
Citation: Singh, A.; Bhambhu, Y.;

Buckchash, H.; Gupta, D.K.; Prasad,

D.K. Latent Graph Attention for

Spatial Context in Light-

Weight Networks: Multi-Domain

Applications in Visual Perception

Tasks. Appl. Sci. 2024, 14, 10677.

https://doi.org/10.3390/

app142210677

Academic Editor: Pedro Couto

Received: 17 September 2024

Revised: 24 October 2024

Accepted: 25 October 2024

Published: 19 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Latent Graph Attention for Spatial Context in Light-Weight
Networks: Multi-Domain Applications in Visual
Perception Tasks
Ayush Singh 1, Yash Bhambhu 1, Himanshu Buckchash 2,* , Deepak K. Gupta 1,2 and Dilip K. Prasad 2

1 Indian Institute of Technology, ISM Dhanbad, Jharkhand 826004, India; ayush.singh.222k@gmail.com (A.S.);
yashbhambhu.18je0949@am.iitism.ac.in (Y.B.); guptadeepak2806@gmail.com (D.K.G.)

2 Department of Computer Science, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
dilip.parsad@uit.no

* Correspondence: himanshu.buckchash@uit.no

Abstract: Global contexts in images are quite valuable in image-to-image translation problems.
Conventional attention-based and graph-based models capture the global context to a large extent;
however, these are computationally expensive. Moreover, existing approaches are limited to only
learning the pairwise semantic relation between any two points in the image. In this paper, we
present Latent Graph Attention (LGA), a computationally inexpensive (linear to the number of nodes)
and stable modular framework for incorporating the global context in existing architectures. This
framework particularly empowers small-scale architectures to achieve performance closer to that of
large architectures, making the light-weight architectures more useful for edge devices with lower
compute power and lower energy needs. LGA propagates information spatially using a network
of locally connected graphs, thereby facilitating the construction of a semantically coherent relation
between any two spatially distant points that also takes into account the influence of the intermediate
pixels. Moreover, the depth of the graph network can be used to adapt the extent of contextual
spread to the target dataset, thereby able to explicitly control the added computational cost. To
enhance the learning mechanism of LGA, we also introduce a novel contrastive loss term that helps
our LGA module to couple well with the original architecture at the expense of minimal additional
computational load. We show that incorporating LGA improves performance in three challenging
applications, namely transparent object segmentation, image restoration for dehazing and optical
flow estimation.

Keywords: graph attention; light-weight network; convolutional neural network; transparent object
segmentation; neural networks; optical flow estimation; attention; deep learning

1. Introduction

Recent advancements related to convolutional neural networks (CNNs) have led to
significant advancements in image-to-image translation problems. Some popular examples
include edge region-based segmentation [1] and dehazing with dark channel priors [2],
among others. This success can be attributed to the ability of CNNs to extract deep and
complex features from images without needing any hand-crafted features.

The underlying mechanism of CNNs is that they reduce the spatial information
contained in images by gradually down-sampling to a set of feature maps. For this purpose,
CNNs employ convolutional kernels that convolve pixels only locally, without taking the
whole global context into consideration. This works well for conventional downstream
tasks such as classification. However, the lack of global context limits their performance on
challenging image-to-image translation problems such as the segmentation of transparent
objects, dehazing, and optical flow estimation. In transparent objects, although the edges
may bear a clear signature of the object, there are strong features of other background

Appl. Sci. 2024, 14, 10677. https://doi.org/10.3390/app142210677 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app142210677
https://doi.org/10.3390/app142210677
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3679-3498
https://orcid.org/0000-0002-3693-6973
https://doi.org/10.3390/app142210677
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app142210677?type=check_update&version=1

Appl. Sci. 2024, 14, 10677 2 of 16

objects that adversely affect the segmentation process. To tackle this issue, it is desirable
that the information from the edges be transferred to other parts of the object as well. In
dehazing, shapes and edges of the object need to be restored from original images where
hazing fuzzifies these features; information about the non-local context should help in
this task.

Several previous works have been reported on the incorporation of the global spa-
tial context into the learning process. Some examples include layer-wise average feature
augmentation [3]; the use of mixtures of conditional random fields and CNNs [4]; and the
construction of encoder–decoder-style, fully convolutional networks that use deconvolu-
tions to create output, building upon U-Net [5]. Two popular approaches for introducing
global context without compromising localization accuracy are the use of atrous or dilated
convolutions [6] and transformer networks [7]. Although both approaches have been
successful, they are accompanied by significant increases in the number of parameters
and the associated FLOPs. Alternatively, criss-cross attention (referred to as CCNet) [8]
represents a light-weight solution to model the global context in the learning process. It
collects contextual information from vertical and horizontal criss-cross channels and applies
an affinity operation in the latent space. Compared to other approaches, this method is
computationally efficient, with a time complexity of O(N1.5), where N denotes the size of
the feature map.

Figure 1 presents the segmentation results obtained using CCNet vs. LGA. Interest-
ingly, the ability to capture the global context plays an adverse role in this case. CCNet
relies on the semantic relation between any two distant points; however, it does not take
into account the characteristics of the intermediate points between them. Clearly, as seen in
Figure 1, parts of other objects being segmented falsely is our object of interest. To circum-
vent this issue, we propose an alternate scheme that spatially constructs chained attention,
thereby taking into account the information of the entire route to compute the relation
between any two distant pixels. This is achieved through the use of locally connected
graph networks constructed over the latent feature maps, and these gradually propagate
information to the distant neighbors of any point through a stacked set of layers used in
the graph network. Our approach is adaptive and provides the flexibility of choosing the
desired spatial extent to be captured. Furthermore, our approach is computationally faster
and provides a speedup in

√
N over CCNet.

Input CCNet LGA Ground truth

Figure 1. Segmentation results obtained for a transparent object using CCNet [8] and our method
(LGA). Note that due to the lack of semantic coherence between far-away points, CCNet produces
partially incorrect segmentation.

Contributions. The main contributions of this paper can be summarized as follows:

• We present Latent Graph Attention (LGA), a graph network-based module, to incor-
porate the global context in existing CNN architectures.

• LGA is computationally inexpensive, and it provides a speedup of
√

N over previous
methods. The time complexity of LGA scales linearly with the number of connected
nodes in the graph.

• For stable and responsive learning, we introduce an LGA-specific contrastive loss
term that amplifies the discrimination between the foreground and background and,
accordingly, helps to learn the suitable weights for each edge of the graph.

Appl. Sci. 2024, 14, 10677 3 of 16

• We experimentally demonstrate that our LGA module, when plugged into a small-
scale architecture, helps to boost performance with only minimal additional computa-
tional load. This empowers the development of efficient and compact architectures for
edge devices.

• We experimentally demonstrate the efficacy of LGA over a variety of hard image-
to-image translation tasks, including the segmentation of transparent objects, image
dehazing, and optical flow estimation.

2. Related Work

Context is a useful prior for understanding object–part relations with respect to each
other and the background. We divide the literature review into three subsections based
on the context aggregation technique, light-weight CNN architecture, and graph-based
method for attention in CNNs.

Context aggregation. Spatial context provides valuable information for many image-
to-image translation tasks [9]. Context aggregation is a recurrent theme that appears in
different types of convolution strategies [6], such as pooling variations, attention mecha-
nisms [8], channel operations, and architectural search [10]. Dilated convolution, multi-scale
feature generation, and large-kernel approaches leverage contextual information based on
modulation of the receptive field to extract information from non-local regions [6]. Jin et
al. proposed a generalized model based on a physics-inspired network [11]. Architecture
search approaches such as Auto-DeepLab, Global2Local, and DCNAS automate context
modeling by searching multiple paths and channels at the cell or network level [12]. Unlike
these methods, attention has served as a very versatile context aggregation mechanism,
working at various scales, including local, non-local [9], global, and cross or self-attention [8]
scales. Recent trends have shifted from variants of attention in CNNs to full attention in
transformers [13]. However, this push towards the use of heavier networks for context
aggregation has come at the cost of network size and resources [8]. These challenges
demand the confluence of high-performing attention traits in small-size networks.

Light-weight architectures. Architectural buoyancy in CNNs is generally achieved
through adaptations in convolutional operations such as grouping or reduction in memory
access cost in small-scale architectures [14]. Zhang et al. used point-wise group convo-
lutions and channel shuffling for cross-channel information exchange to greatly reduce
computation cost while maintaining accuracy [15]. Huang et al. proposed light-weight
attention in CNNs by aggregating the contextual information of pixels on orthogonal paths,
as well as for the full image for every pixel [8]. Kong et al. proposed mutual knowledge
distillation strategies for information flow between teacher–student networks for optical
flow estimation [16]. Of these three method, an attention approach like the criss-cross
method [8] is easily adaptable, highly modular and task-agnostic [8]. Criss-cross attention
(or CCNet) is one of the best light-weight attention modules; however, it employs spatial
position-agnostic correlation, which does not work well when sequential context propaga-
tion is required. Graph-based methods provide control over these pathways in devising
chained attention mechanisms [17].

Graph-based networks. Despite developments in graph-based solutions like the
generalization of CNNs as graphs [17], the use of graph attention networks for molecular
substructures in drug discovery using feed-forward layer-based simple graph attention [18],
and the use of sparse graph attention in scene graph generation [19], graph attention has
not been explored from a chained attention perspective. Previously, Sun et al. presented
an rgb-d-based dataset for transparent object segmentation [20]. Yu et al. presented
polarization-based transparent object segmentation [21]. Banerjee et al. [22], proposed an
end-to-end graph CNN method for transparent object segmentation by forming undirected
edges between any two adjacent super-pixels. However, unlike directed graphs, undirected
graphs are unable to associate two far-away nodes to the same structural context. Moreover,
the adjacency matrix generation reported in [22] for an image resulting in N nodes bears a
time complexity of N2. This shows that achieving global context through the use of graphs

Appl. Sci. 2024, 14, 10677 4 of 16

is associated with high time complexity. To provide a more local context, Lu et al. [17]
incorporated graphs in a fully connected network (FCN) for better segmentation. They
considered FCN features located a distance of l away from each other as graph nodes.
However, in the case of a context, their approach incurs higher space-time complexity.

We present latent graph attention (LGA), which overcomes the challenges outlined
above. LGA employs outward directionality in an adjacency matrix through which it
propagates information to its neighboring nodes. When LGA layers are stacked together
multiple times, the information reaches outward from each node to the distant nodes,
thereby providing a non-local spatial context.

3. The Proposed Approach

In this section, we present the concept of LGA and discuss its stability and its modular
adoption across architectures.

3.1. Latent Graph Attention (LGA)

LGA is a computationally inexpensive graph-based attention network designed to
improve the contextual information for any given image. It spatially constructs chained
attention through the use of multiple layers of the graph, thereby taking into account
the information of the entire route when computing the relation between two distant
pixels in the latent space. LGA directly operates on the latent feature map and produces
additional attention maps, which can directly be concatenated with the original feature map.
Due to its simplistic nature, LGA can be incorporated with minimal effort into existing
architectures. Figure 2 shows how LGA can be plugged into some popular yet challenging
image-to-image translation tasks.

Input

LGA

Create local contexts – connect them to
construct global contexts

Computationally lighter, better
convergent than other graph solutions

Easily adaptable into variety of
frameworks and problems

Latent Graph Attention (LGA)

DecoderEncoder

Example application 1: Segmentation of transparent objects

UNet LGA

Example application 2: Image restoration for dehazing

Example application 3: Optical flow estimation

Feature
pyramids LGA

Pyramid
convolution

Flow
extractor

LGA

SSIM, PSNR

mIoU

Figure 2. We present the novel concept of latent graph attention (LGA), which can be easily integrated
in wide variety of applications and architectures. Three challenging and open problems are considered
as example applications of LGA in this article.

Architecture of LGA. Figure 3 presents a schematic overview of the process of our
LGA module. As input, it takes a feature map (Fin ∈ RH×W×C, where H, W and C denote
the height, width and number of channels, respectively). It constructs a graph using
this feature map (as shown in Figure 4). Every spatial feature on the feature map, with
dimensions of 1 × 1 × C, is considered a node of the graph, leading to N = HW nodes in
the entire graph, as shown in Figure 4.

Appl. Sci. 2024, 14, 10677 5 of 16

LGAEncoder Decoder

Conv2D

F
in

Feature
map

Edge
map

Adjacency
matrix, A*

Xi+1

Xi reshaped

F
out

Figure 3. Operations performed by the LGA layer are shown in the expanded view. Starting with the
encoder’s feature maps (Fin), edge maps are created using 2D convolution. The dotted arrow between
the edge map and adjacency matrix implies that this transfer happens only once, even if the LGA layer
is repeated multiple times. Next, the normalized adjacency matrix is used to calculate the output
(Xi+1) for the ith LGA layer. The LGA contrastive loss (LLGA) is computed between the output of the
LGA module (Fout) and the ground truth. Xi+1 becomes the input to the i + 1th LGA layer.

Size of the arrowhead shows the
strength of information
propagation along different
directions.
Such connectivity is made by
each of the H✕W nodes of Xi
(and its adjoining neighbors), and
gets weighted by the intensity at
that node in the graph.

H

C

W

HxW nodes of
size 1✕1✕C each

9 learnable kernels (one for each directed edge connectivity) of size 1✕1✕C each

Input Ground
truth

with LGA

Consider local graph of
four adjacent nodes (placed
in spatial context to each
other). Strong information
propagation in both
directions builds the larger
context (see gray links) in
the subsequent LGA layers.no LGA

RESULTS

Figure 4. The top row shows the conversion of feature map Xi to graph nodes. Each cell of Xi in
an H × W plane (at all depths) is considered as one node in the graph. The graph information is
extracted by 9 kernels—1 for each direction. Edge maps (in top row) correspond to the input, gt, and
predicted triplet (bottom left). The middle-bottom figure shows how the node intensities represent
the edge weights. The bottom-right figure shows how connectivity strength information propagates
through recursive LGA layers.

Learning the weights of the graph edges. Edges should be constructed in the graph
depending on the directions in which a strong spatial relation is to be learned. We construct
edges only between immediate spatial neighbors based on a 8-shaped connectivity pattern
(see Figure 4). This leads to nine connections per node—one self-connection and eight with
neighboring nodes. The weights of the edges are learnable, and each of these weights is
generated using a one-layered CNN comprising a 1 × 1 convolution layer. Since we have
nine edges, there are a total of nine such mini-networks that learn the edges.

Construction of adjacency matrix. The learned edges are used to construct an adjacency
matrix (A). It is an N × N matrix, where Aij ∈ A denotes the weight of the edge connecting

Appl. Sci. 2024, 14, 10677 6 of 16

the ith node with the jth node in the graph. For the sake of convergence, A is normalized
to form A∗. This normalization ensures that the feature vectors of all the nodes remain
within a unit polysphere and are of comparable strengths with respect to each other. We
define A∗ = AD−1, where Dij = ∑j Aij + ϵ. Here, ϵ is added to avoid zero division. The
matrix (A) is normalized based on the weights of the outgoing edges, since it provides
better results and stability during the training process.

Message passing. With this construction, LGA facilitates message passing between
immediate neighbors in the latent space. To propagate information farther away, multiple
such graphs are stacked to build a graph network that constitutes the LGA module. The
information propagation at each LGA layer (Figure 3) can be stated as

Xi+1 = f (Xi A∗). (1)

where Xi and Xi+1 denote the input and output of the ith layer, respectively (X0 indicates
Fin, and f is a learnable function used to change the dimensions of the feature vector of
each node).

Learning in LGA. The core of LGA relies on constructing a representative directed
graph. Learning in this graph is guided by the direct loss (LLGA) on the output feature map
(Fout). The main goal of LGA is to capture neighboring context via message passing such
that nodes corresponding to the same information have a similar distribution. Each node
in the graph belongs to a particular spatial location in the image. We assume that each
node corresponds to a particular patch in the GT (XGT). This patch is calculated either via
receptive field estimation of each node or by dividing the XGT in N equal patches, where
every node corresponds to a unique patch. Then, we calculate the similarity between these
patches. For example, for the segmentation task, we calculate whether the patches are of
the same classes. For image restoration tasks such as image dehazing, we calculate the
structural similarity index measure (SSIM) between the patches; if the SSIM is greater than
a predefined threshold, the patches are considered similar and not otherwise.

The nodes corresponding to similar patches are likely to have similar distributions.
LLGA penalizes Fout if nodes belonging to similar patches have different distributions
or nodes corresponding to non-similar patches have similar distributions. This loss is
defined such that LGA learns to predict richer representations to avoid learning an identity
mapping between Fin and Fout.

LGA contrastive loss. This novel loss term helps in the learning of our LGA module.
Mathematically, LGA contrastive loss can be stated as

LLGA = EPi ,Pj

(
Cij log

(
V2

ij

Uij
+ 1

)
+ C̄ij log

(
Uij

V2
ij
+ 1

))
, (2)

Vij = D(Fout
i , Fout

j) and Uij = D(Fin
i , Fin

j), where Fin and Fout denote the input and
output feature maps for the LGA module, respectively, and D(·) is a divergence function,
such as KL-divergence or mean square error. The variables C and C̄ are Boolean, and their
values depend on the similarity between neighboring nodes in the graph. For example,
for nodes i and j, we look at the GT labels of patches containing them. Furthermore, we
aggregate the labels to assign a single label to the node. For example, one aggregate measure
could be to assign the majority class label to the node. Let Agg(·) denote the aggregate
function and i and j denote two nodes from the graph; then, C = 1 if Agg(i) = Agg(j) and
0 otherwise.

Next, we present the interpretation and consequence of using this loss function. We
note that Uij is determined by the input to the LGA module and does not update as LGA
learns. LGA essentially learns by tweaking the value of Vij, which is determined by the
output of LGA. Note that a larger diversity value Dij indicates larger differences in the
distributions of nodes i and j. With these points, we now assess how the loss function
behaves and influences the learning of LGA in different situations. For the case when

Appl. Sci. 2024, 14, 10677 7 of 16

two nodes have a similar distribution, Vij needs to be minimized, implying that the two
nodes have similar output distributions as well. For cases where the input distributions of
the two nodes are very different, Vij is learned to be maximized, thereby setting the two
output distributions apart. However, using only Vij is not useful, since the encoder also
learns to generate better input feature maps. Even if the LGA does not improve, the feature
map produces a Vij equivalent to Uij, the overall loss decrease, and it looks as if LGA is
learning. Hence, we also incorporate Uij in the loss function. More details can be found in
the Supplementary Materials.

3.2. Other Features of LGA

In Section 3.1, we discussed how the loss function of LGA is designed to not only
help LGA learn but also to influence learning in the preceding or succeeding networks. In
Section 4.1, we discussed how LGA can be easily incorporated in different architectures
in a modular fashion. There are two other major benefits of LGA, namely efficiency and
scalability, in comparison with globally connected graph and attention models.

Efficiency. Constructing a globally connected graph, i.e., a graph where any node can
be connected to any other node, is a computationally demanding task. For our LGA, we
need only 9 × N different 1 × 1 convolutional layers, where N is the number of nodes. This
solution is more space- and time-efficient than most other approaches. LGA needs only
O(N) space for to store edge weights, whereas the spatial complexity is mostly of the order
of O(N2) in attention or globally connected graph models. CCNet attention [8] has a spatial
complexity of O(N1.5), which is still higher than that of our model. With respect to time
complexity, most attention or globally connected graph models have a complexity of the
order of O(NC2 + N2C), where NC2 corresponds to the application of convolution to the
feature map for channel reduction and N2C represent information propagation. The term
NC2 can be reduced by a significant amount by applying depth-wise or group convolution.
Hence, the best optimized complexity for such models is O(N2C). In the case of CCNet, the
complexity is O(NC2 + N1.5C), and the optimized complexity is O(N1.5C). On the other
hand for our network, the optimized time complexity is O(NC) because our module’s
layer takes only O(NC) for information propagation. As there are four layers in our LGA,
the complexity is O(4NC), which is

√
N times smaller than that of the best light-weight

attention model (CCNet). We also provide the derivation of the space-time complexity of
LGA vs. CCNet in the Supplemental Materials.

Scalability. Here, we use a 1 × 1 convolutional layer, assuming that a local edge
(i.e., edge between spatially close nodes) can be constructed using the information of the
node itself. However, incorporating information of a larger context is possible simply by
using convolutional layers of larger sizes, for example, kernels with dimensions of 2 × 2
or higher. Similarly, although we used only four LGA layers, this can be easily extended
to more layers such that a larger scale of global context can be included. In comparison,
it is difficult to incorporate scalability and correlate features that are spatially far apart in
attention models.

Effective scene context capture. As our LGA module propagates information between
two nodes by passing information via neighboring nodes, it gradually captures the context
of surrounding nodes, i.e., non-local context, for information propagation. Our LGA
module also automatically takes the distance between nodes into consideration, since
more information from a node can reach its neighbor earlier and more effectively, thereby
implying that that the nodes closer to each other are more likely to have a similar structure
when LGA is included.

4. Experiments

In this section, we present the details of the training process, the management of
training data, the results of all experiments, and additional ablation studies for the following
three tasks: dehazing, segmentation, and optical flow estimation.

Appl. Sci. 2024, 14, 10677 8 of 16

4.1. Training Process

We converted all the input images and ground truth for all segmentations to di-
mensions of 512 × 512. The optimizer used in our training process was Adam [23]. For
segmentation, we used various encoders, such as squeezenet, etc., adding our own decoder
network. We added the LGA layer after the encoder and used the encoder output as
the LGA input. For segmentation experiments, an initial learning rate of 10−4 was used,
and after 30 epochs, we reduced it to 10−5. We trained the models for 40 epochs. For
dehazing, we used the approach reported in [24] as the base method. We reduced its size
and FLOPs by replacing the standard convolutional layer with a group convolution layer.
It is represented as BPPNet-reduced in this work. LGA was added after the stacked UNet
layer proposed in [24]. The learning rate and decay mechanism were chosen to be similar to
those used to train a generator, as described in [24]. The dataset used for segmentation was
Trans10Kv2 [25]. This dataset is a modified version of Trans10k [25] with more fine-tuned
classes i.e., 12. For dehazing, we used the I-Haze dataset [7]. For optical flow estimation,
we used the ARFlow [26] architecture as the base method. We added the LGA layer after
the feature extraction layer. We only applied LGA to a single feature map with a spatial
size of 28 × 24. Additional details can be found in the Supplemental Materials .

4.2. Training Data

In this section, we describe the datasets used in this paper, along with their division
into training, validation, and test sets. For the segmentation task, we used the Trans10K-v2
dataset, which is based on the original Trans10K dataset. It consists of 5000 images for
training, 1000 images for validation, and 4428 images for testing. For the dehazing task, we
utilized the I-Haze dataset, which contains 25 indoor hazy images (size 2833 × 4657 pixels)
for training. It includes 5 hazy images for validation, each paired with its corresponding
ground-truth image. We used the validation data as the test set in our experiments. For the
optical flow task, we used the MPI Sintel benchmark. The MPI (Max Planck Institute) Sintel
dataset is designed for optical flow evaluation and contains 1064 synthesized stereo images
with ground-truth disparity data. Sintel is derived from the open-source 3D animated short
film Sintel. The dataset includes 23 different scenes. The stereo images are RGB, while
the disparity maps are grayscale. Both types of images have a resolution of 1024 × 436
pixels and 8 bits per channel. The test data are hosted on a server, and the ground truth is
not publicly available. To obtain final metrics, we had to submit our results to the server
for evaluation.

4.3. Segmentation

We compared LGA-incorporated squeeze and shuffle with previous challenging meth-
ods. Both of the base models can operate in real time and are computationally efficient.
However, there performance is not at par with that of bulkier and/or computationally more
intensive models (see Table 1 and Figure 5). The models including LGA outperformed all
the efficient and real-time architectures in terms of performance. Shuffle with LGA also has
the smallest number of parameters. Furthermore, both our models are computationally less
expensive, but their performance is at par with that of lager models. In terms of comparison
with larger models that comprise millions of parameters and need billions of FLOPs, our
models are less demanding and perform better than PSPNet in terms of mIoU, although
they are marginally inferior in terms of SSIM. DeepLab performed the best; however, this
model is relatively very large. Nonetheless, it is evident that for real-time or compact
application scenarios, LGA provides an efficient and performance-effective solution.

Appl. Sci. 2024, 14, 10677 9 of 16

INPUT ESNet LEDNet ViT PSPNet DeepLabV3 Squeeze Ground
with LGA truth

Figure 5. Examples of segmentation results of previous methods. Eleven classes of objects are
color-coded.

Table 1. Segmentation results: quantitative comparison of various models.

MODEL

Performance (↑) Efficiency (↓)

mIoU
(%)

Accuracy
(%)

Parameters
(×106)

FLOPS
(×109)

Efficient/real-time small architectures

FPENet [27] 10.1 70.3 0.5 0.8
ESPNet-v2 [28] 12.3 73.0 3.5 0.8

ENet [29] 23.4 78.2 0.4 2.1
DABNet [30] 15.3 77.4 0.8 5.2
LEDNet [5] 30.3 72.9 1.1 19.6
ICNet [31] 23.4 78.2 7.8 10.6

MobileNet-v2 [32] 17.6 77.6 3.3 29.3
ESNet [33] 43.6 45.5 1.7 27.3

LGA incorporation into small architectures

Shuffle [15] with LGA 44.5 78.7 0.4 3.5
Squeeze [34] with LGA 44.6 79.6 1.1 13.5

Large architectures

ViT [13] 29.6 67.8 171.6 176.7
PSPNet (Res34) [10] 43.2 82.8 21.5 19.3
PSPNet (Res50) [10] 43.2 83.2 24.4 24.0

DeepLab [6] 59.1 89.6 39.6 328.0

4.4. Dehazing

Most dehazing models are quite large in size and need a large number of FLOPs. We
compared several dehazing methods with the BPPNet’s reduced version with and without
LGA (refer to the ablation study in Table 7). The quantitative results presented in Table 2
show that the model with LGA performed the best in terms of SSIM. It also performed better
than all the other methods in terms of PSNR. The significant reduction in computational cost
of models with LGA was already established in Table 7. Therefore, it is evident that LGA
also supports computationally light-weight and high-performance models for dehazing.
The qualitative results of dehazing shown in Figure 6 also illustrate the superiority of image
restoration achieved using the LGA-incorporated reduced BPPNet model.

Appl. Sci. 2024, 14, 10677 10 of 16

Table 2. Comparison of performance of different methods with our adaptation (BPPNet + LGA) in
the dehazing task on the I-HAZE [7] dataset.

MODEL SSIM (↑) PSNR (↑)

Input (hazy image) 0.7302 13.80
He et al. [35] 0.7516 14.43

Zhu et al. [36] 0.6065 12.24
Ren et al. [37] 0.7545 15.22

Berman et al. [38] 0.6537 14.12
Li et al. [39] 0.7323 13.98

BPPNet-reduced 0.8482 18.89
BPPNet-reduced with LGA 0.8663 20.17

INPUT He Zhu Ren Berman Li BPP BPP BPP Ground
et al. et al. et al. et al. et al. reduced with LGA Truth

Figure 6. Example input and ground-truth samples from the I-Haze dataset and the respective
results of dehazing obtained using various methods. BPP results are presented with and without the
inclusion of our LGA module [35–39].

4.5. Optical Flow Estimation

We incorporated LGA in ARFlow [26], which is an unsupervised optical flow estima-
tion method. The results of two-frame flow estimation on the MPI Sintel benchmarkare
reported in Table 3 [40] for final and clean sets using the the standard end-point-error
(EPE) metric. ARFlow with LGA achieves superior performance in comparison to the other
unsupervised methods on all six metrics. It surpasses ARFlow, with an EPE-all of 0.387.
Qualitative results are shown in Figure 7. As highlighted by the red bounding boxes, the
LGA-based method produced fewer errors than ARFlow at object edges, which shows that
LGA achieves a better understanding of moving and static backgrounds by identifying
non-local contexts.

Input

ARFlow

ARFlow
+LGA

ARFlow
+LGA (error)

ARFlow
(error)

Input ARFlow ARFlow+LGA ARFlow+LGA (error)ARFlow (error)

Figure 7. Results of unsupervised optical flow prediction on the MPI Sintel final-pass benchmark [40].
The first row shows the input samples, and the next two rows show the estimated flow for ARFlow
[26] and LGA with ARFlow. The last two rows visualize the incurred EPE-all errors for each of the
methods on the final pass. Notable differences are highlighted by red boxes.

Appl. Sci. 2024, 14, 10677 11 of 16

Table 3. Optical flow estimation comparison on the MPI Sintel benchmark [40] for final and clean
sets. The proposed LGA method achieved superior end-point error (EPE) scores in the two-frame
unsupervised flow estimation task.

Final (↓) Clean (↓)

MODEL EPE
All

EPE
Matched

EPE
Unmatched

EPE
All

EPE
Matched

EPE
Unmatched

UFlow [41] 6.498 3.078 34.398 5.205 2.036 31.058
FastFlowNet [42] 6.080 2.942 31.692 4.886 1.789 30.182
MDFlow-fast [16] 5.994 2.770 32.283 4.733 1.673 29.718

UnsupSimFlow [43] 6.916 3.017 38.702 5.926 2.159 36.655
ARFlow [26] 5.889 2.734 31.602 4.782 1.908 28.261

LGA 5.502 2.604 29.142 4.109 1.597 24.626

4.6. Ablation Study

For the study presented in Sections 4.6.1–4.6.3, we considered the transparent object
segmentation problem, and for that presented in Section 4.6.4, we considered the problem
of dehazing.

4.6.1. Effect of Incorporating LGA

We considered the following encoder architectures: squeeze [34] and shuffle [15].
We evaluated the improvement in performance (in terms of mIoU %) of both models
when the LGA module was incorporated. For the squeeze architecture, the mIoU values
of the original model before and after incorporating the LGA module were 41.5% and
44.6%, respectively, respectively indicating an improvement of more than 3%. The shuffle
architecture significantly benefited from including the LGA module, with an improved
mIoU of 45.5% against the 36.9% of the original architecture. We can conclude from the
Table 4 that the inclusion of LGA improved the performance of these networks. We also
note that the problem of transparent object segmentation is quite challenging, with the best
mIoU value of ∼41% and ∼45% for the squeeze architecture in the original form and after
incorporating LGA, respectively.

Table 4. Ablation study 1: Improvement in mIoU (%) for different architectures after incorporating LGA.

MODEL Squeeze [34] Shuffle [15]

Original model 41.5 36.9
With LGA 44.6 44.5

4.6.2. Original SqueezeNet with LGA or CCNet

We compared the performance of the SqueezeNet architecture with CCNet and LGA
is incorporated. The results are presented in Table 5. As compared to the original ver-
sion, LGA, indeed, adds extra computation and storage demands but significantly fewer
than CCNet. This was also discussed in Section 3.2. Moreover, it is noteworthy that the
performance of SqueezeNet with LGA is better than with CCNet in terms of both mIoU
and accuracy.

Appl. Sci. 2024, 14, 10677 12 of 16

Table 5. Ablation study 2: Comparison of LGA (with simple and group convolutions) vs. CCNet
with a SqueezeNet encoder. The original mIoU and accuracy without any LGA or CCNet module
were 41.5 and 76.2, respectively.

MODEL
Performance (↑) Extra resources (↓)

mIoU (%) Accuracy (%) Parameters (×103) FLOPS (×106)

CCNet [8] 42.8 79.6 2686 5652
LGA 45.8 81.8 132 140

LGA small 44.6 79.6 17 22

4.6.3. Effects of Divergence Loss and Group Convolution

We performed a qualitative evaluation of different models with the LGA module by
training them with and without the proposed divergence loss. The results presented in Ta-
ble 6 show that all the models experienced a consistent improvement when the divergence
loss was introduced. In addition, we note that the configuration for the best performance
(LGA using simple convolution and divergence loss) requires only marginally more param-
eters and computations over the original SqueezeNet without LGA. Using group-transpose
convolution strategy instead of simple convolution in message propagation further reduces
storage and computation needs, with only a minor drop in performance. The uses of group
convolution reduces the computational cost term (NC2), as mentioned in Section 3.2, with
a similar result in the case of Shuffle-Net.

Table 6. Ablation study 3: Comparison of mIOU value (%) of LGA using simple convolution (SC) or
group convolution (GC) and with or without divergence loss. We also include the number of parame-
ters and FLOPs in the first three rows to illustrate that the computational needs of incorporating LGA
are marginal and even further reduced when employing group-transposed convolution.

MODEL Variation mIoU (%)
Parameters

(×106)
FLOPS
(×109)

Squeeze

No LGA 41.5 1.018 13.140
LGA with SC and Ldiv 45.8 1.150 13.280
LGA with GC and Ldiv 44.6 1.035 13.162
LGA with SC, no Ldiv 43.6
LGA with GC, no Ldiv 42.3

Shuffle

No LGA 36.9 0.395 3.42
LGA with SC and Ldiv 44.6 0.506 3.69
LGA with GC and Ldiv 44.5 0.412 3.5
LGA with SC, no Ldiv 43.0
LGA with GC, no Ldiv 41.6

4.6.4. Ablation on BPPNet for Dehazing Problem

We compared the performance and computational load of the original BPPNet [24],
the reduced BPPNet (as explained in Section 4.1) without LGA, and reduced BPPNet with
LGA. The results are reported in Table 7. The reduced BPPNet without LGA comprised
fewer than 10% of the parameters of the original and approximately 20% the number of
FLOPs. This resulted in poorer performance in terms of both the structural similarity index
(SSIM) and peak-signal-to-noise-ratio (PSNR). However, the inclusion of LGA improved
both the SSIM and the PSNR, with almost no extra computational load.

Appl. Sci. 2024, 14, 10677 13 of 16

Table 7. Ablation study 4: Ablation on BPPNet [24] for dehazing of the I-HAZE [7] dataset.

Original Reduced Reduced with LGA

SSIM 0.8994 0.8482 0.8663
PSNR 22.56 18.89 20.17

Parameters (×106) 8.851 0.685 0.687
FLOPS (×109) 348.49 87.44 87.78

4.6.5. Ablation for Number of LGA Layers

As shown in Table 8, with ablation, the mIoU increases continuously until a certain
number of layers as the region of spatial context increases, then falls marginally due
to an over-smoothing effect. We set a fixed kernel size 9, according to which we can
infer the number of edge connections from a single node. This is not a hyperparameter
in LGA but a design choice based on the neighborhood. A smaller number of kernels
inhibits the propagation of information to the nearest neighbor. Therefore, LGA needs
multiple layers to reach a neighbor excluded from connectivity. A larger number of kernels
implies redundancy.

Table 8. Ablation for no. of LGA layers on the Trans10Kv2 (squeeze) dataset.

No. of LGA Layers 0 1 2 4 8

mIoU (%) 36.9 43.1 43.9 44.5 41.1

4.6.6. Performance and Efficiency Comparison of LGA vs. CCNet

Table 9 presents a comparison of CCNet [8] with the proposed LGA module on the
Trans10Kv2 dataset [25]. The performance of LGA is better than that of CCNet in terms of
both mIoU and accuracy. Even after using group convolutions in LGA, the performance
is better than that of CCNet, with significant reductions in space and time complexity.
Among all three models, LGA with group convolution needs orders of magnitude fewer
extra parameters and less computation. For both parameters and computation, convolution
channel resizing is the costliest operation, costing much more than the attention module.
By using a graph-based approach, LGA saves a significant amount of resources.

Table 9. Ablation study for performance and efficiency comparison of LGA vs. CCNet [8] with
a SqueezeNet encoder on the Trans10Kv2 dataset [25]. Here, LGA indicates simple convolutions,
and LGA small indicates group convolutions. The original mIoU and accuracy of SqueezeNet [34]
without any LGA or CCNet module were 41.5 and 76.2, respectively.

Performance (↑) Extra Parameters (103) (↓) Extra FLOPS (106) (↓)

MODEL
mIoU Accuracy

Conv.
Channel
Resizing

Attention
Module Total

Conv.
Channel
Resizing

Attention Module
TotalInformation

Propagation
Other Conv.
Operations

CCNet [8] 42.8 79.6 2359 327 2686 4832 150 670 5652
LGA 45.8 81.8 66 67 132 67 5 68 140

LGA small 44.6 79.6 8 9 17 8 5 9 22

5. Conclusions

This paper presents the novel concept of latent graph attention (LGA). Attention in
CNNs is either local, non-local, or global. However, the concept of LGA progressively
includes the global context in a chained fashion without significant computational com-
plexity by propagating information across networks of locally connected graphs. Chained
attention makes LGA particularly suitable for the challenging problem of transparent object
segmentation. Furthermore, a novel divergence loss function is incorporated to help the
LGA module perform learning in a collaborative manner with the parent architecture and

Appl. Sci. 2024, 14, 10677 14 of 16

enhance the performance of the original architecture with a minor additional computational
load. The computational efficiency of LGA and its contribution to performance improve-
ment and versatility were demonstrated through multiple studies. The LGA module was
employed in different architectures to solve three challenging image-to-image translation
problems, namely transparent object segmentation, image dehazing, and unsupervised op-
tical flow estimation. It was shown to be an effective mechanism to learn global context and
contribute this information to the parent architecture in which it is included as a module.

We hope that LGA will find use in many challenging applications and across a wide
variety of architectures where it is not practical or straightforward to incorporate attention
or global context mechanisms. In particular, we expect that LGA will be a powerful tool to
upgrade the performance of edge devices with very limited memory and computational
resources. Possible future research directions include the fusion of criss-cross attention with
LGA; the reduction of multi-layered LGA into single-layered LGA; the application of LGA
to object detection, video understanding, or 3D computer vision tasks such as point cloud
processing and 3D scene reconstruction; the exploration of the combination of LGA with
generative adversarial networks (GANs) to enhance their performance while maintaining
computational efficiency; the exploration of LGA in geometric deep learning models for
clustering; and the integration of LGA into multi-modal scenarios, where both images and
textual data are involved, such as image captioning or visual question answering.

The source code, models, and LGA libraries will be released after notification of paper
acceptance notification. Furthermore, we hope that this novel concept will incite more
activity in devising other inexpensive global context mechanisms for such problems.

Supplementary Materials: The following supporting information can be downloaded at:
www.mdpi.com/xxx/s1, Figure S1: LGA applications; Figure S2: More segmentation results; Figure
S3: More dehazing results; Figure S4: More optical flow results; Table S1: Architecture of LGA in
SqueezeNet; Table S2: Architecture of LGA in ShuffleNet; Table S3: Architecture of LGA in BPPNet;
Table S4: Architecture of LGA in ARFlow.

Author Contributions: Experiment: A.S. and Y.B. Writing: A.S., Y.B., H.B., D.K.G. and D.K.P. Review:
A.S., Y.B., H.B., D.K.G. and D.K.P. Funding: D.K.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by a Research Council of Norway Project (nanoAI, Project ID:
325741), H2020 Project (OrganVision, Project ID: 964800), HORIZON-ERC-POC Project (Spermotile,
Project ID: 101123485), and VirtualStain (UiT, Cristin Project ID: 2061348).

Data Availability Statement: All datasets used in this work are publicly available. Appropriate
references for each dataset are provided in the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Wani, M.; Batchelor, B. Edge-region-based segmentation of range images. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 314–319.

[CrossRef]
2. He, K.; Sun, J.; Tang, X. Single Image Haze Removal Using Dark Channel Prior. In Proceedings of the 2009 IEEE Conference on

Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1956–1963. [CrossRef]
3. Liu, W.; Rabinovich, A.; Berg, A. ParseNet: Looking Wider to See Better. In Proceedings of the International Conference on

Learning Representations Workshops, San Juan, Puerto Rico, 2–4 May 2016.
4. Wang, S.; Lokhande, V.; Singh, M.; Kording, K.; Yarkony, J. End-to-end Training of CNN-CRF via Differentiable Dual-

Decomposition. arXiv 2019, arXiv:1912.02937.
5. Wang, Y.; Zhou, Q.; Liu, J.; Xiong, J.; Gao, G.; Wu, X.; Latecki, L.J. Lednet: A lightweight encoder-decoder network for

real-time semantic segmentation. In Proceedings of the IEEE International Conference on Image Processing, Taipei, Taiwan,
22–25 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1860–1864.

6. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic
image segmentation. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018;
pp. 801–818.

www.mdpi.com/xxx/s1
http://doi.org/10.1109/34.276131
http://dx.doi.org/10.1109/CVPRW.2009.5206515

Appl. Sci. 2024, 14, 10677 15 of 16

7. Ancuti, C.; Ancuti, C.O.; Timofte, R.; De Vleeschouwer, C. I-HAZE: A Dehazing Benchmark with Real Hazy and Haze-Free
Indoor Images. In Proceedings of the Advanced Concepts for Intelligent Vision Systems; Blanc-Talon, J., Helbert, D., Philips, W.,
Popescu, D., Scheunders, P., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 620–631.

8. Huang, Z.; Wang, X.; Wei, Y.; Huang, L.; Shi, H.; Liu, W.; Huang, T.S. CCNet: Criss-Cross Attention for Semantic Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2020, 45, 6896–6908. [CrossRef] [PubMed]

9. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.

10. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

11. Jin, L.; Xie, J.; Pan, B.; Luo, G. Generalized Phase Retrieval Model Based on Physics-Inspired Network for Holographic
Metasurface. Prog. Electromagn. Res. 2023, 178, 103–110.

12. Zhang, X.; Xu, H.; Mo, H.; Tan, J.; Yang, C.; Wang, L.; Ren, W. Dcnas: Densely connected neural architecture search for semantic
image segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA,
20–25 June 2021; pp. 13956–13967.

13. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

14. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of
the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 116–131.

15. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. arXiv
2017, arXiv:1707.01083.

16. Kong, L.; Yang, J. MDFlow: Unsupervised Optical Flow Learning by Reliable Mutual Knowledge Distillation. IEEE Trans. Circuits
Syst. Video Technol. 2022, 33, 677–688. [CrossRef]

17. Lu, Y.; Chen, Y.; Zhao, D.; Chen, J. Graph-FCN for image semantic segmentation. In Proceedings of the International Symposium on
Neural Networks; Springer: Berlin/Heidelberg, Germany, 2019; pp. 97–105.

18. Ye, X.b.; Guan, Q.; Luo, W.; Fang, L.; Lai, Z.R.; Wang, J. Molecular substructure graph attention network for molecular property
identification in drug discovery. Pattern Recognit. 2022, 128, 108659. [CrossRef]

19. Zhou, H.; Yang, Y.; Luo, T.; Zhang, J.; Li, S. A unified deep sparse graph attention network for scene graph generation. Pattern
Recognit. 2022, 123, 108367. [CrossRef]

20. Sun, T.; Zhang, G.; Yang, W.; Xue, J.H.; Wang, G. Trosd: A new rgb-d dataset for transparent and reflective object segmentation in
practice. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 5721–5733. [CrossRef]

21. Yu, R.; Ren, W.; Zhao, M.; Wang, J.; Wu, D.; Xie, Y. Transparent objects segmentation based on polarization imaging and deep
learning. Opt. Commun. 2024, 555, 130246. [CrossRef]

22. Banerjee, S.; Hati, A.; Chaudhuri, S.; Velmurugan, R. Image co-segmentation using graph convolution neural network. In
Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing, Hyderabad, India, 18–22 December
2018; pp. 1–9.

23. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
24. Singh, A.; Bhave, A.; Prasad, D.K. Single image dehazing for a variety of haze scenarios using back projected pyramid

network. In Proceedings of the European Conference on Computer Vision Workshop, Glasgow, UK, 23–28 August 2020; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 166–181.

25. Xie, E.; Wang, W.; Wang, W.; Sun, P.; Xu, H.; Liang, D.; Luo, P. Segmenting transparent object in the wild with transformer. arXiv
2021, arXiv:2101.08461.

26. Liu, L.; Zhang, J.; He, R.; Liu, Y.; Wang, Y.; Tai, Y.; Luo, D.; Wang, C.; Li, J.; Huang, F. Learning by analogy: Reliable supervision
from transformations for unsupervised optical flow estimation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 6489–6498.

27. Liu, M.; Yin, H. Feature pyramid encoding network for real-time semantic segmentation. arXiv 2019, arXiv:1909.08599.
28. Mehta, S.; Rastegari, M.; Shapiro, L.; Hajishirzi, H. Espnetv2: A light-weight, power efficient, and general purpose convolutional

neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019; pp. 9190–9200.

29. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. Enet: A deep neural network architecture for real-time semantic segmentation.
arXiv 2016, arXiv:1606.02147.

30. Li, G.; Yun, I.; Kim, J.; Kim, J. Dabnet: Depth-wise asymmetric bottleneck for real-time semantic segmentation. In Proceedings of
the British Machine Vision Conference, Cardiff, UK, 9–12 September 2019.

31. Zhao, H.; Qi, X.; Shen, X.; Shi, J.; Jia, J. Icnet for real-time semantic segmentation on high-resolution images. In Proceedings of the
European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 405–420.

32. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.

33. Wang, Y.; Zhou, Q.; Xiong, J.; Wu, X.; Jin, X. Esnet: An efficient symmetric network for real-time semantic segmentation. In
Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision, Long Beach, CA, USA, 15–20 June 2019;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 41–52.

http://dx.doi.org/10.1109/TPAMI.2020.3007032
http://www.ncbi.nlm.nih.gov/pubmed/32750802
http://dx.doi.org/10.1109/TCSVT.2022.3205375
http://dx.doi.org/10.1016/j.patcog.2022.108659
http://dx.doi.org/10.1016/j.patcog.2021.108367
http://dx.doi.org/10.1109/TCSVT.2023.3254665
http://dx.doi.org/10.1016/j.optcom.2023.130246

Appl. Sci. 2024, 14, 10677 16 of 16

34. Iandola, F.N. SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters. 2016. Available online: https://github.com/
forresti/SqueezeNet (accessed on 20 October 2024).

35. He, K.; Sun, J.; Tang, X. Single Image Haze Removal Using Dark Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33,
2341–2353. [CrossRef] [PubMed]

36. Zhu, Q.; Mai, J.; Shao, L. A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process.
2015, 24, 3522–3533. [PubMed]

37. Ren, W.; Liu, S.; Zhang, H.; Pan, J.; Cao, X.; Yang, M.H. Single image dehazing via multi-scale convolutional neural networks. In
Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 154–169.

38. Berman, D.; Treibitz, T.; Avidan, S. Non-local image dehazing. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1674–1682.

39. Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. AOD-Net: All-In-One Dehazing Network. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017.

40. Butler, D.J.; Wulff, J.; Stanley, G.B.; Black, M.J. A naturalistic open source movie for optical flow evaluation. In Proceedings of
the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 611–625.

41. Jonschkowski, R.; Stone, A.; Barron, J.T.; Gordon, A.; Konolige, K.; Angelova, A. What matters in unsupervised optical flow. In
Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 557–572.

42. Kong, L.; Shen, C.; Yang, J. Fastflownet: A lightweight network for fast optical flow estimation. In Proceedings of the IEEE
International Conference on Robotics and Automation, Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021;
pp. 10310–10316.

43. Im, W.; Kim, T.K.; Yoon, S.E. Unsupervised learning of optical flow with deep feature similarity. In Proceedings of the European
Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 172–188.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/forresti/SqueezeNet
https://github.com/forresti/SqueezeNet
http://dx.doi.org/10.1109/TPAMI.2010.168
http://www.ncbi.nlm.nih.gov/pubmed/20820075
http://www.ncbi.nlm.nih.gov/pubmed/26099141

	Introduction
	Related Work
	The Proposed Approach
	Latent Graph Attention (LGA)
	Other Features of LGA

	Experiments
	Training Process
	Training Data
	Segmentation
	Dehazing
	Optical Flow Estimation
	Ablation Study
	Effect of Incorporating LGA
	Original SqueezeNet with LGA or CCNet
	Effects of Divergence Loss and Group Convolution
	Ablation on BPPNet for Dehazing Problem
	Ablation for Number of LGA Layers
	Performance and Efficiency Comparison of LGA vs. CCNet

	Conclusions
	References

