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Abstract—Cyber-Physical Systems deployed in scarce
resource environments like the Arctic Tundra (AT) face
extreme conditions. Nodes deployed in such environments
have to carefully manage a limited energy budget, forcing
them to alternate long sleeping and brief uptime periods.
During uptimes, nodes can collaborate for data exchanges
or computations by providing services to other nodes.
Deploying or updating such services on nodes requires
coordination to prevent failures (e.g., sending new/updated
API, waiting for service activation/deactivation, etc.). In
a CPS with short uptime periods, such coordination
can be energy-consuming due to low opportunities for
communications.

This paper evaluates and studies nodes’ energy con-
sumption during deploy or update tasks coordination
according to different CPS configurations (i.e., number of
nodes, uptime duration, radio technology, or relay node
availability). Results show high energy consumption in
scenarios where nodes wake up specifically to deploy/up-
date. It is shown that it is beneficial to do adaptation tasks
while overlapping with existing uptimes (i.e., reserved for
observation activities).

This paper also evaluates and studies how nodes’
uptime duration and relay node availability influence en-
ergy consumption. Increasing uptime duration can reduce
energy consumption, up to 12%. Using an available relay
node for communication reduces the energy consumption
by 47% to 99%.

Index Terms—CPS, Deployment, Update, Coordination,
Tundra, Energy Consumption

I. INTRODUCTION

The Arctic Tundra (AT) is one of the most sensitive

environments to climate change. Presently, much less

than 1% of the AT is monitored. Therefore, to accu-

rately study the impact of climate change on the AT,

larger observations are needed.

The AT is a very large, hard-to-reach, and po-

tentially dangerous ecosystem. The Distributed Arctic

Observatory (DAO)1 project proposes an observatory

CPS mainly composed of Observation Nodes (ON)

deployed in the AT. ONs are small devices monitoring

the environment through physical instruments (e.g.,
sensors) and running small computations. ONs can also

1https://site.uit.no/dao/

collaborate for observations when located close to each

other through local or temporary network connections.

The AT environment imposes extreme constraints on

ONs, notably due to its lack of infrastructure (e.g.,
power grid, network, and roads to physically access

the area). ONs are most of the time isolated. Due to

harsh weather and the absence of eligible harvesting

mechanisms, providing a regular energy supply is not

possible. Thus, ONs are on a limited energy budget,

forcing them to sleep most of the time to extend their

lifetimes. Each ON has its own uptime schedule and

wake-up for activity for very short periods. Uptime

schedules are not synchronized and rarely overlap,

leaving few opportunities for communication.

In the DAO-CPS, ONs collaborate for observations

by providing services to other ONs (e.g., analysis,

data aggregation). During their lifetimes, ONs have

to adapt their service configurations (e.g., deploying

new services, updating existing ones) from scientists’

requests, or from external events happening in the CPS

or in the AT. Due to ONs relying on these services,

coordination is required to prevent failures. However,

in most cases, ONs cannot rely on a central authority

to handle the coordination. Due to scarce connectiv-

ity between ONs, such coordination can be energy-

consuming as coordination can take a long time to

converge.

In the DAO, few CPS configurations may influence

the coordination’s energy consumption. ONs uptime

duration, while being short, may vary [1]. Uptimes

with a longer duration lead to potential larger overlaps

between ONs, thus faster coordination. However, longer

uptimes can also lead to larger energy consumption,

leading to a trade-off. Few nodes in the DAO-CPS

have larger energy budget than ONs. These nodes,

called Relay Node (RN), could be leveraged to be

synchronized with ONs from a specific neighborhood,

to ease communications.

Considering non-synchronized sleeping ONs trying

to deploy/update services, the contributions of the paper

are an evaluation and a study of:

‚ the impact of ONs uptime duration on the energy



consumption;

‚ the impact on energy consumption of using an

available RN for communications;

‚ the energy consumed by communication for coor-

dination when using two different radio technolo-

gies, LoRa or NB-IoT;

The paper is structured as follows: Section II presents

a description of the use-case, Section III describes the

experimental setup, Section IV presents and discusses

results, Section V presents the related work, and finally

Section VI concludes this paper.

II. USE-CASE DESCRIPTION

Figure 1 is an overview of the DAO-CPS. ONs

are equipped with small single-board computers (e.g,

Raspberry Pi), network capabilities (e.g., LPWAN radio

technologies such as LoRa or NB-IoT), and sensors (e.g

optical and proximity cameras, temperature) [2]. This

allows advanced capabilities on ONs like computing,

collaboration, and service deploy/update. While ONs

are responsible for observations and computations, RNs

are notably used to help ONs communicate. RNs are

also under a limited energy budget but equipped with

more powerful batteries, making them more likely to

be reachable by ONs. However, realistically such nodes

might not have a full availability or be present in all

neighborhoods. This paper makes the most favorable

assumption by having an available and reachable RN

by all ONs in the studied neighborhood.

Our use-case is inspired by an existing CPS deploy-

ment in the AT [2]. Our use-case considers n ONs

hosting measurement services, sending observations to

an ON hosting an aggregation service. The aggregation
ON needs outputs from all measurement ONs to be

functional. Thus, whenever changes happen either in

the aggregation ON or measurement ONs (e.g., type

of measurement changed, service has been interrupted),

ONs need to share data and coordinate their changes.

Two coordination cases are studied: (1) initially deploy
all services on ONs and (2) update all services on ONs.

Deploy: It takes the form of two synchronization bar-

riers. First, the aggregation ON fetches configurations

from all measurement ONs, to do its calibration and

installation. Second, it waits for confirmation that all

measurement ONs are actively sensing and performing

observations. It then starts to listen and process obser-

vations, shared by measurement ONs.

Update: The aggregation ON and each measurement
ON notify each other of their interruption/restart. Be-

fore updating, measurement ONs wait for confirmation

that the aggregation ON stopped listening for observa-

tions. Then, the aggregation ON waits for confirmation

that each measurement ON has been updated before

doing its own update. In the context of the DAO-

CPS, we consider that updating a measurement ON

ON
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Fig. 1: DAO-CPS system in the Arctic Tundra. ONs

are most of the time isolated from external communi-

cations. RNs can be available to few ONs.

usually takes a few seconds to complete. Thus, the first

and second notifications between each measurement
ON and the aggregation ON can happen in the same

overlap. For this reason, update is considered faster than

deploy, in most cases.

ONs are able to run multiple services at the same

time. During deploy/update, ONs can have other sens-

ing/observing/computing activities. Having multiple ac-

tivities allows multiple services to benefit from a single

ON’s uptime. The least and most favorable cases are

considered. The least favorable case is waking up

ONs specifically for deploy/update, where the uptime

is dedicated only to coordination. The most favorable

case is having other activities running on ONs besides

deploy/update, taking advantage of existing uptimes.

In the DAO-CPS, deploy/update are usually low-

priority tasks, as the energy budget of ONs should

be reserved for observations and computations. Thus,

synchronizing the wake-up schedules of ONs to ease

communications during deploy/update is not considered

in this paper.

III. EXPERIMENTAL SETUP

Experiments were conducted on ESDS [3], a flow-

level network simulator validated and publicly avail-

able2. Simulation provides flexibility and saves time

compared to setting-up and executing on a real in-

frastructure. The equivalent of several years of real

execution time was reduced to a few hours of sim-

ulation. Simulation allows for easier reproducibility,

as executions and results are not bound to a specific

hardware platform.

In ESDS, an API is provided to simulate ONs’

activity and to compute the energy consumption of

each ON. The CPS is simulated as a network of ONs.

For each ON, the sleeping and uptime periods, the

2https://gitlab.com/manzerbredes/esds



execution of deploy/update tasks, and communications

are simulated.

A. Use-case simulation

Each ON can go through 4 states: off, idle, stress and

pull. In the off state, the ON sleeps. It cannot receive

or send messages or execute deploy/update tasks. In the

idle state, the ON is awake. It can receive messages but

doesn’t execute deploy/update tasks and is not sending

messages. In the stress state, the ON is awake and

executes deploy/update tasks. Finally, in the pull state,

the ON is awake but requires coordination data for one

or multiple deploy/update tasks.

In the pull state, ONs request data once per sec-

ond. This high frequency is motivated by the uptime

characteristics of our use-case. ONs wake-up once

every hour for very short periods of time, leading to

very few overlaps. Such high frequency minimizes the

probability of missing an overlap. Here, coordination

data is assumed to be a simple flag. Each request has

a measured fixed size of 257 bytes, close to the lower

bound of common request sizes3.

In the stress state, only the load generated on the

ON to execute deploy/update tasks is considered. The

load varies depending on the task. In the simulations,

the worst-case is considered: each deploy/update task

fully stresses the ON. Each task is assigned to a

random duration, following a lognormal distribution

bounded between 1s and 30s, where low values are

more represented. This interval is chosen according

to [1] where the minimum ON uptime duration is 1min.

To compute the ON states and deploy/update dura-

tion, a dependency graph is created. Each arc represents

a task, directed either toward the next task on the same

ON, or toward a task on a remote ON. Computing a

graph traversal gives the ONs states and their duration

for each individual ON. Computing the longest path

gives the total deploy/update duration. The graph cre-

ation is inspired by [4]. The ON states, their duration,

and the deploy/update duration are given as input to

ESDS. For each ON, ESDS simulates these states and

gives the energy consumed.

The draw of tasks duration, uptime schedules, ONs

states, and simulation results are available online4.

B. Simulation parameters

Table I summarises parameters used to conduct

simulations. Deploy and update are simulated. During

simulations, ONs uptime duration is set either at 1 min,

2 min or 3 min. [1]. For coordinations, two types of

communication are considered: either direct (i.e., ON-

to-ON) or using an available RN, as an intermediary. In

3https://www.chromium.org/spdy/spdy-whitepaper/
4https://github.com/aomond-imt/reconfiguration-esds/releases/tag/

greencom 2023

TABLE I: Summary of simulation parameters

Coordination name {deploy, update}
Communication type {direct, rn}

# of measurement ONs {5, 10, 15, 20, 25, 30} [5]

Upt duration {1min, 2min, 3min} [1]

Bandwidth (ltnc) LoRa 50 kbps (0s) [1]
NB-IoT 200 kbps (0s) [1]

Energy values Pidle 1,339W [6]
Pstress 2,697W [6]

LoRa +0.16W [1]
NB-IoT +0.65W [1]

the DAO-CPS, ONs neighborhood sizes can vary up to

29 ONs [5]. To cover most cases, simulations are run

using 1 aggregation ON and 5, 15, or 30 measurement
ONs. Finally, two suitable radio technologies for the

DAO-CPS [1] are simulated: LoRa and NB-IoT.

The energy calibration is done from the energy

consumption of a Raspberry Pi based ON, previously

used in papers dealing with CPS deployment in the

AT [5], [7]. The extreme values measured in [6] are

used (1.339W for Pidle, and 2.697W for Pstress). When

an ON is sleeping, its energy consumption is assumed

to be null. Finally, the communication cost (send or

receive) is calibrated from [1] (additional 0.16W for

LoRa, 0.65W for NB-IoT).

C. Metrics

To get a representative set of results, 200 uptime

schedules are generated. During each schedule, ONs

wake-up randomly every hour. In our experiments, a

scenario represents a combination of parameters. Each

scenario is run on each uptime schedule, for a total of

200 runs per scenario.

The accumulated energy consumed by all ONs under

each scenario and each uptime schedule is composed of

static and dynamic energy consumption. The static en-

ergy consumption is the energy passively consumed by

ONs during uptime. The dynamic energy consumption

is the energy consumed for the execution and coordi-

nation of deploy/update tasks. For 200 runs, the means

of the accumulated static, dynamic and total energy

consumed by all ONs under a scenario s are denoted

eStaticpsq, eDynamicpsq and epsq, respectively. epsq
is given by

epsq “ eStaticpsq ` eDynamicpsq (1)

Distinguishing between e and eDynamic allows

to consider when ONs wake-up specifically for de-
ploy/update and when ONs take advantage of exist-

ing uptimes. When ONs wake-up specifically for de-
ploy/update, e is considered. When ONs take advantage

of existing uptimes, only eDynamic is considered.



eCommspsq, included in eDynamic, represents the

mean of the accumulated energy consumed by commu-

nications for 200 runs under a scenario s. This allows to

compare the coordination’s energy consumption when

using LoRa or NB-IoT. Finally, tpsq represents the

mean of the duration of deploy/update, for 200 runs

under a scenario s.

For each metric m, the percentage of variation

%Δmps1, s2q quantifies the variation of m from sce-

nario s1 to s2.

%Δmps1, s2q “ mps1q ´ mps2q
mps1q ˚ 100, (2)

where m can be either e, eDynamic, eComms or t.
The percentage of variation is used to study the

impact of varying simulation parameters on energy

consumption and coordination duration.

IV. EVALUATION

This section presents the energy consumed by ONs

for each scenario and compares results. Scenarios are

created from the Cartesian product of simulation pa-

rameters, described in Table I: coordination name, com-

munication type, number of measurement ONs, uptime

duration, and simulated radio technology.

Results show that, under most scenarios, waking up

ONs specifically for the deploy/update coordination im-

plies non-realistic energy consumption. Enabling faster

coordination convergence, by increasing ONs uptime

duration, has a limited impact on energy consumption

reduction. Having an RN is always favorable with

regard to energy consumption. However, in the AT, the

availability of an RN is not always guaranteed.

When ONs run deploy/update tasks along with their

observation activities, only the dynamic energy used

for adaptation tasks is taken into account. Increasing

the uptime duration only increases energy consumption.

Having an RN is also always favorable with regard

to energy consumption. Finally, LoRa has a lower

consumption than NB-IoT, in all scenarios.

Previous observations are detailed in following sec-

tions. Only the most relevant and significant elements

are extracted and analyzed.

A. Energy consumed when ONs wake up specifically
for deploy and update

Table II presents e for deploy and update according to

the number of measurement ONs, the uptime duration

and the type of communication (i.e., direct, rn). Note

that eDynamic is also depicted in the tables but is

analyzed in Section IV-B.

For the smallest cluster size (5 measurement ONs), 1

min uptime duration and using direct communications,

e is equal to 63,82 kJ for deploy, and to 39,18 kJ for

update. For the biggest cluster size (30 measurement

ONs), e reaches 572,02 kJ for deploy, and 350,34

kJ for update. These high energy consumption are

expected due to the characteristics of our use-case.

Scarce connectivity between ONs leads to a significant

amount of time required for coordination convergence.

This is illustrated by Table III, where values for t are

shown according to the number of measurement ONs,

the uptime duration and the type of communication.

For 5 measurement ONs, 1 min uptime duration and

using direct communications, deploy and update take

in average 143,19 hours and 87,61 hours respectively.

For 30 measurement ONs, deploy and update take in

average 248,65 hours and 152,02 hours respectively.

Uptime duration: Modifying uptime duration leads

to a trade-off between energy saved from faster con-

vergence and energy spent at each uptime. Its impact

on e is shown in Table II. For deploy and the smallest

cluster size, increasing uptime duration from 1 to 3 min

decreases e by 6,33% (from 63,82 to 59,78 kJ). For the

largest cluster size, increasing uptime duration from 1

to 2 min slightly decreases e by 1,04% (from 572,02

to 566,06 kJ). When increasing uptime duration from

1 to 3 min, e slightly increases by 1,11% (from 572,02

to 578,35 kJ). For update and the smallest cluster size,

increasing uptime duration from 1 to 3 min decreases

e by 11,97% (from 39,18 to 34,49 kJ). For the highest

cluster size, e decreases by 12,25% (from 350,34 to

307,41 kJ).

Increasing uptime duration allows for a strong re-

duction in t. The reduction in coordination duration

is shown in Table III. For deploy and the smallest

cluster size, increasing uptime duration from 1 to 3 min

decreases t by 68,78% (from 143,19 to 44,71 hours).

For update, t decreases by 70,60% (from 87,61 to

25,76 hours). For deploy and the largest cluster size, t
decreases by 66,31% (from 248,65 to 83,76 hours). For

update, t decreases by 70,81% (from 152,02 to 44,38

hours).

Communications using an available RN: Table II

shows results when using an available RN for communi-

cations. ONs energy consumption drastically decreases:

for 1 min uptime duration and any cluster size, e
decreases by more than 97% for deploy, and by more

than 94% for update. These reductions are expected, as

using an RN drastically reduces deploy/update duration:

for 1 min uptime duration having an RN reduces t by

more than 97% under any scenario (from Table III).

Finally, combining both uptime duration and RN

leverages increases energy consumption under all sce-

narios (Table II). When using an RN for deploy,

increasing uptime duration from 1 to 3 min for the

smallest cluster size increases e from 1,39 to 3,40

kJ. For the largest cluster size, e increases from 6,91

to 16,50 kJ. Similar variations can be observed for

update. For the smallest cluster size, increasing uptime



TABLE II: e and eDynamic values for deploy/update according to the number of measurement ONs, the uptime

duration, and the type of communication. Standard deviations are shown in parentheses. %Δe and %ΔeDynamic
quantify the variation of e and eDynamic, from scenarios using direct communications and scenarios using an

available RN.

deploy
5 measurement ONs

e eDynamic

direct (kJ) rn (kJ) %Δe direct (J) rn (J) %ΔeDynamic
1min uptime 63,82 (24,18) 1,39 (0,31) 97,82 221,84 (31,29) 104,24 (4,83) 53,01
2min uptime 61,46 (24,68) 2,51 (0,62) 95,92 221,99 (32,49) 107,28 (6,90) 51,67
3min uptime 59,78 (23,64) 3,40 (0,92) 94,31 224,01 (33,38) 109,81 (10,37) 50,98

15 measurement ONs

e eDynamic

direct (kJ) rn (kJ) %Δe direct (J) rn (J) %ΔeDynamic
1min uptime 245,94 (61,29) 3,68 (0,73) 98,50 575,59 (44,23) 255,52 (6,27) 55,61
2min uptime 248,08 (67,00) 6,61 (1,49) 97,34 623,47 (58,84) 265,23 (11,18) 57,46
3min uptime 240,56 (62,96) 9,31 (2,09) 96,13 658,32 (67,97) 273,76 (17,69) 58,42

30 measurement ONs

e eDynamic

direct (kJ) rn (kJ) %Δe direct (J) rn (J) %ΔeDynamic
1min uptime 572,02 (123,12) 6,91 (1,29) 98,79 1081,37 (66,98) 450,39 (10,66) 58,35
2min uptime 566,06 (113,78) 11,82 (2,49) 97,91 1228,90 (80,45) 467,23 (18,88) 61,98
3min uptime 578,35 (134,04) 16,50 (3,63) 97,15 1381,37 (104,40) 483,82 (28,54) 64,98

update
5 measurement ONs

e eDynamic

direct (kJ) rn (kJ) %Δe direct (J) rn (J) %ΔeDynamic
1min uptime 39,18 (17,67) 2,12 (0,46) 94,59 222,38 (47,24) 111,13 (3,47) 50,03
2min uptime 35,29 (18,19) 3,90 (1,02) 88,95 222,48 (52,29) 121,88 (8,96) 45,22
3min uptime 34,49 (17,75) 5,87 (1,40) 82,98 219,72 (47,56) 136,31 (11,57) 37,96

15 measurement ONs

e eDynamic

direct (kJ) rn (kJ) %Δe direct (J) rn (J) %ΔeDynamic
1min uptime 150,81 (44,89) 5,94 (0,95) 96,06 620,27 (87,62) 269,24 (9,53) 56,59
2min uptime 141,18 (43,27) 10,46 (2,20) 92,59 668,75 (92,83) 298,41 (26,61) 55,38
3min uptime 126,80 (49,71) 15,13 (2,99) 88,07 690,84 (116,43) 343,76 (36,19) 50,24

30 measurement ONs

e eDynamic

direct (kJ) rn (kJ) %Δe direct (J) rn (J) %ΔeDynamic
1min uptime 350,34 (107,06) 11,11 (1,66) 96,83 1274,14 (141,42) 505,62 (19,83) 60,32
2min uptime 321,13 (83,48) 19,38 (3,66) 93,97 1476,30 (163,06) 568,08 (55,87) 61,52
3min uptime 307,41 (88,20) 26,98 (4,59) 91,22 1664,77 (177,83) 665,37 (81,07) 60,03

duration also increases e from 2,12 to 5,87 kJ. For the

largest cluster size, e increases from 11,11 to 26,98 kJ.

These variations are explained by the full availability

of the RN for ONs. In such conditions, the impact

of increasing uptime duration on the deploy/update
coordination duration is minimized.

B. Energy consumed when ONs take advantage of
existing uptimes for deploy and update

In this section, only eDynamic is considered, as

the deploy/update coordination is considered to be a

task running among others, on ONs. The RN is also

included in this assumption, as ONs use RN not only for

deploy/update but also for any type of collaboration. Ta-

ble II shows that, for 1 min uptime duration, eDynamic

for deploy is 221,84 J for the smallest cluster size,

and 1081,37 J for the highest cluster size. For update,

eDynamic is 222,38 J for the smallest cluster size, and

1274,14 J for the highest cluster size.

Uptime duration: When uptime duration increases,

under most scenarios eDynamic increases, especially

for large cluster sizes (Table II). For deploy and the

smallest cluster size, increasing uptime duration from

1 to 3 min slightly increases eDynamic by 0,98%

(from 221,84 to 224,01 J). For the largest cluster

size, eDynamic increases by 27,74% (from 1081,37

to 1381,37 J). For update and the smallest cluster size,

increasing uptime duration from 1 to 3 min slightly

decreases eDynamic by 1,20% (from 222,38 to 219,72

J). For the largest cluster size, eDynamic increases



TABLE III: t values for deploy/update according to

the number of measurement ONs, the uptime duration,

and the type of communication. Standard deviations

are shown in parentheses. %Δt quantifies the variation

of t from scenarios using direct communications and

scenarios using an available RN.

deploy
5 measurement ONs

direct (hours) rn (hours) %Δt
1min uptime 143,19 (54,37) 1,46 (0,34) 98,98
2min uptime 68,96 (27,71) 1,42 (0,38) 97,94
3min uptime 44,71 (17,70) 1,34 (0,41) 97,00

15 measurement ONs

direct (hours) rn (hours) %Δt
1min uptime 207,05 (51,67) 1,51 (0,31) 99,27
2min uptime 104,42 (28,25) 1,48 (0,33) 98,58
3min uptime 67,49 (17,69) 1,50 (0,34) 97,78

30 measurement ONs

direct (hours) rn (hours) %Δt
1min uptime 248,65 (53,60) 1,53 (0,30) 99,38
2min uptime 122,98 (24,76) 1,49 (0,31) 98,79
3min uptime 83,76 (19,46) 1,52 (0,34) 98,19

update
5 measurement ONs

direct (hours) rn (hours) %Δt
1min uptime 87,61 (39,68) 2,30 (0,55) 97,37
2min uptime 39,47 (20,42) 2,24 (0,58) 94,32
3min uptime 25,76 (13,31) 2,30 (0,54) 91,07

15 measurement ONs

direct (hours) rn (hours) %Δt
1min uptime 126,70 (37,83) 2,50 (0,43) 98,03
2min uptime 59,27 (18,24) 2,39 (0,52) 95,97
3min uptime 35,44 (13,97) 2,43 (0,48) 93,14

30 measurement ONs

direct (hours) rn (hours) %Δt
1min uptime 152,02 (46,58) 2,55 (0,40) 98,32
2min uptime 69,58 (18,15) 2,49 (0,47) 96,42
3min uptime 44,38 (12,78) 2,50 (0,42) 94,37

by 30,66% (from 1274,14 to 1664,77 J). Increasing

uptime duration leads to larger and more frequent

overlaps between ONs. More overlaps leads to more

ONs receiving communications, including non-intended

transmissions. Receiving non-intended communications

can add a significant overhead to eDynamic.

Communications using an available RN: Using an

available RN for communications allows further de-

creases in energy consumption (Table II). For deploy, 1

min uptime duration and the smallest cluster size, using

an RN decreases eDynamic by 53,01% (from 221,84

to 104,24 J). For the largest cluster size, eDynamic
decreases by 58,35% (from 1081,37 to 450,39 J). For

update, 1 min uptime duration and the smallest cluster

size, using an RN decreases eDynamic by 50,03%

(from 222,38 to 111,13 J). For the largest cluster size,

eDynamic is reduced by 60,32% (from 1274,14 to

505,62 J).

TABLE IV: eComms values for deploy/update accord-

ing to the number of measurement ONs, the uptime

duration, and the type of communication. Standard

deviations are shown in parentheses. %ΔeComms
quantifies the variation of eComms from scenarios

using LoRa to scenarios using NB-IoT.

deploy
5 measurement ONs

LoRa (J) NB-IoT (J) %ΔeComms
1min uptime 98,34 (30,95) 115,24 (36,08) -17.19
2min uptime 98,75 (32,25) 115,16 (37,65) -16.62
3min uptime 101,02 (33,35) 117,95 (38,99) -16.76

15 measurement ONs

LoRa (J) NB-IoT (J) %ΔeComms
1min uptime 271,80 (43,50) 374,44 (58,07) -37.76
2min uptime 320,73 (58,66) 441,04 (77,78) -37.51
3min uptime 356,79 (65,93) 487,75 (88,15) -36.71

30 measurement ONs

LoRa (J) NB-IoT (J) %ΔeComms
1min uptime 513,75 (65,13) 815,97 (95,02) -58.83
2min uptime 665,64 (79,76) 1055,40 (115,45) -58.55
3min uptime 823,80 (102,39) 1293,10 (149,06) -56.97

update
5 measurement ONs

LoRa (J) NB-IoT (J) %ΔeComms
1min uptime 121,43 (47,24) 136,81 (53,31) -12.67
2min uptime 121,53 (52,29) 137,09 (59,07) -12.80
3min uptime 118,77 (47,56) 133,45 (53,55) -12.36

15 measurement ONs

LoRa (J) NB-IoT (J) %ΔeComms
1min uptime 376,87 (87,62) 456,47 (104,75) -21.12
2min uptime 425,35 (92,83) 512,65 (110,47) -20.52
3min uptime 447,44 (116,43) 538,26 (136,96) -20.30

30 measurement ONs

LoRa (J) NB-IoT (J) %ΔeComms
1min uptime 812,87 (141,42) 1030,84 (174,41) -26.81
2min uptime 1015,03 (163,06) 1284,27 (202,64) -26.53
3min uptime 1203,50 (177,83) 1511,64 (216,01) -25.60

As for Section IV-A, combining the utilization of an

RN with longer uptime duration increases eDynamic
in all scenarios. Table II shows that for the smallest

cluster size, going from 1 to 3 min while using an

RN increases eDynamic from 104,24 to 109,81 J for

deploy, and from 111,13 to 136,31 J for update. For the

largest cluster size, eDynamic increases from 450,39

to 483,82 J for deploy, and from 505,62 to 665,37 J for

update.

Radio technology: Table IV presents eComms for

deploy and update, according to the number of mea-
surement ONs, the uptime duration and the simulated

radio technology (i.e., LoRa, NB-IoT).

For deploy, the smallest cluster size and 1 min up-

time duration, using NB-IoT instead of LoRa increases

eComms by 17,19% (from 98,34 to 115,24 J). For

the largest cluster size, eComms increases by 58,83%

(from 513,75 to 815,97 J). For update, the smallest

cluster size and 1 min uptime duration, using NB-

IoT instead of LoRa increases eComms by 12,67%

(from 121,43 to 136,81 J). For the largest cluster size,

eComms increases by 26,81% (from 812,87 to 1030,84

J).

Results show that in our use-case NB-IoT has a



higher consumption than LoRa under any scenario.

Deploy/update duration using LoRa or NB-IoT are not

shown in this paper, but NB-IoT’s higher bandwidth im-

plies in average a negligible reduction of deploy/update
duration (less than 3% in few scenarios). This is due

to the small size of coordination exchanges between

ONs. Thus, for our use-case, LoRa’s lower energy

consumption is a better choice for communications.

V. STATE OF THE ART

Works regarding DTNs address challenges related to

our use-case, such as systems where nodes have inter-

mittent contacts between each other [8]–[10]. Among

these contributions, some of them specifically address

the problem of communication between nodes at 1-hop

with asynchronous (or random) wake-up schedules [11].

These works usually leverage wake-up schedules of

nodes to find a time/energy trade-off for message ex-

changes. These contributions however do not specifi-

cally apply to our use-case, as non-synchronized and

non-controllable uptime schedules are considered.

Among contributions dealing with observatory

CPS [12]–[15], very few environments impose hard

constraints on the CPS such as the AT (i.e., combination

of a lack of connectivity with the external world,

limited infrastructure and energetic budget). Among

contributions dealing with observatory CPS specifically

in the AT, none specifically addresses the coordination

of changes during adaptation. However, the following

contributions are complementary with this paper, as

they deal with the dissemination of data (e.g., update

data) in CPS deployed in the AT.

In [5], authors conducted experiments for disseminat-

ing update data to ONs. The total ONs uptime duration

required to complete the dissemination according to

different uptime duration is presented. The studied use-

case is similar to ours: one sender communicating with

multiple receivers. However, ONs are either always-

up or have synchronized wake-ups. In [1] authors

studied different policies of data dissemination for the

DAO-CPS. The use-case topology is also similar: one

sender disseminates data to multiple non-synchronized

receivers. Policies are: extending the uptime duration of

both sender and receiver until the end of data transmis-

sion, or/and hinting to receivers of the next uptime of

the sender, to facilitate future transmission. While the

extended uptime policy is not relevant in our use-case

because of the very small size of exchanged messages

between ONs, the hint policy can be considered as a

future work.

Our contribution aims at combining the extreme

conditions of the AT with the coordination of adaptation

tasks in a CPS deployed in such an environment.

Understanding ONs energy consumption for different

scenarios under plausible assumptions is crucial for

better anticipation of ONs energy consumption in real

deployments.

VI. CONCLUSION

CPSs deployed in environments like the AT for

sensing and observation face extreme conditions. Nodes

composing such CPSs are forced to sleep most of the

time to save energy and increase their lifetimes. To

enable collaboration, services hosted can be coupled

between nodes. To prevent failure, the deployment or

update of such services has to be safely coordinated.

This paper aims at evaluating and studying the impact

on energy consumption of nodes during coordination.

Two coordination cases (deployment, update) and plau-

sible scenarios (number of nodes, uptime duration, radio

technology, relay node availability) are simulated.

Uptime schedules are generated to simulate nodes

sleeping behaviors. To get a representative set of results,

each scenario is run over 200 uptime schedules. For

each scenario, an average of the energy consumption is

given and discussed.

Results show that nodes waking-up specifically for

coordination implies non-realistic energy consumption

when a relay node is not available. Taking advantage of

uptimes reserved for sensing or observations only adds

the energy consumption overhead induced by the exe-

cution of deploy/update tasks and by communications.

LoRa is the best choice for communications under any

scenario due to the very small sizes of exchanged coor-

dination data. Finally, having an available relay node is

always favorable with regards to energy consumption.

Future works aim at identifying and studying lever-

ages to optimize the energy consumption of coordina-

tion between sleeping ONs. More precise scenarios are

considered: simulating weaker RNs with intermittent

availability and calibrating future simulations on real

deploy/update tasks.
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