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Abstract
Method comparison studies assess agreement between different measurement methods. In the present 
work, we are interested in comparing physical activity measurements using two different accelerometers. 
However, a potential issue arises with the popular Bland–Altman analysis, as it assumes that differences 
between measurements are identically distributed across all observational units. In the case of the physical 
activity measurements, agreement might depend on sex, height, weight, or age of the person wearing the 
accelerometers, among others. To capture this potential dependency, we introduce the concept of 
conditional method agreement, which defines subgroups with heterogeneous agreement in dependence of 
covariates. We propose several tree-based models that can detect such a dependency and incorporate it 
into the model by splitting the data into subgroups, showing that the agreement of the activity 
measurements is conditional on the participant’s age. Simulation studies also showed that all models were 
able to detect subgroups with high accuracy as the sample size increased. We call the proposed modelling 
approach conditional method agreement trees and make them publicly available through the R package coat.
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1 Introduction
Method comparison studies are relevant in all scientific fields whenever the agreement of continu
ously scaled measurements made by two or more methods is to be investigated. However, they 
have found particular application in medical research, for example in laboratory research 
(Chhapola et al., 2015; Giavarina, 2015), anaesthesiology (Abu-Arafeh et al., 2016), ophthalmol
ogy (Bunce, 2009), and pathology (Jensen & Kjelgaard-Hansen, 2006) among many others. In the 
field of epidemiological research, particularly in the measurement of physical activity, a variety of 
wearable devices are available for objective measurement. However, taking measurements with 
some of these devices can be complex, time-consuming, and expensive for applicants. 
Therefore, it is of importance to conduct method agreement studies to compare the performance 
of different devices in order to be able to use these devices interchangeably.
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1.1 Measuring agreement
A well-established methodology for analysis was developed by Bland and Altman and is known as 
the Bland–Altman analysis or plot (Altman & Bland, 1983). In its most basic form, it illustrates the 
differences against the mean values of paired measurements made by two methods. Here, two 
quantities of interest are the mean difference, referred to as ‘bias’, and the standard deviation of 
the differences, which is used to determine the width of the so-called ‘Limits of Agreement’ 
(LoA) (Hanneman, 2008). The bias is a measure of the overall deviation of the methods but has 
limited interpretability, since large positive and negative deviations can still add up to a small over
all bias. Therefore, Bland and Altman proposed to estimate the LoA, that is a prediction interval in 
which about 95% of individual differences between the measurements of the two methods are ex
pected to lie. The mean and standard deviation of differences can be calculated directly from the 
observed data, but it has also been suggested to use regression modelling under the assumption of 
normally distributed residuals (Carstensen, 2010, 2011).

Proper planning, conduct, interpretation, and reporting of method comparison studies has been 
the subject of ongoing research and recommendations have been provided in respective publications 
and through reviews of the relevant literature (Abu-Arafeh et al., 2016; Bunce, 2009; Chhapola 
et al., 2015; Francq & Govaerts, 2016; Gerke, 2020; Giavarina, 2015; Hanneman, 2008; 
Hapfelmeier et al., 2016; Jensen & Kjelgaard-Hansen, 2006; Stöckl et al., 2004). These works are 
also concerned with the data description, processing, and analysis, the plotting of results, the (pre)
specification of acceptable agreement, the precision of estimation, the repeatability of measurements, 
and the investigation of homoscedastic variances and trends. Regarding the latter two, Bland and 
Altman already discussed early the question whether the agreement between the methods depends 
on the magnitude of the measured values, that is whether there is a relationship between the differ
ences and the means of paired values (Altman & Bland, 1983; Bland & Altman, 1986). In that case, 
they suggested either transforming (e.g. log-transforming) the differences to remove the dependency 
or modelling the differences with mean values as explanatory variable in a linear regression model. 
Recent developments have proposed to address the problem of heteroscedasticity through a hetero
scedastic mixed effects model (Nawarathna & Choudhary, 2013, 2015; Taffé, 2018, 2020).

In the present work, we are interested in agreement between physical activity measurements made by 
two different accelerometers, one worn with a belt on the hip and the other attached to the skin on the 
chest. We suppose that the underlying assumption of a Bland–Altman analysis, that is that the agree
ment of methods, i.e. accelerometers is identically distributed for all observational units or subjects, 
may not be valid in that case. The basic idea is that the methods’ measurements, in particular the differ
ences between accelerometers’ measurements, can be affected by internal and external factors, such as 
the subjects’ characteristics and measurement settings, with direct implications on the agreement of 
methods. Previous studies have used heuristic approaches to address this issue, for example through 
the post-hoc fitting of additional regression models and subgroup analyses (Haghayegh et al., 2020; 
Huber et al., 2014). An early example is the regression of mean values on differences as originally sug
gested by Bland and Altman and outlined above (Altman & Bland, 1983; Bland & Altman, 1986).

Here, we introduce a unifying framework and analysis approach for conditional method agree
ment in case of single measurements per subject or observational unit. Recursive partitioning is 
used to simultaneously explore relations between covariates and agreement and to define corre
sponding subgroups with heterogeneous agreement in terms of bias and/or the width of LoA, tak
ing advantage of the fact that a Bland–Altman analysis can be parametrized accordingly 
(Carstensen, 2010, 2011; Möller et al., 2021). We consider three different modelling approaches, 
that is conditional inference trees with an appropriate transformation of the outcome 
(CTreeTrafo) (Hothorn, Hornik, et al., 2006), distributional regression trees (DistTree) 
(Schlosser et al., 2019), and model-based trees (MOB) (Zeileis, Hothorn, et al., 2008). We call 
the proposed modelling approach conditional method agreement trees (COAT) and demonstrate 
its relevance to epidemiological research through the application to a data of accelerometer meas
urements made by different wearable devices. The ability of these approaches to control the type-I 
error probability at a nominal level, the power to detect given subgroups, and the ability to 
accurately define these subgroups is investigated in simulation studies. In addition, we propose 
a two-sample test of differences in method agreement suitable for exploratory or confirmatory 
hypothesis testing of differences in agreement between two (pre)defined subgroups.
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1.2 Physical activity measurements
Lack of physical activity is one of the main risk factors contributing to global mortality (WHO, 
2022). Tracking physical activity is therefore important in research. Accelerometers are widely 
used to objectively measure physical activity. These are compact, lightweight, wearable devices de
signed to measure acceleration in one or more axis. They provide data on the frequency, duration, 
and intensity of physical activity per unit of time (Butte et al., 2012). There is currently a wide 
range of accelerometers available, for use in both research (Henriksen, Haugen Mikalsen, et al., 
2018) and the consumer market (Butte et al., 2012). The latter are becoming increasingly popular 
due to their potential to encourage increased physical activity. While some accelerometers provide 
very precise measurements, the accuracy of newer accelerometers remains largely unexplored and 
should therefore be compared with established research instruments (Henriksen, Svartdal, et al., 
2022). Furthermore, the agreement between these wearable devices may be influenced by the char
acteristics of the applicants or measurement settings. However, the well-established approach to 
measure agreement, the Bland–Altman plot, does not capture the potential dependence of agree
ment on applicant characteristics. The new concept of conditional method agreement introduced 
here allows to assess covariate-dependent agreement, and is applied here using accelerometer data.

The accelerometer data consists of 24-hr accelerometer measurements and socio-demographic 
information from n = 50 participants of the original study (Henriksen, Grimsgaard, et al., 2019). 
Figure 1a shows a respective Bland–Altman plot of the agreement of activity energy expenditure 
(AEE) (in kilocalories) measured by two investigated accelerometers, namely ActiGraph and 
Actiheart. More details are given in Section 3. Using conditional method agreement trees 
(COAT) by MOB, it can be shown that this agreement is related to the age of the participants. 
There are two subgroups with statistically significantly different agreement (p = .023), especially 
in terms of bias, which is divided from −385 in the whole sample into −536 and −207 in the sub
groups defined by a split point of 41 years (cf. Figure 1b). Also, the LoA within the defined sub
groups are less wide than for the whole sample. Comparing the subgroups, the LoA are wider 
within subjects of increased age of >41 years. This result is of interest to scientists, health profes
sionals, users, and manufacturers of accelerometers who develop the wearable devices or rely on 
their functionality and who may want to discuss the reasons for this difference in agreement and 
possible solutions or implications for proper use.

2 Modelling approaches
The following subsections outline the concept of conditional method agreement, corresponding 
modelling through recursive partitioning and a two-sample test for hypothesis testing of group 

Figure 1. Agreement (a) Bland–Altman plot and conditional agreement (b) Conditional method agreement trees plot 
of activity energy expenditure (kilocalories) measured by two different accelerometers. ActiGraph based on uniaxial 
activity counts and Actiheart in lower position are compared. See Section 3 for details.
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differences in agreement. The models used for analysis are called conditional method agreement 
trees (COAT).

2.1 Conditional method agreement
As shown and discussed in Section 1, in a Bland–Altman analysis, we are essentially interested in 
the first and second moments of the marginal density function fY(y). Here, Y = M1 − M2 is a ran
dom variable of independent differences between two methods’ paired measurements (M1, M2). 
The moments of fY(y) are the expectation E(Y) and the variance Var(Y) with corresponding esti
mates given by the mean y̅ =

􏽐n
i=1 yi and the empirical variance s2 = 1

n−1

􏽐n
i=1 (yi − y̅)2 of the ob

served differences yi, i ∈ {1, . . . , n}, of n subjects or observational units. Thereby, y̅ describes 
the overall deviation between methods, which is often referred to as the ‘bias’ (Hanneman, 
2008). However, as discussed in Section 1, the bias is of limited use because it does not provide 
information about the individual agreement of measurements made for the same subject or obser
vational unit. Interpretation of agreement in a Bland–Altman plot therefore relies mainly on 95% 
prediction intervals, that is the LoA, which are calculated from the normal distribution using ̅y and 
s, if the differences are normally distributed.

Another assumption of a Bland–Altman analysis is that E(Y) and Var(Y) are independent of the 
magnitude of measurements, implying that the differences are independent and identically distrib
uted (iid). However, if the observed distribution of data suggests that such an association has to be 
assumed, Bland and Altman propose either to remove this relationship by transforming the differ
ences, for example to establish homoscedasticity by using a log-transformation, or to use a regres
sion model considering the differences Y as the outcome and the mean measurements 
M = 1

2 (M1 + M2) as an explanatory variable (Bland & Altman, 1999). We generalize this approach 
to define conditional method agreement as follows.

Given a random variable Y = M1 − M2 of differences between two methods’ measurements M1 

and M2 and random variables of any scale serving as covariates Xj, j = 1, . . . , m, conditional 
method agreement is based on the following assumption:

fY y |x j
( 􏼁

≠ fY(y).

Here fY(y |x j) is the conditional density function of Y given Xj = x j. The realizations y are the ob
served differences and x are the measured covariate values which can also include mean values m = 
1
2 (m1 + m2) of paired measurements. In the present work, we use COAT to obtain estimates of the 
conditional expectation E(Y |Xj) and the conditional variance Var(Y |Xj) to assess conditional 
method agreement, with and without using distributional assumptions about fY(y |x j) as detailed 
in Table 1. Respective null-hypotheses

H0 : E Y |Xj
( 􏼁

= E(Y) ∩ Var Y |Xj
( 􏼁

= Var(Y) (1) 

are tested by COAT to determine the statistical significance of the association of the agreement and 
covariates in terms of expectation and variance. The covariates can be of any scale. With a binary 
covariate, the procedure can also be used to perform a two-sample test to compare agreement be
tween predefined subgroups as outlined in detail in Section 3.3. With a continuous covariate or a 
multicategorical covariate, subsetting of the data is determined after a significant association with 
agreement has been detected as described in the following section.

2.2 Recursive partitioning of method agreement
The general idea of recursive partitioning is to assess sequentially whether an investigated outcome 
variable (or model) is homogeneous across all available covariates and, if this is not the case, to 
capture the differences by splits into more homogeneous subsets of the data (Breiman et al., 
1984). The procedure continues recursively until some kind of stopping criterion is reached. 
The resulting model is often referred to as a tree because of its structure. The subsets considered 
for splitting or emerging from splitting are termed parent nodes or daughter/child nodes, 

4                                                                                                                                             Karapetyan et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlae077/7942358 by U
iT The Arctic U

niversity of N
orw

ay user on 06 January 2025



respectively. A so called stump is obtained if a single split is performed. The definition of the splits 
performed in the covariates provides decision rules that specify the subsets.

To define heterogeneous subsets in terms of E(Y |Xj) and Var(Y |Xj), referring to the mean 
(bias) and standard deviation of the differences y, we consider the following tree-based algorithms: 
conditional inference tree with an appropriate transformation of the outcome (CTreeTrafo) 
(Hothorn, Hornik, et al., 2006), distributional tree (DistTree) (Schlosser et al., 2019), and model- 
based recursive partitioning (MOB) (Zeileis, Hothorn, et al., 2008). All of these modelling ap
proaches are based on the same basic steps: 

1. In DistTree and MOB, a model is fit to the data by optimizing some objective function. In 
CTreeTrafo, a transformation function is applied to the data.

2. A split variable is selected based on the association of some goodness-of-fit measure or the 
transformed data with each possible variable. The variable with the highest significant asso
ciation is selected.

3. A split point of the selected variable is chosen so the goodness-of-fit is maximized in the re
sulting subsets.

4. Steps (1)–(3) are repeated in the subsets until no more significant associations are found or the 
subsets become too small for further splits.

The basic algorithm of the three models considered is thus similar. However, they differ in the im
plementation of the individual steps, as explained in more detail in the following. Default features 
of all of the aforementioned models are summarized in Table 1.

2.2.1 Conditional inference tree
The algorithm uses the asymptotic distribution of permutation statistics (Hothorn, Hornik, et al., 
2006; Strasser & Weber, 1999), to explore whether there is a statistically significant dependence of 
the outcome on a covariate. Therefore, j partial hypotheses of independence H j

0 : fY(y |x j) = fY(y) 
are defined for j = 1, . . . , J covariates. The respective linear test statistics are

t j = vec
􏽘n

i=1

ωig j x ji
( 􏼁

h yi, y1, . . . , yn
( 􏼁( 􏼁⊤

􏼠 􏼡

∈ Rpq, 

where ωi is a case weight of zero or one, indicating the correspondence of an observation to the 
node or subset in which the test is performed. g j(·) and h(·) represent nonrandom transformation 
functions. The choice of g j(·) depends on the type of the jth covariate. The identity function, 
g j(x ji) = x ji, is a natural choice for a continuous variable, while the indicator function g j(x ji)= 
(I(x ji = 1), . . . , I(x ji = K)) is more appropriate for a categorical variable with K levels. With the 
vec(·) operator, the test statistic becomes a pq column vector, where p = K for categorical covari
ates and p = 1 for continuous covariates with identity transformation. q depends on the choice of 
h(·) and takes a value of 2 in our case, as outlined below.

In the present setting, that is to model method agreement through the estimation of E(Y |X) and 
Var(Y |X), we define h(yi) = (yi, (yi − y̅ω)2), which corresponds to the first step in the basic 

Table 1. Combinations of fitted model type, test type, test statistics, and transformation function considered in COAT 
models

Fit Test Statistic Transformation Distribution

CTreeTrafo nonparametric permutation quadratic (yi, (yi − y̅ω)2) non

DistTree parametric permutation quadratic s(θ̂, yi) normal

MOB parametric fluctuation quadratic s(θ̂, yi) normal
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algorithm. The multivariate linear test statistic t j is then defined as

t j = vec
􏽘n

i=1

ωig j x ji
( 􏼁

yi, yi − y̅ω
( 􏼁2

􏼐 􏼑⊤
􏼠 􏼡

∈ Rp2, 

where y̅ω =
􏽐n

i=1 ωiyi/
􏽐n

i=1 ωi is the mean outcome in the node or subset in which the test is per
formed. Under the null hypothesis H j

0, the expectation μ j and covariance matrix Σ j has been de
rived by Strasser and Weber (1999) who also show that the asymptotic conditional distribution is 
normal. This result can be leveraged to obtain critical values or p-values relatively easily for two 
types of univariate test statistics based on t j. The first is a maximum standardized test statistic:

cmax t j, μ j, Σ j

􏼐 􏼑
= max

z=1,...,p2

t j − μ j

􏼐 􏼑

z�������
Σ j
( 􏼁

zz

􏽱

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

.

The second one is a quadratic form

cquad t j, μ j, Σ j

􏼐 􏼑
= t j − μ j

􏼐 􏼑
Σ+

j t j − μ j

􏼐 􏼑⊤
, 

where the asymptotic conditional distribution is χ2 with degrees of freedom given by the rank of 
Σ j. Σ+

j is the Moore-Penrose inverse of Σ j. Thus, both of these test statistics enable the computation 

of a p-value, where H j
0 can be rejected if this value falls below a specified significance level. The jth 

covariate with the minimum and statistically significant p-value is selected for splitting, corre
sponding to the second step in the basic algorithm. Note, that the multiple testing problem is pre
sent, as hypotheses for several covariates are checked. Therefore, the CTree algorithm uses 
Bonferroni-adjusted p-values by default. All theoretical details for the test statistics are derived 
by Strasser and Weber (1999) and discussed from a practical perspective in Hothorn, Hornik, 
et al. (2006).

After selecting the split variable j∗, the subsequent and third step of the basic algorithm is to find 
the optimal split point in a continuous variable or dichotomization of the K categories of a categor
ical variable for binary splitting, which is again determined through a test statistic

tA
j∗ = vec

􏽘n

i=1

ωiI x j∗ i ∈ A
( 􏼁

yi, yi − y̅ω
( 􏼁2

􏼐 􏼑⊤
􏼠 􏼡

∈ R2.

Here, tA
j∗ implicitly measures the discrepancy between the subsets {yi |ωi = 1 and x j∗i ∈ 

A; i = 1, . . . , n} and {yi |ωi = 1 and xj ∗ i ∉ A; i = 1, . . . , n} in terms of a metric defined by h(·), 
where A represents all possible subsets. The best split point is found by maximizing 
c(tA

j∗ , μA
j∗ , ΣA

j∗ ) over all possible subsets A using the conditional expectation μA
j∗ and covariance 

ΣA
j∗ of tA

j∗ . This procedure is recursively repeated until no further statistically significant associa
tions are found or subsets become too small for further splitting (which is the fourth step in the 
basic algorithm).

It is important to note that by choosing the transformation functions h(·) and g j(·) a wide range 
of classical tests are special cases of this conditional inference framework. This includes rank- 
based procedures such as the Wilcoxon–Mann–Whitney or the Spearman test but also ANOVA 
statistics and Pearson correlation tests (see Hothorn, Hornik, et al., 2006, for details). Using 
this flexible inference framework as the basis for the CTree algorithm is attractive for two reasons: 
First, by choosing the bivariate transformation h(yi) = (yi, (yi − y̅w)2) we readily obtain tests that 
simultaneously assess both parts (expectation and variance) of the null hypothesis H0 from (1). 
Second, the tests can be re-used both for split variable and split point selection in the CTree algo
rithm. Both properties are provided in a unifying framework. In the following simulation study 
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(see Section 4), we will revisit this aspect as we compare the performance of COAT against the 
benchmark of a CTree that uses the default settings of the algorithm, that is h(yi) = yi, which im
plies that the correlation between the continuous outcome and the continuous covariates is tested. 
We also discuss in the next section that using transformation of the outcome h(yi) = (yi, (yi − y̅ω)2) 
makes the association test of CTree test the null-hypothesis (1).

2.2.2 Distributional tree
DistTree is similar to CTreeTrafo while a parametric model is fit to the data and the transform
ation function is replaced with the resulting score function. In particular, DistTree models all pa
rameters of a given distribution (Schlosser et al., 2019). In the present setting of a Bland–Altman 
analysis, a normal distribution with the location and scale parameters μ and σ2 for the differences 
Y is assumed (Bland & Altman, 1986). This allows the specification of the corresponding 
log-likelihood

l(θ; Y) = log
1

σ
���
2π
√ ϕ

Y − μ
σ

􏼒 􏼓􏼚 􏼛

; θ = (μ, σ), 

and its score function s(θ, Y) = ∂l(θ; Y)/∂θ as a measure of goodness-of-fit. ϕ(·) is the density func
tion of a standard normal distribution. A maximum-likelihood (ML) estimate of θ is 
θ̂ = arg max

􏽐n
i=1 l(θ; yi). This corresponds to the first step in the basic algorithm.

When it is assumed that the differences y are not iid, DistTree can be used to model the condi
tional expectation E(Y |X) and variance Var(Y |X). To do so, a possible association of θ and a co
variate Xj is tested in terms of the null-hypothesis H j

0 : s(θ, Y) ⊥ Xj, based on the multivariate 
linear test statistic

t j = vec
􏽘n

i=1

g j x ji
( 􏼁

s θ̂, yi
( 􏼁

􏼠 􏼡

.

The asymptotic conditional distribution of the linear test statistic t j has been shown to be multi
variate normal with parameters μ j and Σ j (Strasser & Weber, 1999). Here, θ̂ is substituted into the 

score function to obtain s(θ̂, yi) as a measure of goodness-of-fit for each of the observations yi. The 
transformation function g j, as well as the standardized test statistics cquad(t j, μ j, Σ j) and 
cmax(t j, μ j, Σ j) are defined as outlined in Section 2.2.1. The split variable Xj∗ is determined by 
the lowest and statistically significant p-value, which is by default corrected for multiple testing 
(equals step 2 of the basic algorithm). In the third step the split point is chosen so that it leads 
to the largest discrepancy in the sum of scores between the resulting subsets. This procedure is re
peated recursively in each subset until no further significant associations are found or the resulting 
subsets become too small for further splitting.

It is important at this point to draw attention to the similarity of the statistics t j of CTreeTrafo 
and DistTree, with CTreeTrafo using a transformation function h(·) instead of the score function 
s(·) in the calculation. We show the equality of the resulting quadratic test statistics cquad(·) of 
CTreeTrafo (with the transformation function h(·) defined as given in the previous Section 
2.2.1) and DistTree analytically for the case of a continuous predictor in Appendix A.

2.2.3 Model-based recursive partitioning
MOB is similar to DistTree, but uses a different underlying model and hypothesis test. MOB uses 
fluctuation tests for parameter instability in regression model fits to build a tree model (Zeileis & 
Hornik, 2007). In the first step of MOB, a parametric model is fit to the data by maximum- 
likelihood estimation. In the present case, we consider an intercept-only linear regression model 
yi = β0 + ϵi, ϵi ∼ N (0, σ), to obtain estimates of the expectation E(Y) = β0 and variance 
Var(Y) = σ2. The second step is to assess parameter instability of the estimated model parameters 
θ̂ = (􏽢β0,􏽢σ) across the values x j of a potential split variable Xj. Instability is concluded when the 
scores s(θ̂, yi) do not fluctuate randomly along the ordered values x j (see Zeileis, Hothorn, 
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et al., 2008, for details). The split variable X∗j is selected as it provides the minimal and statistically 
significant p-value, which is by default corrected for multiple testing. The split in x∗j is determined 
so it maximizes the sum of the log-likelihoods of models that are refit to the resulting subsets, cor
responding to the third step in the basic algorithm. As with CTreeTrafo and DistTree, the proced
ure is repeated recursively in each subset until no further significant associations are found or the 
resulting subsets become too small for further splitting.

3 Application to accelerometer data
As indicated in Section 1.2, it is of importance to explore the agreement between different wear
able devices for measuring physical activity. To detect whether this depends on the characteristics 
of the participants—and if so, to account for this dependency in the model—we employ the COAT 
approach proposed in the previous section.

3.1 Data
The data consist of 50 study participants who wore different accelerometers, namely one 
ActiGraph and two Actiheart devices, simultaneously for 24 hr (Henriksen, Grimsgaard, et al., 
2019). The ActiGraph was placed on their right hip, one Actiheart was placed in the upper pos
ition of chest, and the second Actiheart in the lower position. Both accelerometers are considered 
valid for estimating activity energy expenditure (AEE). The difference is that the Actiheart directly 
reports AEE, using an internal branching model (Brage et al., 2004) where heart rate and acceler
ation is used together to estimate energy expenditure, while the ActiGraph uses both uniaxial and 
triaxial activity counts for its calculation.

Using the proprietary software of ActiGraph and the Actiheart, activity counts are exported and 
subsequently transformed into 60-s epochs. Counts per minute (CPM) are then employed to cal
culate minutes in the various physical activity (PA) intensity zones—namely, sedentary, light, 
moderate, vigorous, and very vigorous—using cut-offs defined by several algorithms. Minutes 
spent in vigorous and very vigorous intensity are combined into one variable. For a more in-depth 
explanation of variable generation process, refer to (Henriksen, Grimsgaard, et al., 2019).

In the present application, the agreement of daily measurements of PA (in minutes) and AEE (in 
kilocalories) are compared between different pairs of two accelerometers each, conditional on the 
participants’ age, sex, height, and weight. As described in Section 2.1, we also include the mean PA 
and AEE measurements along with the other covariates as a potential explanatory variable. Two 
cases with missing values were removed from the data. Characteristics of the participants are pre
sented in Table 2.

3.2 Fitting the model

3.2.1 Physical activity
When COAT is applied to physical activity measurements derived from different accelerometers, it 
becomes clear that the magnitude of the measurements can play a role in determining the agree
ment. Regarding light physical activity, no differences are detected between the agreement in terms 
of potential split variables and the size of the measurements, resulting in the classical Bland– 
Altman plot (cf. Figure 2a). However, COAT by CTreeTrafo reveals that the agreement in 
moderate-to-vigorous physical activity (MVPA) measurements may depend on the magnitude 

Table 2. Participant characteristics of the accelerometer study (n = 48)

Variables n(%); Median (IQR)

Female 24(50%)

Age (years) 40(35, 57)

Height (cm) 174(166, 182)

Weight (kg) 75(63, 86)
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of the measurements. Heterogeneous subgroups, defined by a split point of 96 mean minutes in 
MVPA, show significant differences in bias and width of LoA (cf. Figure 2b).

This observation also shows that transforming raw data, as proposed by Bland and Altman, in 
order to remove dependencies between mean measurements and differences, may become redun
dant in specific cases as the new approach is able to explain this dependency. In other cases there 
might still be the need for additional transformation of data, for example when the dependency 
cannot be well explained solely by the definition of subgroups. The application of COAT to vari
ous physical activity measurements, computed using different combinations of accelerometers, 
demonstrates its ability to identify dependencies in agreement based on covariates or the magni
tude of measurements. In particular, we have found that the ActiGraph corresponds better with 
the Actiheart among younger participants or with lower mean measurements.

3.2.2 Activity energy expenditure
Figure 3a shows that for one pair of compared accelerometers, COAT by MOB is able to identify 
subgroups of participants, which are heterogeneous regarding the bias and width of LoA depend
ing on age (p = .034). Better agreement, in terms of bias decreasing from about 424 to 100 kcal, is 
obtained for patients older than 41 years. With two other accelerometers, performing COAT by 
CTreeTrafo shows that agreement may be conditional on the magnitude of measurements 
(Figure 3b). With an average AEE >1040 kcal, the bias in agreement increases from about 189 
to 607 kcal and the width of the LoA increases from about 487 to 1,198 kcal (p = .006).

3.3 A two-sample test of differences in method agreement
It has been proposed in Section 2.1 to apply COAT to perform a two-sample test of the null- 
hypotheses (1) for comparison of agreement between (pre)defined subgroups. For example, in 
the application of the previous Section 3.2, a researcher may be interested in a potential difference 
of agreement between the sexes. Figure 4 shows the result of COAT by CTree, when a stump tree is 
generated for sex as the only covariate. In this implementation of COAT, the χ2 test statistic cquad, 
the degrees of freedom and the respective p-value (cf. Section 2.2.1) are presented for testing the 
null-hypothesis (1) concerning differences in bias and width of LoA between the considered sub
groups. Corresponding estimates of E(Y |X) and Var(Y |X) are provided for each subgroup, too. 
The choice of COAT by CTree is motivated by the fact that we can additionally test associations 
with respect to each of E(Y |X) and Var(Y |X) separately, using h(yi) = yi or h(yi) = (yi − y̅ω)2 in 
the respective test statistic (see Section 2.2.1 for details on h(·) and the test statistic). In the present 
case, no statistically significant association with sex was found in terms of bias (p = .619), width of 

Figure 2. Conditional method agreement trees by CTreeTrafo for conditional agreement of light physical activity 
(a) and moderate-to-vigorous physical activity (b) measurements of two accelerometers. ActiGraph based on triaxial 
activity counts and Actiheart in upper position are compared. The ActiGraph was placed on the right hip, the 
Actiheart was placed in the upper position of chest.
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Figure 3. Conditional method agreement trees (COAT) for conditional agreement of activity energy expenditure 
measurements of two accelerometers. Note that different pairs of accelerometers are compared in (a) COAT by 
model-based trees, ActiGraph based on triaxial activity counts and Actiheart in upper position and (b) COAT by 
CTreeTrafo, ActiGraph based on triaxial activity counts, and Actiheart in lower position. See Section 3 for details on 
accelerometers.

Figure 4. Two-sample test of differences in method agreement of activity energy expenditure measurements 
between female (F) and male (M) participants in the application study. ActiGraph based on uniaxial activity counts 
and Actiheart in the upper position are compared.
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the LoA (p = .366) and both of these quantities (p = .649). Please note that these three p-values are 
not adjusted for the multiple testing problem, but are easily suitable for conducting a sequential 
test procedure (starting with the test of both quantities, followed by the test of the individual quan
tities). Other corrections, such as the Bonferroni correction, are of course also possible. Similarly 
to the proposed approach, a single predictor variable of any scale could be used to simultaneously 
derive and test two subgroups. The type-I error is still controlled in this case as the tree algorithms 
used detach the test of association from the search of an optimal split point or definition of subsets 
(Hothorn, Hornik, et al., 2006, see also Section 2.2). However, this case is already covered by 
COAT, as described above.

4 Simulation studies
To further investigate the performance of COAT, several simulation studies are carried out in this 
section, assessing the properties of the model in different controlled settings. In particular, the as
sessment of performance is based on the type-I error and the power to reject H0 as defined in (1), 
and the Adjusted Rand Index (ARI). The latter is a measure of concordance of two classifications 
(Hubert & Arabie, 1985), as it quantifies the proportion of paired observations that belong to the 
same or different class levels in either classification among the total number of paired observations 
(Rand, 1971). In the case of independent or random classifications, the ARI takes a value of 
0. Higher values indicate a higher concordance, with 1 indicating perfect agreement. Here, the 
ARI is used to assess the concordance between the given subgroups and the subgroups defined 
by COAT.

4.1 Design
We run 10,000 simulations, and consider sample sizes n ∈ {50, 100, 150, . . . , 1, 000}. A CTree 
with the default transformation function h(yi, (yi, . . . , yn)) = yi, as implemented through the func
tion ctree() of the R package partykit (Hothorn & Zeileis, 2015) serves as a benchmark. It 
implements a classical test of correlation between the continuous outcome and the continuous co
variates, and may therefore be suitable to detect heterogeneity in terms of bias but not in terms of 
variance/LoA. By contrast, it has been shown for each implementation of COAT (see Section 2), 
that it tests the null-hypothesis (1) and should therefore be able to detect heterogeneity with respect 
to both, bias and LoA.

Due to the equivalence of the statistics t j of CTreeTrafo and DistTree, they are also referred to 
jointly as CTreeTrafo/DistTree in the following.

Three different simulation scenarios are considered as follows. In the Null Case, the method 
agreement does not depend on any covariates. The simulated data consist of six independent, 
standard-normally distributed variables including the outcome Y, which is the simulated differen
ces between the methods, and five uninformative covariates X. The Null Case allows the explor
ation of the type I error as we look for statistically significant p-values in the root nodes of COAT 
models that were fit to the simulated data. The nominal significance level is set to α = 0.05.

The Stump Case covers three different scenarios. In each of them there are five standard- 
normally distributed covariates X, where method agreement depends on the informative covariate 
X1 such that Y ∼ N (μk, σk), k ∈ {1, 2, 3}, where

μk, σk
( 􏼁

=
μ1 = 0.3 · I X1 > Q0.25

( 􏼁
, σ1 = 1

( 􏼁
if k = 1,

μ2 = 0, σ2 = 1 + I X1 > Q0.25
( 􏼁( 􏼁

if k = 2,
μ3 = 0.4 · I X1 > Q0.25

( 􏼁
, σ3 = 1 + I X1 > Q0.25

( 􏼁( 􏼁
if k = 3

⎧
⎨

⎩

Here, Q0.25 is the 25th percentile of the standard normal distribution and has been chosen as a split 
point in X1 to create subgroups that approximately comprise 25% and 75% of the observations. 
The subgroups consequently differ only in μk = E(Y |X), that is in the bias of method agreement in 
the scenario k = 1, they differ in σk = Var(Y |X), that is in the width of the LoA in the scenario 
k = 2, and they differ in both quantities in the scenario k = 3. See also Figure 5a for a respective 
illustration. The performance of COAT is assessed in terms of its power to reject the null- 
hypothesis (1) for the informative covariate X1, and to uncover the correct subgroups as measured 
by the ARI. In this respect, the values of μk and σk have been chosen in such a way that the power of 
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a respective two-sample t test would range between 0.372 and 0.995 for the given sample sizes 
(Chow et al., 2017).

Finally, in the Tree Case, we again consider an outcome Y ∼ N (μk, σk) with k ∈ {1, 2} and two 
informative, X1 and X2, and three uninformative, X3, X4 and X5, standard-normally distributed 
covariates, resulting in three or four subgroups (see Figure 5b), according to

μk, σk
( 􏼁

=
μ1 = 0.3 · I X2 ≥ Q0.75

( 􏼁
+ 0.5 · I X2 < Q0.75

( 􏼁
.

(

I X1 ≥ Q0.4
( 􏼁

, σ1 = 1 + I X2 ≥ Q0.75
( 􏼁􏼁

if k = 1,
μ2 = 0.5 · I X1 ≥ Q0.4

( 􏼁
, σ2 = 1 + I X2 ≥ Q0.6

( 􏼁( 􏼁
if k = 2.

⎧
⎨

⎩

The values of μk and σk in scenario k = 1 have been chosen such that it offers a first split with re
spect to σ2

1 = Var(Y |X), which deviates between the subgroups defined by the split point Q0.75 in 
X2, while μ1 takes the same value 0.4 · 0 + 0.6 · 0.5 = 0.3 on both sides of this split point. 
Subsequently, a second split could be performed with respect to μ1 = E(Y |X) as it differs between 
the subgroups defined by the split point Q0.4 in X1 where X2 < Q0.75. In the second scenario, the 
split point Q0.6 in X2 defines a split with respect to σ2

2 = Var(Y |X), and the split point Q0.4 in X1 

defines a split with respect to μ2 = E(Y |X), resulting in four subgroups (see Figure 5b).

4.2 Results
We first investigate the estimated type-I error probabilities of COAT in dependence of sample size 
in the Null Case. CTree and COAT by CTreeTrafo/DistTree show similar performance with rela
tive rejection frequencies of the null-hypothesis (1) reaching from 3.8% to 5.5%, which are close 
to the nominal significance level of 0.05 and appear to be independent of sample size (Figure 6). On 

Figure 5. Partitions of X used to define the subgroups in the simulation studies. (a) Illustration of the Stump Case 
with three scenarios, (b) Illustration of the Tree Case with two scenarios. Detailed explanation of the scenarios can 
be found in Section 4.1.
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the contrary, COAT implementation by MOB does not seem to achieve the nominal significance 
level of 0.05 well for smaller sample sizes as it rejects the null-hypothesis in only 1.3% and 3.3% of 
the simulated cases with n ≤ 100. With larger sample sizes of n ≥ 200, it showed relative frequen
cies for the type-I error between 5.1% and 5.8%, which are slightly but clearly increased beyond 
the nominal significance level of 0.05.

The performance of COAT in the Stump Case in terms of the power to reject the null-hypothesis 
(1) for the informative covariate X1 is estimated by the respective relative frequencies of the asso
ciation between X1 and the outcome being significant at the 5% level in the root node of the tree 
models (Figure 7). When only the expectation μ1 but not the variance σ2

1 varies between the defined 
subgroups (i.e. scenario k = 1), CTree and MOB perform best. However, for the case where only 
the variance σ2

1 varies (i.e. scenario k = 2), the performance of CTree decreases as it has not been 
enabled through a respective definition of the transformation function h(·) to detect such variation. 
Again, the MOB tree performs best, closely followed by CTreeTrafo and DistTree.

However, power estimates do not indicate whether the true subgroups are correctly specified. 
Therefore, the ARI has also been investigated for the Stump Case and the Tree Case. The average 
ARI is plotted against increasing sample size in Figure 7 and in Figure 8, respectively. As expected, 
the ARI increases as the sample size increases in both cases. However, Ctree can only keep up with 
COAT implementations when there is only variation in the expectation μk and not in the variance 
σk. COAT seems to be able to cope even with the more complex setting when there are more than 
two true subgroups. Overall, the results for estimated power and ARI are largely comparable and 
lead to identical conclusions regarding the performance of the modelling approaches. An example 
of a tree case is given in Figure 9. It can be seen that after splitting in x1 COAT splits in x2, which 
represents a possible association of x2 to agreement conditional on x1. This analysis is exploratory 
per se, but it is also possible to perform confirmatory tests by predefining subgroups and perform
ing a two-sample test of differences in method agreement.

Figure 6. Relative frequency of statistically significant p-values observed in the root nodes of conditional method 
agreement trees models fit to data of increasing sample size in the Null Case with 10,000 replications. These 
estimates of the type-I error probability are presented with pointwise 95% confidence intervals (dashed lines).
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5 Discussion
The contribution of the present work to the field of method comparison studies is fourfold. First, 
the concept of conditional method agreement is introduced and formalized. Second, respective 
statistical modelling by recursive partitioning is proposed introducing COAT. Third, a respective 
two-sample test is suggested to test for differences in agreement, with respect to the bias and width 
of LoA, between (pre)defined subgroups. Fourth, COAT is made publicly available through the R 
package coat. Additionally, this work provides an empirical contribution by showing that the 
agreement of activity measurements depends on the age of the participants.

Figure 7. Power estimates (a), (c), (e) and Adjusted Rand Index (ARI) (b), (d), (f) for CTree, CTreeTrafo, DistTree, and 
model-based trees in the three Stump Case scenarios k ∈ {1, 2, 3}, for increasing sample size. The ARI measures 
the concordance of the subgroups detected by conditional method agreement trees and the true underlying 
subgroups on a range from 0 (= random concordance) and 1 (= perfect concordance). In scenario k = 1, there are two 
subgroups with different bias, in scenario k = 2, there are two subgroups with different variance, and i scenario 
k = 3, there are two subgroups with different bias and variance as detailed in Section 4.1. The maximum width of the 
pointwise 95% confidence intervals was only 1.97%, which is why they are not presented in the plots.
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Figure 8. Adjusted Rand Index (ARI) of CTree, CTreeTrafo, DistTree, and model-based trees in the two Tree Case 
scenarios k ∈ {1, 2}, for increasing sample size. The ARI measures the concordance of the subgroups detected by 
conditional method agreement trees and the true underlying subgroups on a range from 0 (= random concordance) 
and 1 (= perfect concordance). In scenario k = 1 (a), there are three subgroups with different bias and variance, and 
in scenario k = 2 (b), there are four different subgroups as detailed in Section 4.1. The maximum width of the 
pointwise 95% confidence intervals was only 0.96%, which is why they are not presented in the plots.

Figure 9. Conditional method agreement trees by CTreeTrafo for conditional agreement of simulated data in the 
Tree Case scenario k = 1. Three subgroups with heterogeneous agreement are defined.
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When examining accelerometer data by applying COAT, the potential influence of covariates 
and mean measurements on the agreement between physical activity measurements from different 
accelerometers becomes apparent. In particular, better agreement in terms of bias was observed in 
younger participants or those with lower mean measurements on most physical activity measures. 
Consequently, measurements of larger values may be less reliable. In general, this application dem
onstrates the ability of COAT to provide a solution to simultaneously address the research ques
tions of method agreement and potential dependence on covariates in a unifying framework. It 
therefore exploits the fact that conditional method agreement can be parameterized through the 
expectation E(Y |X) and variance Var(Y |X) of paired differences between two methods’ measure
ments. Correctly specified tree-based models are used for estimation of these conditional param
eters and enable the definition of subgroups with different agreement.

The application study shows the potential of COAT for epidemiological research. Therefore, 
subgroups with heterogeneous method agreement in activity energy expenditure (AEE) measure
ments could be identified in terms of bias and width of LoA depending on covariates and the size of 
the AEE measurements. Therefore, we recommend that the inclusion of covariates should already 
be considered in the planning phase of method agreement studies. From the perspective of the ap
plicant, which could be a manufacturer of accelerometers, a researcher, investigator or treating 
physician, one can then recommend which accelerometer to use or how to improve measurements 
in a particular setting for a particular person.

Results of the simulation study indicate that the implementations of COAT by CTree (i.e. 
CTreeTrafo) and DistTree are able to control the type-I error probability at the nominal signifi
cance level, independent of sample size. By contrast, the implementation by MOB showed a de
cisively decreased error rate with small sample sizes and a slightly increased error rate with 
larger sample sizes. Therefore, it cannot be recommended for COAT in its present form, and fur
ther research could be directed towards robust variance estimation and improvements in distribu
tional approximations for possible correction. All implementations of COAT performed well in 
detecting existent subgroups with increasing sample size. The comparison to the default specifica
tion of the CTree algorithm shows the disadvantage of implementing classical tests only, that is 
that CTree without the proposed transformation only captures differences in the bias, that is in 
the conditional expectation E(Y |X), but cannot uncover differences in the width of LoA, that is 
in the variance Var(Y |X). The present simulation studies are based on normally distributed out
comes and covariates. The performance of the approaches studied might have been different if oth
er scalings had been used. Such cases will be addressed in future studies, but are beyond the scope 
of this introductory work.

Observed differences between the implementations of COAT arise from the testing strategy. 
Both CTreeTrafo and DistTree compute quadratic test statistics which are equivalent, as has 
been analytically shown in Appendix A. In this respect, DistTree can be considered a special 
case of CTree with the appropriate transformation function h(·) as defined in Section 2.2.1. By 
contrast, MOB is based on fluctuation tests for parameter instability in regression model fits.

Based on our findings, COAT by CTreeTrafo or DistTree is the better choice to strictly control 
type-I error. It should be noted that the results of COAT are exploratory, unless it is used to con
duct a two-sample test of different agreement between (pre)defined subgroups. In the latter case, it 
can be used for confirmatory hypothesis testing. In this context, it should also be mentioned that 
CTree, DistTree and MOB by default apply a Bonferroni correction to the multiple testing prob
lem that occurs when a test-based splitting is performed based on multiple covariates. At present, 
COAT is limited to the case of single measurements per observational unit or subject. A modifica
tion for repeated measurements is currently being developed.

6 Conclusion
COAT enables the uni- and multivariable analysis of method agreement in dependence of covari
ates and mean measurements by conditional modelling and exploratory or confirmatory hypoth
esis testing. It is made publicly available through the R package coat.
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Appendix. Equality of test statistics of CTreeTrafo and DistTree
In this section, we analytically show that the test statistics cquad(·) of CTreeTrafo and DistTree are 
equivalent for the case of numeric split variables. For a clearer and more comprehensible presen
tation of the already very extensive proof, the slightly more complex case of categorical variables 
has been omitted. However, it can be shown analogously. Recall the test statistic used for 
CTreeTrafo and DistTree:

cquad(tj, μj, Σj) = (tj − μj)Σ+
j (tj − μj)

⊤. (A1) 

In the following, we define each element tj, μj and Σj in (A1- based on the formulas from the ori
ginal publication (Strasser & Weber, 1999) and as outlined in Sections 2.2.1 and 2.2.2. To sim
plify notation, we omit the index j, which specifies a particular split variable. The weights ωi 

are chosen to be 1 focusing on the observations of a given node in a tree. Σ+ is in our case equivalent 
to Σ−1.

A.1 CTreeTrafo
In CTreeTrafo the statistic

t = vec
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has the expectation
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(A2) 

where ⊗ is the Kronecker product and V is defined as follows:
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Taken together we now obtain

cquad(t, μ, Σ) = t − μ
( 􏼁
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A.1.1 DistTree
Since score functions are used in the test statistic for DistTree, we will define them first (cf. 
Fahrmeir et al., 2016):

s(μ̂, yi) =
yi − μ̂

σ̂2 ; s(σ̂, yi) = −
1
σ̂

+
(yi − μ̂)2

σ̂3 .

From the maximum-likelihood estimation, it follows that

μ̂ = y; σ̂ =

����������������
1
n

􏽘n

i=1

(yi − y)2

􏽳

=
��
s
√
.

Therefore, we can express the score functions as follows:

s(μ̂, yi) =
yi − y

s
=

��
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√

s
; s(σ̂, yi) = −

1
��
s
√ +
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􏽺���􏽽􏽼���􏽻

=si

s
��
s
√ =
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s
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s
√ .

In DistTree, the statistic
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􏽘n
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􏼠 􏼡

=
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=
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􏼠 􏼡
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√

s
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i=1
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s
√

􏼠 􏼡

has expectation
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1
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√

s
, x
􏽘n

i=1

si − s

s
��
s
√

􏼠 􏼡

.

20                                                                                                                                           Karapetyan et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlae077/7942358 by U
iT The Arctic U

niversity of N
orw

ay user on 06 January 2025



The covariance Σ is defined similarly to CTreeTrafo (see Equation (A2)), where V is defined as fol
lows:

V =
1
n

􏽘n

i=1

yi − y
s

,
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􏼒 􏼓
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􏼒 􏼓
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Combined we get

cquad(t, μ, Σ) = t − μ
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In the following we resolve the individual components (⋆1, ⋆2) of cquad.
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Substituting the above components into the statistics cquad of CTreeTrafo and DistTree, we find 
that both statistics are
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.
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