
Graph Databases for Multi-Domain Taxonomies in Maritime Systems

Janica A. Bronson1, Fernando H. P. Luz1, Ícaro A. Fonseca1, and Henrique M. Gaspar1

1Department of Ocean Operations and Civil Engineering, Norwegian University of Science and
Technology, e-mail: henrique.gaspar@ntnu.no

KEYWORDS

Graph Database, Multi-domain Taxonomies, Mar-
itime Systems

ABSTRACT

Facing the increasing quantity and richness of data
related to modeling and simulations of maritime sys-
tems, advanced solutions that can maintain data co-
herence and traceability are becoming increasingly
beneficial. In the context of modeling complex sys-
tems, such as ship design, retaining connections of
systems data, whether quantitative or qualitative, helps
to provide a traceable and comprehensive view of the
vessel at various stages of its development. This paper
explores the use of graph databases to help provide
such connections and introduces various domains of
systems data that would be advantageous to link via
graph theory. Additionally, this paper explores how
graph databases compare to current flat file databases
in a practical sample case of multi-domain data related
to ship concept design.

Multi-Domain Taxonomies in Maritime Systems

Arranging information according to certain rules is
a common way to interpret and synthesize information.
As noted by Simon (1962), this is a key element that
enables us to solve complex problems. Especially in
engineering analysis and problem-solving, reorganiz-
ing a taxonomy into other schemes may be useful for
better contextualization. As the raw information is the
same, elements from one taxonomy to another can be
easily translated via a dictionary. This parsing from
abstract and qualitative towards quantification is a core
fundamental aspect in engineering and, consequently,
computer-aided methods.

Within taxonomies, translations of system elements
by common attributions or domains can lead to an
infinite regress of sub-categorizations. This presents
a challenge on how we can continue to facilitate the
regrouping, parsing, and reinterpreting of systems in-
formation without losing semantic binds from infor-
mation retranslation.

Maritime systems will be used for the rest of this
paper as a case study to explore how to manage multi-
domain taxonomies. The authors believe, however,

that the discussion here can be useful to large exten-
sions of other systems, especially for physically large
and complex operations.

In this paper, taxonomies are understood as a
hierarchical classification of system elements (Si-
mon, 1962), and domains are considered logical sub-
categorizations within taxonomies covering either tan-
gible components, phenomena or behaviors, and con-
textual information. Using domains can be a useful
way to categorize and manage information within com-
plex systems. These data domains can also be under-
stood as various perspectives and presentations of an
object, analogous to ‘aspects’ as defined in IEC 81326
for Industrial Systems (ISO, 2022) that cover events,
processes, products, or the functions of a system. Cen-
tral to the idea of domains includes the fact that infor-
mation within a domain can be linked to other domains
and can be reinterpreted based on the users’ needs.

In the shipping industry, a vessel’s data can be trans-
lated into various domains, from design to operations.
At the design level, a ship’s systems are functionally
interpreted, but during construction, the focus shifts
to a product orientation. Task breakdowns that com-
bine process and location domains are heavily used
during the ship construction phase to coordinate mate-
rials and labor in the yard. Reorientation back to the
functional domain occurs upon the vessel’s delivery
to permit overall ship evaluation and systems testing
(Pal, 2015).

We converge to six discrete data domains, defined in
detail in the next section, that are useful to note within
a ship’s taxonomy.

Maritime Design and Construction Domains

Functional Domain: Functional data is information
related to parameters or attributes that describe the sys-
tem’s intended purpose (Pettersen, 2018). Functional
ship breakdowns are some of the most popular ways to
decompose a vessel today, where the two most widely-
recognized structures include the Ship Work Break-
down Structure (SWBS) and the Skipsteknisk Forskn-
ingsinstitutt (SFI) Group system. These systems de-
compose the vessel by the hull structure, propulsion
plant, electric plant, auxiliary systems, outfitting, and
furnishing, among others Koenig et al. (1997). Data
involved in designing, defining, and evaluating ship
systems fall within this category. For example, to de-
scribe propulsion systems in a ship, supplemental data

Communications of the ECMS, Volume 38, Issue 1,
Proceedings, ©ECMS Daniel Grzonka, Natalia Rylko,
Grazyna Suchacka, Vladimir Mityushev (Editors) 2024
ISBN: 978-3-937436-84-5/978-3-937436-83-8(CD) ISSN 2522-2414

can range from vessel performance parameters all the
way to resistance test results.

Product Domain: Product data refers to informa-
tion about the physical form of ship parts that perform
specific functions (Pettersen, 2018). This type of rep-
resentation is commonly used in the detailed engineer-
ing and construction phases for ships. Tangible assets
in this domain include the combination of the ship
hull and the ship outfitting, which comprises various
equipment and furnishings. During ship construction,
these components are typically separated based on
their physical connections. These zones or blocks are
made up of steel blocks, systems, and their respective
parts or components (Pal, 2015).

Schedule or Process Domain: Process data refers
to information related to workflows involved in ship
product data production, encompassing both adminis-
trative tasks such as planning and scheduling, as well
as technical tasks. Multiple administrative and tech-
nical processes govern the design and construction
of a ship due to its high complexity, and tasks are
typically divided into engineering sub-teams that per-
form their work concurrently (NAVSEA, 2012). Each
team will perform planning, checking, and reviewing
activities. Similarly, shipbuilding processes require
complex planning and documentation to streamline
the coordination of labor and materials.

Human Domain: People data refers to information
related to individuals involved in executing tasks and
ship design and building activities. Due to the high
degree of multi-organization in the shipping industry
(Emblemsvåg, 2014), a significant amount of data can
be collected concerning all the parties involved in ship
design and operations. The requirements for gathering
personnel data may vary throughout the lifecycle of a
vessel, from ensuring that individuals involved in its
design possess valid security compliance to ensuring
that the persons operating the ship meet health and
certification requirements.

Geospatial Domain: Geospatial data refers to infor-
mation that is related to the physical location of tangi-
ble ship assets as well as material and labor resources.
Since there are numerous stakeholders involved in a
ship’s lifecycle, and they are spread across the globe,
personnel and ship assets are also highly dispersed. In
cases where shipbuilding offshoring is prevalent, such
as in the case of European shipbuilders, this dispersion
is even more pronounced (Semini et al., 2023). During
ship operations, geospatial data also plays a critical
role as the ship’s Automatic Identification Systems
(AIS) track and monitor the position of a vessel for
global fleet traffic management.

Contextual Domain: Contextual data refers to in-
formation that helps in making decisions. It involves
background data that provides a high-level understand-
ing of other data domains. Contextual awareness is
crucial in situations where uncertainty is high. In the
shipping industry, uncertainties exist in multiple di-
mensions, ranging from business markets to vessel
behavior. Knowledge management systems that facil-
itate context-aware decision-making in the industry

would be useful in supplementing tacit enterprise and
technical knowledge. Currently, communication tools
like Power BI are increasingly popular for data-driven
decision-making.

Handling Multi-Domain Taxonomies

In current practice, information within any of these
domains is generated and processed in an extremely
heterogeneous manner. Coordinating the technical
design as well as managing the resources, materials,
and time to ensure the completion and quality of a
ship concept is a massive undertaking from a data
management perspective.

Solutions to manage and store data in these multiple
domains may range from flat file databases developed
in-house via MS Excel to advanced Enterprise Re-
source Planning (ERP) software that uses relational
databases. However, where databases and storage are
concerned, the usage of these solutions is varied given
their limitations in realizing an integrated view with
process, people, and contextual domains outside tech-
nical product or functional data.

Before proposing a way to address the multi-domain
taxonomies presented in the previous section, it is im-
portant to remember some issues and critical consider-
ations for the proposal:

Data Replication: In our solution, it is critical to
avoid data replication. Every time a value needs to be
updated, it is necessary to iterate in the entire system
and apply the new value, and the data will be inconsis-
tent until the update is completed. Another side effect
is the waste of storage space using this approach.

Domain Element Identification: Each domain
uses a specific denomination of an element. In a pro-
posal to handle these taxonomies, it is important to not
affect this characteristic in a domain.

Less Intrusive: A good approach can not change
the current tools and system in an intrusive way. Cre-
ating a middleware with a proper API (Application
Programming Interface) dealing with each system is
important.

With this in mind, the following section discusses
possible data models that can be used to handle the
multi-domain ship taxonomy.

Flat File Database

A flat file database is a collection of data in two
dimensions (rows and columns) stored in a plain text
format, where each row is a separate record. Generally,
flat files are a good choice in two scenarios. The first
scenario is in early-stage projects due to the simplicity
in maintenance these databases offer. However, flat file
databases can start to be prohibitive with increasing
complexity and quantity of data. The second scenario
is when there is a need to append large amounts of data,
and the flat file database provides a low overhead to
inserting new information in raw format. Log system
files are a good example of this scenario.

One example of a flat file database in the maritime
field is the logs and messages of NMEA-0183 data
format (Betke, 2001). In NMEA-0183 (v 3.01), all
messages begin with $ and end with a carriage return
\c and a line feed \n. Data fields follow comma ,
delimiters and are variable in length. Null fields still
follow comma , delimiters but contain no information.
An asterisk ∗ delimiter and checksum value follow the
last field of data contained in an NMEA-0183 message.
The checksum is the 8-bit exclusive of all characters
in the message, including the commas between fields,
but not including the $ and asterisk delimiters. The
hexadecimal result is converted to two ASCII charac-
ters (0–9, A–F), where the most significant character
appears first.

Figure 1: Example of a data structure NMEA message.

Relational Database Model

A relational database is composed of tables, rows,
and columns, where it is possible to create relation-
ships between data by joining tables. In a relational
database, each row in the table is a record with a unique
ID called primary key. The columns of the table hold
attributes of the data, and each record usually has a
value for each attribute, enabling a way to create rela-
tionships among data points.

Benefits

Relational nature: Relational databases allow easy
querying on relationships between data among multi-
ple tables, and these table relationships are important
for effectively organizing, composing, and structuring
diverse data.

ACID compliant: In general, relational databases
support ACID (Atomicity, Consistency, Isolation,
Durability), ensuring data validity. That means:
– Atomic: One is able to execute all or nothing trans-
actions;
– Consistent: The data to insert must be valid, and this
is assured by the execution of rules;
– Isolated: Multiple transactions can be executed at
the same time without interference between them;
– Durable: Once the transaction is concluded, it is
possible to retrieve committed data.

Data is structured: The data is well-structured and
minimizes the occurrences of potential errors due to
the fact the Structured Query Language (SQL) schema
requires that the data model and the format of the data
is known before storing it.

Disadvantages

Structure must be created in advance: Struc-
tured data can lead to fewer errors, but it also means
that columns and tables have to be created ahead of
time. Hence, relational databases take more time to
set up, and it is important to be aware of the entire
system beforehand. They are not effective for storing
and querying unstructured data, where the format is
unknown and may change over time.

Difficult to scale: Relational databases are difficult
to scale horizontally (spread in several instances) be-
cause of their relational nature. For read-heavy sys-
tems, it is straightforward to provision multiple read-
only replicas. However, the only option for write-
heavy systems is to scale vertically by improving in-
stance specifications, such as memory, storage, and
processor. This is generally more expensive than pro-
visioning additional servers.

Non-Relational Database Model

A non-relational database (also known as No-SQL)
is a model that stores data in an unstructured form.
The way to store them is optimized for the specific
requirements of the data type. In this model, data can
be stored in key/value pairs, JSON documents, or as
a graph consisting of edges and vertices. The advan-
tages and disadvantages of these models are discussed
below.

Benefits

More flexibility: Non-relational databases are
more flexible and simpler to set up as they do not
support table relationships, and data is usually stored
in documents or as key/value pairs. Due to this, they
are a better choice for storing unstructured data or
when all relationships in the system are not known
upfront.

Data sharding: Sharding is a procedure to increase
data space separately across multiple computers, also
known as horizontal scaling. This enables an increased
capacity to deal with large amounts of data without the
necessity to purchase powerful but expensive servers.

Peer-to-peer replication: Non-relational databases
are typically designed for distributed use cases and
heavy-write systems that allow peer-to-peer replication
or the ability to have multiple writes in the same data
partition.

Disadvantages

Eventual consistency: A trade-off of peer-to-peer
replication is a loss of strong consistency after writ-
ing to a shard in a distributed non-relational database
cluster. In this case, a small delay is possible before
that write update can be propagated to other replicas,
and, during this time, reading from a replica can mean
accessing stale data. This situation is called eventual
consistency. This affects distributed databases in gen-
eral, not only non-relational databases. A single shard

in a non-relational database can be strongly consistent.
Still, to fully take advantage of the scalability bene-
fits, the non-relational database must be set up as a
distributed cluster.

Lack of ACID: Non-relational databases do not
support ACID (atomicity, consistency, isolation, dura-
bility) transactions across multiple documents. It is
possible to achieve single-record atomicity with an
appropriate schema design, which is acceptable for a
lot of applications. However, there are still many ap-
plications that require ACID across multiple records.

Data replication: Due to the absence of trans-
actions across tables, data models in non-relational
databases generally encounter data duplication. How-
ever, storage is cheap, and most people consider this
to be a minor drawback.

Graph Database Model

Graph Database Model is a subdomain of a non-
relational database, where the focus of this database
is on the relationships between the data. The database
queries and infrastructure are adapted to retrieve the
data using these relationships in a faster way. The data
organization for this database uses the graph theory
concepts.

Graph Theory Overview and Types

Graph theory is the study of network properties
based on the connections between nodes. A graph
consists of a set of vertices (nodes or points) and a
set of edges (lines or connections) representing the
links between these vertices as shown in Figure 2.
Mathematically, it is a non-linear structure represented
by G = (V,E), where V is the set of vertices and E
is the set of edges. The number of vertices in a graph
is called its order, denoted as |V |, and the number of
edges is its size, denoted as |E|.

Figure 2: Illustration of a graph

Graphs are classified based on their characteris-
tics, such as Directed Graphs: Graphs with directed
edges, i.e., with a direction between vertices; Weighted
Graphs: Graphs where each edge has an associated
weight; Connected Graphs: Graphs where there is a
path between every pair of vertices. Acyclic Graphs:
Graphs with no cycles (a sequence of edges that begins
and ends at the same vertex).

Graphs can be represented using various meth-
ods, including adjacency matrices and adjacency lists.
These representations are crucial for implementing
graph algorithms and efficiently storing graph-related
data. When properly represented, graph theory serves
as a powerful mathematical framework for modeling

and analyzing relationships in various real-world sce-
narios. Its rich theoretical foundation and practical
applications make graph theory an essential area of
study in both mathematics and computer science.

Graph Theory Applications

Today, graph theory is used to address various real-
world problems, like optimizing routes and logistics
for roads and airline networks, analyzing social inter-
action and influence behaviors in social networks, and
detecting malicious activity patterns in cybersecurity
on the internet. Due to the dynamic structure of graphs
and efficient data querying, graph databases have a
broadened appeal across various business and industry
sectors. A few notable applications that have helped
to popularize graph theory are listed below Robinson
et al. (2015).

Networks: Modeling relationships in social net-
works, communication networks, and transportation
systems.

Computer Science: Representing data structures
(e.g., adjacency matrices and lists) and solving route
planning and optimization.

Biology: Analyzing biological networks, such as
protein-protein interaction.

Operations Research: Solving problems related to
resource allocation, scheduling, and optimization.

In shipbuilding and other complex engineer-to-order
(ETO) industries, graph theory can help address the
problem related to multi-domain taxonomies by pro-
viding a mechanism to map dependencies between
processes, temporal data, and functional ship break-
downs. By enabling the linkages across domains, it is
possible to represent a single data node from different
domains, helping to ensure the uniqueness of domain
element identification. Figure 3 illustrates this idea
where domains are visualized as different layers. The
benefits of applying graph theory are described below.

• Chain effect of changing parameters across
multi-domains: Different domains may have
some dependency between them, and a parameter
change in one domain may significantly affect
another domain. Graph theory can provide an
explicit dependency between domains and trig-
ger the other domains when a parameter change
occurs.

• Multi-domain consistency: Data coherence
across all domains in the shipbuilding process
can help to enable accurate data retrieval not only
for technical work but also for general business
operations.

Graph Database on Multi-Domain Taxonomies

To evaluate the potential of graph databases com-
pared to flat file and relational databases, a sample
case is developed in this section using the domains
mentioned, except for the contextual domain. In this

Figure 3: I) Three example domains are represented by
a graph, where A and B have 8 connections, and C has
6 connections. II) The same domains are presented,
where the arrows indicate the dependency for a specific
node that can be connected across all layers.

example, only the scope of the concept design activ-
ities defined by Andrews (1985) was considered to
keep the data concise and legible for evaluation.

In the example, the data represents the design ac-
tivities involved in completing a single iteration of a
ship concept. The data contains 35 unique records
of activities associated with ship functions such as
Vessel Performance, Vessel Stability, and Mission Sys-
tems. These activities are also assigned to randomized
personnel (for this study) for completion within a cer-
tain deadline and have unique attributes related to the
type of data (digital or non-digital) and file (document,
drawing, or model) to be delivered. Hence in this ex-
ample, the following main objects are used according
to their related domains:

• Schedule: MonthDue (deadline of activity),
ShipLC (associated lifecycle phase)

• Functional: Systems (systems associated with
activity)

• Product: Description (definition of activity)

• Persons: NameResponsible (name of assigned
personnel), Team (team of assigned personnel)

• Location: BasedAt (location of assigned person-
nel)

where the relationships between these objects are:

• PARTOF – Relationship of activity (Description)
to ship systems (Systems)

• WITHINLCPHASE – Ship systems (Systems)
relative to ship’s lifecycle phases (ShipLC)

• DUEBYMONTH – Activity (Description) due by
a certain deadline (MonthDue)

• ASSIGNEDTO – Assignee (NameResponsible)
responsible for the activity (Description)

• MEMBEROF – Assignee (NameResponsible) as
part of a team (Team)

• BASEDAT – Location (BasedAt) of the assignee
(NameResponsible)

As the intent of this example is not completion, the
contents are based on an understanding of ship depart-
ments (NAVSEA, 2012) but are not representative of
any particular company or project.

Flat File Representation

Figure 4 provides a flat file database representation
of this case, which is a table generated in MS Excel.
Data in this example is stored as unique observations
per row, with columns as the main objects. Although
this example was simple to generate and manipulate,
relationships are not explicitly represented, and users
must infer such connections. Along with the inability
to recognize such relationships, data redundancy and
inconsistencies are not easy to detect, so information
can be easily compromised. Performing complex ex-
traction, transformation, and loading (ETL) functions
can be challenging to perform securely, as they run the
risk of corrupting the data.

Graph Database Representation

To present a graph database of the sample case and
deploy a visual representation, ArangoDB was used.
It is a scalable graph database system that houses an
Insights Platform for managing and running graph
database information and visualizations (ArangoDB,
2024b). ArangoDB also flexibly supports JSON for-
mats, which were used as input or data sources for the
platform. In one JSON file, we defined the relation-
ships used to describe the edges, while a second JSON
file was used to populate the nodes with the object
keys. These files were generated from a Python script
that converted data analogous to the MS Excel exam-
ple described in the previous section. A JavaScript
code was then used to process these JSON inputs and
develop node and edge collections. Relations are also
explicitly defined for the purposes of visualization.

Figure 5 provides a partial view of the generated
visual. In this case, each unique observation is part
of a node collection that can be visualized and color-
coded in ArangoDB’s graph view. In this example,
the colors help to distinguish between the various do-
mains, where the respective domains represented are
magenta for the people domain, orange for the geospa-
tial domain, red for the product domain, blue for the
functions or systems domain, and green for the tempo-
ral and scheduling domain.

A total of 130 edges and 68 nodes were recognized.
In this example, it is possible to clearly see the con-
nections of nodes across domains, and planning in-
formation (related to scheduling and person domains)
can be tangibly viewed in relation to technical details
(such as ship functions). With the benefits of param-
eter change chain effects, this view can be helpful in
engineering change management where any updates
to design activity nodes (or the Description objects
in this scenario) will always be seen in connection to

Figure 4: Flat File Database with Sample Case Data represented in MS Excel

relevant team members and understood to affect re-
lated ship functions. Aside from engineering change
management, the flexibility of incorporating details
by adding more and more keys to a node makes this
solution adaptable to changing levels of detail (LOD).
This can be helpful as a means to view high-level ship
catalog data and references, as well as granular ship
design details in a specific project while maintaining
coherence and consistency.

Discussion

While both databases show how multi-domain data
are handled, we can compare them in terms of the
considerations described in the earlier sections: data
replication, domain element identification, and level
of intrusion. Other notable differences to consider are
discussed in the following sections.

In terms of data replication and intrusion, the flat
file database requires direct interaction to update any
information. Creating a copy or using read-only ver-
sions are the only means to provide a level of security;
otherwise, it is easy to corrupt the data. Meanwhile,
for the graph database implementation, data manipula-
tions such as filtering are done within the ArangoDB
platform, which is separate from the data source. Due
to the unstructured nature of graph databases, data
replication can happen, unfortunately, but can be man-
aged by scripts for data transformations such as the
one developed in this case study.

Scalability

As this example expands outside the rather small
scope explored in this case scenario, both graph
databases and flat file databases may face scalabil-
ity issues. For graph databases, an increasing volume
of nodes may also lead to more dynamic relationships
(Pokorný, 2015) given the richness of data from unique
labels and properties attached to various nodes and
edges (Besta et al., 2023). ArangoDB has a limit of
up to 4000 execution nodes (ArangoDB, 2024a) and
other complexity limitations that may pose constraints
to ship design projects that have data of sizes of up to
ten gigabytes (Whitfield et al., 2011).

As previously discussed, non-relational databases
such as graph databases can typically be scaled hori-

zontally through sharding, while relational databases
can typically be scaled vertically (Wang and Yang,
2017). Having a database spread across multiple
servers means that there is a high amount of network
requests to be expected (ArangoDB), as well as a re-
duction in query execution performance. The latter
is a challenge, especially when one expects users to
be accessing data from the database in multiple in-
stances. Partitioning graph data and handling multiple
queries or transactions from a single source leads to
higher processing time. These types of transactions are
called built-in parallelism, and platforms, including
ArangoDB, are attempting to provide more efficient
solutions to tackle this challenge.

While both means of scaling will require more re-
sources and costs, horizontal scaling is often less ex-
pensive and reduces the risk of a ‘single point of
failure’ but may require more resources for mainte-
nance. In the case of graph databases, the capability to
scale vertically will strongly vary based on the graph
database platform being considered. ArangoDB sup-
ports both vertical and horizontal scaling but encour-
ages the use of horizontal scaling to increase resilience,
performance, and fault tolerance (ArangoDB).

Open Collaborative Platforms and Interface

To interface with these databases, more user-
friendly and maintainable custom scripts will also need
to be developed. These scripts can help to automate
functions such as entry, data sharding, and retrieval or
querying of data from these databases. Without these
tools or proper data governance rules and infrastruc-
ture, the disadvantages that come with non-relational
databases may also increase technical debt to fix data
duplication or data errors. Naturally, these challenges
increase with scale.

Apart from queries, challenges related to distribu-
tion, specifically how information can be shared across
multiple servers, are critical considerations ship de-
sign firms and yards need to account for. According to
Besta et al. (2023), there is currently no data distribu-
tion scheme for graph databases in practice and limited
knowledge of the performance of a highly distributed
graph analytics framework. Hence, a graph database
infrastructure that can accommodate diverse and ge-
ographically dispersed stakeholders, as in the case of

Figure 5: Graph Database Representation for Sample Case

shipbuilding, will require specialized infrastructure
considerations related to data centers and routing ar-
chitecture.

As managing and interacting with such databases’
distribution infrastructure becomes challenging, con-
sidering how open and collaborative platforms to ad-
dress such gaps may be paramount. For example, one
compelling feature of graph databases is their ability to
potentially manage unstructured and semi-structured
data (Soussi et al., 2011), which most flat file and de-
fined relational databases are unable to tackle. Graphs
provide a natural way of organizing data in a unified
and contained manner. In an enterprise context, where
data may come in emails, audio, and other diverse
modalities, graphs can serve as a mechanism for map-
ping data from all these sources. This can ultimately
be a stepping-stone for realizing a ship’s multi-domain
taxonomy and enabling more collaborative knowledge
management throughout a ship’s lifecycle.

Future Work

In order to assess the scalability of this solution, a
more detailed and technical database shall be devel-
oped incorporating vessel information beyond concept
design. Solutions and other emerging technologies to
tackle scalability issues shall be evaluated, along with
the possible development of a platform for the migra-
tion and management of data from multiple sources
into an integrated Single Source of Truth (SSoT) graph
database.

Concluding Remarks

In this paper, the potential of graph databases to
manage multi-domain taxonomy in shipbuilding was
explored. These benefits can facilitate improved data
management and retrieval across multiple domains,

which may ultimately help to prevent data errors dur-
ing engineering planning and execution. Outside ship-
building, and especially in the context of modeling
and simulations for complex systems, these benefits
are considered transferable as information related to a
system is not only limited to physical dimensions. In-
corporating multiple data domains can provide a more
complete and comprehensive digital understanding of
such systems.

ACKNOWLEDGEMENTS

This work was done in close collaboration with
the EU HORIZON SEUS Project, where a Docker
instance of ArangoDB is jointly used with consortium
partners such as SARC BV.

References

David Andrews. An Integrated Approach to Ship
Synthesis. Royal Institution of Naval Architects,
1985. ISSN 0306-0209.

ArangoDB. The Scalability of ArangoDB
and Its Data Models (3.11 Release Docu-
ments). URL https://docs.arangodb.
com/3.11/deploy/architecture/
scalability/.

ArangoDB. Known Limitations for AQL
Queries, 2024a. URL https:
//docs.arangodb.com/3.12/aql/
fundamentals/limitations/.

ArangoDB. What is ArangoDB?, 2024b. URL
https://docs.arangodb.com/3.11/
about-arangodb/.

MacIej Besta, Robert Gerstenberger, Emanuel Pe-
ter, Marc Fischer, Michał Podstawski, Claude

https://docs.arangodb.com/3.11/deploy/architecture/scalability/
https://docs.arangodb.com/3.11/deploy/architecture/scalability/
https://docs.arangodb.com/3.11/deploy/architecture/scalability/
https://docs.arangodb.com/3.12/aql/fundamentals/limitations/
https://docs.arangodb.com/3.12/aql/fundamentals/limitations/
https://docs.arangodb.com/3.12/aql/fundamentals/limitations/
https://docs.arangodb.com/3.11/about-arangodb/
https://docs.arangodb.com/3.11/about-arangodb/

Barthels, Gustavo Alonso, and Torsten Hoefler.
Demystifying Graph Databases: Analysis and
Taxonomy of Data Organization, System De-
signs, and Graph Queries. ACM Computing
Surveys, 56(2), 9 2023. ISSN 15577341. doi:
10.1145/3604932.

Klaus Betke. The NMEA 0183 protocol. Standard for
Interfacing Marine Electronics Devices, 2001.

Jan Emblemsvåg. Lean project planning in ship-
building. Journal of Ship Production and De-
sign, 30(2):79–88, 2014. ISSN 21582874. doi:
10.5957/JSPD.30.2.130054.

ISO. IEC 81326-1 Industrial systems, installa-
tions and equipment and industrial products -
Structuring principles and reference designa-
tions - Part 1: Basic rules. Technical report,
ISO, 2022. URL https://www.iso.org/
standard/82229.html.

Philip Koenig, Peter MacDonald, Thomas Lamb, and
John Dougherty. Towards a Generic Product-
Oriented Work Breakdown Structure For Ship-
building. Technical report, Louisiana, 4 1997.

NAVSEA. Ship Design Manager (SDM) and Systems
Integration Manager (SIM) Manual. Technical
report, 2012.

Malay Pal. Ship Work Breakdown Structures through
Different Ship Lifecycle Stages. In International
Conference on Computer Applications in Ship-
building, 2015.

Sigurd Solheim Pettersen. Resilience by Latent Ca-
pabilities in Marine Systems, 2018.

Jaroslav Pokorný. Graph databases: Their power and
limitations. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformat-
ics), 9339:58–69, 2015. ISSN 16113349. doi:
10.1007/978-3-319-24369-6{\ }5.

Ian Robinson, Jim Webber, and Emil Eifrem. Graph
Databases: New Opportunities for Connected
Data. O’Reilly Media, Inc., 2nd edition, 2015.
ISBN 1491930896.

Marco Semini, Clara Patek, Per Olaf Brett, Jose
Jorge Garcia Agis, Jan Ola Strandhagen, and
Jørn Vatn. Some relationships between build
strategy and shipbuilding time in european
shipbuilding. Proceedings of the Institu-
tion of Mechanical Engineers, Part M: Jour-
nal of Engineering for the Maritime Environ-
ment, 237(3):658–676, 2023. doi: 10.1177/
14750902221141749. URL https://doi.
org/10.1177/14750902221141749.

Herbert A. Simon. The architecture of complexity.
Proceedings of the American Philosophical So-
ciety, 106(6):467–482, 1962. ISSN 0003049X.

URL http://www.jstor.org/stable/
985254.

Rania Soussi, Marie-Aude Aufaure, and Hajer
Baazaoui. Graph Databases for Collab-
orative Communities. Springer Berlin
Heidelberg, 2011. ISBN 978-3-642-19046-9.
doi: 10.1007/978-3-642-19047-6. URL
https://link.springer.com/10.
1007/978-3-642-19047-6.

Ruihan Wang and Zong-Mou Yang. Sql vs
nosql: A performance comparison. 2017.
URL https://api.semanticscholar.
org/CorpusID:209375121.

R. I. Whitfield, A. H.B. Duffy, P. York, D. Vassalos,
and P. Kaklis. Managing the exchange of en-
gineering product data to support through life
ship design. CAD Computer Aided Design, 43
(5):516–532, 5 2011. ISSN 00104485. doi:
10.1016/j.cad.2010.12.002.

AUTHOR BIOGRAPHIES

JANICA A. BRONSON is a current PhD Can-
didate for Maritime Computational Tools at NTNU.
She completed a Master’s in Naval Architecture at
the University of British Columbia and a Bachelor of
Mechanical Engineering at the University of Calgary.
Before NTNU, she worked in industry at Robert Allan
and Vard Marine, focusing on ship concept design and
programmatic tools for data handling.

FERNANDO H. P. LUZ is an Engineering
Manager at Talkdesk. He holds a PhD degree in
Electrical Engineering applied to High-Performance
Computing at USP. Previous professional experience
as Senior Software Engineer at TPN Labs in projects
related to Oil & Gas companies in Brazil.

ÍCARO A. FONSECA is Adjunct Associate
Professor at NTNU, where he carries research in
digital systems integration, data management, and
interoperability applied to the maritime sector. He also
works at Hecla Emissions Management, developing
solutions to assist shipowners and charterers comply
with EU ETS regulations.

HENRIQUE M. GASPAR is a professor at
the Department of Ocean Operations and Civil
Engineering, NTNU. He coordinates the Ship Design
and Operation Lab at NTNU in Ålesund. Education
consists of a PhD degree in Marine Engineering at
the NTNU, with research collaboration at UCL (UK)
and MIT (USA). Previous professional experience as
Senior Consultant at DNV (Norway) and in Oil & Gas
in Brazil.

https://www.iso.org/standard/82229.html
https://www.iso.org/standard/82229.html
https://doi.org/10.1177/14750902221141749
https://doi.org/10.1177/14750902221141749
http://www.jstor.org/stable/985254
http://www.jstor.org/stable/985254
https://link.springer.com/10.1007/978-3-642-19047-6
https://link.springer.com/10.1007/978-3-642-19047-6
https://api.semanticscholar.org/CorpusID:209375121
https://api.semanticscholar.org/CorpusID:209375121

