗′𝑗 =

∞∑
𝜈=1

Ψ
(
−(𝜋𝜈)2

) 1
𝑁

Re
(
𝜙𝑗

(
𝜋𝜈

𝑁

)𝜙𝑗′ (𝜋𝜈𝑁 )
exp 𝑖𝜋𝜈𝑙

𝑁

)
.

The advantage of the above equations is that the Fourier transforms 
above can be computed exactly, because they involve the calculation 
of integrals of polynomials multiplied by exponentials. Moreover, the 
recursion formula for the Legendre polynomials implies a recursion for 
the corresponding Fourier transforms. Indeed, integrating the following 
relation [2] with an exponential weight

(2𝑗 + 1)𝑃𝑗 (𝑥) = 𝜕𝑥(𝑃𝑗+1(𝑥) − 𝑃𝑗−1(𝑥))

one obtains

2𝑗 + 1
𝑖𝜉

1

∫
−1

𝑃𝑗 (𝑥)𝑒−𝑖𝜉𝑥𝑑𝑥 =

1

∫
−1

𝑃𝑗+1(𝑥)𝑒−𝑖𝜉𝑥𝑑𝑥−

1

∫
−1

𝑃𝑗−1(𝑥)𝑒−𝑖𝜉𝑥𝑑𝑥.

Hence, the Fourier-transformed Legendre scaling functions (2.2) display 
the following recursion formulas

𝜙𝑗+1(𝜉) =
√

2𝑗 + 3
2𝑗 − 1

𝜙𝑗−1(𝜉) + 2
√
(2𝑗 + 1)(2𝑗 + 3)

𝑖𝜉
𝜙𝑗 (𝜉), (3.2)

whereas the first two Fourier transforms

𝜙0(𝜉) =
1
𝑖𝜉

(
1 − 𝑒−𝑖𝜉

)
, (3.3)

𝜙1(𝜉) =
𝑖
√
3

𝜉

(
1 + 𝑒−𝑖𝜉

)
+

2
√
3

𝜉2

(
𝑒−𝑖𝜉 − 1

)
(3.4)

can be obtained by direct calculations.

We remark again here that each Fourier transform 𝜙𝑗
(
𝜋𝜈

𝑁

)
=

 
(
𝑁

𝜈

)
, when 𝜈 →∞, as follows from the calculation of Fourier trans-

forms. This is prohibitively slow for our main example of bounded Ψ. 
Keeping only the first 𝑁𝑚 terms of the sums we get

[
𝜎1𝑛
𝑙

]
𝑗′𝑗 =

𝑁𝑚∑
𝜈=1

Ψ
(
−(𝜋𝜈)2

) 1
𝑁

Re𝜙𝑗
(
𝜋𝜈

𝑁

)𝜙𝑗′ (𝜋𝜈𝑁 )
exp 𝑖𝜋𝜈𝑙

𝑁

+( 1
𝑁𝑚−1

)
,

and similarly for 
[
𝜎2𝑛
𝑙

]
𝑗′𝑗

. Indeed, the remainder is bounded up to a 
constant by

1
𝑁

∞∑
𝜈=𝑁𝑚+1

1
(𝜈∕𝑁)2

⩽
∞

∫
𝑁𝑚−1

𝑑𝑥

𝑥2
= 1
𝑁𝑚−1 .

This is problematic since in practice an acceptable precision demands 
setting 𝑚 = 3 or larger, which corresponds to the tolerance  

(
1
𝑁2

)
=

 
(
2−2𝑛

)
. This requires at least 𝑁3 multiplications. On the other hand, 

the remainder can be estimated more precisely by making use of the 
high oscillation of Ψ mentioned above. The advantage of the smoothing 
property of the exponential operator will be exploited in Section 4.

For the heat equation the series 
[
𝜎1𝑛
𝑙

]
𝑗′𝑗

and 
[
𝜎2𝑛
𝑙

]
𝑗′𝑗

converge signifi-

cantly faster thanks to the decay Ψ 
(
−(𝜋𝜈)2

)
= exp

(
−𝑡(𝜋𝜈)2

)
. Moreover, 

the corresponding non-standard form blocks 𝛼𝑛, 𝛽𝑛 and 𝛾𝑛 defined in 
5

(2.15) turn out to be effectively sparse. We remark here that the entries 
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of the matrices 
[
𝜎1𝑛
𝑙

]
𝑗′𝑗
, 
[
𝜎2𝑛
𝑙

]
𝑗′𝑗

are calculated only once for a fixed 
and given time step 𝑡, or, in case of higher-order temporal integration 
schemes, for a sequence of time substeps. Then each of these matrices 
is applied to a vector {𝑠𝑛

𝑗𝑙
} following a fast numerical procedure devel-

oped in [6]. When the non-standard form of the operator is used, the 
sparse approximations of 𝛼𝑛, 𝛽𝑛 and 𝛾𝑛 are applied to {𝑠𝑛

𝑗𝑙
}, {𝑑𝑛

𝑗𝑙
}.

3.2. Convolution representation on the real line

On the real line, the operator  =Ψ 
(
𝜕2𝑥
)

is a convolution of the form

 𝑢(𝑥) = ∫
ℝ

𝐾(𝑥− 𝑦)𝑢(𝑦)𝑑𝑦 (3.5)

with the kernel 𝐾 = −1
𝜉

Ψ 
(
−𝜉2

)
. Its matrix elements (2.15) are the 

integrals

[
𝜎𝑛
𝑙′𝑙

]
𝑗′𝑗

=

1

∫
0

1

∫
0

𝐾(𝑥− 𝑦)𝜙𝑛
𝑗′𝑙′

(𝑥)𝜙𝑛
𝑗𝑙
(𝑦)𝑑𝑥𝑑𝑦

simplifying to

[
𝜎𝑛
𝑙′𝑙

]
𝑗′𝑗

=
[
𝜎𝑛
𝑙′−𝑙

]
𝑗′𝑗

= 1
𝑁

1

∫
−1

𝐾

(
𝑧+ 𝑙′ − 𝑙

𝑁

)
Φ𝑗′𝑗 (𝑧)𝑑𝑧

according to (2.1), where 𝑁 = 2𝑛 and the so called correlation functions

Φ𝑗′𝑗 (𝑧) =

1

∫
0

𝜙𝑗′ (𝑥)𝜙𝑗 (𝑥− 𝑧)𝑑𝑥

have been introduced. Each of them is continuous with the support in 
[−1, 1]. Their restrictions to either [−1, 0] or [0, 1] are polynomials of or-

der at most 2k −1. Therefore, one may expand the correlation functions 
in 𝐿2(−1, 1) as

Φ𝑗′𝑗 (𝑧) =
2k−1∑
𝑝=0

(
𝑐
(+)
𝑗′𝑗𝑝

𝜙𝑝(𝑧) + 𝑐
(−)
𝑗′𝑗𝑝

𝜙𝑝(𝑧+ 1)
)
,

where the cross correlation coefficients⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑐
(+)
𝑗′𝑗𝑝

=

1

∫
0

1

∫
0

𝜙𝑗′ (𝑥)𝜙𝑗 (𝑥− 𝑧)𝜙𝑝(𝑧)𝑑𝑥𝑑𝑧

𝑐
(−)
𝑗′𝑗𝑝

=

1

∫
0

1

∫
0

𝜙𝑗′ (𝑥)𝜙𝑗 (𝑥− 𝑧+ 1)𝜙𝑝(𝑧)𝑑𝑥𝑑𝑧

,

𝑗′, 𝑗 = 0,… , k− 1, 𝑝 = 0,… ,2k− 1,

are easily tabulated. Thus the convolution operator  in the orthonor-

mal collection {𝜙𝑛
𝑗𝑙
} has the matrix elements 

[
𝜎𝑛
𝑙′𝑙

]
𝑗′𝑗

=
[
𝜎𝑛
𝑙′−𝑙

]
𝑗′𝑗

de-

pending only on the distance 𝑙′ − 𝑙 = 1 −𝑁, … , 𝑁 − 1 to the diagonal. 
These elements may be evaluated via

[
𝜎𝑛
𝑙

]
𝑗′𝑗 =

1√
𝑁

2k−1∑
𝑝=0

(
𝑐
(+)
𝑗′𝑗𝑝

𝑠𝑛
𝑝,𝑙
(𝐾) + 𝑐

(−)
𝑗′𝑗𝑝

𝑠𝑛
𝑝,𝑙−1(𝐾)

)
, (3.6)

where 𝑁 = 2𝑛 and the scaling coefficients of the kernel 𝐾 are defined 
by (2.4).

The numerical evaluation of convolution operators is reviewed in 
[14], for instance. Equation (3.6) gives the pure scaling component of 
the operator, the first integral in (2.15). The other components can be 
calculated by the decomposition transformation (2.16) that simplifies to(
𝜎𝑛
𝑙

𝛾𝑛
𝑙

) (
𝜎𝑛+12𝑙 𝜎𝑛+12𝑙−1

)
𝑇

𝛽𝑛
𝑙

𝛼𝑛
𝑙

=𝑈
𝜎𝑛+12𝑙+1 𝜎𝑛+12𝑙

𝑈 (3.7)
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for the convolution operator  and 𝑙 = −𝑁 +1, −𝑁 +2, … , 𝑁 −1 stand-

ing for the distance to the diagonal.

We can now demonstrate how the multiwavelet framework can be 
used for the exponential heat operator exp

(
𝑡𝜕2𝑥

)
. It can be regarded as 

a convolution operator in 𝐿2(ℝ) of the form

exp
(
𝑡𝜕2𝑥

)
𝑢(𝑥) = 1√

4𝜋𝑡 ∫ℝ
exp

(
−(𝑥− 𝑦)2

4𝑡

)
𝑢(𝑦)𝑑𝑦, 𝑡 > 0,

as shown in Ref [13]. It is associated with the heat equation 𝜕𝑡𝑢 = 𝜕2𝑥𝑢 on 
the real line ℝ. The Green’s function scaling coefficients 𝑠𝑛

𝑝,𝑙
(𝐾) can be 

calculated easily with high precision. Then from (3.6), (3.7) one obtains 
the corresponding non-standard (NS)-form matrices 𝛼𝑛, 𝛽𝑛, 𝛾𝑛 with 𝑛 =
0, 1, …. Gaussian kernels are separable and possess a narrow, diagonally 
banded structure in their NS-form, which has already been exploited for 
Chemistry applications in the past, in particular by approximating the 
Poisson and Helmholtz kernel as a sum of Gaussians [16,14,15], similar 
to the one appearing in this heat semigroup convolution.

An attempt to adapt the above approach to the time-dependent 
Schrödinger equation (1.1) was made in [25]. The exponential oper-

ator exp
(
𝑖𝑡𝜕2𝑥

)
can be regarded as a convolution operator in 𝐿2(ℝ) of 

the form

exp
(
𝑖𝑡𝜕2𝑥

)
𝑢(𝑥) =

exp(−𝑖𝜋∕4)√
4𝜋𝑡 ∫

ℝ

exp
(
𝑖(𝑥− 𝑦)2

4𝑡

)
𝑢(𝑦)𝑑𝑦, 𝑡 > 0,

see [13]. The oscillatory behavior of the kernel makes it not feasible 
to calculate the convolution with a given high precision. Therefore, in 
[25] this difficulty has been overcome by damping high frequencies: the 
kernel was approximated by

𝐾(𝑥) ≈ −1
𝜉

(
𝑒−𝑖𝑡𝜉

2
𝜒(𝜉)

)
(𝑥),

where 𝜒(𝜉) is a smooth cut off function. The problem with such an ap-

proach is that it is difficult to control the error and the cut off 𝜒(𝜉) should 
be tuned for each particular problem. Moreover, as in Subsection 3.1 this 
approach ignores the smoothing property of the exponential operator.

4. Contour deformation technique

Kaye et al. [18] have exploited the smoothing property of the ex-

ponential operator  = exp
(
𝑖𝑡𝜕2𝑥

)
. They regarded Equation (1.1) in the 

frequency domain. Returning back to the physical domain, where the 
potential 𝑉 (𝑥, 𝑡) is applied, they calculated the inverse Fourier trans-

form −1 over a specifically deformed contour Γ instead of ℝ, which 
allowed them to increase the precision significantly, while keeping the 
advantage of using Fast Fourier Transform (FFT) based schemes. In this 
section we adopt their approach in order to get a precise multiresolution 
representation of  . As in Section 3.1, we can write

𝑛𝑢 = 𝑃 𝑛 exp
(
𝑖𝑡𝜕2𝑥

)
𝑃 𝑛𝑢 = 𝑃 𝑛−1𝑒−𝑖𝑡𝜉

2𝑃 𝑛𝑢 =
𝑁−1∑
𝑙=0

k−1∑
𝑗=0

𝑠̃𝑛
𝑗𝑙
𝜙𝑛
𝑗𝑙
,

where now the operator  is unitary in 𝐿2(ℝ). Similarly, we obtain

𝑠̃𝑛
𝑗′𝑙′

=
𝑁−1∑
𝑙=0

k−1∑
𝑗=0

𝑠𝑛
𝑗𝑙

[
𝜎𝑛
𝑙′−𝑙

]
𝑗′𝑗
, 𝑁 = 2𝑛,

where the matrix 
[
𝜎𝑛
𝑙′𝑙

]
𝑗′𝑗

defined in (2.15) depends only on the dis-

tance 𝑙′ − 𝑙 to the diagonal, as explained in Section 3.2. In terms of the 
introduced notations we have the following expression

[
𝜎𝑛
𝑙

]
𝑗′𝑗 =

1
2𝜋𝑁 ∫

ℝ

exp
(
𝑖𝜉𝑙

𝑁
− 𝑖𝑡𝜉2

)
𝜙𝑗

(
𝜉

𝑁

)
𝜙𝑗′

(
𝜉

𝑁

)
𝑑𝜉

= 1
2𝜋 ∫ exp

(
𝑖𝜉𝑙 − 𝑖𝑡𝑁2𝜉2

)𝜙𝑗 (𝜉)𝜙𝑗′ (−𝜉)𝑑𝜉.

6

ℝ
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Note that 
[
𝜎𝑛
𝑙

]
𝑗′𝑗

=
[
𝜎𝑛−𝑙

]
𝑗𝑗′

. The Fourier transforms of the scaling func-

tions are given by (3.2), (3.3), (3.4). Clearly, the integrand can be ex-

tended to an entire function of complex variable 𝜁 ∈ℂ. In two quadrants 
of ℂ-plane we have Re

(
−𝑖𝑡𝑁2𝜁2

)
< 0, which suggests that deforming 

the integration contour into them, would lead to a more effective cal-

culation of the integral with respect to 𝜁 . We could in principle deform 
the integration contour exactly as was done in [18], so that the new 
contour Γ would be chosen depending on the sign of 𝑡 and an accuracy 
parameter 𝜀. Without loss of generality one can assume 𝑡 > 0 from now 
on. Their contour Γ𝐻 is kept in an 𝐻 -neighborhood of the real axis ℝ, 
i.e. in the band | Im 𝜁 | ⩽𝐻 , where the bound 𝐻 > 0 is introduced in or-

der to avoid multiplication of big and small numbers while calculating 
the integral. A direct repetition of their argument leads to the optimal 
bound

𝐻 = 1
𝑁

log 𝜋𝜀

2𝜀mach

, (4.1)

where 𝜀 is the desired precision and 𝜀mach is the machine epsilon (the 
precision limit of floating-point arithmetic on a computer, approxi-

mately 2−52 for double type), see the details in Subsection 4.3. However, 
in our case we can use as an advantage the fact that we are able to 
calculate Fourier transforms of piecewise polynomials 𝜙𝑗 exactly. In-

deed, all the integrands are sums of exponents (up to powers of 1∕𝜁 ), 
therefore, combining them together one can try to avoid inaccurate mul-

tiplications. Without this restriction, we are able to take a contour that 
will allow us to exploit the smoothing semigroup property at its best. 
Namely, we choose a contour to be the line Γ = (1 − 𝑖)ℝ oriented with 
angle −𝜋∕4 to the real line. On such contour Γ the main exponent part 
−𝑖𝑡𝑁2𝜁2 = −𝑡𝑁2|𝜁 |2, which guarantees fast integral convergence.

The nonstandard form matrices (2.15) take their final form[
𝜎𝑛
𝑙

]
𝑝𝑗
= 1

2𝜋 ∫
Γ

exp
(
𝑖𝜁𝑙 − 𝑖𝑡𝑁2𝜁2

)𝜙𝑗 (𝜁)𝜙𝑝(−𝜁)𝑑𝜁, (4.2)

[
𝛼𝑛
𝑙

]
𝑝𝑗
= 1

2𝜋 ∫
Γ

exp
(
𝑖𝜁𝑙 − 𝑖𝑡𝑁2𝜁2

)𝜓𝑗 (𝜁)𝜓𝑝(−𝜁)𝑑𝜁, (4.3)

[
𝛽𝑛
𝑙

]
𝑝𝑗
= 1

2𝜋 ∫
Γ

exp
(
𝑖𝜁𝑙 − 𝑖𝑡𝑁2𝜁2

)𝜙𝑗 (𝜁)𝜓𝑝(−𝜁)𝑑𝜁, (4.4)

[
𝛾𝑛
𝑙

]
𝑝𝑗
= 1

2𝜋 ∫
Γ

exp
(
𝑖𝜁𝑙 − 𝑖𝑡𝑁2𝜁2

)𝜓𝑗 (𝜁)𝜙𝑝(−𝜁)𝑑𝜁. (4.5)

As we shall see below, the matrices are effectively sparse, due to 
𝜓𝑗 (0) = 0 of at least order k. We point out here that Fourier transform 
𝜓𝑗 (𝜉) can be easily found analytically and extended to the complex 
plane 𝜁 ∈ℂ as

𝜓̂𝑚(𝜁) =
1√
2

k−1∑
𝑗=0

𝜙𝑗

(
𝜁

2

)[
𝑔
(0)
𝑖𝑗

+ 𝑔
(1)
𝑖𝑗

exp
(
− 𝑖𝜁

2

)]
,

where 𝑔(0)
𝑖𝑗

and 𝑔(1)
𝑖𝑗

are elements of the filter matrices 𝐺(0) and 𝐺(1), 
respectively. The justification of the contour deformation is straightfor-

ward, so we omit the proof.

Before we continue with the evaluation of these integrals, it is worth 
to make a couple of remarks on the behavior of the integrands in 
(4.2)-(4.5). As can be seen from Equations (3.2)-(3.4), the Legendre 
Fourier transform extensions 𝜙𝑗 (𝜁) have a removable singularity at zero 
𝜁 = 0. The same is true for the interpolating Fourier transform exten-

sions 𝜑̂𝑗 (𝜁) and the wavelet Fourier transform extensions 𝜓̂𝑗 (𝜁). This 
suggests that they can be approximated by power series around zero. 
Moreover, taking into account the Gaussian factor exp

(
−𝑡𝑁2|𝜁 |2), one 

may expect that these power series will provide good numerical values 
also away from the origin 𝜁 = 0. Below, we will mostly focus on de-

veloping this idea further. The last remark concerns the price to pay 
for the contour deformation. As it will be obvious below, apart from 

the Gaussian fast decreasing factor we also get the increasing factor 
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exp
(
(|𝑙|+ 1)|𝜁 |∕√2

)
, that turns out to be crucial, due to round up er-

rors, when the time step 𝑡 is small and the scale 𝑛 is coarse (small 𝑛). 
This problem is, in practice, overcome by the algorithm used to con-

struct the NS form of the operator. Specifically, the first integral (4.2) is 
computed with high precision at the finest scale 𝑛 required, depending 
on 𝑡. Then the operator matrices at coarser scales are obtained by virtue 
of the MW transform (3.7).

4.1. Legendre scaling functions

Our goal is to calculate the integrals[
𝜎𝑛
𝑙

]
𝑝𝑗
(𝑎) = 1

2𝜋 ∫
Γ

exp
(
𝑖𝜁𝑙 − 𝑖𝑎𝜁2

)
𝜙𝑗 (𝜁)𝜙𝑝(−𝜁)𝑑𝜁, 0 ⩽ 𝑝, 𝑗 < k, (4.6)

where 𝑎 = 𝑡𝑁2 = 𝑡4𝑛. We can represent the multiplication of Fourier 
transforms as a 𝜁 -power series. This will transform this integral into 
a series of integrals 𝐽𝑘(𝑎, 𝑙), that can be evaluated exactly, with some 
coefficients depending solely on 𝑝, 𝑗, 𝑘. These coefficients need to be 
computed only once and tabulated, as they are problem-independent. 
We will call them correlation coefficients. We make an extensive use of 
(3.2) which is valid for integers 𝑗 ⩾ 1.

Firstly, we notice that 𝜙𝑗 (𝜁) has a root at zero of order 𝑗. Indeed,

𝜕𝑚
𝜁
𝜙𝑗 (0) = (−𝑖)𝑚 ∫

ℝ

𝜙𝑗 (𝑥)𝑥𝑚𝑑𝑥

that equals zero for any 0 ⩽ 𝑚 < 𝑗 and a non-zero provided 𝑚 = 𝑗. In 
particular, 𝜙0(0) = 1 and 𝜙1(0) = 0. In other words, the Taylor series of 
the entire function 𝜙𝑗 (𝜁) starts with the power 𝑗.

Secondly, we can see from Equations (3.2)-(3.4) that each 𝜙𝑗 (𝜁) is a 
combination of powers of 1∕𝜁 and of exponentials 𝑒±𝑖𝜁 . More precisely, 
𝜙𝑗 (𝜁) =Φ𝑗 (−𝑖𝜁), where

Φ𝑗 (𝑥) =𝐴
𝑗

0
1
𝑥
+…+𝐴

𝑗
𝑗

1
𝑥𝑗+1

+𝐵
𝑗

0
𝑒𝑥

𝑥
+…+𝐵

𝑗
𝑗

𝑒𝑥

𝑥𝑗+1
.

These coefficients are real and can be found exactly. Indeed, from 
(3.3) we deduce

𝐴0
0 = −1, 𝐵0

0 = 1, (4.7)

and from (3.4) we deduce

𝐴1
0 =

√
3, 𝐴1

1 = 2
√
3, 𝐵1

0 =
√
3, 𝐵1

1 = −2
√
3. (4.8)

For 𝑗 ⩾ 1 from (3.2) we deduce the following relation

𝐴
𝑗+1
0 =

√
2𝑗 + 3
2𝑗 − 1

𝐴
𝑗−1
0

𝐴
𝑗+1
1 =

√
2𝑗 + 3
2𝑗 − 1

𝐴
𝑗−1
1 − 2

√
(2𝑗 + 1)(2𝑗 + 3)𝐴𝑗

0

… … … … …

𝐴
𝑗+1
𝑗−1 =

√
2𝑗 + 3
2𝑗 − 1

𝐴
𝑗−1
𝑗−1 − 2

√
(2𝑗 + 1)(2𝑗 + 3)𝐴𝑗

𝑗−2

𝐴
𝑗+1
𝑗

= −2
√
(2𝑗 + 1)(2𝑗 + 3)𝐴𝑗

𝑗−1

𝐴
𝑗+1
𝑗+1 = −2

√
(2𝑗 + 1)(2𝑗 + 3)𝐴𝑗

𝑗

(4.9)

which also holds for 𝐵𝑗
𝑚 with 𝑗 ⩾ 1.

It is now possible to write the Taylor series about zero 𝜁 = 0 for the 
entire function 𝜙𝑗 (𝜁)𝜙𝑝(−𝜁) =Φ𝑗 (−𝑖𝜁)Φ𝑝(𝑖𝜁). For 𝑗, 𝑝 ⩾ 0 we have

Φ𝑗 (−𝑥)Φ𝑝(𝑥) =
𝑗∑

𝑚=0

𝑝∑
𝑞=0

(−1)𝑚+1

𝑥𝑚+𝑞+2

(
𝐴𝑗
𝑚𝐴

𝑝
𝑞 +𝐵

𝑗
𝑚𝐵

𝑝
𝑞 +𝐴

𝑗
𝑚𝐵

𝑝
𝑞𝑒

𝑥+𝐵𝑗
𝑚𝐴

𝑝
𝑞𝑒

−𝑥
)
.
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Φ𝑗 (−𝑥)Φ𝑝(𝑥)

=
𝑗∑

𝑚=0

𝑝∑
𝑞=0

∞∑
𝑘=𝑗+𝑝+2+𝑚+𝑞

(−1)𝑚+1𝑥𝑘−𝑚−𝑞−2

𝑘!

(
𝐴𝑗
𝑚𝐵

𝑝
𝑞 + (−1)𝑘𝐵𝑗

𝑚𝐴
𝑝
𝑞

)
,

where we have discarded small powers, since the Taylor series starts 
from the power 𝑗 + 𝑝 in 𝑥-variable. We can change the summation vari-

able in the third sum as

Φ𝑗 (−𝑥)Φ𝑝(𝑥)

=
𝑗∑

𝑚=0

𝑝∑
𝑞=0

∞∑
𝑘=0

(−1)𝑚+1𝑥𝑘+𝑗+𝑝

(𝑘+ 2 + 𝑗 + 𝑝+𝑚+ 𝑞)!

(
𝐴𝑗
𝑚𝐵

𝑝
𝑞 + (−1)𝑘+𝑗+𝑝+𝑚+𝑞𝐵𝑗

𝑚𝐴
𝑝
𝑞

)
.

This series can be written down as

Φ𝑗 (−𝑥)Φ𝑝(𝑥) =
∞∑
𝑘=0

𝐶𝑘
𝑗𝑝
𝑥𝑘+𝑗+𝑝

(𝑘+ 2 + 𝑗 + 𝑝)!
,

where

𝐶𝑘
𝑗𝑝 =

𝑗∑
𝑚=0

𝑝∑
𝑞=0

(−1)𝑚+1(𝑘+ 2 + 𝑗 + 𝑝)!
(𝑘+ 2 + 𝑗 + 𝑝+𝑚+ 𝑞)!

(
𝐴𝑗
𝑚𝐵

𝑝
𝑞 + (−1)𝑘+𝑗+𝑝+𝑚+𝑞𝐵𝑗

𝑚𝐴
𝑝
𝑞

)
.

In particular, 𝐶𝑘
00 = 1 + (−1)𝑘, that constitute all cross correlation coef-

ficients required for the Haar multiresolution.

There is an obvious problem here, namely, |||𝐴𝑗
𝑚
||| ∼ (4𝑗)𝑚 which is 

numerically problematic, and the same is true for 𝐵𝑗
𝑚 . So one may try 

to balance multiplication by factorizing it in the following way

𝐶𝑘
𝑗𝑝 =

𝑗∑
𝑚=0

𝑝∑
𝑞=0

(−1)𝑚+1(𝑘+ 2 + 𝑗 + 𝑝)!(4𝑗)𝑚(4𝑝)𝑞

(𝑘+ 2 + 𝑗 + 𝑝+𝑚+ 𝑞)!

×
(
𝐴𝑗
𝑚𝐵

𝑝
𝑞 + (−1)𝑘+𝑗+𝑝+𝑚+𝑞𝐵𝑗

𝑚𝐴
𝑝
𝑞

)
,

with

𝐴𝑗
𝑚 =

𝐴
𝑗
𝑚

(4𝑗)𝑚
, 𝐵𝑝

𝑞 =
𝐵
𝑝
𝑞

(4𝑝)𝑞
, and so on.

These new coefficients satisfy the following relation

𝐵
𝑗+1
0 =

√
2𝑗 + 3
2𝑗 − 1

𝐵
𝑗−1
0

𝐵
𝑗+1
1 =

√
2𝑗 + 3
2𝑗 − 1

𝑗 − 1
𝑗 + 1

𝐵
𝑗−1
1 −

√
(2𝑗 + 1)(2𝑗 + 3)
(2𝑗 + 2)(2𝑗 + 2)

𝐵
𝑗

0

𝐵
𝑗+1
2 =

√
2𝑗 + 3
2𝑗 − 1

(
𝑗 − 1
𝑗 + 1

)2
𝐵
𝑗−1
2 −

√
(2𝑗 + 1)(2𝑗 + 3)
(2𝑗 + 2)(2𝑗 + 2)

𝑗

𝑗 + 1
𝐵
𝑗

1

… … … … …

𝐵
𝑗+1
𝑗−1 =

√
2𝑗 + 3
2𝑗 − 1

(
𝑗 − 1
𝑗 + 1

)𝑗−1
𝐵
𝑗−1
𝑗−1 −

√
(2𝑗 + 1)(2𝑗 + 3)
(2𝑗 + 2)(2𝑗 + 2)

(
𝑗

𝑗 + 1

)𝑗−2
𝐵
𝑗

𝑗−2

𝐵
𝑗+1
𝑗

= −

√
(2𝑗 + 1)(2𝑗 + 3)
(2𝑗 + 2)(2𝑗 + 2)

(
𝑗

𝑗 + 1

)𝑗−1
𝐵
𝑗

𝑗−1

𝐵
𝑗+1
𝑗+1 = −

√
(2𝑗 + 1)(2𝑗 + 3)
(2𝑗 + 2)(2𝑗 + 2)

(
𝑗

𝑗 + 1

)𝑗

𝐵
𝑗
𝑗

(4.10)

which also holds for 𝐴𝑗
𝑚 with 𝑗 ⩾ 1, whereas the initial coefficients are

𝐴0
0 = −1, 𝐴1

0 =
√
3, 𝐴1

1 =
√
3
2
,

√ √
3

𝐵0
0 = 1, 𝐵1

0 = 3, 𝐵1
1 = −

2
. (4.11)
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These formulas are well balanced and can be easily implemented. It 
turns out that due to multiple self-cancellations, the correlation coeffi-

cients stay bounded. For all the ranges of 𝑘, 𝑗, 𝑝 of interest our simula-

tions give |𝐶𝑘
𝑗𝑝
| < 10. Moreover, we can further simplify the expression 

for 𝐶𝑘
𝑗𝑝

, by exploiting some symmetries of 𝐴- and 𝐵-coefficients. For 
example, we can guarantee that 𝐶2𝑘+1

𝑗𝑝
= 0 for all 𝑘 = 0, 1, ….

Lemma 2. For any 𝑗 = 0, 1, … and 𝑚 = 0, 1, … , 𝑗 it holds true that 𝐴𝑗
𝑚 =

(−1)1+𝑗−𝑚𝐵𝑗
𝑚.

Proof. The proof is split in two steps. Firstly, we claim the statement 
for 𝑚 = 0, namely,

𝐴
𝑗

0 = (−1)1+𝑗𝐵𝑗

0, 𝑗 ∈ℕ0. (4.12)

Indeed, for 𝑗 = 0 it follows from (4.7) and for 𝑗 = 1 it follows from (4.8). 
For the other integers it follows by the induction

𝐴
𝑗+1
0 = 𝑐1(0, 𝑗 + 1)𝐴𝑗−1

0 = 𝑐1(0, 𝑗 + 1)(−1)𝑗𝐵𝑗−1
0 = (−1)𝑗𝐵𝑗+1

0

due to the relation (4.9) which both 𝐴- and 𝐵-coefficients satisfy to. 
Similarly, we obtain

𝐴
𝑗

𝑗−1 =𝐵
𝑗

𝑗−1, 𝐴
𝑗
𝑗
= −𝐵𝑗

𝑗
, 𝑗 ∈ℕ. (4.13)

The second step is to prove that

𝐴𝑧+𝑠
𝑧 = (−1)1+𝑠𝐵𝑧+𝑠

𝑧 (4.14)

for all 𝑧, 𝑠 ∈ ℕ0. One could proceed by using induction over two vari-

ables, but we can easily reduce the problem to the standard one variable 
induction. Indeed, let us consider a standard bijection between 𝑛 ∈ ℕ
and (𝑧, 𝑠) ∈ ℕ2

0, mapping the increment 𝑛 ↦ 𝑛 + 1 either as

(𝑧, 𝑠)↦ (𝑧+ 1, 𝑠− 1) (4.15)

or as

𝑧↦ 0 and 𝑧+ 𝑠↦ 𝑧+ 𝑠+ 1. (4.16)

Let (𝑛) stand for the statement (4.14) with 𝑧(𝑛), 𝑠(𝑛). The induction 
base follows from the previous step (4.12). Let (1), … , (𝑛) hold true. 
We need to check the validity of (𝑛 + 1). If the increment 𝑛 ↦ 𝑛 + 1
corresponds to (4.16), then 𝑠(𝑛) = 0, 𝑠(𝑛 + 1) = 𝑧(𝑛) + 1 and (𝑛 + 1)
stands for the statement

𝐴
𝑧(𝑛)+𝑠(𝑛)+1
0 = (−1)2+𝑧(𝑛)𝐵𝑧(𝑛)+𝑠(𝑛)+1

0

holding true by (4.12). It is left to check (𝑛 + 1) for the case of the 
correspondence 𝑛 ↦ 𝑛 + 1 to (4.15), namely, we need to prove

𝐴
𝑧(𝑛)+𝑠(𝑛)
𝑧(𝑛)+1 = (−1)𝑠(𝑛)𝐵𝑧(𝑛)+𝑠(𝑛)

𝑧(𝑛)+1 .

This is obviously true when 𝑠(𝑛) = 1 or 𝑠(𝑛) = 2 due to (4.13). For other 
possible 𝑧 = 𝑧(𝑛) and 𝑠 = 𝑠(𝑛), i.e. 𝑠 ⩾ 3, it follows from the recurrence 
relation (4.9) as

𝐴𝑧+𝑠
𝑧+1 = 𝑐1(𝑧+ 1, 𝑧+ 𝑠)𝐴𝑧+𝑠−2

𝑧+1 − 𝑐2(𝑧+ 1, 𝑧+ 𝑠)𝐴𝑧+𝑠−1
𝑧

= 𝑐1(𝑧+1, 𝑧+𝑠)(−1)𝑠−2𝐵𝑧+𝑠−2
𝑧+1 −𝑐2(𝑧+1, 𝑧+𝑠)(−1)𝑠𝐵𝑧+𝑠−1

𝑧 = (−1)𝑠𝐵𝑧+𝑠
𝑧+1

and the induction assumption on the validity of the first 𝑛 state-

ments. □

From this lemma one can easily derive the final expression

𝐶𝑘
𝑗𝑝 = (−1)𝑗

(
1 + (−1)𝑘

) 𝑗∑
𝑚=0

𝑝∑
𝑞=0

(𝑘+ 2 + 𝑗 + 𝑝)!(4𝑗)𝑚(4𝑝)𝑞

(𝑘+ 2 + 𝑗 + 𝑝+𝑚+ 𝑞)!
𝐵𝑗
𝑚𝐵

𝑝
𝑞 . (4.17)

In particular, 𝐶𝑘
𝑗𝑝

= 0 for odd indices 𝑘. Finally, we show that these 
8

coefficients are uniformly bounded with respect to 𝑘.
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Lemma 3. For any non-negative integers 𝑘, 𝑗, 𝑝 the following bound holds 
true|||𝐶𝑘

𝑗𝑝
||| ⩽ 2𝑗+𝑝+1

√
(2𝑗 + 1)(2𝑝+ 1)

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝑗 + 1)
(𝑝∕𝑗)𝑝+1 − 1
𝑝∕𝑗 − 1

, provided 𝑝 = 3(𝑗 − 1),

(𝑝+ 1)
(𝑗∕𝑝)𝑗+1 − 1
𝑗∕𝑝− 1

, provided 𝑗 = 3(𝑝− 1),(
(4𝑗)𝑗+1 − (3 + 𝑗 + 𝑝)𝑗+1

)(
(4𝑝)𝑝+1 − (3 + 𝑗 + 𝑝)𝑝+1

)
(3(𝑗 − 1) − 𝑝)(3(𝑝− 1) − 𝑗)(3 + 𝑗 + 𝑝)𝑗+𝑝

, other.

Proof. We start by showing that

max
𝑚=0,1,…,𝑗

|||𝐵𝑗
𝑚
||| ⩽ 2𝑗

√
2𝑗 + 1

for each 𝑗 ∈ℕ0. Indeed, 𝐵𝑗

0 can be calculated directly by the first line in 
the recurrence relation (4.10) with the first coefficients (4.11). It yields

𝐵
𝑗

0 =
√
2𝑗 + 1, 𝑗 ∈ℕ0.

The last two lines in (4.10) give|||𝐵𝑗

𝑗−1
||| ⩽ |||𝐵1

0
||| , |||𝐵𝑗

𝑗
||| ⩽ |||𝐵1

1
||| , 𝑗 ∈ℕ.

In particular,|||𝐵𝑗

𝑗−1
||| , |||𝐵𝑗

𝑗
||| ⩽√

2𝑗 + 1, 𝑗 ∈ℕ.

Now let us consider an array 𝑀𝑗
𝑧 with 𝑧 = 0, … , 𝑗 and 𝑗 ∈ ℕ0 satisfying

𝑀𝑗+1
𝑧 =

(
𝑗 − 1
𝑗 + 1

)𝑧

𝑀𝑗−1
𝑧 + 2𝑗 + 1

2𝑗 + 2

(
𝑗

𝑗 + 1

)𝑧−1
𝑀

𝑗

𝑧−1,

𝑧 = 1,… , 𝑗 − 1, 𝑗 ⩾ 2,

where

𝑀
𝑗

0 =𝑀
𝑗
𝑗
=𝑀

𝑗+1
𝑗

= 1, 𝑗 ∈ℕ0.

Then it is easy to see that|||𝐵𝑗
𝑧
||| ⩽𝑀𝑗

𝑧

√
2𝑗 + 1

holds true for all admissible pairs 𝑧, 𝑗. These new parameters can be 
roughly estimated by

𝑀𝑗+2
𝑧 ⩽ max

𝑧=0,…,𝑗+1
𝑀𝑗+1

𝑧 + max
𝑧=0,…,𝑗

𝑀𝑗
𝑧 ⩽ 2𝑗 , 𝑧 = 1,… , 𝑗, 𝑗 ⩾ 0,

which leads to the bound for 𝐵𝑗
𝑚 claimed above at the beginning of the 

proof. We finish now by noticing

𝑗∑
𝑚=0

𝑝∑
𝑞=0

(𝑘+ 2 + 𝑗 + 𝑝)!(4𝑗)𝑚(4𝑝)𝑞

(𝑘+ 2 + 𝑗 + 𝑝+𝑚+ 𝑞)!
⩽

𝑗∑
𝑚=0

𝑝∑
𝑞=0

(4𝑗)𝑚(4𝑝)𝑞

(3 + 𝑗 + 𝑝)𝑚+𝑞

that is a multiplication of two finite geometric series. Summing these 
geometric series and using the bound for 𝐵𝑗

𝑚 we conclude the proof by 
(4.17). □

Now we can make a use of the obtained power series for 𝜙𝑗 (𝜁)𝜙𝑝(−𝜁)
standing in (4.6). The contour Γ is parameterized by 𝜁 = 𝜌𝑒−𝑖𝜋∕4, 𝜌 ∈ℝ. 
One can change the integration variable, and then exchange integration 
and summation by appealing to the dominated convergence theorem. 
Thus our main operator (4.6) has the following expansion

[
𝜎𝑛
𝑙

]
𝑝𝑗
(𝑎) =

∞∑
𝑘=0

𝐶2𝑘
𝑗𝑝 𝐽2𝑘+𝑗+𝑝(𝑙, 𝑎), (4.18)
where 𝑎 = 𝑡4𝑛 and
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𝐽𝑚 = 𝑒𝑖𝜋(𝑚−1)∕4

2𝜋(𝑚+ 2)! ∫
ℝ

exp
(
𝜌𝑙 exp

(
𝑖
𝜋

4

)
− 𝑎𝜌2

)
𝜌𝑚𝑑𝜌 (4.19)

satisfying the following relation

𝐽𝑚+1 =
𝑖

2𝑎(𝑚+ 3)

(
𝑙𝐽𝑚 + 𝑚

(𝑚+ 2)
𝐽𝑚−1

)
, 𝑚 = 0,1,2,… , (4.20)

with 𝐽−1 = 0 and

𝐽0 =
𝑒−𝑖

𝜋
4

4
√
𝜋𝑎

exp
(
𝑖𝑙2

4𝑎

)
. (4.21)

The zero-power integral 𝐽0 is standard and the rest are obtained from 
it via integration by parts. The expansion (4.18) turns out to be very 
efficient as long as the scaling order 𝑛 is big enough for the chosen time 
step 𝑡: the smaller the time 𝑡 the bigger 𝑛 should be, in order to avoid 
that |𝐽𝑚| become so large that it will affect accuracy due to rounding 
errors. For example, 𝑛 should be bigger than 12 for 𝑡 = 10−5.

Using this recurrence formula we can prove some very useful error 
estimates. It is worth to point out that 𝐶𝑘

𝑗𝑝
∈ 𝓁∞(ℕ0), therefore, it makes 

sense to estimate the sequence of power integrals in 𝓁1(ℕ0). We note that 
𝐽𝑚 → 0 as 𝑚 →∞, since the series converges. Appealing repetitively to 
the recurrence relation we can show that 𝐽𝑚 tends to zero faster than 
any power of 1∕𝑚. Denoting 𝑏𝑚 = |𝐽𝑚| we can notice that

𝑏𝑚+1 ⩽
|𝑙|

2𝑎(𝑚+ 3)
𝑏𝑚 + 𝑚

2𝑎(𝑚+ 2)(𝑚+ 3)
𝑏𝑚−1

𝑏𝑚+2 ⩽
|𝑙|

2𝑎(𝑚+ 4)
𝑏𝑚+1 +

𝑚+ 1
2𝑎(𝑚+ 3)(𝑚+ 4)

𝑏𝑚

𝑏𝑚+3 ⩽
|𝑙|

2𝑎(𝑚+ 5)
𝑏𝑚+2 +

𝑚+ 2
2𝑎(𝑚+ 4)(𝑚+ 5)

𝑏𝑚+1

… … … … …

Summing these inequalities one obtains

𝑏𝑚+1 + 𝑏𝑚+2 +… ⩽ 𝑚

2𝑎(𝑚+ 2)(𝑚+ 3)
𝑏𝑚−1

+ 1
2𝑎(𝑚+ 3)

(|𝑙|+ 1 − 3
𝑚+ 4

)
𝑏𝑚

+ 1
2𝑎(𝑚+ 4)

(|𝑙|+ 1 − 3
𝑚+ 5

)
𝑏𝑚+1 +…

On the right-hand side, the coefficients standing in front of 𝑏𝑚+1, 𝑏𝑚+2, …
form a decreasing sequence (strictly decreasing for either 𝑚 ⩾ 1 or 𝑙 ≠ 0), 
and so we can take them out of the brackets. Moreover, for 𝑚 ⩾ |𝑙|+1

2𝑎 −

9
2 +

√(|𝑙|+1
2𝑎 + 1

2

)2
− 3

𝑎
, or any 𝑚 in case the value under the square 

root is negative, we have

𝑏𝑚+1+𝑏𝑚+2+… ⩽ 𝑚

𝑎(𝑚+ 2)(𝑚+ 3)
𝑏𝑚−1+

1
𝑎(𝑚+ 3)

(|𝑙|+ 1 − 3
𝑚+ 4

)
𝑏𝑚

that can be used in practice for series termination. We can even be more 
specific, since we only need to sum 𝑏𝑚 with either even or odd indices 
𝑚, as follows

𝑏𝑚+1 + 𝑏𝑚+3 +… ⩽ 𝑚

2𝑎(𝑚+ 2)(𝑚+ 3)
𝑏𝑚−1 +

|𝑙|
2𝑎(𝑚+ 3)

𝑏𝑚

+ 𝑚+ 2
2𝑎(𝑚+ 4)(𝑚+ 5)

𝑏𝑚+1 +
|𝑙|

2𝑎(𝑚+ 5)
𝑏𝑚+2 +…

⩽ 𝑚

2𝑎(𝑚+ 2)(𝑚+ 3)
𝑏𝑚−1 +

|𝑙|
2𝑎(𝑚+ 3)

𝑏𝑚

+ |𝑙|+ 1
2𝑎(𝑚+ 5)

[
𝑚

𝑎(𝑚+ 2)(𝑚+ 3)
𝑏𝑚−1 +

1
𝑎(𝑚+ 3)

(|𝑙|+ 1 − 3
𝑚+ 4

)
𝑏𝑚

]
.

These inequalities may be exploited to cut the infinite sum in (4.18)

in practical calculations, once the requested precision is set. In princi-

ple, we could proceed further and try to obtain an optimal precision-
9

dependent expression to determine how to terminate the series, though 
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for big |𝑙| we anticipate the series cut to be unnecessarily large. More-

over, the bound in Lemma 3 is in practice very rough, due to very fast 
convergence of the integral series. In most practical calculations it is 
enough to know that |𝐶𝑘

𝑗𝑝
| < 10 for 𝑘 ⩽ 50.

We now turn our attention to the sparsity of the matrices (4.3)-(4.5)

associated with the nonstandard form (2.14) by means of (2.13), (2.15). 
The matrices 𝜎𝑛+1

𝑙
, associated with the scaling functions, can be obtained 

using the expansion (4.18), whereas the matrices 𝛼𝑛
𝑙
, 𝛽𝑛

𝑙
, 𝛾𝑛
𝑙

can be com-

puted exploiting (3.7). The Frobenius norm

‖𝛼‖ =(
k−1∑
𝑝,𝑗=0

|||[𝛼]𝑝𝑗 |||2
)1∕2

(4.22)

is used for a matrix 𝛼 of k × k-size. In Fig. 1 we have displayed the norm 
of the different components of the NS form as a function of the distance 
between two nodes |𝑙| for a selection of scales 𝑛, time steps 𝑡 and poly-

nomial orders k. The values of the norms for |𝑙| = 0 (diagonal elements) 
and |𝑙| = 2𝑛 −1 (corner elements) are reported in Table 1. These results 
show that away from the main diagonal ‖‖‖𝛼𝑛𝑙 ‖‖‖ and ‖‖‖𝛽𝑛𝑙 ‖‖‖ are significant, 
whereas they become negligible closer to the main diagonal 𝑙 = 0. This is 
in contrast with the fact that the NS-form matrices of the heat equation 
exhibit a narrow-bounded structure along the main diagonal, as men-

tioned in Subsection 3.2. Intuitively, this difference can be explained as 
follows. The heat defuses with time, that is, it transports away from the 
initial local perturbation point with some smearing. Waves described by 
the Schrödinger equation (1.3) disperse. Such a wave moves away from 
the initial local perturbation point forming high frequency ripples that 
are captured by multiresolution analysis.

Alternatively, the values on the diagonal and away could be roughly 
estimated as follows. Due to the vanishing moment property (2.7), 𝜓̂𝑗 (𝜁)
has a root at zero of order k + 𝑗. It results in the fact, that the corre-

sponding expansions, similar to (4.18), for the matrix elements 
[
𝛼𝑛
𝑙

]
𝑝𝑗

and 
[
𝛽𝑛
𝑙

]
𝑝𝑗

start with integrals 𝐽2k+𝑝+𝑗 and 𝐽k+𝑝+𝑗 , respectively. These 
integrals constitute the leading terms, due to their fast convergence to 
zero. Moreover, the corner elements 

[
𝛼𝑛
𝑙

]
00 and 

[
𝛽𝑛
𝑙

]
00 are dominant for 

the same reason. Therefore, ‖‖‖𝛼𝑛𝑙 ‖‖‖ ∼ |𝐽2k(𝑙)| and ‖‖‖𝛽𝑛𝑙 ‖‖‖ ∼ |𝐽k(𝑙)|.
For 𝑙 = 0 from (4.20) one obtains

𝐽2𝑘(0) =
𝑒𝑖𝜋(2𝑘−1)∕4

2
√
𝜋𝑎(2𝑎)𝑘(2𝑘+ 2)!!(2𝑘+ 1)

, 𝐽2𝑘+1(0) = 0. (4.23)

In the case of |𝑙| ≫ 1, we can admit the following approximation

𝐽𝑚+1(𝑙) ≈
𝑖𝑙

2𝑎(𝑚+ 3)
𝐽𝑚(𝑙)

and so

𝐽𝑚(𝑙) ≈
(
𝑖𝑙

2𝑎

)𝑚 exp
(
𝑖𝑙2

4𝑎 − 𝑖𝜋

4

)
2
√
𝜋𝑎(𝑚+ 2)!

(4.24)

which leads to‖‖‖𝛼𝑛𝑙 ‖‖‖ ≲ 1
2
√
𝜋𝑎(2k+ 2)!

(
𝑙

2𝑎

)2k
, |𝑙|≫ 1

Meanwhile, ‖‖‖𝛼𝑛0‖‖‖ ∼ |𝐽2k(0)|, where the integral is calculated in (4.23). 
Thus‖‖‖𝛼𝑛𝑙 ‖‖‖ ≲ 1

2
√
𝜋𝑎(2𝑎)k(2k+ 2)!!(2k+ 1)

+ 1
2
√
𝜋𝑎(2k+ 2)!

(
𝑙

2𝑎

)2k

Similarly,

‖‖‖𝛽𝑛𝑙 ‖‖‖ = ‖‖‖𝛾𝑛𝑙 ‖‖‖ ≲ 1
2
√
𝜋𝑎(2𝑎)k∕2(k+ 2)!!(k+ 1)

+ 1
2
√
𝜋𝑎(k+ 2)!

(
𝑙

2𝑎

)k

,

provided k is even
and



Computer Physics Communications 308 (2025) 109436E. Dinvay, Y. Zabelina and L. Frediani

Fig. 1. Sparsity of the non-standard form for selected choices of scales and time steps. Left panels show results for time step 𝑡 = 0.0001 and scale from 𝑛 = 7 (top) 
to 𝑛 = 9 (bottom). Right panels show results for time step 𝑡 = 0.001 and scale from 𝑛 = 5 (top) to 𝑛 = 7 (bottom). Each color represents a different component of the 
NS-form: ‖‖𝛼𝑙‖‖ is blue, ‖‖𝛽𝑙‖‖ is red and ‖‖𝜎𝑙‖‖ is black. Solid lines correspond to k = 6, dashed lines to k = 2 and dash-dot lines to k = 11. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)
‖‖‖𝛽𝑛𝑙 ‖‖‖ = ‖‖‖𝛾𝑛𝑙 ‖‖‖ ≲ 1
2
√
𝜋𝑎(2𝑎)(k+1)∕2(k+ 3)!!(k+ 2)

+ 1
2
√
𝜋𝑎(k+ 2)!

(
𝑙

2𝑎

)k

,

provided k is odd.

Note that the expansions for matrices 𝛼𝑛
𝑙
, 𝛽𝑛

𝑙
with respect to the power 

integrals contain cross correlation coefficients depending on the MRA 
order k. Therefore, the implicit constants staying in the obtained in-

equalities for ‖‖‖𝛼𝑛𝑙 ‖‖‖ , ‖‖‖𝛽𝑛𝑙 ‖‖‖ depend on k as well. In other words, these 
inequalities provide only a qualitative behavior of the norms. For in-

stance, one can compare

|𝐽2k(0)| = ⎧⎪⎨
8.6e-05, k = 2

2.1e-11, k = 6
10

⎪⎩1.0e-20, k = 11
for 𝑛 = 7 and 𝑡 = 0.0001 with the values ‖‖‖𝛼𝑛0‖‖‖ reported in Table 1.

4.2. Interpolating scaling functions

Another common choice of polynomial basis is constituted by the 
interpolating scaling functions. Similarly to the previous case we intro-

duce the functions Ψ𝑗 (−𝑖𝜁) = 𝜑̂𝑗 (𝜁), where 𝜑𝑗 are given by (2.3), so that

Ψ𝑗 (𝑥) =
√
𝑤𝑗

k−1∑
𝑚=0

𝜙𝑚(𝑥𝑗 )Φ𝑚(𝑥), 𝑗 = 0,… , k− 1,

where 𝜙𝑚 are the Legendre scaling functions. Here 𝑥0, … , 𝑥k−1 denote 
the roots of 𝑃k(2𝑥 − 1). We are interested in the following combination

Ψ (−𝑥)Ψ (𝑥) =
√
𝑤 𝑤

k−1∑
𝜙 ′ (𝑥 )𝜙 ′ (𝑥 )Φ ′ (−𝑥)Φ ′ (𝑥)
𝑗 𝑝 𝑗 𝑝

𝑗′ ,𝑝′=0
𝑗 𝑗 𝑝 𝑝 𝑗 𝑝
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Table 1

Values of diagonal elements (|𝑙| = 0) and corner elements (|𝑙| = 2𝑛−1) for the ‖‖𝛼𝑙‖‖, ‖‖𝛽𝑙‖‖ and ‖‖𝜎𝑙‖‖ components of the NS form for selected time steps 𝑡, scales 𝑛 and 
polynomial order k.

𝑡 𝑛 k ‖‖𝛼0‖‖ ‖‖𝛽0‖‖ ‖‖𝜎0‖‖ ‖‖𝛼2𝑛−1‖‖ ‖‖𝛽2𝑛−1‖‖ ‖‖𝜎2𝑛−1‖‖
0.0001 7 2 8.0e-05 2.4e-03 0.22 5.0e-03 2.6e-03 1.3e-3

0.0001 7 6 3.2e-13 3.9e-08 0.22 3.2e-02 1.7e-02 9.0e-3

0.0001 7 11 2.7e-18 4.0e-15 0.22 1.8e-01 8.1e-02 0.037

0.0001 8 2 2.5e-06 3.0e-04 0.11 3.2e-03 3.2e-03 3.1e-3

0.0001 8 6 3.9e-17 3.1e-10 0.11 8.6e-02 4.2e-02 0.021

0.0001 8 11 5.2e-19 3.5e-18 0.11 2.9e-03 1.8e-02 0.11

0.0001 9 2 7.8e-08 3.8e-05 0.055 3.0e-02 9.8e-03 3.2e-3

0.0001 9 6 5.3e-19 2.4e-12 0.055 1.6e-03 9.1e-03 0.054

0.0001 9 11 3.2e-19 1.5e-18 0.055 6.8e-09 1.9e-05 0.055

0.001 5 2 2.6e-04 4.9e-03 0.28 2.6e-02 1.1e-02 5.2

0.001 5 6 6.8e-12 2.0e-07 0.28 1.5e-01 1.4e-01 0.12

0.001 5 11 2.4e-18 8.5e-14 0.28 1.5e-04 6.4e-03 0.28

0.001 6 2 8.1e-06 6.1e-04 0.14 9.8e-02 3.7e-02 0.014

0.001 6 6 8.3e-16 1.6e-09 0.14 4.1e-04 7.5e-03 0.14

0.001 6 11 6.3e-19 1.1e-17 0.14 1.4e-10 4.3e-06 0.14

0.001 7 2 2.5e-07 7.7e-05 0.070 1.3e-02 2.7e-02 0.056

0.001 7 6 4.2e-19 1.2e-11 0.070 1.1e-07 8.8e-05 0.070

0.001 7 11 2.0e-19 1.8e-18 0.070 3.0e-17 1.4e-09 0.070
which can be expressed as the series

Ψ𝑗 (−𝑥)Ψ𝑝(𝑥) =
∞∑
𝑘=0

𝐷𝑘
𝑗𝑝
𝑥𝑘

(𝑘+ 2)!
,

where

𝐷𝑘
𝑗𝑝 =

√
𝑤𝑗𝑤𝑝

∑
0⩽𝑗′ ,𝑝′⩽k−1
𝑗′+𝑝′⩽𝑘

𝜙𝑗′ (𝑥𝑗 )𝜙𝑝′ (𝑥𝑝)𝐶
𝑘−𝑗′−𝑝′
𝑗′𝑝′

, 𝑗, 𝑝 = 0,… , k− 1.

Note that this double sum can be restricted to 𝑘 − 𝑗′ − 𝑝′ being even 
and non-negative. Thus the time evolution operator in the interpolating 
basis has the following expansion

[
𝜎𝑛
𝑙

]
𝑝𝑗
(𝑎) =

∞∑
𝑘=0

𝐷𝑘
𝑗𝑝𝐽𝑘(𝑙, 𝑎), (4.25)

where 𝑎 = 𝑡4𝑛 as above for the Legendre basis.

Calculating matrices 𝛼𝑛
𝑙
, 𝛽𝑛

𝑙
, 𝛾𝑛
𝑙

from 𝜎𝑛+1
𝑙

by (3.7) and then evaluat-

ing the norms ‖‖‖𝛼𝑛𝑙 ‖‖‖ , ‖‖‖𝛽𝑛𝑙 ‖‖‖ and ‖‖‖𝛾𝑛𝑙 ‖‖‖, one arrives to the same qualitative 
results as in the previous subsection. Moreover, the interpolating ba-

sis spans the same space and the norms of the operator therefore do 
not change, and as a result matrix norms may change insignificantly. 
Therefore, we omit the illustration of the sparsity and refer to Fig. 1 for 
details.

4.3. Haar multiresolution analysis

The above conclusions simplify significantly in the case k = 1. By 
(4.6), (3.3) we have[
𝜎𝑛
𝑙

]
00 = ∫

Γ

𝐹 (𝜁)𝑑𝜁, 𝐹 (𝜁) = 1 − cos 𝜁
𝜋𝜁2

exp
(
𝑖𝜁𝑙 − 𝑖𝑡𝑁2𝜁2

)
.

Let us first justify (4.1), so we regard 𝜁 lying in the band | Im 𝜁 | ⩽𝐻

and satisfying Re 𝜁 ⋅ Im 𝜁 ⩽ 0, then

|𝐹 (𝜁)| ⩽ 2
𝜋
𝑒𝐻(|𝑙|+1) ⩽ 2

𝜋
𝑒𝐻𝑁.

In order to maintain accuracy 𝜀, while discretizing the integral in such 
domain, the right-hand side of this bound should not be bigger than 
11

𝜀∕𝜀mach. Thus we obtained (4.1).
Now we have only even-power integrals in the expansion (4.18),

[
𝜎𝑛
𝑙

]
00 = 2

∞∑
𝑘=0

𝐽2𝑘(𝑙, 𝑎), (4.26)

since 𝐶𝑘
00 = 1 + (−1)𝑘 by (4.17), that can also be checked directly by 

expanding cos 𝜁 about zero. The convergence rate of this series was an-

alyzed in Subsection 4.1.

Finally, let us have a closer look at the dependence of 
[
𝜎𝑛
𝑙

]
00 on the 

distance |𝑙| to the diagonal. In the case of 𝑙 = 0, one can calculate the 
sum of the series by means of special functions as

[
𝜎𝑛0

]
00 = −𝑖

√
2
𝜋
𝐹1

(
𝑒
𝑖𝜋
4√
2𝑎

)
, (4.27)

where

𝐹1(𝑥) =
∞∑
𝑘=0

𝑥2𝑘+1

(2𝑘+ 1)(2𝑘+ 2)!!
= 1 − 𝑒𝑥

2∕2

𝑥
− 𝑖

√
𝜋

2
erf

(
𝑖𝑥√
2

)
,

using (4.23). The series 𝐹1

(
𝑒
𝑖𝜋
4√
2𝑎

)
is very useful in practice for the pre-

cision control, since its real and imaginary parts are alternating series 
with monotonically decreasing coefficients.

In the case of |𝑙| ≫ 1, we have (4.24) which leads to[
𝜎𝑛
𝑙

]
00 ≈

1√
𝜋𝑎

(2𝑎
𝑙

)2 (
1 − cos 𝑙

2𝑎

)
exp

(
𝑖𝑙2

4𝑎
− 𝑖𝜋

4

)
. (4.28)

Here the term in front of the exponent changes slowly with 𝑙, whereas 
the exponent itself oscillates very fast. This formula describes the oper-

ator matrix with a very high precision for any 𝑙 ≠ 0. In fact, the limit 
of this expression as 𝑙∕2𝑎→ 0 is identical to 

[
𝜎𝑛0

]
00 evaluated by (4.27)

with the first order approximation 𝐹1(𝑥) ≈ 𝑥∕2. Moreover, (4.27) and 
(4.28) give us an idea of how many terms are important in Expansion 
(4.26) for a given precision. The same series cut is reliable in practice

for evaluation of the general expansion (4.18).
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