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ABSTRACT This paper presents a practical step-by-step approach to Frequency Modulated Continuous
Wave (FMCW) radar nonlinearity correction (deconvolution), utilizing surface-based Ku- and Ka-band radar
data collected over nilas ice within a newly-opened sea ice lead during the 2019/2020 MOSAiC expedition.
Two performance metrics are introduced to evaluate deconvolution effectiveness: the spurious free dynamic
range (SFDR), which quantifies sidelobe suppression, and the leading edge width (LEW), which quantifies
the improvement in surface return clarity. The impact of deconvolution waveforms on different survey dates,
radar polarizations, and surface types is examined using echograms and quantitative metrics. Deconvolution
results in a maximum SFDR increase of 28 dB, with a maximum 3 dB decline in deconvolution performance
observed over an 8-day period and a maximum decline of 15 dB observed over a 71-day period. The
LEW values indicate that the effectiveness of deconvolution in enhancing interface clarity depends on
the combination of pre-deconvolution sidelobe shape, prominence of the surface return, the influence of
snowpack returns, as well as a time-dependent reduction in deconvolution performance. Deconvolution
significantly improves surface return clarity for cross-polarized radar data, where weak surface returns are
obscured by returns from within the snowpack. The results demonstrate that deconvolution performance is
most effective shortly after deconvolution waveform characterization. Therefore, it is recommended to
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perform at least weekly calibrations using a large metal sheet and ideally calibration before/after data collection to
ensure optimal deconvolution performance and effective sidelobe suppression.

INDEX TERMS Arctic, deconvolution, frequency modulated continuous wave (FMCW), MOSAiC expedition,
nonlinearity correction, polarimetry, radar, sea ice, snow, surface-based radar.

I. INTRODUCTION
The polar regions are currently experiencing some of themost
rapid changes on the planet. In recent decades, the Arctic has
warmed at a rate nearly four times higher than the global
average [2]; resulting in significant reductions in sea ice
cover, the increased melting of the Greenland ice sheet and
other ice caps and glaciers, a decrease in snow cover duration
and amount, and the thawing of permafrost. The warming of
the Antarctic Peninsula has been more pronounced than in
any other landmass in the Southern Hemisphere, leading to
the destabilization of floating ice shelves and the disruption
of ecosystems [3].

Due to the harsh and remote nature of polar regions,
satellite remote sensing techniques have provided crucial
insights into environmental changes occurring there. Radar-
based satellite sensors are particularly effective in these
regions as they can penetrate clouds and operate during
polar night. These sensors include radar altimeters such as
CryoSat-2 [4], AltiKa [5], and Sentinel-3 [6]; scatterometers
such as ASCAT-B/C, OSCAT, and HY-2A [7]; and Synthetic
Aperture Radars (SAR) such as RADARSAT-2, Sentinel-
1A/B, TerraSAR-X, and ALOS-2/PALSAR-2 [8], [9].
While satellite observations offer wide coverage of the

polar regions, airborne and surface-based sensors have played
a vital role in improving our understanding of radar interac-
tions with frozen surfaces, thanks to their smaller footprints,
less ambiguous surface returns and clearer relationship to
coincident geophysical data such as snow depth, density etc.

Frequency Modulated Continuous Wave (FMCW) radar
systems have gained significant popularity in Cryospheric
research. Compared to traditional pulsed radar systems,
FMCW radars offer several key advantages: such as fine
range resolution (over short-range windows), and the ability
to operate at very small target ranges. The fine range
resolution of FMCW radar systems is achieved through
their large pulse compression ratios, which also allows for
reduced transmitted peak powers. Additionally, the mixing
operation central to FMCW radar processing allows for
relatively low sampling frequencies, which, combined with
their lower power requirements, makes FMCW considerably
less expensive than comparable pulsed radar systems [10],
[11], [12].

FMCW radars have been used extensively in surface-
based applications [13], [14], [15] and airborne campaigns
[16], [17], [18], including NASA’s Operation IceBridge [19],
[20], [21], [22], [23], [24]. Recently, the surface-based dual-
frequency Ku- and Ka-band fully polarimetric radar (KuKa)
was developed to investigate the scattering properties of the
sea ice snowpack. KuKa, deployed during the year-long

Multidisciplinary drifting Observatory for the Study of Arctic
Climate (MOSAiC) expedition [25], functions as both an
altimeter (stare mode) and a scatterometer (scan mode). Its
aim during the MOSAiC campaign was to investigate the
seasonal evolution of snow over sea ice and its impact on the
dominant scattering surface [26], [27].

Although FMCW radar has become a powerful tool for
remote sensing applications, deviations from ideal linear
FM modulation make it susceptible to various sources of
signal distortion and interference, which can compromise the
accuracy and reliability of the collected data. One critical
factor contributing to data quality degradation is the presence
of range sidelobes [28], [29], [30], caused by amplitude
and phase nonlinearities in the linear FM modulation [31],
[32], [33], [34]. In radar remote sensing, range sidelobes
appear as weaker signals that closely mirror the primary
surface return; potentially obscuring interfaces, and leading
to incorrect geophysical interpretations [22], [23], [35], [36].
The KuKa radar system deployed during the MOSAiC
expedition encountered similar issues with range sidelobes:
degrading data quality and obscuring interface returns [26].
Nonlinearity correction methods for FMCW radar have

been developed to suppress range sidelobes and improve
the clarity of surface returns. The literature proposes two
general strategies to characterize and correct deviations in
amplitude and phase from ideal linear FM modulation:
hardware correctionmethods, which are applied during signal
generation, and software correction methods, which are
applied during post-processing. For the remainder of this
paper, we will use the shorter term deconvolution to refer
to software nonlinearity correction methods that are applied
during post-processing.

In sea ice remote sensing, deconvolution methods –also
commonly known as system response deconvolution– have
been successfully applied to data collected during airborne
sea ice campaigns, leading to significant improvements in
data quality [19], [22], [23], [37]. In these deployments, the
characteristics of range sidelobes have been observed to vary
between different field campaigns, adding multi-seasonal
complexity to data interpretation. Deconvolution effectively
suppresses range sidelobes, making the data more consistent
across seasons. This allows for more accurate interpretation
of sea ice scattering physics and enables interface-tracking
algorithms to be applied more reliably to data from different
campaigns [22].

The primary objective of this paper is to provide a practical
guide to FMCW radar deconvolution. It specifically focuses
on the KuKa surface-based FMCW radar system and includes
instructions on how to generate deconvolution waveforms
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from radar impulse responses obtained from calibration
datasets commonly found in the sea ice domain, such
as newly-opened leads. Additionally, the paper introduces
performance metrics that can be used to quantify the
effectiveness of deconvolution techniques.

The remainder of this paper is organized as follows.
Section II provides a brief overview of the principles
of FMCW radar, describes the origins of FMCW radar
nonlinearities, and explains the application of FMCW radar
deconvolution in the literature. In Section III, we give a
concise overview of the KuKa radar hardware and describe
how the data were acquired during the MOSAiC expedition.
We also discuss the KuKa calibration experiments conducted
during MOSAiC and the utilization of newly-opened leads
to obtain the radar impulse response. Section IV outlines
the processing steps required to generate deconvolution
waveforms using the impulse response data collected during
the KuKa lead transects. These deconvolution waveforms
can be applied to the entire KuKa MOSAiC dataset to
suppress sidelobes and enhance data quality. In Section V,
we present the results of the deconvolution process, assess-
ing its effectiveness by analyzing KuKa data from three
different survey dates. We use an echogram from each
survey to provide a qualitative description of deconvolution
effectiveness, while a waveform from each echogram is
used to provide a quantitative assessment. In Section VI,
we discuss how the surface type affects the radar return and
the features that become visible after deconvolution. We also
utilize various performance metrics to quantify the changes
in deconvolution performance over time and evaluate the
impact of deconvolution on improving surface return clarity.
Section VII provides a summary of our findings and discusses
potential future research directions.

II. BACKGROUND
In this background section, we provide a brief overview of
the principles and key equations that govern FMCW radar,
describe the origins of FMCW radar nonlinearities, and
finally explain how FMCW radar deconvolution is applied
in the literature.

A. THE FMCW OPERATING PRINCIPLES
FMCW radar systems commonly transmit chirp waveforms
that have a constant amplitude and a linear variation in
frequency with time (i.e. a quadratic variation in phase with
time) [10], [11], [12]. Chirp waveforms are designed to sweep
through bandwidth, B, over sweep duration, Ts, and have a
frequency sweep rate, K , that is given by,

K =
B
Ts

(1)

For a complex chirp signal, the instantaneous frequency, fi,
at any time, t , within the sweep, defines the rotation rate of a
phasor that is given by,

fi(t) =
dφ(t)
dt

= f0 + Kt (2)

FIGURE 1. Diagram showing a simplified FMCW radar system. PA is the
Power Amplifier, LNA is the low-noise amplifier, TX is the transmit
antenna, RX is the receive antenna; LO, RF, and IF, correspond to the local
oscillator, radio frequency, and intermediate frequency mixer ports,
respectively.

where, φ(t) is the signal phase, f0 is the frequency at time
t = 0, and f1 is the frequency at time t = Ts.
A diagram showing a simplified FMCW radar, employing

a two-antenna homodyne architecture [38], is presented in
Fig. 1. A chirp signal is produced in the chirp generator i.e.
a Voltage-Controlled Oscillator (VCO) [32] or a digital linear
FM synthesizer [39], [40]. The chirp signal is first amplified
by a Power Amplifier (PA), before being sent into a power
divider (splitter), the signal then takes two separate paths.
One copy of the chirp signal is sent directly into the Local
Oscillator (LO) port of the mixer; we designate this as SLO.
The other copy of the chirp signal is passed to the transmit
antenna (Tx antenna) and is subsequently radiated into the
antenna Field Of View (FOV); after a range-dependent delay,
reflections from objects within the FOV are collected by
the receive antenna (Rx antenna), are then amplified by a
low-noise amplifier (LNA), before being directed into the
Radio frequency (RF) port of the mixer; we designate this
signal as SRF . The mixer will combine SLO and SRF to
produce an output intermediate frequency (IF) signal, SIF ,
which is subsequently low pass filtered to remove the high-
frequency components (that are not part of the desired signal)
to obtain the beat signal Sb. The mixing and low pass filtering
operation down-converts the incoming received signals to
baseband; allowing FMCW radars to operate at much lower
sampling frequencies than equivalent pulsed radar systems
[11], [12].

B. TRANSMIT AND RECEIVE SIGNALS
For an FMCW radar system, SLO, can be expressed mathe-
matically, as,

SLO(t) = ALO(t) · exp {i [φLO(t)]} (3)

where ALO(t) is the amplitude of SLO, and φLO(t) is the phase
of SLO (obtained via the integral of (2)), and given by,

φLO(t) = 2π
[
f0t +

1
2
Kt2

]
(4)
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T. Newman et al.: Practical Approach to FMCW Radar Deconvolution in the Sea Ice Domain

For a theoretical system ALO(t) will be time invariant (have a
constant amplitude) across its entire bandwidth, with φLO(t)
having a perfectly quadratic variation of phase with time (a
linear variation in frequency with time).

In the theoretical case, an echo from a single point target
in the antenna FOV will be an exact replica of the transmitted
chirp, but delayed by the two-way travel time, τ , given by,

τ =
2R
c

(5)

where, R is the range to the target, and c is the speed of light.
We can modify (3) to give an expression for SRF , given as,

SRF (t, τ ) = ARF (t, τ ) · exp {i [φRF (t, τ )]} (6)

where, ARF (t, τ ) is the amplitude of SRF ; which takes
into account factors such as Tx and Rx antenna gains,
spherical spreading, target reflectivity and LNA gain. The
term φRF (t, τ ) is the phase of SRF (t, τ ), which is assumed,
again, to be a perfectly quadratic variation of phase with time,
given by,

φRF (t, τ ) = 2π
[
f0(t − τ ) +

1
2
K (t − τ )2

]
(7)

For the case of scattering from multiple targets, or from a
distributed target (i.e. one comprised of multiple connected
sub-targets at different ranges), the received signal will
actually be formed from the linear superposition of received
signals from allN individual targets (within the antenna FOV)
giving,

SRF (t) =

N∑
n=1

ARF,n(t, τn) · exp {i [φRF (t, τn)]} (8)

with ARF,n(t, τn) denoting the received amplitude from the
nth target, and φRF (t, τn) denoting the received phase, given
by,

φRF (t, τn) = 2π
[
f0(t − τn) +

1
2
K (t − τn)2

]
(9)

where, τn = 2Rn/c is the two-way travel time of target n at
range Rn [41].

C. MIXING TO GET THE BEAT SIGNAL
In a homodyne FMCW radar, the mixing operation
(Section II-A) produces, SIF . This operation is performed via
the instantaneous multiplication,

SIF (t, τ ) = SRF (t, τ ) SLO(t)∗ (10)

where ∗ represents the complex conjugate. It is important to
note that due to the two-way travel time, τ , and the finite
sweep duration, Ts, only the instantaneously overlapping
parts of the two signals can be multiplied and go on to
produce SIF .

The multiplication in (10) produces both sum fre-
quencies and difference frequencies. The sum frequencies
(fRF + fLO) are not desired and are removed by lowpass
filtering the output SIF signal (Fig. 1). The difference

frequencies (fRF − fLO) are the desired beat signal, Sb,
component, and for the case of a single point target are given
by,

Sb(t, τ ) = ARF (t, τ )ALO(t)

· exp {i [φRF (t, τ ) − φLO(t)]} (11)

or equivalently,

Sb(t, τ ) =ARF (t, τ )ALO(t)

· exp
{
i
[
2π

(
f0τ + Ktτ −

1
2
Kτ 2

)]}
(12)

The mixing operation thus results in the overlapping portion
of quadratic phase ramp of SLO(t) being subtracted from the
quadratic phase ramp of SRF (t, τ ); resulting in a beat signal,
Sb, that will have a linear phase ramp (i.e. has a constant
frequency).

For the case of a single point target the beat signal is
actually a sinusoid with a frequency given by fb = Kτ , which
is proportional to the two-way travel time to the target, τ ,
through,

fb = Kτ =
B
Ts

2R
c

(13)

Upon substitution, the target range, R, can therefore be
expressed as

R =
cfb
2K

=
cfbTs
2B

(14)

establishing the common FMCW relationship between range
and beat signal frequency [38].

For the case of multiple targets, or a distributed target, the
beat signal is given by,

Sb(t) =

N∑
n=1

ARF,n(t, τn)ALO(t)

· exp
{
i
[
2π

(
f0τn + Ktτn −

1
2
Kτ 2n

)]}
(15)

which is the sum of the beat signals from all n targets within
the antenna FOV; with targets at greater ranges to the antenna
having higher beat frequencies and targets that are closer
having lower beat frequencies (14).

D. RANGE ACCURACY, RESOLUTION AND RANGE BIN
SPACING
For an FMCW radar system, a single point target is
represented by a single beat signal frequency (Section II-C).
The location of spectral peaks in the frequency domain,
obtained via a Fast Fourier Transform (FFT), can thus be used
(via (14)) to determine the range to different targets within the
antenna FOV.

The range accuracy of a FMCW radar system can be
defined as the uncertainty in the detected peak centroid
location. The range accuracy is thus independent of peak
width, and is primarily influenced by the signal-to-noise
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ratio (SNR) of the detected signal, and the amount of signal
averaging performed [42].

The range resolution can be defined as the minimum
distance that two targets can be separated (along the radar’s
line of sight) before they become indistinguishable from each
other. For an FMCW radar system, the range resolution, δR,
is controlled by the width of the beat signal spectral peak
(i.e. the frequency precision, δf ). From the Fourier similarity
(scaling) theorem, the spectral width of a signal is the inverse
of the total measurement time, T , given as,

δf =
1
T

(16)

If we assume that the total measurement time is equal to
the sweep duration, T = Ts, then upon substitution of (1)
and (16) into (14) we obtain,

δR =
c
2K

δf =
c
2K

1
Ts

=
c
2B

(17)

From (17) it is observed that range resolution is inversely
proportional to the bandwidth [42].

The application of window functions designed for spectral
sidelobe reduction have the effect of degrading the theoretical
range resolution by a widening factor α. The frequency
precision after windowing is δf = α/Ts, and the associated
range resolution is given by,

δR =
c
2B

· α (18)

An example of this widening effect is observed during the
application of a Hann (Hanning) window, here windowing
reduces the highest relative sidelobe level from −13 dB (for
the case of no windowing) to −32 dB; with an associated
doubling of the null-to-null mainlobe width due to the
widening factor (relative to no windowing) of α = 2, this
translates to a −3 dB widening factor of α−3dB = 1.62
(1.44/0.89) [43], [44].

For FMCW radar systems, the range bin spacing deter-
mines by how the beat signal is sampled in the frequency
domain. Frequency domain samples are typically spaced at
the inverse of the sweep duration, thus allowing the spectrum
of the beat signal to be sampled at 2/Ts; with the equivalent
range bin spacing, 1R, given by,

1R =
c
2B

(19)

The range bin spacing can be made finer by a process known
as zero padding, which involves appending zeros to the end of
the beat signal in the time domain before performing the FFT.
As a result, the number of data points in the FFT increases,
leading to a finer frequency resolution, and the more accurate
localization of the beat signal peak [38], [45].

E. PHASE NOISE
Phase noise in FMCW radar systems can be caused by
power supply variability, mechanical/acoustic vibrations, the
non-ideal performance of mixers and high power amplifiers,
as well as thermal and flicker noise internal to the chirp

generator [12], [46], [47], [48]. Mathematically, the origin of
phase noise is random short-term phase fluctuations, known
as phase jitter, which causes the deviation of a signal from a
perfect sinusoid; or comparably the instantaneous deviation
in the phase angle of a rotating phasor compared to where
it should be at any given time (for an ideal chirp signal).
Noise sources can also affect the instantaneous magnitude of
the rotating phasor; however, many oscillators operate in a
saturated state which limits the amplitude components of the
noise, causing the phase fluctuations to dominate [12].

In the frequency domain, phase noise is observed to
broaden the power spectrum arising from targets in the
antenna FOV and manifests itself as noise sidebands that
spread out from either side of the main beat signal peak
(known as spectral spreading) [48], [49]. These sidebands
decrease in power level with increasing offset frequency, and
taper off to a constant value as frequency independent thermal
noise begins to dominate at the higher frequencies. It is
important to note that unlike other noise sources, phase noise
scales with signal power; meaning that the SNR cannot be
improved by simply increasing the signal power. Phase noise
sidebands can also spread clutter energy into the frequency
region occupied by a target, thus reducing the target’s signal-
to-clutter ratio; this is especially an issue for radar systems
with high dynamic ranges, with spectral spreading causing
the clutter-floor to increase around large targets making the
detection of small targets impossible in regions of heavy
clutter [11], [50].

F. SPURIOUS SIGNALS
In addition to the random component of the signal, caused
by flicker, thermal, and phase noise [11] there are also
periodic/deterministic variations that give rise to what
are known as spurious signals. In the frequency domain
spurious signals manifest themselves as discrete frequency
spikes (also known as spurs) in the spectrum. There are
a number of different types of spurious signals arising
from unwanted periodic signal variations including: internal
reflections, harmonics, intermodulation products, and LO
nonlinearities [12].
Internal reflections in a radar system arise due to unwanted

interactions between various radar system components. One
primary reason for these reflections is non-ideal impedance
matching. When the impedance is not perfectly matched,
some of the radar signal power is reflected back instead of
being fully transmitted or received. A specific example of
this phenomenon is the multiple reflections that can occur
between the RF port of the receiver mixer and the LNA
(Fig. 1). These reflections can lead to the appearance of spu-
rious peaks at specific frequency offsets, with S-parameters
(scattering parameters) commonly used to characterize and
quantify these reflections and the overall behavior of RF
components [51], [52], [53].

Harmonics result from the fact that real-world signals
are not perfect sinusoids; in radar systems harmonics are
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generated due to the distortion produced by non-linear system
components. Signals in the frequency domain show up as
a peak at the fundamental frequency together with a set
of harmonics represented by discrete peaks, that usually
decrease in amplitude with increasing frequency. A non-ideal
periodic signal of frequency f , will have a first harmonic at
f (the fundamental frequency), the second harmonic at 2f ,
the third harmonic at 3f , and so on, all at integer multiples,
n, of its fundamental frequency f i.e. f , 2f , 3f , · · · , nf [45].
In the context of a radar return from a target, the fundamental
frequency will correspond to the target return at range, R,
so harmonics will show up as spurious signals at integer
multiples of the target range (Section II-C).
Intermodulation products result from the non-linear per-

formance of mixers. In the ideal case a mixer acts as a
frequency multiplier and produces output frequencies that
are the sum and difference of the two input frequencies
fRF − fLO and fRF + fLO (Section II-C). In real operation
mixers will also produce unwanted spurious signals at any
frequency combinations of RF and LO signals ±mfLO ±nfRF
(wherem and n are integers). When the combinations of these
signals appear within the frequency range of interest they are
known as in-band intermodulation products; these spurious
signals are difficult to filter out and can degrade radar system
performance [11].

G. THE LEAKAGE SIGNAL
Spurious signals can occur even in the absence of a transmit-
ted RF signal due to the direct leakage of residual LO signal
between the different ports of a mixer (Fig. 1). Signal leakage
is caused by finite port-to-port isolation, mismatches between
receiver components, significant DC offset at the mixer
output, power supply coupling, and parasitic capacitance
[46], [54]. There are two common leakage pathways: LO
feedthrough and reverse LO feedthrough. In LO feedthrough
residual signal passes from the mixer’s LO input port to the
IF output port; this extra signal can potentially desensitize the
receiver.

Reverse LO feedthrough is caused by residual LO signal
being passed into the mixer’s RF input port along with the
original RF signal. This can occur due to: low isolation
between the LO input port and the RF input port, residual
LO signal leakage into the LNA, or the back reflection of
signal from the antenna. The combined RF and residual LO
signal is then mixed with the original LO signal, resulting in
what is known as self-mixing [12], [54]. Self-mixing typically
introduces a strong DC signal component at the IF output
port, together with the generation of DC-centered phase noise
sidebands which may mask weak signals at greater ranges
[10], [49].

H. FMCW NONLINEARITIES
In the idealized case, linear FMCW radar systems transmit
chirp waveforms that have a constant amplitude and a
perfectly quadratic variation of phase with time (linear

variation in frequency with time) (Section II-B). In reality,
residual amplitude and phase nonlinearities, in the chirp
sweep, result in a degradation in radar system performance
[10], [31], [39]. Nonlinearities can be caused by the nonlinear
behaviour of the frequency synthesizer (that generates
the chirp), as well as the non-ideal amplitude and phase
performance (across the chirp sweep bandwidth) of radar
system components [51], [52], [53], such as amplifiers,
mixers, coaxial cables and antennas (Fig. 1). These non-
linearities represent another source of spurious signals, and
are essentially time-independent, although there may be
drifts that occur over larger timescales due to variations in
temperature and power supply voltage [33], [34], [55].

We can modify (3) (the signal observed at the LO
port of the mixer) to take into account the effects of the
nonlinearities, to give,

S ′
LO(t) = A′

LO(t) · exp
{
i
[
φ′
LO(t)

]}
(20)

where,

A′
LO(t) = ALO(t) · Aε(t) (21)

φ′
LO(t) = φLO(t) + φε(t) (22)

here, ALO(t) and φLO(t) denotes the chirp amplitude and the
chirp phase, respectively. The new terms Aε(t) and φε(t)
denote the amplitude and phase nonlinearities, respectively,
of the signal observed at the LO mixer port.

We can, similarly, modify (6) (the signal observed at the
RF port of the mixer) to take into account the nonlinearities,
giving,

S ′
RF (t, τ ) = A′

RF (t, τ ) · exp
{
i
[
φ′
RF (t, τ )

]}
(23)

where,

A′
RF (t, τ ) = ARF (t, τ ) · Aξ (t, τ ) (24)

φ′
RF (t, τ ) = φRF (t, τ ) + φξ (t, τ ) (25)

here, ARF (t, τ ) and φRF (t, τ ) denote the receive chirp
amplitude and phase, respectively; and the new terms Aξ (t, τ )
and φξ (t, τ ) denote the amplitude and phase nonlinearities,
respectively, of the signal observed at the RF mixer port.
It is important to note that even for the case of a single point

target with a (theoretical) zero range offset (i.e. τ = 0), the
nonlinearities at the RF and LO mixer ports will not be the
same,

Aξ (t, 0) ̸= Aε(t) (26)

φξ (t, 0) ̸= φε(t) (27)

this is due to the fact that any amplitude and phase
nonlinearities seen in S ′

LO(t) will be further modified by the
non-linear characteristics of all the RF components along the
RF path, i.e. Tx Antenna, Rx Antenna, LNA and coaxial
cables (Fig. 1) [30].
In reality, we must incorporate the nonlinearities arising

from all N individual targets (or sub-targets of a distributed
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target) within the antenna FOV, this requires a modification
of (23) to give,

S ′
RF (t) =

N∑
n=1

A′
RF,n(t, τn) · exp

{
i
[
φ′
RF,n(t, τn)

]}
(28)

where, A′
RF,n(t, τn) and φ′

RF,n(t, τn) are the amplitude and
phase contribution, respectively, of the nth target at a range of
Rn, with the corresponding two-way travel time: τn = 2Rn/c.

I. BEAT SIGNAL NONLINEARITIES
It is important to note that as amplitude and phase nonlinear-
ities are present in both S ′

RF (t, τ ) and S
′
LO(t), it is the relative

time offset between the two signals (due to the two-way travel
time, τ ) that will determine exactly how the nonlinearities
combine to produce the signal observed at the IF mixer port,
S ′
IF (t, τ ); given via (10), as,

S ′
IF (t, τ ) = S ′

RF (t, τ )S
′
LO(t)

∗ (29)

Only the instantaneously overlapping parts of S ′
RF (t, τ ) and

S ′
LO(t) are capable of being multiplied to produce S ′

IF (t, τ ).
Equation (11) can thus be modified to take into account the

nonlinearities, to give,

S ′
b(t, τ ) = A′

RF (t, τ )A
′
LO(t)

· exp
{
i
[
φ′
RF (t, τ ) − φ′

LO(t)
]}

(30)

or equivalently,

S ′
b(t, τ ) =

[
ARF (t, τ ) · Aξ (t, τ ) · ALO(t) · Aε(t)

]
· exp

{
i
[
ϕ(t, τ ) + φξ (t, τ ) − φε(t)

]}
(31)

with the term ϕ(t, τ ), given by,

ϕ(t, τ ) = 2π
(
f0τ + Ktτ −

1
2
Kτ 2

)
(32)

For the case of multiple targets, or a distributed target, (31)
becomes,

S ′
b(t) =

N∑
n=1

[
ARF,n(t, τn) · Aξ,n(t, τn) · ALO(t) · Aε(t)

]
· exp

{
i
[
ϕ(t, τn) + φξ,n(t, τn) − φε(t)

]}
(33)

where, ARF,n(t, τn), Aξ,n(t, τn), and φξ,n(t, τn) are the receive
chirp amplitude, the amplitude nonlinearities, and the phase
nonlinearities, respectively, from the n’th target; and where
ϕ(t, τn) is given by,

ϕ(t, τn) = 2π
(
f0τn + Ktτn −

1
2
Kτ 2n

)
(34)

From (33) we see that the beat signal amplitude and phase are
the result of the all N , targets within the antenna FOV.

J. THE EFFECTS OF FMCW NONLINEARITIES
The amplitude of beat signal, S ′

b(t, τ ), can be defined as the
multiple of all the amplitude terms in (31), giving,

A′
b(t, τ ) = AC (t, τ ) · AE (t, τ ) (35)

where, we have combined the constant amplitude terms, as,

AC (t, τ ) = ARF (t, τ ) · ALO(t) (36)

and the amplitude nonlinearities terms, as,

AE (t, τ ) = Aξ (t, τ ) · Aε(t) (37)

The value of amplitude term, AC (t, τ ), remains constant
over the sweep duration, Ts, and is determined by the Tx
and Rx antenna gains, spherical spreading, target reflectivity,
LNA gains, and the original chirp amplitude. The value of
the nonlinear amplitude term, AE (t, τ ), varies over sweep
duration and is caused by the nonlinear behavior of radar
system components, and the frequency synthesizer.

The phase terms of the beat signal can be defined (via (31)),
as,

φ′
b(t, τ ) = ϕ(t, τ ) + φE (t, τ ) (38)

where we have, similarly, combined the phase nonlinearities
terms, as,

φE (t, τ ) = φξ (t, τ ) − φε(t) (39)

here, the nonlinear phase term φE (t, τ ) (also caused by the
nonlinear behavior of radar system components, and the
frequency synthesizer) appears superimposed upon the linear
phase ramp (i.e. constant frequency) given by theϕ(t, τ ) term.
The presence of AE (t, τ ) and φE (t, τ ) results in amplitude

and phase modulation, respectively, of the beat signal. The
modulating effects of these nonlinearities will increase the
spectral bandwidth of the target response, spreading target
energy into different frequencies and away from the beat
frequency. If the modulating effects are relatively small then
the frequency domain representation of the beat signal will
consist of a dominant peak (at the beat frequency) that will be
broadened by the additional spectral content contained within
AE (t, τ ) and φE (t, τ ); thus leading to coarser range resolution
and a reduction in the SNR [28], [56].

The nonlinearities will alsomanifest themselves as discrete
range sidelobes occurring on either side of the dominant
beat signal peak; with the specific frequency content of both
AE (t, τ ) and φE (t, τ ) determining the exact location of the
range sidelobes in the frequency domain [10], [33], [57].
It is important to note that the range sidelobes caused by
nonlinearities differ from spectral sidelobes resulting from
the Gibbs phenomenon, in that they cannot be suppressed
through the application of a window function [55]. For
brevity, in the rest of this paper the term sidelobes will
be used exclusively to refer to range sidelobes caused by
amplitude and phase nonlinearities, with the term spectral
sidelobes used to describe the sidelobes caused by the Gibbs
phenomenon.
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TABLE 1. A summary list of symbols and their corresponding parameters
used in this paper.

The SNR of FMCW radar systems is generally limited by
the effects of the nonlinearities (i.e. sidelobes) close to the
beat frequency, and by phase noise (Section II-E) far from the
beat frequency [58], with amplitude and phase nonlinearities
both distorting the shape of the pulse and increasing the
sidelobe levels.

K. NON-LINEARITY CORRECTION STRATEGIES
The beat signal, S ′

b(t, τ ), as described in Section II-I, can
be thought of as resulting from the frequency domain

representation of an ideal system (i.e. one with a constant
sweep amplitude and perfectly linear phase ramp), as outlined
in Section II-B, that has been convolved with the frequency
domain representation of combined amplitude nonlinearities
AE (t, τ ) and phase nonlinearities φE (t, τ ), as outlined in
Section II-J. In essence, FMCW radar deconvolution seeks to
characterize, and correct for, the deviation in amplitude from
a constant value (across the sweep), and the deviation in phase
from a perfectly linear phase ramp; and unlike pulse radar
systems, the deconvolution of FMCW radar systems occurs
in the time domain rather than the frequency domain.

There are two general strategies that are provided in
the literature to correct for FMCW nonlinearities: hardware
correction methods, and software correction methods, with
both recently summarized by [30]. Hardware methods aim
to correct the nonlinearities during signal generation, for
example through the use of pre-distortion applied to the VCO
used to generate a chirp signal [32], [59]. Software methods
are different in that they are applied directly to the beat signal,
in post-processing, which has the advantage of not requiring
any additional hardware; two types of software correction
methods commonly used: direct beat signal correction
methods, and methods based upon a mathematical model of
the beat signal [30].
Direct beat signal correction methods use the response

from a reference target to first characterize the amplitude
nonlinearities, AE (t, τ ), and phase nonlinearities, φE (t, τ ),
and then apply a correction to the nonlinearities; with a
variety of different techniques proposed in the literature
[30], [42], [55], [58], [60]. The advantage of this approach
is that it does not require any simplifying signal model
assumptions, because the actual recorded nonlinearities are
used to generate the correction. In Section II-I we saw that it
is the two-way travel time, τ (or equivalently range, R), that
determines exactly how the nonlinearities are incorporated
into the beat signal (via (10)); however, direct beat signal
correction methods assume that the nonlinearities are fixed
(i.e. do not change with τ ); this makes the corrections very
effective when applied to targets with ranges close to that
of the reference target, but with correction effectiveness
decaying with increasing range offsets [61], [62].

The other software correction methods are based upon
mathematical models of the beat signal that use simplifica-
tions of the nonlinearities to allow their effective use over
the whole range profile [30], [56], [63], [64], [65]. The
effectiveness of this kind of approach is limited by the models
used to simplify the nonlinearities. As mentioned in [30],
and described in Section II-H, the nonlinearities in the beat
signal can be divided into two parts: the nonlinearities in
the transmitted signal and the nonlinearities in the received
signal. Many of the signal model based approaches only con-
sider the dominant transmitted nonlinearities of the frequency
generator (i.e. the VCO) with the nonlinearities of other
hardware devices in the system not included. To simplify
the problem they assume that the receive nonlinearities are
only time-delayed versions of the transmitted nonlinearities
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i.e. Aξ (t, τ ) ≈ Aε(t − τ ) and φξ (t, τ ) ≈ φε(t − τ ).
The received RF signal is thus modeled as a time-delayed
version of the LO signal i.e. S ′

RF (t, τ ) ≈ S ′
LO(t − τ ) with

the nonlinearities in the entire range profile compensated
by making the nonlinearity corrections range independent,
through the use of parametric models such as quartic
polynomials [65], near range differential approximations
[63], or using Residual Video Phase (RVP) methods
[56], [64].

III. DATA COLLECTION AND PROCESSING
In this section we give a brief overview of the KuKa
radar hardware, and how data were acquired during the
MOSAiC expedition. We also describe the KuKa calibration
experiments that were performed during MOSAiC, and
the use of newly-opened lead to obtain the radar impulse
response.

A. KUKA RADAR HARDWARE
The Ku- and Ka-band dual-frequency, fully-polarimetric
radar (KuKa) was built by ProSensing Inc. specifically for
operation in cold and polar environments, with full details of
the system described in Stroeve et al., 2020 [26], hereafter
referred to as S2020. In the rest of this section we provide
a brief summary of the KuKa radar system and key radar
system parameters.

The KuKa radar system is composed of two separate, and
independent, radio frequency (RF) units, one for Ka-band
and the other for Ku-band. Both units are dual-polarization,
solid-state FMCW radar systems that use a linear FMCW
modulation scheme using a fast linear FM synthesizer and
pulse-to-pulse polarization switching. The Ka-band RF unit
transmits signals over a frequency range of 30-40 GHz and
the Ku-band RF unit transmits signals over a frequency range
of 12-18 GHz; with both units utilizing very low power
transmitters, suitable for operation at ranges of typically less
than 30 m. The Ka-band and Ku-band RF units employ a two-
antenna homodyne FMCW radar architecture, the antennas of
each unit are dual-polarized scalar horns mounted on arms
that extend away from the RF unit with a beamwidth of
11.9◦ for the Ka-band antenna (at 35 GHz) and 16.9◦ for the
Ku-band antenna (at 13.575 GHz); and a polarization
isolation between transmit and receive antennas of greater
than 30 dB; no near-field correction is needed, since the
antenna far-field distance is about 1 m.

The KuKa radar system transmits and receives in six
instrument states: there are four radar channels containing
transmit-receive polarization combinations: HH, VV, HV,
VH (following the scattering matrix convention: the first
letter indicates the receive polarization and the second letter
the transmit polarization); with two additional channels also
collected: a calibration loop signal (Cal) and a noise signal
(Noise). Each chirp signal is transmitted over a duration
of Ts = 2 ms, followed by a reset time of 200 µs. This
results in a total chirp repetition interval of 2.2 ms. The
total time required to acquire data from all six instrument

states (6 × 2.2 ms = 13.2 ms), and to write the data to
disk, is known as the group interval. For the Ka-band and
Ku-band systems the group intervals are 0.33 s and 0.5 s,
respectively.

The KuKa radar receiver uses a 14-bit Analog-to-Digital
Converter (ADC) with a sample rate of 20 MHz; the range
window of interest (<30 m) allows the sampling rate to
be reduced (after low pass filtering and digitization) by a
decimation factor of 16 for Ka-band and 32 for Ku-band,
giving an effective sampling frequency of 1.25 MHz for
Ka-band and 0.625 MHz for Ku-band; and a maximum
unambiguous range of 17.7 m for Ka-band and 14.4 m for
Ku-band.

RawKuKa beat frequencies do not correspond to the phase
center of the antennas, but instead correspond to the time
delay between the transmitted signal that is routed into the
LO port of the mixer, S ′

LO(t), and the received signal that is
routed into the RF port of the mixer, S ′

RF (t, τ ) (Section II-A).
A beat signal (Section II-C, II-I) with a frequency of 0 Hz
thus corresponds to the range where the time delay in the LO
path equals the time delay in the RF path (Fig. 1). A range
correction factor known as the range to antenna is provided
by the manufacturer for both the Ka-band and Ku-band RF
units, 2.07 m for Ka band and 2.37 m for Ku-band, in order
to correct the beat-signal-derived ranges to ranges that are
relative to the antenna phase center. We summarize the key
KuKa radar system parameters in Table. 2.

B. KUKA DATA ACQUISITION
The separate KuKa Ka-band and Ku-Band RF units can
be combined to operate in two different configurations: as
a scatterometer (known as scan mode) or as an altimeter
(known as stare mode).

In scan mode, the Ka-band and Ku-band RF units (plus
antenna arms) are attached to an elevation-over-azimuth
positioner system (mounted on a large sled) that allows
KuKa to scan over a programmed range of azimuth and
incidence angles (at specific increments), with an 85 cm
lateral separation between theKa-band andKu-band antennas
[26], [66], [67].

In stare mode, both Ka-band and Ku-band RF units (and
antenna arms) are mounted to a ridged metallic frame that is
attached to a smaller sled known as the transect sled, with a
70 cm lateral separation between the Ka-band and Ku-band
antennas. In stare mode KuKa measures the backscatter at
nadir (as a function of time) as the transect sled is towed
across the snow surface [26], [27].

The Ka-band and Ku-band RF units produce separate
binary files, corresponding to data collected over a user
defined time interval (typically 5 minutes). The data within
each binary file are organized into so-called data blocks,
with each data block containing the data acquired in all six
instrument signal states. The Ka-band system produces a new
data block every 0.33 s and the Ku-band system produces
a new data block every 0.5 s; however, data acquisition is
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TABLE 2. Summary of the key KuKa radar system Ka- and Ku-band specifications, modified from [26].

not precisely time-aligned between the Ka-band and Ku-band
radar (start times can vary by ∼0.5 s).
The binary data can be read by the original ProSensing

IDL software, a MATLAB® translation of the IDL software,
or the recently developed Python-based package (KuKaPy).
Data for each instrument state (HH, VV, HV, VH, Cal, Noise)
are originally in a unit of counts, which is converted to
voltage via multiplication with a constant. The voltage data
are arranged into arrays, D, containing the real-valued time-
domain representation of the beat signal, S ′

b (described in
Section II-I). There are separate voltage data arrays for each
of the six instrument states (i.e. DVV, DHV, DVH, DHH, DCal,
DNoise), each having X rows and Y columns, arranged as
follows,

D =


d11 d12 d13 . . . d1Y
d21 d22 d23 . . . d2Y
d31 d32 d33 . . . d3Y
...

...
...

. . .
...

dX1 dX2 dX3 . . . dXY


with the y’th column of each array associated with the same
data block.

The beat signal voltage arrays, D, can also be converted
into two other forms: they can be converted into their analytic
(complex) time-domain form,H{D}, through the application
of a column-wise Hilbert transform [68]. The voltage arrays
can also be converted into echograms containing the power
spectral density of the received voltage, F{D}, through the
application of a Hann spectral window followed by a column-
wise Fast Fourier Transform (FFT).

The echogram representation of the voltage arrays, F{D},
follows the radar data cube convention [69], with rows

x = 1, 2, 3, . . . ,X representing fast-time samples corre-
sponding to specific range bins (Section II-D), and columns
y = 1, 2, 3, . . . ,Y representing slow time and corresponding
to specific data blocks. The time-domain beat signal data,
D, can also be processed using KuKaPy (or equivalent) to
produce echograms of calibrated polarimetric backscatter
[26], [27], [66], [67].

C. KUKA DEPLOYMENT AT MOSAIC
The KuKa radar system was deployed at MOSAiC (Mul-
tidisciplinary drifting Observatory for the Study of Arctic
Climate), during Leg 1, Leg 2 and Leg 5 [25]. The main
deployment of KuKa at MOSAiC was during Legs 1 and 2,
with KuKa being deployed in both scan (scatterometer) and
stare (altimeter) modes [26], [27], [66], [67].

In scan mode, KuKa was mounted on its pedestal riser and
installed at the MOSAiC Remote Sensing (RS) site, with the
physical location of the RS site moved twice duringMOSAiC
due to lead opening and deformation events. At the RS site
KuKa was powered by the ship’s power (240 V AC 50 Hz
power) via the Uninterruptible Power Supply (UPS). Data
collection involved near-hourly (55 min) scanning across
90◦ azimuth and incidence angles between 0◦ and 50◦ at 5◦

increments at RS site [26], [66], [67].
In stare mode, two 12 V DC batteries were used to power

the KuKa RF units, data collection involved repeated weekly
transects of 1-8 km in length; with supporting ancillary data
also collected [26], [27]. The first deployment of KuKa was
on the 18 October 2019 at the RS site, and KuKa was then
deployed in both scan and stare modes until 31 January 2020,
after which the radar was packed up for maintenance.

Stare mode transects were made over both the Northern
transect and Southern transect loops, with the Northern
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transect representing thicker and rougher ice and the Southern
transect representing younger and thinner ice. During leg
1 data were collected over two short Northern transects, and
one frost flower event (sampled over thin ice). The majority
of the stare mode transects occurred during Leg 2: weekly
transects started on the 20 of December 2019 and ran until
the 30 January 2020. There were also two transects over First
Year Ice (FYI) along the runway that was built on the port side
of the RV Polarstern; as well as, two Lead transects spaced a
day apart. In total there were 13 stare mode transects of KuKa
during leg 1 and 2 (See S2020 [26] and [27] for more details).

D. KUKA CALIBRATION DURING MOSAIC
To characterize the performance of a radar system, such as
KuKa, requires knowledge of the radar impulse response
(also known as the radar system response). One way to
characterize the impulse response is through the use of
a system loopback measurement using a delay line. The
KuKa radar system contains an internal calibration loop that
consists of an attenuator together with a 4.2 m long delay line.
The KuKa RF units are insulated and heated to stabilise their
internal temperatures in cold polar conditions, but the internal
calibration loop allows the data processing software to track
gain variations within the system, and to further compensate
for any residual power drift, due to temperature changes, that
occur during data collection [26].

As mentioned in S2020, the internal calibration loop does
not track and compensate for the gain variations of RF
components that are outside of the calibration loop, including
the cables to the antenna and the antenna ports. The transfer
function of the antennas themselves can also add additional
complexity that needs to be quantified [23], [30]. To fully
characterize the radar impulse response thus requires a
calibration target that is external to the radar system, such as a
corner reflector. A corner reflector calibration was performed
at the RS site on 16 January 2020: a trihedral corner reflector
was positioned at a range of 10 m and used to calculate the
radar cross-section per unit area (NRCS) and polarimetric
quantities. Unfortunately, these data were subsequently lost,
and as a result, are not available for further analysis. The
corner reflector calibration also had limitations, the 10 m
range offset was far outside the stare mode operating range
(Section II-K), and the radar return from a corner reflector
can incorporate multiple off-nadir surface returns (at different
ranges) from within the antenna beamwidth.

In S2020, an experiment was also performed to compare
the impulse response obtained from the calibration loop with
the impulse response obtained from a metal plate (that was
placed on the snow surface). The metal plate experiment
served as a vertical height reference for KuKa radar returns,
with the measured range to the peak associated with the metal
plate (of thickness 2 cm) being 1.53 m; when the metal plate
was removed the air-snow peak appeared at about 1.55 m in
both Ka- and Ku- band data. Although there was a fairly good
qualitative agreement in the shape of the impulse response

between the metal plate and calibration loop data (at both
Ka-band and Ku-band at VV polarization), there were also
significant differences especially at greater ranges from the
main lobe peak.

The metal plate experiment was useful to provide a vertical
height reference, but was not optimal to obtain the impulse
response. There was a lip running around the edge of the plate
meaning that there would have been additional radar returns
from the lip in addition to the flat central region, confounding
waveform interpretation.

Another factor influencing the measurements was the
size of the metal plate. To accurately characterize the
impulse response, a flat and smooth metal sheet of sufficient
dimensions is required to avoid issues with off-nadir returns.
The sheet dimensions should accommodate the first Fresnel
zone, beam-limited footprint and pulse-limited footprint [70],
[71], [72]. The pulse-limited footprint refers to the area on the
surface that is illuminated by a single radar pulse; its diameter,
FPulse, is calculated using,

FPulse = 2 ·

√
H cα

B
(40)

where H is the height of the antenna phase center above the
surface, c is the speed of light, α is the spectral window
widening factor and B is the bandwidth. The beam-limited
footprint refers to the area on the surface illuminated by the
antenna gain pattern. Its diameter, FBeam, is calculated using,

FBeam = 2H · tan
(

β

2

)
(41)

where β represents the antenna beamwidth. The diameter of
the first Fresnel zone (i.e. the Fresnel-limited footprint) is
given by,

FFresnel =

√
2H λc (42)

where, λc is the wavelength at the center frequency.
Using the values in Table 2, equations (40), (41), (42), and

α = 1.62 (from Section II-D); we can calculate footprint
diameters for a height value of H = 1.55 m (corresponding
to the air-snow peak location). For Ka-band: FPulse = 55 cm,
FBeam = 32 cm and FFresnel = 16 cm. For Ku-band FPulse =

71 cm, FBeam = 46 cm and FFresnel = 26 cm. From these
calculations which we also see that the KuKa radar system is
beam-limited, as FBeam < FPulse.

The metal plate used at MOSAiC was approximately
15 × 55 cm in size, and as a result was not wide enough
to completely cover the first Fresnel zone, and its width was
far too small to accommodate the beam-limited footprint; any
radar returns from the surface of the metal plate would have
thus also included returns from the snow surface.

E. THE KUKA LEAD TRANSECTS
Sea ice formed within newly opened leads has been used to
characterize the radar impulse response in airborne FMCW
radar datasets collected during sea ice survey missions [22],
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[23]. Under calm conditions the new ice growing within
a recently opened lead takes the form of smooth, highly-
saline, elastic, sheets of ice up to 10 cm thick known as Nilas
[73], [74]. Over time, the initially optically smooth (at radar
wavelengths) nilas surface is roughened by the appearance
of Frost flowers: which are clusters of dendritic ice crystals,
typically a few centimeters in diameter that grow over a
period of hours to days under specific atmospheric conditions
of temperature, relative humidity and wind speed [75], [76].
The relatively smooth, and highly saline, nature of nilas can
provide a natural alternative to a large metal sheet calibration
target.

At MOSAiC a lead ∼50 m wide and ∼1 km long opened
on the 21 January 2020. A photograph of lead surface
conditions on the 23 January is shown in Fig. 2a from
which we observe a lead surface comprised of nilas with a
high percentage coverage of frost flowers. The frost flower
coverage is non-homogeneous with regions of bare ice visible
between denser regions of frost flowers. The dark shade of the
nilas is indicative of high brine concentrations, an extracted
ice sample had a measured bulk salinity of 17 ppt, and a
measured ice thickness of 7.5 cm. Lead surface conditions on
the 24 January is shown in Fig. 2b, the measured ice thickness
(from an ice core) had increased to 10 cm, with the surface
ice salinity (from the top 1 cm of an ice core) measured to
be ∼36 ppt [26]

KuKa stare mode lead transects were performed on both
the 23 and 24 of January, two on the 23 January and four
on the 24 January. During each transect the sled (containing
KuKa) was dragged along the undulating edge of the lead
with both the Ka- and Ku-band antennas pointed toward
the lead surface (as shown in Fig. 3). From Fig. 3, we see
that when KuKa is positioned along the edge of the lead,
a distance of 0.9 m separates the edge of the transect sled
(i.e. the lead edge) and the antenna boresight.

The mean range to the nilas surface within the lead
determined from KuKa measurements (see Section IV-A) is
H = 1.8 m. Using the values in Table 2, and (41), (42),
we can again calculate the footprint diameters. For Ka-band:
FBeam = 38 cm and FFresnel = 18 cm; whereas, for Ku-
band FBeam = 53 cm and FFresnel = 28 cm. The maximum
KuKa Fresnel limited footprint is 28 cm and the maximum
beam limited footprint is thus 53 cm. From Fig. 3, we see
that this geometry thus allows for an unobstructed radar
return from the nilas surface within the lead, from which
the KuKa radar impulse response may be obtained. The
radar return will also likely be non phase-coherent due to
the roughening effect of frost flowers; with the exception
being the small isolated bare ice regions between frost flower
clusters.

It should be noted that a small area of open water and thin
ice with frost flowers was also sampled on the 23 November
2019, however limited data were collected, and KuKa
remained stationary during the entirety of data collection so
these data are not used in the subsequent analysis.

IV. METHODOLOGY
In this section, we outline the processing steps required to
use the impulse response data collected during the KuKa lead
transects to generate deconvolution waveforms that can be
applied to the entire KuKa MOSAiC dataset to suppress the
sidelobes and improve data quality.

A. THE KUKA IMPULSE RESPONSE
In this section we analyze KuKa data collected during the
lead transects (Section III-E) to characterize the KuKa radar
impulse response. The voltage arrays, D, acquired during the
lead transects were processed into echograms through the
application of aHann spectral window, followed by a column-
wise FFT (Section III-B). Fig. 4 shows example echograms
from data collected during a lead transect on 24 January 2020
(Section III-E); these data also correspond to the lead data that
were shown in S2020 (their Fig. 10 [26]). In S2020 it was
shown that the VV and HH signal power were very similar
(their Fig. 8); thus for brevity in Fig. 4 (and the rest of this
paper) we only show data for the Ka VV, Ka HV, Ku VV and
Ku HV transmit-receive polarization combinations.

The dominant signal observed in Fig. 4 is the return
from the surface of the nilas within the lead, which is
seen to undulate between 1.5-2 m in all echograms. These
undulations are due to changes in the relative range between
the KuKa antennas and nilas surface as KuKa was dragged
along the undulating lead edge. In Fig. 4 we also see signal
artifacts that are present in all bands and polarizations.
In general two types of artifacts are observed: range-
independent artifacts that are independent of target range, and
range-dependant artifacts are dependent on target range.
The range-independent artifacts are associated with the

KuKa radar receiver and can occur even in the absence of
a transmitted signal. The two classes of range-independent
artifacts seen in Fig. 4 are the leakage signal (Section II-G)
and faint in-band spurious signals (Section II-F). The leakage
signal is represented in Ka VV and Ka HV echograms as
horizontal bands extending from a range of −2 m to zero
range (i.e. the range of the antenna phase center). In Ku
VV and Ku HV echograms the leakage signal banding is
seen to extend from −2 m to below the nilas surface return;
the Ku-band leakage signal is also much more prominent
(than the Ka-band) and tends to dominate the noise floor.
Faint in-band spurious signals are seen in Ka VV and
Ka HV echograms at a range of ∼6.5 m and between
9.0-9.5 m. These spurious signals could potentially be caused
by intermodulation products (Section II-F), but they are both
low in power and located away from the surface return,
so have little effect on data quality.

The range-dependant artifacts tend to undulate in unison
with the nilas surface return. The two classes of range-
dependent artifacts are sidelobes (Section II-J) and radar
multiples; with multiples due to either harmonics, unwanted
reflections between the various radar system components
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FIGURE 2. Photographs depicting lead surface conditions on (a) 23 January 2020 and (b) 24 January 2020. The KuKa
radar system, featuring antenna arms and horns, is visible in the right half of each photograph.

FIGURE 3. Diagram illustrating the KuKa radar system in stare mode configuration while conducting a transect along the lead edge. The
inset provides a projected view of the KuKa system mounted on the transect sled (Modified from ProSensing Inc).

(Section II-F), or multiple reflections between the KuKa
antennas and nilas surface. Sidelobes are represented in
echograms as discrete bands that occur on either side of
the undulating nilas surface return, and are generally seen
between ranges of 1-3 m, appearing more prominent in the
co-polarized echograms (Ka VV, Ku VV) than the cross-
polarized echograms (Ka HV, Ku HV). It is also worth
noting that the sidelobes for KuHV appear almost completely
obscured by the leakage signal.

Radar multiples are seen as fainter versions of the original
nilas surface return, but occurring at greater ranges than the
original return. In the Ka VV echogram we see distinct radar
multiples at between 3-4 m and 9-10 m, and a much fainter
multiple at between 5-6 m; whereas, for Ka HV we only
observe a single distinct multiple at between 3-4 m. For Ku

VV we see a radar multiple at between 3-4 m and two fainter
multiples at between 5.5-6.5 m and 9.5-10.5 m; for Ku HV a
single multiple is observed at between 3-4 m, again partially
obscured by the leakage signal. The radar multiples at 3-4 m
and 5-6.5 m are most likely due to the multiple reflections
between the KuKa antennas and nilas surface. The absence of
a visible return at between 7-8 m indicates that the 9-10.5 m
multiples are likely due to harmonics (or intermodulation
products) rather than multiple reflections.

B. REMOVING THE LEAKAGE SIGNAL
In Fig. 4, we saw that the leakage signal manifests itself as
a zone of horizontal banding extending from −2 m to 0 m
(for Ka-band data), or to ranges below the nilas surface return
(for Ku-band data). In Fig. 5a we show the Ka VV echogram
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FIGURE 4. Echogram (i.e. frequency-domain) representation of Ka VV, Ka HV, Ku VV, and Ku HV time-domain voltage arrays (with a
Hann window applied), showing KuKa returns from the nilas surface. The range (m) is relative to the antenna phase center, and 1

Slow time (s) is the elapsed time since the collection of the first displayed array column. The echogram highlights various features
including the leakage signal, in-band spurious signals, sidelobes, radar multiples, and the noise floor.

(from Fig. 4) over its entire maximum unambiguous range,
and in Fig. 5c we show the corresponding real-valued beat
signal in its original time-domain form (Section III-B). From
Fig. 5c we see that the leakage signal is represented in the
time-domain as a strong low frequency signal dominating the
entire array; with higher frequency signals seen embedded
within it. This effect is further highlighted in Fig. 6 where we
have plotted, as a red line, the echogram column shown by the
black dashed line (in Fig. 5c). As noted in Section II-I, the
beat signal is actually formed from the linear superposition
of returns from all N individual targets, within the antenna
FOV. Due to self-mixing (Section II-G), the leakage signal
acts like a strong return with a beat frequency close to
zero (i.e. DC); meaning that it too will be superimposed
upon the other radar returns; causing it to dominate the
time-domain signal (as shown in Fig. 6). Any radar returns
from the surface will be embedded within the low frequency
leakage signal; the application of nonlinearity correction
techniques (Section II-K) would risk amplifying the leakage
signal, introducing additional data artifacts in the process.
The leakage signal must be removed before deconvolution
can take place.

Leakage signal removal techniques have been applied
to airborne FMCW radar data collected during cryosphere
remote sensing campaigns [22], [23]. In the case of airborne
data the leakage signal (also known as coherent noise) is seen
to be independent of flight altitude and remain consistent over
large along-track distances [19]. To characterize the leakage
signal, slow time boxcar filters have been applied to the
echograms, or the average calculated from a set number of
contiguous echogram columns. These averaging operations

seek to isolate the leakage signal by reducing the relative
power contributions from the fluctuating air-snow interface.
Once characterized, the leakage signal is then subtracted from
each column of the echogram potentially allowing the leakage
signal to be completely removed without leaving any artifacts
[19], [22], [23].

Leakage signal removal techniques, based upon slow time
mean subtraction, become ineffective if the relative distance
between the aircraft and the snow surface stays constant
[22], [23]. Unfortunately, for the case of the KuKa radar
system the range to surface is far more constant than the large
vertical fluctuations seen in airborne data [26], so slow time
leakage removal techniques are less effective. If a slow time
mean is taken of these data, and removed, the average of the
high frequency surface signals are also removed resulting in
unwanted horizontal smearing of interfaces in the resultant
echograms.

Due to the constraints imposed by a surface-based system
(such as KuKa) we instead utilize a high-pass filter to remove
the leakage signal. We first use (13) (and the range to
antenna correction factor) to calculate the beat frequency
associated with zero range (i.e. the phase center of the
antenna). We design a Kaiser-window-based highpass finite
impulse response (FIR) filter [43], [44] with a passband
frequency equal to the zero-range beat frequency and a
stopband attenuation of 100 dB. The high-pass filter is then
applied to each column of D, i.e. the KuKa voltage arrays.
We revisit Fig. 5 to show the effect of the high-pass filter

on the time-domain voltage data. In Fig. 5d, we see that
the filtering operation effectively removes the low frequency
banding that was observed in Fig. 5c. The effect of the
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FIGURE 5. (a) Shows the Ka VV echogram (as depicted in Fig. 4) over its entire maximum unambiguous range. (b) Demonstrates the
effect, on the Ka VV echogram, of high-pass filtering for leakage signal removal. (c) Exhibits the real-valued beat signal (as shown
in (a)), but in its original time-domain form. (d) Presents the real-valued beat signal after high-pass filtering for leakage signal
removal. The black dashed line indicates the location of data from which Fig. 6 is generated.

FIGURE 6. The voltage signal before and after leakage signal removal. The red line represents the signal before leakage signal removal
and corresponds to the column indicated by the black dashed line in Fig. 5c. The blue line represents the signal after leakage signal
removal and corresponds to the column indicated by the black dashed line in Fig. 5d.

filtering in the corresponding (frequency-domain) echogram
is shown in Fig. 5b; here, we observe that signals at ranges
less than 0 m are filtered out. Revisiting Fig. 6, the effect
of the high pass filtering on the data is shown by the blue
line, from which we can observe that the low-frequency
signal component has been effectively removed. We can
now also observe the effect of the amplitude modulation
described in Section II-J. Although the high-pass filter
effectively mitigates the leakage signal, there may still
be some residual leakage-signal-derived in-band spurious
signals at ranges greater than zero that cannot be removed,
this is an unavoidable consequence of the near-constant
range-to-surface of surface-based instruments such as KuKa.

C. ISOLATING THE NILAS SURFACE RETURNS
As mentioned in Section II-J, the presence of amplitude
nonlinearities, AE (t, τ ), and phase nonlinearities, φE (t, τ ),
results in the amplitude and phase modulation of the beat sig-
nal, respectively. The modulating effects of the nonlinearities

increases the beat spectral bandwidth of the target response by
spreading target energy into different frequencies, and away
from the target’s beat frequency. In echograms, nonlinearities
manifest themselves as the discrete sidelobes that occur on
either side of the dominant beat signal peak (i.e. the nilas
surface return shown in Fig. 4) with the specific frequency
content of both AE (t, τ ) and φE (t, τ ) determining the exact
location of the sidelobes. The observed strength and range
extent of the sidelobes (relative to the nilas surface return)
can therefore be used to characterize the frequency content
of the sidelobes, and thus the frequency content of the
nonlinearities.

To accurately characterize the nonlinearities we must
first isolate the sidelobes from the other signal artifacts
(Section IV-A), as these artifacts will have their own
amplitude and frequency content. To perform this isolation
we will make use of a bandpass filter, with a passband
designed to coincide with the frequency content of the
sidelobes. We design a Kaiser-window-based bandpass FIR
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filter with a sampling frequency set to the effective sampling
frequency (Section III-A) and a stopband attenuation of
100 dB. From Fig. 4 we observe that the range to the
nilas surface along a KuKa lead transect is not constant,
due to the undulating lead edge (Section III-E), so the
passband frequency range must vary depending upon the
range to the nilas surface. To achieve this, copies of time-
domain voltage arrays, D, for each band and polarization
are zero padded (Section II-D), so that the number of rows
is 100 times their original length (i.e 100 × 2500 for
Ka-band and 100 × 1250 for Ku-band). The FFT of each
column is then taken with the range to the nilas surface found
by extracting the range of the maximum magnitude peak.
From Fig. 4, we observed that harmonics (or radar multiples)
occur at integer multiples of the nilas surface range. We can
therefore define a bandpass range window where the range-
to-nilas-surface in each column is multiplied by 0.5 to give
the minimum window range, and multiplied by 1.5 to give
the maximum window range. The edges of the bandpass
range window are then converted to their corresponding beat
frequencies (via (13)), again taking into account the range to
antenna correction factor; giving the correct frequency range
for the bandpass filter.

D. ALIGNING THE NILAS SURFACE RETURNS
Any single radar return from the nilas surface will be
affected by noise (Section II-E), residual leakage signal
(Section II-G, IV-B), as-well as surface irregularities such as
frost flowers (Section III-E). To accurately characterize the
amplitude nonlinearities, AE (t, τ ), and phase nonlinearities,
φE (t, τ ), requires the averaging of many nilas surface radar
returns.

Revisiting Fig. 2 and 3, we can make the simplifying
assumption that the radar returns from the nilas surface will
be dominated by returns from within the first Fresnel zone.
In this case, the radar returns from the nilas surface can be
modeled as single point target located at nadir. The beat signal
arising from the lead surface return can then be expressed, via
(31, 36, 37 and 39), as,

S ′
b(t, τ ) = [AC (t, τ ) · AE (t, τ )]

· exp {i [ϕ(t, τ ) + φE (t, τ )]} (43)

From Section II-K, the non-linear terms AE (t, τ ) and φE (t, τ )
can be assumed to be only weakly dependent on two-way
travel time, τ (i.e. the range); however, the value of ϕ(t, τ )
will be strongly dependent on τ , and this dependence needs
to be corrected for before any signal averaging can occur.

To correct for the τ dependence in (43) requires the
application of a phase shift. From (32), the value of ϕ(t, τ ),
is given by,

ϕ(t, τ ) =

[
2π

(
f0τ −

1
2
Kτ 2

)]
+ 2π (Ktτ) (44)

The terms within the square brackets represent a constant,
so it is the value of the 2π (Ktτ) term that determines the
gradient of the phase ramp (i.e. the beat signal frequency).

To remove the τ dependence in (43) we must correct all the
nilas surface returns to a single reference range.

The exact choice of reference range does not affect the final
result (as long as the same value is used for all returns). Based
upon the approximate range of the KuKa air-snow interface
(surface return) peak over a level snow surface, we choose
the reference range, Rref , to be 1.5 m; with a corresponding
reference two-way travel time, τref , given by,

τref =
2Rref
c

(45)

To correct for τ dependence in (43) we must apply a phase
shift based upon the difference, τ − τref . The phase shift
requires that we use the analytic (complex) form of beat signal
voltage arrays (Section III-B), obtained through the use of a
column-wise Hilbert transform, applied to D, given as,

S ′
b(t, τ ) = H{D} (46)

with a phase shift applied to each column of S ′
b(t, τ ) to obtain,

S ′
b,ref (t, τ ) = S ′

b(t, τ ) · exp
{
−i 2π

[
Kt

(
τ − τref

)]}
(47)

where here, τ is the two-way travel time associated with
the range to the nilas surface (that was calculated in
Section IV-C). The phase shift ensures that the phase ramp
associated with each nilas surface return has the same
gradient; in the echograms the phase shift also has the effect
of aligning all the nilas surface returns peaks to the reference
range (Rref = 1.5 m).

E. AGGREGATING THE LEAD RETURNS
To characterize the amplitude nonlinearities, AE (t, τ ),
and phase nonlinearities, φE (t, τ ), voltage echograms
(Section III-B) were made for all Ka- and Ku-band files
collected during the KuKa lead transects of the 23 and
24 January 2020. In each of the echograms, radar returns
from the surface of nilas (within the lead) are identified as
contiguous lead regions with the following properties: high
return power, prominent sidelobes, and having ranges greater
than the reference range (Rref = 1.5 m).

A list of lead files were compiled that contained nilas
surface radar returns, and for each lead file the column
numbers associated with each discrete lead region are saved.
Some of the lead files contained only one lead region while
others containing multiple lead regions, depending on the
timing of the KuKa lead transects (Section III-E).

For the 23 January Ka-band lead files there were 437 lead
columns with a mean range to nilas surface of 1.77 m ±

0.041 m, and for the Ku-band lead files there were a total
of 292 lead columns with a mean range to nilas surface of
1.78m± 0.037m. For the 24 JanuaryKa-band lead files there
were 1604 lead columns with a mean range to nilas surface of
1.83 m± 0.089 m, and for the Ku-band lead files there were a
total of 1034 lead columns with a mean range to nilas surface
of 1.83 m ± 0.085 m.
The voltage arrays, D, containing the real-valued time-

domain representation of the beat signal, are then aggregated
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into separate arrays for each date (23, 24 January), band
(Ka, Ku), and polarization (VV, HV, VH, HH) using the
lead column numbers. Within each aggregated lead data
array the leakage signal is first removed from each column
using the high-pass filter method outlined in Section IV-B.
The lead surface return for each column is then isolated
using a bandpass filter (Section IV-C). In the last step all
columns are aligned to the same reference range using the
techniques described in Section IV-D. These steps produce
arrays consisting of complex voltage which we term the
complex aggregated arrays.

The processing steps for each date (23, 24 January),
band (Ka, Ku), and polarization (VV, HV, VH, HH) can be
summarized below as:

1) Use the lead column numbers to aggregate the
real-valued time-domain voltage arrays, D, into an
aggregated lead data array

2) Remove the leakage signal from each column of the
lead data array using the highpass filter (Section IV-B)

3) Then isolate the nilas surface return in each column
using the bandpass filter (Section IV-C)

4) Finally align the nilas surface returns in each column
to the same reference range (Section IV-D)

F. CHARACTERIZING THE AMPLITUDE NONLINEARITIES
The amplitude of the beat signal (containing nonlinearities),
S ′
b(t, τ ), was in defined in Section II-J, via (35), as,

A′
b(t, τ ) = AC (t, τ ) · AE (t, τ )

where, AC (t, τ ) is the constant amplitude term (36), which
remains the same over sweep duration, Ts, and AE (t, τ ) is the
nonlinear amplitude term (37), which varies over Ts.

For the case of the complex aggregated arrays
(Section IV-E), the column-to-column variability in A′

b(t, τ )
is driven primarily by return power variability; due to the
differing nilas surface conditions (i.e. frost flower coverage
and associated surface roughness) within each KuKa
footprint (Section III-E). To obtain an accurate estimation
of AE (t, τ ) we must average over multiple columns of the
complex aggregated arrays; however, Root Mean Square
(RMS) normalization must first be performed to remove the
AC (t, τ ) dependence in (35).

To obtain AE (t, τ ), the first step is to load the com-
plex aggregated array associated with the required date
(23, 24 January), band (Ka, Ku), and polarization (VV, HV,
VH, HH). In the next step each column of the complex
aggregated array is normalized, by dividing by its RMS,
to form the complex normalized array. The magnitude of
each element in the complex normalized array is calculated
to create an array of normalized magnitudes. The mean is
calculated across all columns of this normalized magnitude
array to obtain a 1D array of mean magnitudes. In the
final step the 1D mean magnitude array is itself normalized,
by divided by its RMS, to obtain AE (t, τ ).
Amplitude nonlinearities, AE (t, τ ), are calculated for each

date (23, 24 January), band (Ka, Ku), and polarization

(VV,HV,VH,HH), with the processing steps described above
summarized here:

1) Load the required complex aggregated array
(i.e. 23 January, Ka HV)

2) Divide each column of the complex aggregated array by
its RMS value to form the complex normalized array

3) Calculate the magnitude of each element in the
complex normalized array to form the normalized
magnitude array

4) Take the mean across all columns of the normalized
magnitude array to obtain the 1Dmeanmagnitude array

5) Divide the 1D mean magnitude array by its RMS to
obtain AE (t, τ )

G. CHARACTERIZING THE PHASE NONLINEARITIES
The phase of the beat signal (containing nonlinearities),
S ′
b(t, τ ), was defined in Section II-J, via (38), as,

φ′
b(t, τ ) = ϕ(t, τ ) + φE (t, τ )

here, the nonlinear phase term φE (t, τ ) is added to the linear
phase ramp (i.e. the beat frequency), given by the ϕ(t, τ ) term.

For the case of the complex aggregated arrays
(Section IV-E), the column-to-column variability in φ′

b(t, τ )
is driven primarily by the phase contributions from the
different nilas surface elements (such as frost flowers) within
a KuKa footprint (Section III-E). To obtain an accurate
estimation of φE (t, τ ) we must again average over multiple
columns of the complex aggregated array. This column
averaging is made possible due to the phase multiplication in
Section IV-D, that resulted in the phase ramp of each nilas
surface radar return having the same gradient (i.e. Kτref ),
with the phase ramp from a target at the reference range,
via (44), given by,

ϕref (t, τref ) = 2π
(
Ktτref

)
(48)

To obtain φE (t, τ ) the first step is to load the complex
aggregated array associated with the required date (23, 24
January), band (Ka, Ku), and polarization (VV, HV, VH,
HH). The phase angle is then calculated for each element of
the complex aggregated array to produce an array of phase
angles. For each column of the phase angle array, the phase
angles are unwrapped (by adding multiples ±2π between
consecutive phase angle values until the phase jump is less
than π ) to produce the phase ramp array. The mean is then
calculated across all columns of the phase ramp array to
obtain a 1D array containing the mean phase ramp. In the
next step we subtract the reference phase ramp (48) from
the 1D mean phase ramp array to obtain a 1D array of
deramped phase angles. We then calculate the median of
the 1D deramped array, and in the final step we take this
median away from all elements of the 1D deramped array to
obtain φE (t, τ ).

Phase nonlinearities, φE (t, τ ), are also calculated for each
date (23, 24 January), band (Ka, Ku), and polarization (VV,
HV, VH, HH), with the processing steps described above
summarized here:
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1) Load the required complex aggregated array (i.e. 24
January, Ku VV)

2) Calculate the phase angle for each element in the
complex aggregated array to produce the phase angle
array

3) Perform phase unwrapping for each column of the
phase angle array to generate the phase ramp array

4) Take the mean across all columns of the phase ramp
array to produce the 1D mean phase ramp array

5) Minus the reference phase ramp from the 1D mean
phase ramp array to obtain the 1D deramped array

6) Calculate the median of the 1D deramped array, and
then minus this median from the 1D deramped array to
obtain φE (t, τ )

H. APPLYING DECONVOLUTION WAVEFORMS TO KUKA
DATA
Examples of the amplitude nonlinearities, AE (t, τ ), and
phase nonlinearities, φE (t, τ ), calculated from the 23 and
24 January lead transects are shown in Fig. 7; with the top
panels in Fig. 7 showing AE (t, τ ), and the bottom panels
showing φE (t, τ ). From Fig. 7, we see that the 23 January
lead transect data (shown by the blue line) are very similar
to the 24 January lead transect data (shown by the green
line); with the small difference between the two transect days
shown by the purple lines.

The lead transects on the 23 and 24 January were collected
independent of each other, with nilas surface conditions
(i.e. ice thickness and frost flower coverage) changing in
the day between the transects (Section III-E). The observed
similarities shown in Fig. 7 gives us confidence that the
techniques outlined in Sections IV-B to IV-G are allowing the
robust extraction of AE (t, τ ) and φE (t, τ ).
The amplitude nonlinearities, AE (t, τ ), and phase non-

linearities, φE (t, τ ), can be used to produce deconvolution
waveforms. Revisiting (43), given as,

S ′
b(t, τ ) = [AC (t, τ ) · AE (t, τ )]

· exp {i [ϕ(t, τ ) + φE (t, τ )]}

we can see that AE (t, τ ) and φE (t, τ ) can be combined to
produce deconvolution waveforms, of the form,

WD(t, τ ) =
exp {−iφE (t, τ )}

AE (t, τ )
(49)

which can be multiplied with S ′
b(t, τ ), to give,

SD(t, τ ) = S ′
b(t, τ ) ·WD(t, τ )

= AC (t, τ ) · exp {i [ϕ(t, τ )]} (50)

From (50), we see that the application of the deconvolution
waveform, WD(t, τ ), removes the nonlinear components of
S ′
b(t, τ ), but will preserve the constant amplitude component
AC (t, τ ), and the phase component associated with the range-
to-target that is contained within exp {i [ϕ(t, τ )]}.
Separate deconvolution waveforms are produced for each

date (23, 24 January), band (Ka, Ku), and polarization

(VV, HV, VH, HH). The deconvolution waveforms for the
23 and 24 January are then averaged to produce a composite
set of deconvolution waveforms for each band (Ka, Ku) and
polarization (VV, HV, VH, HH), that can be applied to the
entire KuKa dataset.

The KuKa voltage data (Section III-B) for the Ka-band
and Ku-band files are arranged into separate arrays for each
polarization (i.e. DVV, DHV, DVH, DHH). To applyWD(t, τ )
to S ′

b(t, τ ) the leakage signal must first be removed from
D using the high pass filtering techniques described in
Section IV-B. The high-pass filtered voltage arrays are then
converted to their analytic (complex) form, H{D}, through
the application of a column-wise Hilbert transform [68]. Each
column of the high-pass-filtered complex voltage arrays is
then multiplied by the required deconvolution waveform (i.e.
Ku VV, Ka HV) to produce the complex deconvolved array.
In the final step, the real part of the complex deconvolved
array is extracted to produce the deconvolved voltage array.

For each KuKa file (Ka-band or Ku-band), deconvolution
waveforms are applied to each polarization (VV, HV, VH,
HH), with the processing steps described above summarized
here:

1) Load the required voltage array, e.g. DVV
2) Remove the leakage signal from each column of the

voltage array using the highpass filtering techniques
described in Section IV-B

3) Apply theHilbert transform to each column of the high-
pass-filtered voltage array

4) Multiply each column of the high-pass-filtered com-
plex voltage array by the correct deconvolution wave-
form, WD(t, τ ), to produce the complex deconvolved
array

5) Extract the real part of each element of the complex
deconvolved array to obtain the deconvolved array,
SD(t, τ )

The software provided by ProSensing, or KuKa.py, can then
be used to convert the deconvolved Ka- and Ku-band voltage
data into echograms of calibrated polarimetric backscatter
(Section III-B).

V. RESULTS
In this section, we assess deconvolution effectiveness by
analyzing KuKa data from three different survey dates: the
lead transect dataset on January 24, 2020; the Northern
transect dataset on January 16, 2020; and the Northern
transect dataset on November 14, 2019. We use an echogram
from each survey date to provide a qualitative description
of deconvolution effectiveness, and a waveform from each
echogram to provide a quantitative description of deconvolu-
tion effectiveness.

A. ASSESSING DECONVOLUTION EFFECTIVENESS
Ideally, we would assess the effectiveness of the decon-
volution waveforms, WD(t, τ ), described in Section IV-H,
using a set of corner reflector and/or metal plate calibration
experiments collected at regular temporal intervals during the
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FIGURE 7. The KuKa nonlinearities. The top panels display the amplitude nonlinearities, AE (t, τ ), while the bottom panels show the
phase nonlinearities, φE (t, τ ). The blue lines represent the 23 January lead transect data, the green lines represent the 24 January
lead transect data, and the purple lines depict the difference between the two transect days.

campaign. Unfortunately, regular corner reflector/metal plate
calibration experiments were not performed at MOSAiC,
so such data are unavailable. Instead, we analyze Ka-band
data (VV, HV) and Ku-band data (VV, HV) from three
discrete stare mode survey dates (see S2020 [26] for details
of KuKa deployment at MOSAiC).

The lead transect data from the 24 January 2020,
will act as our reference dataset with a time offset of
0 days from when the deconvolution waveform data were
collected (Section IV-H). The Northern transect data from
the 16 January 2020, will act as our short time offset dataset
with a time offset of 8 days from when the deconvolution
waveform data were collected; survey data from this daywere
also discussed in detail in S2020 and [27]. The Northern
transect data from the 14 November 2019, will act as our long
time offset dataset with a time offset of 71 days from when
the deconvolution waveform data were collected.

KuKa voltage data,D, from each of the transect dates were
deconvolved (Section IV-H), and echograms of calibrated
polarimetric backscatter were produced (Section III-B). For
each of the transect dates, we first provide a qualitative
description of the effect of deconvolution on an example
echogram from that date, describing the effect of deconvo-
lution on the sidelobes and surface return clarity. We will
then provide a quantitative description of deconvolution
effectiveness by analyzing a typical waveform extracted from
each of the example echograms.

In Section II-J, it was noted that the SNR of FMCW radar
systems is generally limited by the effects of nonlinearities
(i.e., sidelobes) close to the beat frequency and phase noise far
from the beat frequency [58]; with both amplitude and phase
nonlinearities distorting the shape of the pulse and increasing
the sidelobe levels. If deconvolution completely corrects for

these nonlinearities, the radar return from a point target will
closely resemble the applied spectral window (i.e. the Hann
spectral window) until it encounters the noise floor or other
spurious signals, such as the leakage signal.

Here we describe the five metrics that will be used to quan-
tify the waveform properties before and after deconvolution:

• Surface Return Peak (SRP)
This is the peak of the radar return associated with the
first radar interaction with the (nilas or snow) surface.

• Maximum Spurious Signal (MSS)
This is the maximum spurious signal that occurs at
shorter ranges than the surface return peak, SRP, and
that is independent of the surface return leading edge.
For the case of optimal range sidelobe suppression the
MSS will correspond to noise or to an in-band spurious
signal (such as the leakage signal).

• Spurious Free Dynamic Range (SFDR)
This is the power difference between the surface
return peak, SRP, and the maximum spurious signal,
MSS. Due to potential changes in the exact position
of residual sidelobes (after deconvolution) the SFDR
represents a relatively robust measure of deconvolution
effectiveness.

• Window Departure Point (WDP)
This is the point on the leading edge of the surface return
where the power difference between the waveform and a
colocated Hann spectral window is greater than ∼ 3dB.

• Leading Edge Width (LEW)
This is the range difference between the surface return
peak, SRP, and the window departure point, WDP.
In essence, the LEW quantifies the surface return clarity
(i.e. the leading edge of the surface return), with larger
LEW values indicating a less ambiguous surface return.
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We will also utilize the concept of relative change to
quantify the change in the leading edge width, LEW, and
the spurious free dynamic range, SFDR, after deconvolution.
Here we define relative change as,

Relative change =

(
x − xreference
xreference

)
× 100 (51)

where xreference are the values before deconvolution.

B. ZERO TIME OFFSET (LEAD TRANSECT)
This example is from the 24 January 2020, and represents
a zero-time offset from when the nonlinearities were char-
acterized. The results presented in this section demonstrate
the effectiveness of the deconvolution waveforms for a
specular impulse response dataset: the KuKa lead transects
(section III-E).

1) ECHOGRAM RESULTS
Echograms showing a subset of lead transect data from
the 24 January 2020 are shown in Fig. 8, this is the same lead
transect data that is shown in S2020 (their figure 10 [26]).

The upper set of panels in Fig. 8 displays KuKa echograms
before deconvolution. In all bands and polarizations, a strong,
specular radar return originating from the nilas surface is
observed. Prominent and discrete sidelobes can be seen for
Ka VV, Ka HV, and Ku VV. However, the sidelobes for Ku
HV appear to be obscured by the leakage signal.

In the lower set of panels of Fig. 8, we observe the data
after the application of deconvolutionwaveforms. It is evident
that the sidelobes have been effectively suppressed for KaVV,
KaHV, andKuVV.However, only amarginal improvement is
observed for Ku HV due to the presence of the leakage signal.

In the deconvolved data for all bands and polarizations,
faint near-surface features that were not visible in the original
data have become apparent. For instance, there is a noticeable
feature at a slow time of approximately 40 seconds and at a
range of 1.5 meters. Additionally, a faint diffuse return can be
observed at greater ranges than the nilas surface return for all
bands and polarizations.

The black dashed line in Fig. 8 indicates the location of the
waveforms shown in Fig. 9. We will describe the waveform
results in the following sections, and these results are also
summarized in Table. 3.

2) WAVEFORM RESULTS: KA VV
Before deconvolution, the SRP (Surface Return Peak) is
located at a range of 1.79 m, with a power of −36 dB. The
MSS (Maximum Spurious Signal) is located at 1.59 m, with
a power of −60 dB; resulting in a SFDR (Spurious Free
Dynamic Range) of 24 dBc. The WDP (Window Departure
Point) is located at 1.74 m, resulting in a LEW (Leading Edge
Width) of 0.05 m.

After deconvolution, the SRP remains located at 1.79 m,
with a power of −34 dB. The MSS shifts to 1.67 m, with a
power of −86 dB; resulting in an increased SFDR of 52 dBc.
The WDP is located at 1.68 m, giving an expanded LEW

of 0.11 m. Deconvolution causes the SFDR to increase by
28 dB (a relative change of 117%), and the LEW to increase
by 0.06 m (a relative change of 120%).

3) WAVEFORM RESULTS: KA HV
Before deconvolution, the SRP is located at a range of 1.78m,
with a power of −54 dB. The MSS is located at 1.59 m, with
a power of−79 dB; resulting in a SFDR of 25 dBc. TheWDP
is located at 1.72 m, resulting in a LEW of 0.06 m.

After deconvolution, the SRP remains located at 1.78 m,
with a power of −53 dB. The MSS shifts to 1.65 m, with a
power of −91 dB; resulting in an increased SFDR of 38 dBc.
The WDP is located at 1.70 m, giving an expanded LEW
of 0.08 m. Deconvolution causes the SFDR to increase by
13 dB (a relative change of 52%), and the LEW to increase
by 0.02 m (a relative change of 33%).

4) WAVEFORM RESULTS: KU VV
Before deconvolution, the SRP is located at a range of 1.78m,
with a power of −18 dB. The MSS is located at 1.68 m, with
a power of−54 dB; resulting in a SFDR of 36 dBc. TheWDP
is located at 1.70 m, resulting in a LEW of 0.08 m.

After deconvolution, the SRP is located at 1.79 m, with a
power of −17 dB. The MSS shifts to 1.36 m, with a power
of −80 dB; resulting in an increased SFDR of 63 dBc. The
WDP is located at 1.51 m, giving an expanded LEW of
0.28 m. Deconvolution causes the SFDR to increase by 27 dB
(a relative change of 75%), and the LEW to increase by
0.20 m (a relative change of 250%).

5) WAVEFORM RESULTS: KU HV
Before deconvolution, the SRP is located at a range of 1.81m,
with a power of −49 dB.
After deconvolution, the SRP is located at 1.80 m with

a power of −47 dB. The sidelobes appear indistinct, with
little change in signal power observed before and after
deconvolution.

C. SHORT TIME OFFSET (NORTHERN TRANSECT)
This example is from the 16 January 2020, and represents a
short, 8 day, offset from when the nonlinearities were char-
acterized. The results presented in this section demonstrate
the effectiveness of the deconvolution waveforms in a more
typical use case of KuKa at MOSAiC: a stare mode transect
over a well-developed snowpack on SYI [26], [27].

1) ECHOGRAM RESULTS
Echograms showing subset of Northern transect data from
the 16 January 2020 are shown in Fig. 10, this is the same
Northern transect data as shown in S2020 (their figure 7 [26]).

The upper set of panels in Fig. 10 show the data before
deconvolution. For Ka VV and Ku VV prominent surface
returns are observed, but with strong diffuse radar returns
observed at greater ranges. For Ka HV and KuHV the surface
returns are much less prominent, and more diffuse (compared
to Ka VV and KuVV). Distinct sidelobes are observed for Ka
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FIGURE 8. Echograms displaying a subset of lead transect data collected on the 24 January 2020. The upper set of panels display data
before deconvolution and the lower set of panels display data after deconvolution. The black dashed line indicates the location of the
waveform data shown in Fig. 9.

FIGURE 9. Waveforms corresponding to the black dashed lines in Fig. 8. The orange dotted line represents the data
before deconvolution, the blue solid line represents the data after deconvolution, and the gray solid line illustrates the
ideal point target response (represented by a Hann spectral window) that is colocated with the surface return peak, SRP.

VV and Ku VV; for Ka HV the sidelobes are indistinct and
diffuse in character, and for KuHV the sidelobes are obscured
by the leakage signal.

From the lower set of panels in Fig. 10 we see that the
application of the deconvolution waveforms has effectively
suppressed the sidelobes for Ka VV, Ku VV and Ka HV.
A large improvement in surface return clarity is observed for
Ka HVmaking the unambiguous identification of the surface
return much easier. Faint residual sidelobes at power levels
similar to the noise floor are observed in the deconvolved data
for Ka VV.

The black dashed line in Fig. 10 indicates the location
of the waveforms shown in Fig. 11. We will describe the
waveform results in the following section, and these results
are also summarized in Table. 3.

2) WAVEFORM RESULTS: KA VV
Before deconvolution, the SRP (Surface Return Peak) is
located at a range of 1.58 m, with a power of −31 dB. The

MSS (Maximum Spurious Signal) is located at 1.39 m, with
a power of −56 dB; resulting in a SFDR (Spurious Free
Dynamic Range) of 25 dBc. The WDP (Window Departure
Point) is located at 1.53 m, resulting in a LEW (Leading Edge
Width) of 0.05 m.

After deconvolution, the SRP remains located at 1.58 m,
with a power of −30 dB. The MSS shifts to 1.40 m, with a
power of −82 dB; resulting in an increased SFDR of 52 dBc.
The WDP is located at 1.49 m, giving an expanded LEW
of 0.09 m. Deconvolution causes the SFDR to increase by
27 dB (a relative change of 108%), and the LEW to increase
by 0.04 m (a relative change of 80%).

3) WAVEFORM RESULTS: KA HV
Before deconvolution, the SRP is located at a range of 1.58m,
with a power of −62 dB. The MSS is located at 1.50 m, with
a power of−77 dB; resulting in a SFDR of 15 dBc. TheWDP
is located at 1.55 m, resulting in a LEW of 0.03 m.
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FIGURE 10. Echograms displaying a subset of Northern transect data collected on the 16 January 2020. The upper set of panels
display data before deconvolution and the lower set of panels display data after deconvolution. The black dashed line indicates the
location of the waveform data shown in Fig. 11.

FIGURE 11. Waveforms corresponding to the black dashed line in Fig. 10. The orange dotted line represents the data
before deconvolution, the blue solid line represents the data after deconvolution, and the gray solid line illustrates the
ideal point target response (represented by a Hann spectral window) that is colocated with the surface return peak, SRP.

After deconvolution, the SRP is located at 1.57 m, with a
power of −61 dB. The MSS shifts to 1.40 m, with a power of
−92 dB; resulting in an increased SFDR of 31 dBc. TheWDP
is located at 1.51 m, giving an expanded LEW of 0.06 m.
Deconvolution causes the SFDR to increase by 16 dB (a
relative change of 107%), and the LEW to increase by 0.03 m
(a relative change of 100%).

4) WAVEFORM RESULTS: KU VV
Before deconvolution, the SRP is located at a range of 1.57m,
with a power of −22 dB. The MSS is located at 1.47 m, with
a power of−55 dB; resulting in a SFDR of 33 dBc. TheWDP
is located at 1.49 m, resulting in a LEW of 0.08 m.

After deconvolution, the SRP remains located at 1.57 m,
with a power of −21 dB. The MSS shifts to 1.24 m, with a
power of −78 dB; resulting in an increased SFDR of 57 dBc.
The WDP is located at 1.29 m, giving an expanded LEW
of 0.28 m. Deconvolution causes the SFDR to increase by
24 dB (a relative change of 73%), and the LEW to increase
by 0.20 m (a relative change of 250%).

5) WAVEFORM RESULTS: KU HV
For Ku HV, before deconvolution, the SRP is located at a
range of 1.61 m with a power of −64 dB.

After deconvolution, the SRP remains located at 1.60 m
with a power of −63 dB. The sidelobes appear indistinct,
with little change in signal power observed before and after
deconvolution.

D. LONG TIME OFFSET (NORTHERN TRANSECT)
This final example is from the 14 November 2019, represent-
ing a long, 71 day, offset from when the nonlinearities were
characterized. The results presented here again demonstrate
the effectiveness of the deconvolution waveforms in the more
typical use case of KuKa at MOSAiC: a transect over a well-
developed snowpack on SYI [26], [27].

1) ECHOGRAM RESULTS
Echograms showing a subset of Northern transect data from
the 14 November 2019 are shown in Fig. 12. The upper set
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FIGURE 12. Echograms displaying a subset of Northern transect data collected on the 14 November 2019. The upper set of panels
display data before deconvolution and the lower set of panels display data after deconvolution. The black dashed line indicates the
location of the waveform data shown in Fig. 13.

FIGURE 13. Waveforms corresponding to the black dashed line in Fig. 12. The orange dotted line represents the data
before deconvolution, the blue solid line represents the data after deconvolution, and the gray solid line illustrates the
ideal point target response (represented by a Hann spectral window) that is colocated with the surface return peak, SRP.

of panels in Fig. 12 displays the data prior to deconvolution.
In the case of Ka VV and Ku VV, we observe prominent
surface returns along with more diffuse radar returns at
greater ranges. The surface returns for Ka HV and Ku HV are
significantly less prominent andmore diffuse compared to Ka
VV and Ku VV. Distinct sidelobes are visible for Ka VV and
Ku VV, while the sidelobes for Ka HV exhibit indistinct and
diffuse characteristics. For Ku HV, the sidelobes are obscured
by the leakage signal.

In the lower set of panels in Fig. 12, we see the data
after applying deconvolution waveforms; from which we
observe that deconvolution has only moderately suppressed
the sidelobes. However, there is a noticeable improvement
in the clarity of the surface return, particularly for Ka
HV, making the unambiguous identification of the surface
return easier. In the deconvolved data, residual sidelobes with
powers greater than the noise floor are observed for Ka VV
and KuVV, while Ka HV exhibits residual sidelobes at power
levels similar to the noise floor.

The black dashed line in Fig. 12 indicates the location
of the waveforms shown in Fig. 13. We will describe the
waveform results in the following section, and these results
are also summarized in Table. 3.

2) WAVEFORM RESULTS: KA VV
Before deconvolution, the SRP (Surface Return Peak) is
located at a range of 1.58 m, with a power of −34 dB. The
MSS (Maximum Spurious Signal) is located at 1.39 m, with
a power of −60 dB; resulting in a SFDR (Spurious Free
Dynamic Range) of 26 dBc. The WDP (Window Departure
Point) is located at 1.54 m, resulting in a LEW (Leading Edge
Width) of 0.04 m.

After deconvolution, the SRP remains located at 1.58 m,
with a power of −33 dB. The MSS shifts to 1.43 m, with a
power of −78 dB; resulting in an increased SFDR of 45 dBc.
The WDP is located at 1.51 m, giving an expanded LEW
of 0.07 m. Deconvolution causes the SFDR to increase by
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19 dB (a relative change of 73%), and the LEW to increase
by 0.03 m (a relative change of 75%).

3) WAVEFORM RESULTS: KA HV
Before deconvolution, the SRP is located at a range of 1.61m,
with a power of −58 dB. The MSS is located at 1.55 m, with
a power of−77 dB; resulting in a SFDR of 19 dBc. TheWDP
is located at 1.58 m, resulting in a LEW of 0.03 m.

After deconvolution, the SRP remains located at 1.61 m,
with a power of −57 dB. The MSS shifts to 1.56 m, with a
power of −84 dB; resulting in an increased SFDR of 27 dBc.
The WDP is located at 1.56 m, giving an expanded LEW
of 0.05 m. Deconvolution causes the SFDR to increase by
8 dB (a relative change of 42%), and the LEW to increase by
0.02 m (a relative change of 67%).

4) WAVEFORM RESULTS: KU VV
Before deconvolution, the SRP is located at a range of 1.60m,
with a power of −15 dB. The MSS is located at 1.30 m, with
a power of−49 dB; resulting in a SFDR of 34 dBc. TheWDP
is located at 1.51 m, resulting in a LEW of 0.09 m.

After deconvolution, the SRP remains located at 1.60 m,
with a power of −15 dB. The MSS shifts to 1.30 m, with a
power of −61 dB; resulting in an increased SFDR of 46 dBc.
The WDP is located at 1.38 m, giving an expanded LEW
of 0.22 m. Deconvolution causes the SFDR to increase by
12 dB (a relative change of 35%), and the LEW to increase
by 0.13 m (a relative change of 144%).

5) WAVEFORM RESULTS: KU HV
For Ku HV, before deconvolution, the SRP is located at a
range of 1.61 m with a power of −51 dB.

After deconvolution, the SRP remains located at 1.61 m
with a power of −51 dB. The sidelobes appear indistinct,
with little change in signal power observed before and after
deconvolution.

VI. DISCUSSION
In this section, we will discuss how surface type affects the
radar return and the changes to the echograms after decon-
volution. We will then utilize the Spurious Free Dynamic
Range (SFDR) to describe the changes in deconvolution
performance over time, and the Leading Edge Width (LEW)
to quantify the impact of deconvolution on surface return
clarity.

A. HOW SURFACE TYPE INFLUENCES THE RADAR
RETURN AND SIDELOBE CHARACTERISTICS
In Section V, we presented deconvolution results for
KuKa data collected on three different survey dates, and
over two different surface types: the Lead transect and
Northern transect. In this section, we will discuss how
surface type affects the radar return and sidelobe charac-
teristics, as well as the features that are observed after
deconvolution.

1) LEAD TRANSECT
The results presented in Section V-B demonstrated the
effectiveness of deconvolution waveforms on the specular
radar returns collected during the KuKa lead transects
(Section III-E). The lead surface consisted of nilas, char-
acterized by high ice salinity and a significant coverage of
frost flowers (Fig. 2). Although the surface roughness was
not quantified, the presence of brine-enriched frost flowers
likely made the surface too rough (at radar wavelengths) to
generate phase-coherent returns, except in isolated cases. The
strong dielectric boundary between the air and the highly
saline nilas resulted in minimal radar penetration, leading to
a highly prominent surface return peak, SRP. It is this single
prominent SRP that produced the discrete sidelobes observed
in the 20200124 Ka VV, Ka HV, and Ku VV data.

After deconvolution, faint diffuse radar returns were
observed at greater ranges than the SRP for all bands
and polarizations. Due to the strong dielectric boundary
of the highly saline nilas, these returns cannot physically
originate from beneath the ice surface. Therefore, we attribute
the diffuse returns to off-nadir backscatter from radar-
scale roughness elements on the nilas surface or the direct
scattering from brine-enriched frost flowers. Further research
is needed to investigate the effect of frost flowers on radar
returns, especially in nadir-looking geometries; and this topic
is briefly discussed in Section VII.

Faint above-surface features were also observed after
deconvolution, particularly for Ka VV and Ka HV data (with
their lower noise floor). As mentioned in Section IV-A, the
lead surface return was observed to undulate between 1.5 and
2 meters (as KuKa is dragged along the lead edge); this
was attributed to variations in the height of ice topography
affecting the range between the KuKa antennas and the
surface of the nilas (Section III-E). It is important to note
that there were also lateral variations in KuKa’s path during
the lead transects, and the lead edge itself was not perfectly
straight, with overhanging regions of ice jutting out over the
lead surface. Therefore, the faint above-surface features can
be attributed to these overhanging ice regions temporarily
falling within the KuKa antenna beam pattern.

2) NORTHERN TRANSECTS
For the Northern transect results, presented in Section V-C
and Section V-D, we demonstrated the effectiveness of
deconvolution waveforms in the more typical use case of
KuKa during MOSAiC, specifically in transects over a
well-developed snowpack on SYI. The Northern transect
snowpack was described in S2020 as dry, cold, brine-free,
with a mean snow depth ranging between 24.2 and 26.7 cm
(as measured from 2 to 30 January). Radar returns from
the surface and within the snowpack depend strongly on its
thermodynamic and geophysical properties, including snow
depth, snow density/composition (wind slab or metamorphic
snow), scatterer size, snow salinity, and temperature (in the
case of saline snowpacks) [26].
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TABLE 3. Summary of the results presented in Section V, showing the change in quantitative metrics before deconvolution, after deconvolution, and the
difference (after - before) deconvolution.

In the case of the Northern transect data, we defined the
SRP as the local peak originating from the air-snow interface
at the top of the snowpack. For both Northern transect
examples, the Ka VV and Ku VV data exhibited prominent
SRPs, although with lower peak prominence compared to
the lead transect data. Discrete sidelobes were observed
for Ka VV and Ku VV, but they appeared more diffuse
compared to the examples from the lead transect due to
the lower prominence of the SRP. For Ka HV, the SRP
was only weakly prominent or non-prominent, resulting in
indistinct and diffuse sidelobes. The sidelobes from the strong
snowpack returns combined with SRP sidelobes, and the
surface return itself, to produce a gradual increase in power
from the noise floor up to the air-snow interface return. This
made it visually challenging to discern the leading edge of the
SRP, especially for the 20200116 Ka HV data with its high-
power snowpack returns.

The detailed analysis of the scattering properties of the
MOSAiC snowpack, under differing environmental condi-
tions, are described in recent KuKa papers [27], [66], [67].

B. CHANGE IN DECONVOLUTION PERFORMANCE WITH
TIME
In Section II-H, we noted that the potential drift of FMCW
nonlinearities over time are attributed, in the literature,
to temperature and power supply voltage variations [33], [34],
[55]. Fig. 7 in Section IV-H showed small differences in the
amplitude nonlinearities, AE (t, τ ), and phase nonlinearities,
φE (t, τ ), despite the lead transect data being collected only a
day apart.

In the results section (Section V), we presented echograms,
and corresponding waveforms, for three different time offsets
from the lead transects: zero time offset (Section V-B),
short time offset (8 days) (Section V-C), and long time
offset (71 days) (Section V-D). In this section, we discuss
both the echograms and waveforms results to describe how
deconvolution performance changes over time.

1) ECHOGRAMS
The echograms for 20200124, shown in Fig. 8, provide
qualitative evidence that deconvolution effectively suppresses
sidelobes in Ka VV, Ka HV, and Ku VV data. However,
the improvement is only marginal for Ku HV due to the
presence of the leakage signal. Deconvolution also revealed
subtle near-surface features that were not initially visible in
the original data (Section: VI-A).

In the 20200116 echograms, displayed in Fig. 10, decon-
volution was also shown to successfully suppresses sidelobes
in Ka VV, Ka HV, and Ku VV data. However, in the Ka VV
echogram, faint residual sidelobes were observed at power
levels similar to the noise floor, which were not visible in the
20200124 data. These faint residual sidelobes were absent in
the Ka HV data due to the lower SRP power and prominence.
Similarly, the residual sidelobes were also absent in the Ku
VV and Ku HV data due to the presence of the enhanced
leakage signal noise floor. The residual sidelobes could
potentially be attributed to the influence of different surface
types (Section VI-A), but they are more likely the result of a
slight degradation in deconvolution performance in the 8 days
between 20200124 and 20200116.
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The 20191114 echograms, shown in Fig. 12, indicate that
here deconvolution is significantly less effective in suppress-
ing sidelobes compared to the 20200124 or 20200116 data.
The residual sidelobes in Ka VV and Ku VV data appeared
more pronounced and exhibited power levels higher than the
noise floor, with the Ka HV data having residual sidelobes at
power levels similar to the noise floor.

While the echograms provide a qualitative understanding
of temporal changes in deconvolution effectiveness, we can
further quantify and investigate these changes using the
performance metrics introduced in Section V-A.

2) WAVEFORMS
The waveform results were discussed in Section V, and were
also summarized in Table. 3. Deconvolution results in an
almost 30 dB improvement in the spurious free dynamic
range, SFDR; the maximum improvement for Ka VV, and Ku
VV, is 28 dB and 27 dB, respectively, for the 20200124 data;
the maximum improvement in the Ka HV data is 16 dB for
the 20200116 data.

From Table. 3, we also observe that deconvolution
typically increases the SRP power by 1-2 dB; with the origin
of these changes related to the theory outlined in Section II-J.
The nonlinearities increase the beat spectral bandwidth of the
target response, causing target energy to spread into different
frequencies and away from the beat frequency; deconvolution
corrects the nonlinearities, bringing the target energy back
towards the single beat frequency, and resulting in a slight
increase in SRP power.

To further evaluate the variation in deconvolution
effectiveness over time, we compare the results from
20200116 and 20191114, to those of 20200124. We calculate
the change and relative change (as defined in (51)) by using
the 20200124 SFDR values from Table. 3 as our reference
values. These results are presented in Table. 4.

Compared to the 20200124 data, the SFDR values for
20200116 show a slight decrease of −1 dB for Ka VV,
an increase of 3 dB for Ka HV, and a decrease of −3 dB for
Ku VV. The increase in SFDR for the 20200116 Ka HV data
may seem counterintuitive, but a closer examination of the
corresponding Ka HV echograms reveals that the MSS in the
20200124 data is actually associated with a different leakage
signal band compared to the 20200116 data. Specifically,
the MSS for the 20200116 data is 1 dB lower than that
of the 20200124 data, and the 20200116 data exhibited a
pre-deconvolution MSS that is 2 dB higher than that of
the 20200124 data, explaining the increase in SFDR. This
example highlights an important point: that it is crucial to take
into account variations in the noise floor and sidelobes (and
refer to back to the echograms) when identifying the source
of SFDR changes.

The SFDR values for 20191114 shows larger decreases
of −9 dB for Ka VV, −5 dB for Ka HV, and −15 dB
for Ku VV (compared to the 20200124 data). While
there may be potential differences in snowpack properties
between the 20200116 and 20191114 Northern transect

data, the decreased deconvolution performance is primarily
responsible for the lower observed SFDR values.

From Table. 4, we can see that the deconvolution
performance for the 20200116 data is thus similar to that
of the 20200124 data, with a maximum change of −3 dB
observed over the 8-day period between 20200124 and
20200116. However, the SFDR results demonstrate a decline
in deconvolution performance of 8 dB for Ka VV and
Ka HV, and 12 dB for Ku VV over the span of two
months from 20200116 to 20191114. The most significant
degradation in deconvolution performance occurs for Ku VV,
with a 15 dB decrease in SFDR during the 71-day period
between 20200124 and 20191114.

3) NONLINEARITY DRIFT WITH TIME
The changes in deconvolution performance, shown in
Section VI-B1, and quantified in Section VI-B2, are due to
the drift of FMCW nonlinearities over time. In general, any-
thing that changes the (frequency-dependent) S-parameters
of radar system components can potentially modify the
nonlinearities (II-F and II-H).

For the KuKa radar system operating during MOSAiC,
there are three main factors that are likely responsible for
changes in the nonlinearities: mechanical shock/vibration
during stare mode transects, the effect of repeated temper-
ature cycling, and gradual hardware degradation due to the
aging of KuKa system components.

During stare mode transects, such as the Northern transect,
the KuKa radar system experiences vibrations, and discrete
mechanical shocks, as it is pulled (on the transect sled) over
regions of ice topography. Thesemechanical stresses can alter
the alignment or functioning of sensitive RF components, and
thus modify the existing nonlinearities.

As mentioned in S2020, the ambient air temperatures in
the central Arctic can fluctuate significantly, even during
the cold polar night, due to the effect of cyclone intrusions.
From Fig 3 of S2020, the temperatures during the KuKa
deployment atMOSAiCwere observed to vary between−5 C
and −35 C [26]. The KuKa RF units are insulated, and
heated, to stabilize their internal temperatures in cold polar
conditions; however, external RF components will still be
exposed to these temperature changes. There are also the
abrupt internal temperature changes that occur during the
transition between scan and stare modes, during the time
when the system is switched off and then restarted in the new
mode. These repeated temperature cycling effects have the
potential to cause subtle mechanical changes (such as thermal
expansion and contraction) to KuKa radar external (and
internal) RF components, also leading to the modification of
nonlinearities.

The final factor is the gradual aging of KuKa radar system
components, that occurs over much longer timescales. The
aging of RF components is primarily due to the degradation
of the transistors within the components [77]. Degradation
in the chirp generator, such as the Linear FM synthesizer
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TABLE 4. Comparison of deconvolution performance metrics between the different transect days.

used in KuKa, can cause frequency shifts across its operating
bandwidth; similarly, changes to the frequency-dependent
gain profile of an LNA, can also change the location of the
nonlinearities in the frequency domain.

The change in KuKa nonlinearities with time is due to the
combination of all three factors. During continuous operation,
during field campaigns such asMOSAiC, regular calibrations
are required to counteract the effects of rough transects
and temperature cycling. To obtain optimal performance
calibration should occur before each transect, or at least on a
weekly timescale. Calibration is also required after periods of
inactivity and storage, due to more subtle temperature cycling
effects, and the aging of KuKa RF components.

C. HOW DECONVOLUTION IMPROVES SURFACE RETURN
CLARITY
In Section VI-A, we discussed how surface type affects the
radar return and sidelobe characteristics. In this section we
further quantify the effect of deconvolution for KaVV,KaHV
and Ku VV by discussing waveform changes in the context
of the different surface types. Unfortunately the sidelobes for
Ku HV are almost completely obscured by the leakage signal
banding (that dominates the noise floor), with little change
in signal power observed before and after deconvolution
precluding a more detailed analysis of Ku HV.

The leading edge width, LEW, was defined in Section V-A
as the range difference between the surface return peak, SRP,
and the window departure point, WDP. The LEW can be used
to quantify the clarity of the surface return, with larger LEW
values indicating a less ambiguous surface return.

1) KA VV
The deconvolution results for Ka VV are presented in Table 3.
For the 20200124 lead transect data, deconvolution led to a
LEW relative change of 120%. For the 20200116 Northern
transect data, deconvolution resulted in a LEW relative
change of 80%, while for the 20191114 Northern transect
data, the LEW relative change was 75%.

When comparing the 20200116 data to the 20200124 data
(Table 4), we see that despite their similar deconvolution
performance (as described by a SFDR decrease of 1 dB),
the LEW relative change value is actually 40% lower.
Conversely, when comparing the 20191114 data to the
20200116 data, we see that despite having reduced decon-
volution performance (as described by a SFDR decrease of
8 dB), the LEW relative change values are only 5% lower.

To understand these results, we must examine the ideal
point target response in Figures 9, 11, and 13.We observe that

before deconvolution, the window departure point (WDP)
for the 20200124, 20200116, and 20191114 data all occur
on steep parts of the main lobe, with sidelobes decreasing
in power from the MSS towards the WDP. The radar
returns from within the snowpack for the 20200116 and
20191114 data alter the sidelobe characteristics and introduce
additional phase noise to the SRP leading edge. This
causes the post-deconvolution WDP (for the 20200116 and
20191114 data) to occur on a steeper part of the leading edge
than the 20200124 data, explaining the observed reduction
in the LEW relative change values. For the 20191114 data,
the MSS after deconvolution is actually a residual sidelobe,
but this is located far enough away from the main lobe
to not overly influence the WDP. This explains the similar
LEW relative change values despite the observed decrease in
deconvolution performance.

These results also provide quantitative support for what we
observed in the echograms; Due to the Ka VV downward-
slanting sidelobe properties (Section VI-A), the surface
returns were prominent and easily observable even before
deconvolution, so the effect of deconvolution on Ka VV
surface return clarity is modest.

2) KA HV
The deconvolution results for Ka HV are also presented
in Table 3. For the 20200124 lead transect data, decon-
volution produced a LEW relative change of 33%. For
the 20200116 Northern transect data, deconvolution led to a
LEW relative change of 100%,while for the 20191114North-
ern transect data, deconvolution yielded a LEW relative
change of 67%.

Using the 20200124 Lead transect data as our reference
dataset, we observe from Table 4 that the LEW relative
change values are 67% higher for the 20200116 data and 33%
higher for the 20191114 data; meaning that the LEW relative
change value for the 20191114 data is 33% lower than that
for the 20200116 data.

For Ka HV, both the 20200116 and 20191114 data
exhibited greater LEW values, 67% and 33%, respectively,
compared to the 20200124 data. Initially, this may appear
counterintuitive, but it is a consequence of the differing
sidelobe characteristics between the Northern transect and
Lead transect data, as discussed in Section VI-A. The Ka
HV 20200124 Lead transect data actually has similarities
to the Ka VV 20200124 Lead transect data. In both
cases, the SRP is the dominant return, with sidelobes that
decrease in power from the MSS to the WDP. However,
for the 20200116 and 20191114 Ka HV data, sidelobes
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originating from strong snowpack returns combine with
sidelobes from the less prominent SRP. This combination
results in composite sidelobes that increase in power from
the noise floor to the WDP, resulting in WDPs (and MSSs)
that are closer to the SRP (i.e., on steeper parts of the main
lobe) compared to the 20200124 data. After deconvolution,
the WDPs for the 20200124 and 20200116 data are at the
noise floor, while for the 20191114 data, the WDP remains
on the steep part of the main lobe.

In summary, the composite sidelobes in the 20200116 and
20191114 data result in both upward-sloping sidelobes and
higher power WDPs before deconvolution. This produces
both the greater LEW relative change values and the
observed large improvements in surface return clarity after
deconvolution.

3) KU VV
The deconvolution results for Ku VV are displayed in
Table 3. For the 20200124 lead transect data, deconvolu-
tion led to a 250% LEW relative change. Similarly, for
the 20200116 Northern transect data, deconvolution also
resulted in a 250% LEW relative change. However, for
the 20191114 Northern transect data, deconvolution resulted
in a 144% LEW relative change.

Using the 20200124 lead transect data as our reference
dataset, we observe from Table 4 that the LEW relative
change values remain the same for the 20200116 data but are
106% lower for the 20191114 data; meaning that the LEW
relative change for the 20191114 data is also 106% lower than
the 20200116 data.

In Table 3, we noted significantly higher LEW relative
change values for Ku VV compared to Ka VV or Ka HV.
This can be attributed to the prominent, higher-power Ku
VV returns having more of the tapered (shallower) parts of
their leading edges remaining above the noise floor after
deconvolution, as shown by the point target response in
Figures 9, 11, and 13. In Ku VV data, wide sidelobes are
observed that increase in power towards the WDP (similar to
the Ka HV case) whereas Ka VV had a dip in power towards
the WDP. After deconvolution, the WDP for Ku VV occurs
on the tapered parts of the main lobe, which are much further
from the SRP than for the Ka-band data, thus explaining the
significantly larger LEW relative change values.

From Table 3 and Table 4, we also note that, despite expe-
riencing a reduction in SFDR value of −3 dB (20200116-
20200124) and having different surface types, both the
20200116 and 20200124 Ku VV data share the same LEW
relative change value of 250%. For both the 20200116 and
20200124 data, the SRPs are the dominant returns, even
though there are strong returns from within the snowpack for
the 20200116 data. The dominance of the 20200116 SRP,
along with its high prominence, minimizes the influence of
the snowpack returns on the SRP leading edge. Consequently,
both the 20200124 and 20200116 data exhibit similar
sidelobe characteristics before deconvolution, resulting in
identical LEW values before and after deconvolution, and

thus the same relative change values (see Table 3). For the
20191114 data the influence of the higher residual sidelobes
(due to decreased deconvolution performance) results in a
WDP that, although still located on the tapered parts of
the main lobe, is now closer to the SRP: explaining the
observed LEW value reduction (relative to the 20200116 and
20200124 data).

VII. CONCLUSION AND FUTURE WORK
This paper presented a practical approach to FMCW radar
deconvolution, using data from the surface-based dual-
frequency Ku- and Ka-band fully polarimetric radar (KuKa);
collected during the 2019/2020 MOSAiC expedition.

An overview of the operating principles of FMCW radar,
and the nonlinearities that cause sidelobes, were given in
the background section. We then outlined the deployment
of KuKa at MOSAiC, described the need for calibration,
and introduced the lead transects as a method to obtain
the KuKa impulse response. In the methodology section,
we gave a detailed description of the steps needed to convert
the KuKa impulse response into deconvolution waveforms,
and the required methodology to apply the deconvolution
waveforms to the whole KuKa MOSAiC dataset. In the
results section, we introduced two metrics: the Spurious
Free Dynamic Range (SFDR), to quantify how effective
deconvolution is in suppressing sidelobes; and the Leading
Edge Width (LEW), to quantify how effective deconvolution
is in improving surface return clarity. We then presented
results from KuKa stare mode transects over two different
surface types, and three different offset dates: a zero-time
offset (20200124) Lead transect dataset; and two Northern
transect datasets over Second Year Ice (SYI): one with a
short 8 day offset (20200116), and the other with a long
71 day offset (20191114). In the discussion section we used
qualitative descriptions of example echograms, together with
the SFDR and LEW, to describe: the effect of surface type
on both the radar return and sidelobe characteristics, how
deconvolution effectiveness changes with time, and finally
the impact of deconvolution on surface return clarity.

We quantified the effects of deconvolution using sample
waveforms from Ka VV, Ka HV and Ku VV data, but
not for Ku HV due to the obscuring effect of the leakage
signal on the sidelobes. The application of deconvolution
waveforms resulted in an almost 30 dB improvement in
the SFDR: the maximum improvement for Ka VV, and
Ku VV, was 28 dB and 27 dB, respectively, for the
20200124 data; with a maximum improvement of 16 dB
seen for the 20200116 Ka HV data. The SFDR results
demonstrated that deconvolution performance degrades with
offset time, a maximum degradation of −3 dB (Ku VV) was
observed over the 8 days between 20200124 and 20200116;
and a maximum degradation of −15 dB (Ku VV) over
the 71 days, between 20200124 and 20191114; with an
associated decline in deconvolution performance of 8 dB for
Ka VV and Ka HV, and 12 dB for Ku VV observed over the
two months from 20200116 to 20191114.
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The LEW results showed that the influence of deconvo-
lution on surface return clarity depends on a combination
of factors such as: the shape of the sidelobes before
deconvolution, the prominence of the surface return, the
influence of snowpack returns, as well as the time-dependent
reduction in deconvolution effectiveness. Deconvolution was
shown to improve the surface return clarity for all data, but
specifically for the Ka HV 20200116 and 20191114 data;
where dominant returns from within the snowpack, produced
sidelobes that sloped up to the main lobe from the noise floor,
obscuring the surface return.

There is ample scope for future work, we have seen
that if nonlinearities can be detected, i.e. if the sidelobes
are not obscured by the leakage signal, then they can
be successfully characterized and deconvolution waveforms
created. The issue of leakage signal banding dominating
the noise floor in Ku-band data, particularly for Ku HV
datasets, needs to be addressed. Future modifications to the
KuKa system hardware should focus on reducing the leakage
signal, thereby improving the SNR of Ku-band data, allowing
nonlinearities to be characterized. This improvement will aid
in identifying low power returns (such as from low-density,
fresh snow), and yield improved comparisons between Ka
HV and Ku HV data.

As discussed in Section III-D, the metal plate used at
MOSAiC proved to be an unsuitable calibration target
for characterizing FMCW nonlinearities. In future KuKa
campaigns a larger metal plate/sheet is required, with
dimensions sufficient to contain the first Fresnel zone,
beam-limited footprint, and pulse-limited footprint (at both
Ka-band and Ku-band frequencies). From Section III-D,
the maximum footprint size, at both Ka-band and Ku-band,
corresponds to the pulse-limited footprint; the diameters of
which are FPulse = 55 cm for Ka-band, and FPulse = 71 cm
for Ku-band. In stare mode, there is also a 70 cm lateral
separation between the Ka-band and Ku-band antennas; with
an associated transmit-receive antenna spacing of 7.7 cm
for Ka-band and 13.4 cm for Ku-band. Based upon these
dimensions, any future metal plate should be at least 144 ×

77 cm in size, in order to simultaneously accommodate both
the Ka-band and Ku-band pulse-limited footprints. These
dimensions are similar to standard US/Canadian door size of
203×91 cm, therefore a thin piece of sheetmetal fixed to a flat
standard door could provide a suitable bespoke calibration
target.

The new calibration target design would provide radar
returns free from off-nadir returns, and instead dominated
by strong phase-coherent returns from within the first
Fresnel zone; with an angular dependence of backscatter
approaching that of a Dirac delta function. These strong
coherent returns would minimize the need for averaging,
quickly providing a highly accurate impulse response that can
be used to generate high quality deconvolution waveforms.
The effect of range on deconvolution effectiveness could
then be explored systematically by raising the KuKa radar
to different heights above the calibration target; and detailed

investigation on the subtle temporal changes in nonlinearities
would be possible through analysis of the changing impulse
response throughout a campaign. Both experiments leading
to enhanced understanding on the factors influencing the
nonlinearities and further informing calibration strategies for
future KuKa deployments.

In this paper, we also demonstrated that nilas can serve as
a natural calibration target for obtaining the KuKa impulse
response, when a suitable artificial calibration target is
unavailable. Further research, under controlled conditions,
is required to understand the effects of frost flowers on
radar backscatter at normal incidence for Ka-band and Ku-
band frequencies. Experiments, such as those conducted at
the Sea ice mesocosm facility (SERF) [78], [79], could
provide valuable insights into the impact of frost flowers
at nadir scattering geometries. These experiments should
involve imaging each KuKa footprint with both a camera
and a Terrestrial Laser Scanning (TLS) system, to accurately
characterize surface roughness. The combination of large
metal sheet calibrations and frost flower experiments would
allow for detailed investigations of the effects of frost
flowers, and radar-scale roughness, on amplitude and phase
nonlinearities across the entire FMCW frequency sweep.

During field campaigns, such as MOSAiC, regular cal-
ibrations are required to counteract the effects of rough
transects and temperature cycling. To maintain optimal
deconvolution effectiveness, and effective suppression of
sidelobes, calibration should occur at least on a weekly
timescale, and ideally before each KuKa transect. Calibration
is also required after periods of inactivity and storage, due
to more subtle temperature cycling effects, and the gradual
aging of KuKa RF components.

In summary, we have outlined a practical approach to
FMCW deconvolution in the Sea ice domain; the techniques
outlined in this paper are equally applicable to similar
instruments operating in other fields of Earth Science and
beyond; with the increased usage of low-cost FMCW radar
on novel remote sensing platforms, such as drones, a better
understanding of FMCW nonlinearities, and how to correct
for them, will remain of paramount importance in the future.
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