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A B S T R A C T

The intermittent nature of wind and solar power has led to a scientific consensus in the international energy
research community that a mix of energy sources and carriers is necessary to achieve carbon neutrality. The
search for alternatives has sparked renewed interest in Hydrogen (H2) and its derivatives, such as ammonia
and methane. It has also motivated researchers to expand their models to study H2 investments in future
energy systems. However, despite years of well-motivated research, a single scalable model that captures the
unique characteristics of H2 does not yet exist. It is a consequence of the limitations imposed by computational
resources and the availability of data. With the above motivation, we review the current literature on relevant
aspects for H2. We find that temporal resolution, seasonal storage, spatial resolution and grid representation,
uncertainty, and sector-coupling are important to accurately model H2. We then analyze 18 case studies based
on 11 open-source Capacity Expansion Models (CEMs) applied to study power or energy systems in developed
countries that include H2 and evaluate which models capture these idiosyncrasies best. Although no model
covers all aspects simultaneously, some models tend to be more efficient in certain aspects, which ultimately
depends on the underlying research questions they aim to address. We also outline potential research directions
in this area.
1. Introduction

Combating climate change and mitigating its adverse impacts on the
environment are among the greatest challenges of today’s world [1].
In response to the urgent need for action, more than 190 countries
came together at the 2015 United Nations Climate Change Conference
to limit global warming to below 2◦C [2]. The transition from fossil
fuels to renewable energy sources has become the focus of political
discourse and has led to increased investments in renewable capacity.
Variable Renewable Energy Sources (VRES), such as wind and solar
power, have contributed significantly to this growth. In contrast to
fossil fuels, renewable energy sources come from naturally replenished
resources, they do not produce direct greenhouse gas emissions, and
they can be technologically and geographically diversified [3]. How-
ever, their power generation technologies rely more heavily on critical
minerals [4], and VRES power output varies across space and time [5].

To address these risks and uncertainties [3], various energy carriers
have been explored. H2 has come to the forefront of the discussion
due to its natural abundance on Earth, its high energy content per
unit of weight [6,7], its carbon-free nature at its point of use [8], and
long-duration energy storage potential [9]. These properties make H2
well-suited to support the integration of VRES [10], and to provide
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a renewable feedstock where the direct use of electricity is not feasi-
ble [11,12]. However, in 2021, renewable energy sources accounted
for less than 1% of H2 production [13], and only ten underground
H2 storage sites were operated worldwide [14]. Also, in 2020, the H2

pipeline system spanned over 5,000 km, compared to 3 million km for
natural gas [15,16].

Understanding the potential role of H2 in highly renewable energy
systems is crucial for making informed investment decisions. In this
regard, CEMs have become increasingly popular within the interna-
tional energy research community. CEMs are based on mathematical
optimization to determine cost-efficient investments in generation, stor-
age, and transmission. However, due to the simplifications required
to make such models computationally feasible [17], it is difficult to
accurately capture the intermittent nature of VRES. Modeling H2 adds
another layer of complexity due to its complementary role to electrifi-
cation and its sector-coupling potential [18]. Another challenge that
arises is to address the uncertainty that surrounds H2, e.g. cost and
performance improvements of electrolyzers and fuel cells [19], demand
for low-emission H2, or regulatory uncertainty [20].
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Acronyms

CEM Capacity Expansion Model
ED Euclidean Distance
GIS Geographic Information System
H2 Hydrogen
LOPF Linear Optimal Power Flow
TP Transport Approach
VRES Variable Renewable Energy Sources

The literature concludes that a coherent framework is needed to
apture these idiosyncrasies. At the same time, there is a general under-
tanding that no single model is able to address all aspects [18,21–27],
hich is why models with different purposes and varying levels of
etail have been developed [28]. In this review, we limit our scope to
pen-source CEMs. First, mathematical optimization is well established
n the international energy research community and therefore offers
 wide range of possible applications. We focus on central planning
nd exclude models that simulate competitive markets, where multiple
layers interact and make decisions based on market dynamics. Second,
e only consider models with open-source character, as these come
ith increased transparency, peer review, reproducibility, and trace-
bility [29,30]. The code of open-source models is openly available,
ree to the public [31], and accessible through the web [23]. Third,
e focus on CEMs applied to developed countries since H2 projects
re currently mainly driven by industrialized nations [32] and their
nergy systems and corresponding modeling needs differ from those of
eveloping countries [33].

A significant body of literature has already dealt with model sim-
lifications and modeling needs of highly renewable energy systems.
ore specifically, the main thrust of research effort in this area [5,17,

3,34–39] studied aspects, requirements, and challenges of modeling
nergy systems with high shares of VRES. However, the difficulties
ssociated with H2 modeling are only briefly addressed. More recent
eviews have sought to address this research gap [18,26,40–42]. For
xample, the authors in [18] proposed a taxonomy to classify mod-
ling frameworks and highlighted specific modeling challenges with
espect to H2. Another work [26] defined guidelines to promote a
ore consistent representation of H2 in energy scenarios. Both studies

dentified important aspects for H2 modeling but did not investigate
ow these are currently considered in CEMs. A more in-depth study
as carried out in [40], where the focus was on CEMs for planning
ower, natural gas, and H2 systems. Based on the existing modeling
andscape, the authors identified several modeling research needs. They
rgued that a holistic framework is needed to capture those unique
haracteristics of H2 and natural gas. Finally, the authors in [42]
rovided a comprehensive review of H2 within low-carbon pathways
rom different integrated energy system models. However, they focused
n drivers and policy scenarios instead of specific modeling tools. To
his end, the bibliographic review has revealed some serious research
aps that have led to the following research questions:
Research Question 1: What aspects are important in CEMs to ac-

urately capture the idiosyncrasies of H2 in renewable energy systems?
Research Question 2: Which models in the current modeling land-

cape handle these various aspects best?
For the first research question, we synthesize the literature to iden-

ify relevant aspects for modeling H2 in highly renewable energy sys-
ems. For the second research question, we perform an in-depth analysis
f different methods applied in CEMs to address these aspects. To tackle
hese issues systematically, this paper is structured as follows: Section 2
resents the methodology to identify reviews that propose requirements
or modeling H2 in highly renewable energy systems in CEMs. We also
resent the strategy to find all open-source CEMs applied to study
698 
energy systems in developed countries that include H2. In Section 3,
we describe each aspect and analyze how each is considered in those
models. We give a conclusion in Section 4.

2. Methodology for the literature search

First, we performed a citation-based and a keyword-based literature
search in ScienceDirect and Google Scholar. The purpose was to collect
timely research on relevant aspects for H2 modeling. Given that VRES
play an important role for low-carbon H2 production, aspects for mod-
eling H2 and VRES are included using the search strings ‘‘energy system
modeling’’ and ‘‘energy system modeling hydrogen’’. We then applied
several criteria to refine the results, such as being a peer-reviewed
journal review article, written in English and published within the last
10 years. These criteria excluded conference papers, unpublished stud-
ies, working papers, government documents, or white papers. However,
a considerable amount of literature remained. Thus, another criterion
was that these either had a high citation score (>100) or included H2.
This is because the literature on H2 is relatively recent and scarce,
whereas modeling VRES in CEMs has been actively researched for
several years. Based on their titles and abstracts, we manually filtered
the remaining papers to ensure that these cover CEMs in developed
countries. In this process, we found 14 reviews (see Appendix A).

In the next step, we identified specific CEMs applied to developed
countries that have studied H2. Here, we followed the process as
shown in Fig. 1. We found that the representation of H2 is highly
dependent on the underlying model configuration and case study. We
therefore focused on specific applications of the model published in
a scientific journal article. First, we created a database of available
models and mapped related H2 articles to the model. For this purpose,
we used the platform for open-source models Openmod, which lists
models published under open-source licenses. In this process, 70 open-
source modeling tools were found and manually filtered according to
the following criteria: (1) based on mathematical optimization, (2)
including investments in generation and transmission, and (3) applied
at a national or international level in developed countries. However,
not all of them included H2 or conducted studies using H2. Therefore,
we used the article for the model publication and screened all cross-
referenced articles. We then performed a manual selection process

Fig. 1. Search strategy to identify 11 open-source CEMs and 18 related research
articles.
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Fig. 2. Relevant aspects for modeling H2 in renewable energy systems [45]: temporal
resolution, seasonal storage, spatial resolution and grid representation, uncertainty, and
sector-coupling.

based on abstracts and titles. We acknowledge that this approach leaves
out models that have H2 in their topology but have not been used for
H2 studies (e.g. Calliope [43] or Switch [44]). Another exception was
made for the open-source TIMES ecosystem, which is a model generator
with multiple branches, many of which are not open-source. Due to its
availability and previous relevance in politics and academia, the model
JRC-EU-TIMES was included, although it is no longer maintained. In
total, we limited our analysis to 18 case studies using the following
11 models: Balmorel, DOLPHyN, EMMA, EMPIRE, FINE, GENeSYS-
MOD, GenX, JRC-EU-TIMES, PyPSA-Eur, urbs, and SpineOpt. These are
presented in Table 1. In Appendix A, all models are listed, includ-
ing those recommended by anonymous reviewers and found through
cross-referencing.

3. Modeling hydrogen in highly renewable energy systems

To tackle the first research question, we collected relevant as-
pects for modeling H2 in highly renewable energy systems from the
literature [5,17,18,23,26,34–40,42]. Instead of including all aspects,
we only focused on the most frequently mentioned ones: temporal
resolution, seasonal storage, spatial resolution and grid representation,
uncertainty, and sector-coupling (see Fig. 2).

This rigorous process leaves out specific aspects that are not as
often discussed or researched as others. For example, some authors [26]
argued that individual technologies or plants should be modeled in
more detail to accurately account for their flexibility constraints. Oth-
ers found that the complexity of consumer behavior [26] and other
sociological aspects are not adequately represented in CEMs [46].
However, we leave these and others to future research and focus on
the aforementioned aspects. In the following, we briefly describe these
and emphasize their importance in the context of modeling H2 in
highly renewable energy systems. Afterward, we investigate how each
model considered these aspects and assess which models handle these
idiosyncrasies best.

3.1. Temporal detail for operation and investment decisions

The planning horizon in CEMs is split into one or more years in
which cost-optimal investments are determined. Each year is further
subdivided into a number of operational time-steps to optimize the
dispatch of the renewable energy system. The literature [5,23,26,35–
38,40] argues that sufficiently temporally resolved data is important
to capture hourly variations of VRES. Unlike their dispatchable fossil
699 
fuel-based counterparts, VRES depend on time-varying weather con-
ditions [5] and therefore exhibit hourly, daily, or seasonal patterns.
Temporally resolved data helps to capture such variations and provides
better flexibility signals for H2 technologies [26]. At the same time,
some research [47,48] suggests that the transition from a fossil fuel-
dominated energy system to a sustainable H2 economy may require
bridge technologies that are based on natural gas or fossil methane. To
include these in the modeling, it is also necessary to have a sufficient
number of investment years.

Although decisions for operation and investment are made on
two different temporal dimensions, their resolution is inherently in-
tertwined, as both compete for limited computational resources. We
illustrate this trade-off in Fig. 3, where the number of hourly opera-
tional time-steps in each investment year (x-axis) and the number of
investment years (y-axis) are shown. Each data point refers to a specific
case study from Table 1. The size of each data point corresponds to
the product of both dimensions and thus yields the total number of
time-steps (hours) considered.

Accordingly, each data point is positioned along the x-axis or y-
axis. We can distinct these into models based on brownfield (brown
color code) or greenfield optimization (green color code). Models
like Balmorel [49], EMPIRE [50,51], GENeSYS-MOD [52,53], JRC-EU-
TIMES [54–56], PyPSA-Eur [57], and SpineOpt [58] used less than
1,000 time-steps to optimize the dispatch of each investment year. In
particular, the planning horizon was split and optimized in intervals
with a historical start year to account for the current capital stock and
power grid. In the literature, this approach is known as brownfield
optimization. By contrast, models like DOLPHyN [59,60], EMMA [61],
FINE [62,63], GenX [64], urbs [65], and PyPSA-Eur [66] used between
2,000 to 8,760 time-steps but only considered one investment year.
These models were greenfield-optimized from scratch, irrespective of
existing capacities (see Table 1).

Although both aspects are important, none of our models covered
both equally. Instead, we found that the priority depends on the under-
lying research question. For example, greenfield studies mainly focused
on the role of H2 as flexible demand response and grid-scale energy
storage in a low-carbon power sector [59–61,63–65]. To model the
operation of electrolyzers, H2 storage, and fuel cells, it is essential
to have highly resolved operational data as it better captures hourly
and intra-annual variability in supply and demand [26]. Brownfield
studies, by contrast, focused on the transition and competition of
different technologies and energy carriers. In particular, they empha-
sized the temporal aspect of medium- to long-term H2 production and
transport methods, e.g. H2 blending [52], or low-carbon H2 production
processes [50,58].

Fig. 3. Number of investment years versus the number of hours in each investment
year. The size of each observation refers to the total number of considered time-steps
in the optimization problem.
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Table 1
Overview of CEMs considering H2 systems.

# Model Applied in Use Case for H2 Temporal Resolution Seasonal Spatial Resolution & Grid # Sectors Uncertainty

Investment Operation TSA Storage # Nodes TP/LOPF

1 Balmorel [67] [49] Socio-economic value of offshore H2 generation in the
North-central European energy system

Multi 192 DS ✓ ∼40 TP 3 Deterministic

2 DOLPHyN [60] [60] Flexible demand response and grid-scale energy
storage for the power sector in the U.S. Northeast Single 5,040 CL ✓ 7 TP 1 Deterministic

[59] Economic value of liquid H2 storage options for
energy system decarbonization

3 EMMA [68] [61] Impact of electrolytic H2 production on wind and
solar market values in the North-western European
power market

Single 8,760 – ✓ 5 TP 1 Deterministic

4 EMPIRE [69] [50] The impact of H2 investments on the European grid
infrastructure and power prices Multi 720 ST – 50 TP 1 Stochastic

[51] Competition between blue and green H2 deployment
in the European power sector

5 FINE [63] [63] Role of H2 technologies for Northern Germany Single 168 CL ✓
13 TP 1 Deterministic[62] Routing and sizing of a pan-European H2 pipeline

network
2,168 96

6 GENeSYS-MOD [70,71] [53] Role of H2 imports for the Japanese energy system Multi 144 ST – 8 TP 4 Stochastic
[52] Impact of H2 blending on the European energy system 36 H&O ✓ 30 Deterministic

7 GenX [72] [64] Flexible demand response and grid-scale energy
storage for the power sector in Texas

Single 8,760 – ✓ 1 TP 1 Deterministic

8 JRC-EU-TIMES [73]
[56] Role of H2 in the European energy system

Multi 12 TS – 31 TP 4 Deterministic[54] Potential for H2 and Power-to-Liquid in a low-carbon
EU energy system

[55] Role of H2 for cars in the European energy system

9 PyPSA-Eur [74] [66] The potential role of a H2 network in Europe Single 2,920 DS ✓ 181 LOPF 4 Deterministic[57] Scale-up of electrolysis and renewable capacities in
Europe

240 CL – 1 TP

10 urbs [75] [65] Flexibility potential for the European power sector Single 8,760 – ✓ 36 TP 1 Deterministic

11 SpineOpt [76] &
Balmorel

[58] Impact of different production pathways on H2
investments in the Nordic energy system

Multi 672 MS ✓ 11 TP 4 Deterministic

CL (Clustering), DS (Downsampling), H&O (Heuristics and Optimization), MS (Manual Selection), TS (Time-Slicing), TSA (Time-Series Aggregation), ST (Stochastic Sampling).
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3.2. Seasonal storage modeling

Balancing seasonal variations of VRES generation and energy de-
and (e.g. heating and cooling) is one of the main challenges faced

y highly renewable energy systems [23]. Consequently, there is great
interest in long-term (seasonal) energy storage to provide such flexi-
ility [23,28,35,40]. Energy storage with weekly to monthly cycling

is also where H2 is expected to play an important role [26,77–79].
However, modeling the operation of seasonal storage with a reduced
temporal scope is a daunting task. Although the literature on methods
to aggregate time-series data (e.g. VRES capacity factors, electricity
demand) is rich and actively researched, a widely accepted method
that efficiently reduces hourly data while preserving the most relevant
information for the optimization problem does not yet exist [80,81].
A difficulty that often arises with aggregated data is to preserve the
chronological order of the original time-series [23]. Nonetheless, this
information is important to simulate realistic charge and discharge
cycles for seasonal storage.

In this study, only EMMA [61], GenX [64], and urbs [65] applied
 full hourly resolution, whereas all other models used a reduced data
et. In the following, we describe the methods used to aggregate time-
eries data and investigate how well the value of seasonal storage is
aptured. To draw such a conclusion, we evaluate if the chronological
rder is preserved. In addition, we discuss the underlying assumptions
nd resulting drawbacks of each method.

3.2.1. Time-series aggregation methods
In this study, clustering algorithms (FINE [62,63], DOLPHyN [59,

60] and PyPSA-Eur [57]), stochastic sampling (EMPIRE [50,51] and
ENeSYS-MOD [53]), downsampling (Balmorel [49] and PyPSA-Eur
66]), time-slicing (JRC-EU-TIMES [54–56]), and methods based on
euristics and optimization (GENeSYS-MOD [52]) were used to aggre-
ate the input data. Methods that only rely on the modelers’ expertise

were not considered here, because they are often not reproducible
(e.g. SpineOpt [58]).

Clustering algorithms. Clustering algorithms group similar periods (e.g.,
ours, days, or weeks) into subgroups (clusters) [82–84]. For this

purpose, the time-series data is transformed into a matrix, where one
dimension represents periods, and the other one represents features
e.g. VRES capacity factors, electricity demand). The algorithm then

compares the dissimilarity of each feature across different periods [85].
The Euclidean Distance (ED) is often used as a distance metric [80]. The
data matrix is then split in a single partition (partitional clustering)
or in a sequence of partitions (hierarchical clustering) [82]. Agglom-
rative hierarchical clustering in combination with Ward’s algorithm
as used in FINE [62,63], whereas partitional clustering algorithms

uch as K-MEANS and K-MEDOID were applied in DOLPHyN [59,60] and
yPSA-Eur [57]. In the academic literature, there is no consensus with
espect to which clustering algorithm performs better for aggregating
ime-series data in CEMs. Instead, it is more important how the repre-
entative period is specified [86]. The cluster representative is selected

once the clusters have been identified. In this paper, either the centroid
(DOLPHyN [59,60]) or the medoid (FINE [62,63], PyPSA-Eur [57])

ere used and weighted by the relative size of the cluster. Due to the
statistical features of the centroid, there is evidence in the literature
hat it smooths out the variability of the original data. According to
86], this effect is less pronounced when using the medoid, the data

point closest to the cluster’s centroid [87].
The dissimilarity between different periods is typically measured

with the ED, irrespective of their occurrence in the original time-
series. Therefore, the chronological order within days (FINE [62,63]
nd PyPSA-Eur [57]) or weeks (DOLPHyN [59,60]) was preserved but
ot necessarily between them. Since seasonal storage covers longer

cycles [79], the literature [23,88] argues that the modeling of seasonal
storage cannot be adequately considered in investment decisions. This
701 
issue is widely acknowledged, and several solution methods have been
proposed [88–90]. One of the most referenced methods is the seasonal
storage coupling approach as described in [88]. This formulation is
ased on the general algebraic state space model, which has been suc-

cessfully applied in different energy system configurations [88]. It was
implemented in DOLPHyN [59,60] and FINE [62,63] to restore some
of the original chronological information. Due to its significance in the
cademic literature, we consider both models suitable for modeling
easonal storage.

Stochastic sampling. Stochastic sampling was used to aggregate the
nput data for GENeSYS-MOD [53] and EMPIRE [50,51]. Here, a cus-

tomized random algorithm was initialized to select a year from avail-
able historical data and then to collect hourly data for a day [53]
or week [50,51]. As this is done for each of the four seasons, the
hronological order within each season was preserved, but not neces-

sarily between seasons. Note also that the randomness of the algorithm
raises doubts as to how accurately these days or weeks can describe
he statistical properties of the original data. More specifically, the
nderlying assumption is that each season can be represented by an ar-
itrary observation, although there is also considerable variation within
easons [91]. It is, amongst others, for these reasons that seasonal
torage was not considered in these models.

Downsampling. Downsampling refers to the process of grouping and av-
eraging consecutive time-steps [81]. It was applied in PyPSA-Eur [66]
and Balmorel [49]. With respect to seasonal storage modeling, the
dvantage is that the chronological order of the original time-series can
e preserved. However, we want to stress that hour-to-hour variations
an be smoothed out [86], particularly for coarser time resolutions.

Time-slicing. Time-slices are constructed by sequentially averaging and
grouping time-steps. This method was applied in JRC-EU-TIMES
[54–56], where morning, night, and peak time-slices were defined for
ach season. However, this approach also suffers from the smoothing
ffect due to averaging. In addition, the chronological information
etween morning, night, and peak blocks is lost.

Heuristic and optimization-based methods. A non-linear optimization
problem to aggregate time-series data was applied in GENeSYS-MOD
[52]. Here, a reduced time-series was created by manual selection. The
resulting time-series was then smoothed and scaled up such that the

inima, maxima, and full-load hours of the original time-series were
met [92]. This method can preserve chronology but also partly relies
on manual pre-processing steps. If these are not well-documented, the
esults of the non-linear optimization problem may become inconsistent

and difficult to replicate.

3.2.2. Summary
We conclude that clustering algorithms, in combination with the

easonal storage coupling approach, downsampling, and the heuris-
ics and optimization-based approach described in [92] are able to

preserve the chronological order of the original time-series. These
ave been used in PyPSA-Eur [66], DOLPHyN [59,60], FINE [62,

63], Balmorel [49], and GENeSYS-MOD [52]. However, we found
that each method comes with its specific drawbacks. Downsampling
or clustering algorithms that use the centroid as representative suf-
fer from the smoothing effect, which becomes particularly critical
at low resolutions. To mitigate this effect, a high number of time-
steps has been used in DOLPHyN [59,60] (5,040 time-steps), PyPSA-
ur [66] (2,920 time-steps), and FINE [62] (2,168 time-steps). The

heuristics and optimization-based approach [92] does not suffer from
the smoothing effect but requires manual pre-processing steps, which
are dependent on the modeler’s expertise and knowledge of the data
set.
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Fig. 4. Geographical area in 103 km2 described by a single node.

3.3. Spatial resolution and grid modeling

The spatial resolution refers to the number of modeled spatial
nits or nodes [5,17,93]. In CEMs, nodes typically represent regions

or countries, assuming that they have similar energy system-related
characteristics. Given that VRES vary not only in time but also in
space [5,23], the need for spatial data with sufficient resolution was
raised in the academic literature [5,17,23,26,34,36–38]. Another point
to consider is that spatial disparities result from synoptic-scale weather
differences (∼600 – 1,000 km) [94], rather than from political bound-
aries. Accounting for these variations would better identify potential
locations for H2 technologies and represent the flexibility that H2 offers
with respect to different transportation modes [26].

The geographical scope and the number of nodes (n) among all
models reviewed varies significantly; from Europe (n=11), Northeast
U.S. (n=2), Nordic countries (n=2), single regions within Germany
(n=1), hypothetical states (n=1) to Japan (n=1). Comparing how these
models account for spatial variation is not straightforward. To this end,
we divided the geographical area, measured in km2, by the number of
patial nodes. In Fig. 4, this metric is plotted on a logarithmic scale and
escribes how many km2 are contained in a single node. Accordingly,
he lower this metric, the more spatial detail the model includes.

Except for PyPSA-Eur [57], where an entire continent was aggre-
gated, a single node typically covered an area of ∼3,000 to 200,000
km2, which is comparable in size to that of Luxembourg or Portugal.
Interestingly, only DOLPHyN [59,60], which is among the most spa-
ially detailed models, considered different H2 transport options, e.g. H2
railers and pipelines, while all other models did not permit a regional
nalysis and thus limited H2 transport to pipelines.

The spatial resolution is closely related to grid modeling, as it
escribes how spatial units are connected. Traditionally, the centroid

of each continent, country, or region is used to quantify the trade
between different energy carriers and sources. This method is known as
Transport Approach (TP), as it provides a rather generalized framework
for energy systems with multiple commodities [95]. However, these
implifications have been criticized in the literature and more detailed

modeling of power and gas flows to account for the synergistic and
complementary uses of electricity and H2 has been encouraged [40].

Of all models reviewed, only PyPSA-Eur [66] provided an alterna-
tive to the TP and used a Linear Optimal Power Flow (LOPF) formu-
lation according to [96]. In the literature, LOPF is accepted as a good
pproximation of the network’s real behavior and can therefore provide
 more accurate estimation of overloaded lines [97–99]. The partition-

ing of the grid was done with K-MEANS clustering, which reduced the
number of buses and lines in the European power grid. This method

as initially proposed in [94], where the authors proved its ability
702 
to capture major transmission corridors even with a small number of
clusters. This grid reduction method accounts for electrical parameters
of the grid and also indirectly region-specific renewable potentials.
However, the modeling of gas flows was still based on the TP.

We found that PyPSA-Eur [66] provided the most sophisticated
approach to include details of the power grid and region-specific re-
newable potentials. While we recognize the benefits of detailed network
modeling [100,101], there are also several limiting factors [102].
Examples include data availability and the computational complexity
nvolved with considering detailed network constraints and gas flow
quations [102]. Therefore, more detailed H2 transport concepts have

not yet been explored by the models reviewed. Since CEMs focus on
arge-scale network analysis and thus adopt a central planning perspec-
ive, we argue that alternative models based on Geographic Information
ystems (GISs) may prove more appropriate for such purposes.

3.4. Uncertainty

Traditionally, CEMs are based on a deterministic formulation, where
an omniscient agent knows what has happened in the past and what

ill happen in the future [103]. Optimal decisions are made sub-
ect to the underlying weather data and load profiles, ignoring their
ncertain nature [104] with respect to different weather years [69].

However, limited information is available behind the driving forces
that shape renewable energy systems [34,105]. The literature argues
that uncertainty should be adequately assessed to provide a sound
basis for decision-making [5,23,34] and refers to two types of un-
certainty [106–108]: Short-term uncertainties describe the variability
and unpredictability of input parameters [107] (e.g. VRES forecasting
rrors, yearly demand, or fuel prices [17,35,107]). They have a direct

effect on H2 systems, as they influence operational decisions and market
prices in the short-term. Long-term uncertainty is realized only once
but has an impact over many years (e.g. demand growth, climate vari-
ability [107], or cost development of electrolyzers, fuel cells [109], and
new or repurposed H2 pipelines [110]). These factors impact the overall
development of H2 systems, including infrastructure investments, tech-
nology development, and policy planning. In the following, we examine
both separately and evaluate how these have been considered.

Short-term uncertainty. Out of all the selected models, only EMPIRE [50,
51] and GENeSYS-MOD [53] applied a stochastic formulation to cap-
ture the stochastic nature of uncertain input variables. In stochastic
optimization problems, a central planner makes optimal decisions over
a horizon with incomplete information while taking into account that
some parameters are revealed after a decision has been made [17]. In
the literature, these uncertain parameters can be described as a finite
set of realizations or scenarios for which a single optimal solution
must be found [111]. EMPIRE [50,51] and GENeSYS-MOD [53] are
based on a two-stage stochastic linear optimization problem. Their
system design was optimized in the first stage and operated under
uncertain demand and VRES output in the second stage. Data from
istorical years was used to define a finite set of stochastic scenarios
hat could materialize with equal probability. Yet, despite decades of
edicated research, stochastic problems are still more difficult to solve
han their deterministic counterpart but are more robust with respect
o weather uncertainty [27,34,112]. Furthermore, as acknowledged

by [53], decomposition methods could have been applied to exploit
computational resources [107,111]. Also, there is a lack of a more
ophisticated approximation to the real probability distributions of

stochastic scenarios.

Long-term uncertainty. The majority of models sought to address the
ong-term uncertainty of H2 by employing a scenario analysis or sen-

sitivity analysis. In scenario analysis, a base case scenario is defined
and compared against a range of different alternative scenarios, where
each has different values for a set of uncertain assumptions [112,113].
JRC-EU-TIMES [56], EMPIRE [51], PyPSA-Eur [66], DOLPHyN [60],
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Balmorel [49], GenX [64], and urbs [65] used this method to analyze
different renewable energy policies and H2 cost technology develop-
ments. Sensitivity analysis, on the other hand, specifically addresses
those input parameters that have the most impact on the model results.
For this purpose, these are varied while all other assumptions are
held constant [113]. This method was applied in PyPSA-Eur [66], EM-
PIRE [50], and JRC-EU-TIMES [54] to analyze the impact of different
techno-economic parameters (e.g. investment, O&M costs, lifetime, or
efficiency). However, both methods were criticized in the academic
literature as they rely on a deterministic formulation. Specifically,
the authors in [114] argued that these methods cannot cope with
complex and multi-faceted problems with inherent uncertainties [114],
and therefore do not classify as formal techniques to describe uncer-
tainty [113]. We found that the lack of formal techniques to address
the long-term uncertainty component of H2 is a rather general issue, as
it is more common to apply short-term uncertainty methods [107].

3.5. Sector-coupling

Apart from the power sector, there are also other energy sectors
(e.g. heating, cooling, transport) that still rely on fossil fuels [115].
The main idea of sector-coupling is to account for interactions be-
tween these sectors. This can improve cost and resource efficiency
savings [26] and increase the flexibility of the energy system [116],
which, in turn, is beneficial for the integration of VRES [12]. H2 is
a central sector-coupling component in this regard, with applications
for power-to-gas [117], power-to-heat [118], power-to-liquid [54],
and power-to-ammonia [119]. The literature [23,26,40,116] therefore
emphasizes the importance of co-optimization and integrated energy
system planning.

The degree of interaction and interconnection of H2 varies greatly
across models, as evidenced by the number of different energy car-
riers and sector-coupling technologies. However, with respect to the
number of endogenously optimized energy sectors, we can differentiate
between traditional power sector models that have been extended to
include H2 and those that already cover multiple energy sectors. Both
are discussed, and their implications for modeling H2 investments are
outlined.

Out of all models reviewed, DOLPHyN [59,60], EMMA [61], EM-
PIRE [50,51], FINE [62,63], GenX [64], and urbs [65] focused on
optimizing dispatch and investment decisions for the power sector. In
these case studies, the main application for H2 was to provide flexibility
to the power sector using gas turbines, electrolyzers, underground
storage, and storage vessels. However, except for GenX [64], these
models acknowledged that H2 will also play an important role in the
decarbonization of the transport and industry sector. The demand for
H2 from these sectors was therefore given exogenously. We note that
this places strong assumptions with regards to the uncertainty of future
H2 demand [120].

On the other hand, cross-sectoral interactions between the power,
heat, industry and transport were modeled in Balmorel [49], GENeSYS-
MOD [52,53], JRC-EU-TIMES [54–56], PyPSA-Eur [57,66], and Spi-
neOpt [58]. We found that most models endogenously optimized the
use of H2 in the heating sector through H2 boilers or fuel cells. Also,
synergies between methane and ammonia were considered. Only in
JRC-EU-TIMES [54–56], and GENeSYS-MOD [52,53] transport and
industry was not fixed as exogenous demand. Instead, different H2
technologies were modeled to endogenously determine the optimal use
of H2 across all sectors.

In Fig. 5, we illustrate the various pathways for H2 production,
conversion, and application. In particular, we highlight with a solid
line the pathways that are endogenously optimized by all models.
The dashed line, by contrast, illustrates the pathways modeled by
GENeSYS-MOD [52,53], and JRC-EU-TIMES [54–56]. We argue that an
endogenous optimization leads to a more cost-efficient use of H2 from
a system perspective. Yet, this increases the number of variables and
constraints in the optimization problem and, thus, the computational
burden.
703 
Fig. 5. Scheme of H2 supply and delivery chain. The typical pathway is represented
with a solid line. The dashed line refers to the endogenous optimization of H2 across
different sectors.

4. Conclusion

Due to data limitations and computational constraints, real-world
dynamics are often modeled in a simplified manner. While this has been
accepted for energy systems based on dispatchable generators, there are
concerns that the full complexity of highly renewable energy systems
with electricity and H2 as main energy carriers may not be adequately
captured [36]. In this study, we focused on relevant aspects for mod-
eling H2 in CEMs and investigated how these have been addressed by
current models.

In line with the literature [18,21–27], we found that no single model
can fully capture all the complexities of H2, particularly when it comes
to simultaneously addressing spatio-temporal detail, sector-coupling
synergies, seasonal storage potentials, and accounting for uncertainty.
Instead, some models tend to be more efficient in certain aspects, which
ultimately depends on the underlying research questions they aim to
address.

In this respect, we found that it is challenging to consider both short-
term operational details and long-term transitional dynamics of H2.
The models reviewed focused on either one aspect or the other, which
leaves a research gap in capturing both temporal scales simultaneously.
Modeling seasonal storage, on the other hand, is a quite established
topic in the energy research community. Our research suggests that the
methods used in PyPSA-Eur [66], DOLPHyN [59,60], and FINE [62,63]
provide a sound foundation for modeling seasonal storage with a
reduced temporal scope. However, we stress the need for high temporal
resolution to capture hour-to-hour variations. Spatial variability and
grid features were best captured with the grid partitioning method
and LOPF approach applied in PyPSA-Eur [66]. Moreover, short-term
uncertainty is only explicitly addressed in GENeSYS-MOD [53] and
EMPIRE [50,51] that relied on a two-stage stochastic formulation. How-
ever, no formal methodology addressed the long-term uncertainty in H2
energy systems. Also, only few models (e.g. GENeSYS-MOD [52], JRC-
EU-TIMES [54–56]) accounted for endogenous H2 demand, which we
identified as a critical gap given the uncertain H2 demand in renewable
energy systems.

Although a systematic manner has been adopted to identify rele-
vant aspects for modeling H2 in highly renewable energy systems, the
evolution of H2 and its most influential parameters remains uncertain.
Instead of focusing on the most relevant aspects discussed in the
academic literature, it would be valuable to examine the full range of
modeling aspects. This limitation is also related to the fact that this
review is not a comprehensive one. In particular, it is important to note
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that there may be more efficient methods in the academic literature
that have not yet been applied in the context of H2. Also, this study
did not exhaustively map all CEMs, as it relied on a single database.
Therefore, some studies might have been overlooked. In addition, a
critical discussion would be valuable to analyze the benefits of model
coupling. Furthermore, all of our analyses are based on the existing
literature. To gain a more comprehensive understanding, it would be
valuable to run each model individually. This approach could provide
deeper insights into their relative strengths and limitations.
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