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1. Introduction

Let [P 1,P 1]A1 denote the set of self-maps of the projective line in the pointed A1-
homotopy category over a field k introduced by Morel and Voevodsky [23]. The set 
[P 1,P 1]A1 admits the structure of an abelian group and plays the role of the fundamental 
group of the circle in motivic homotopy theory.

We briefly recall how the group operation on [P 1,P 1]A1 is defined. The standard 
covering of P 1 by two affine lines with intersection Gm yields an A1-weak equivalence 
P 1 � S1 ∧Gm. The simplicial circle S1 (or some suitable homotopy equivalent model of 
it, like ∂Δ2) admits the structure of an h-cogroup. The h-cogroup structure on S1 makes 
it possible to define a group operation on [S1 ∧Gm,P 1]A1 in an analogous way that one 
defines the fundamental group of a topological space. Although the construction mimics 
the usual construction in algebraic topology, the set of A1-homotopy classes of maps 
P 1 → P 1 is not simply the set of morphisms P 1 → P 1 modulo an equivalence relation. 
It is unsettling that such an important group does not arise in some elementary way as 
a set of morphisms up to a homotopy relation with some geometrically defined group 
operation. The purpose of the present paper is to remedy this defect.
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Our results build on the work of Asok, Hoyois, and Wendt and the work of Cazanave. 
In [12] Cazanave defines an operation ⊕N which turns the set [P 1,P 1]N of pointed 
naive1 homotopy classes into a monoid and shows that the canonical map from naive 
to A1-homotopy classes νP1 : [P 1,P 1]N → [P 1,P 1]A1 is a group completion. However, 
this approach cannot yield candidates for scheme morphisms that represent inverses of 
A1-homotopy classes. In [6] Asok, Hoyois, and Wendt show that the set [P 1,P 1]A1 is in 
bijection with an explicit set of maps modulo the naive homotopy relation by using the 
larger set Smk(J ,P 1) of morphisms of smooth k-schemes where J denotes the Jouanolou 
device of P 1. Recall that the smooth affine scheme J has the concrete description as the 
spectrum of the ring

R = k[x, y, z, w] 
(x + w − 1, xw − yz) .

We consider J equipped with a morphism π : J → P 1 that exhibits J as an affine bundle 
torsor.2 More precisely, the work by Asok, Hoyois, and Wendt can be used3 to show that 
there is a bijection ξ : [J ,P 1]N

∼ = −→ [P 1,P 1]A1 . The map ξ is the composite of the canonical 
map ν : [J ,P 1]N → [J ,P 1]A1 and the inverse of the map π∗

A1 : [P 1,P 1]A1 → [J ,P 1]A1

induced by a scheme morphism π : J → P 1. The set [J ,P 1]N is concrete in the following 
sense: it is the set of pointed scheme morphisms J → P 1 modulo an equivalence relation 
generated by naive homotopies. This resolves the problem of a lack of candidates of 
morphisms which may represent inverses in [P 1,P 1]A1 . However, it is not clear at all 
how the group operation on [P 1,P 1]A1 or the operation ⊕N of [12] may be lifted.

In the present paper we define an explicit group structure on the set [J ,P 1]N of 
pointed naive homotopy classes. The construction of this group operation is indepen-
dent of the general machinery of motivic homotopy theory and only uses basic algebraic 
geometry. We then show that the induced map π∗

N : [P 1,P 1]N → [J ,P 1]N is a mor-
phism of monoids where [P 1,P 1]N has the monoid structure from Cazanave [12, §3]. 
Moreover, we show that π∗

N has image in a concrete subgroup G and that the map 
π∗

N : [P 1,P 1]N → G is a group completion. Hence there are canonical isomorphisms be-
tween G and [P 1,P 1]A1 which are compatible with π∗

N and νP1 . A key feature of the 
group G is that it is defined by explicit generating scheme morphisms J → P 1 that are 
defined in terms of very simple (2 × 2)-matrices. Hence our result provides a concrete 
and simple set of scheme morphisms whose images provide generators together with their 
inverses for the group [P 1,P 1]A1 .

We will now describe our results in more detail. Recall that Cazanave shows in [12, 
Theorem 3.22] that there is an operation ⊕N which provides [P 1,P 1]N with the structure 

1 A naive homotopy between two pointed morphisms f, g : J → P1 is given by a morphism H : J ×A1 →
P1 for which the evident restrictions satisfy H0 = f and H1 = g. We note that H must be pointed in the 
sense that ∗ × A1 maps to the basepoint of P1. For more details we refer to Section 2.6.
2 See Definition 6 in Section 2.1 for the definition of π.
3 We explain in Appendix A how the unpointed results of [5] and [6] imply that the canonical map 

[J ,P1]N → [J ,P1]A
1

between sets of homotopy classes of pointed morphisms is a bijection.
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of a commutative monoid and that the canonical map [P 1,P 1]N → [P 1,P 1]A1 is a group 
completion. We now state our first main result:

Theorem 1. There is an operation ⊕ which makes 
(
[J ,P 1]N,⊕

)
an abelian group such 

that the morphism π : J → P 1 induces a morphism of commutative monoids

π∗
N :

(
[P 1,P 1]N,⊕N)→ (

[J ,P 1]N,⊕
)

where the left-hand side denotes the monoid of [12, §3].

We will now outline the ideas that lead to the proof of Theorem 1. First we describe 
the construction of the explicit group structure ⊕ on [J ,P 1]N. Recall that a morphism 
f : J → P 1 is determined by an invertible sheaf L over J and a choice of two generating 
sections s0, s1 ∈ Γ(L,J ). The invertible sheaf L is the pullback f∗O(1). We say that a 
morphism f : J → P 1 has degree 0 if f∗O(1) is the structure sheaf on J . As we will show 
in Section 2.7, the maps J → P 1 of degree 0 are exactly the maps which factor through 
the Hopf map η : A2 \ {0} → P 1. Let R denote the ring such that J = SpecR. The set 
[J ,A2 \ {0}]N has an apparent group structure: A morphism J → A2 \ {0} is given by 
a unimodular row (A,B) in R2, i.e., there exist U, V ∈ R for which AU + BV = 1. Any 
such unimodular row can be completed to a (2 × 2)-matrix over R, and the product of 
these matrices defines a group operation on [J ,A2 \ {0}]N. We describe the details of 
this construction in Section 3.1. The subgroup of degree 0 maps J → P 1 is quite large. 
In fact, the degree map fits into an exact sequence of pointed sets of the form

1 → [J ,A2 \ {0}]N → [J ,P 1]N deg−−→ Pic(J ) → 1.

Hence, in order to turn [J ,P 1]N into a group, it suffices to define an action of [J ,A2 \
{0}]N on [J ,P 1]N. The key idea is that any morphism f : J → P 1 is given by the choice 
of a line bundle together with two generating sections. We can then let a morphism 
J → A2 \ {0} given by a (2 × 2)-matrix act on the sections via matrix multiplication. 
We explain the details of this operation in Section 3.2 and we complete the construction 
of the group structure on [J ,P 1]N in Section 4, see Definition 73 and Theorem 80 where 
we show that there is an isomorphism of groups [J ,P 1]N ϕ−→ [P 1,P 1]A1 .

Next we describe the main idea for the proof that π∗
N is a morphism of monoids. 

Let u ∈ k×. As in [12] we identify a rational function X/u in the indeterminate X
with the morphism P 1 → P 1 defined by [x0 : x1] �→ [x0 : ux1]. For u, v ∈ k×, let 
gu,v : J → A2\{0} denote the morphism given by the unimodular row 

(
x + v

uw, (u− v)y
)

in R2, where x, y, z, and w are the polynomial generators of the ring

R = k[x, y, z, w] 
(x + w − 1, xw − yz)

defining J = SpecR. For the rational functions X/u and X/v we then have the identity
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gu,v ⊕ π∗
N (X/v) = π∗

N (X/u) (2)

which we emphasize is an identity of morphisms not just homotopy classes. In the partic-
ular case where v = 1, we have π∗

N (X/1) = π and Formula (2) reads gu,1⊕π = π∗
N (X/u). 

This reduces computations for π∗
N (X/u) to computations for gu,1 and π. The key techni-

cal result needed to prove Theorem 1 is that, for every pointed morphism f : P 1 → P 1, 
we have an explicit naive homotopy

π∗
N
(
X/u⊕N f

)
� gu,1 ⊕

(
π∗

N
(
X/1 ⊕N f

))
. (3)

The construction of the concrete homotopy in Formula (3) is based on computations of 
the resultants of certain morphisms which we provide in Section 5.1 and Appendix B. 
Theorem 1 then follows from the fact that the set of homotopy classes [X/u] for all 
u ∈ k× generates [P 1,P 1]N and a successive application of Formula (3). The details of 
this argument are explained in Section 5, see Theorem 96.

Our second main result is then based on the observation that Identity (2) implies that 
the image of π∗

N is contained in the subgroup G ⊆ [J ,P 1]N generated by the homotopy 
classes [gu,v] for all u, v ∈ k× and [π]. Theorem 1 and the work of Cazanave [12, Theorem 
3.22] then imply that there is a unique group homomorphism ψ : [P 1,P 1]A1 → G such 
that ψ ◦ νP1 = π∗

N. In Section 6 we show the following key result, see Theorem 113:

Theorem 4. The monoid morphism π∗
N : [P 1,P 1]N → G is a group completion. There is 

a unique isomorphism χ : G → [P 1,P 1]A1 such that the diagram below commutes, where 
χ and ψ are mutual inverses to each other.

G χ

[P 1,P 1]N

π∗
N

νP1
[P 1,P 1]A1

ψ

Theorem 4 gives a very concrete description of all pointed endomorphisms of P 1 in the 
unstable A1-homotopy category in the following sense: the group G is given by a simple 
set of generating morphisms, and the group operation ⊕ in G inherited from [J ,P 1]N
is defined in basic algebro-geometric terms.

Finally, we note that the isomorphisms G χ−→ [P 1,P 1]A1 ϕ ←− [J ,P 1]N do not imply 
that G equals [J ,P 1]N. However, we conjecture that the inclusion G ⊆ [J ,P 1]N is an 
equality and we show in Section 6.3 that this is true for all finite fields by computing 
the first Milnor–Witt K-theory group KMW

1 (Fq), which is isomorphic to [P 1,A2 \ {0}]A1

and to the subgroup generated by all classes [gu,v] in [J ,A2 \ {0}]N. 

Below we provide a list of frequently used and important notation together with a 
reference where the notation is first used after the introduction. 
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List of important notation

Notation Brief description First discussed 
k a field Section 2.1
P1 projective line over k pointed at ∞ Section 2.1
R The ring R := k[x, y, z, w]/(xw − yz, x + w − 1) Definition 5
J the Jouanolou device J = SpecR Definition 5
j basepoint (x − 1, y, z, w) ⊆ R of J Definition 5
j′ basepoint (x − 1, y, z, w) ⊆ R[T ] of J × A1 Remark 40
P1 line bundle over J , image of 

(
x y
z w

)
Section 2.1

Q1 line bundle over J , image of 
(
x z
y w

)
Section 2.1

[s0, s1] map J → P1 ↔ line bundle Pn with sections s0, s1 Construction 27
X/u morphism P1 → P1, [x0 : x1] �→ [x0 : ux1] Section 5.1
res(A,B) resultant of polynomials A, B Proposition 22
(a0, a1 : b0, b1)n morphism J → P1 Definition 32
deg degree of L of a morphism (L, s0, s1) : J → P1 Section 2.7
η the Hopf map η : A2 \ {0} → P1 Section 2.7
SL2 SL2 := Spec (k[a, b, c, d]/(ad − bc − 1)) Section 2.7
M an SL2(R)-matrix Section 2.7
φ first column morphism SL2 → A2 \ {0} Definition 50
gu,v unimodular row 

(
x + v

uw, (u − v)y
)

in R Definition 86
mu,v SL2(R)-matrix 

(
x + v

uw u−v
uv z

(u − v)y x + u
v w

)
Definition 86

Smk the category of smooth finite type k-schemes Section 2.6
Smk(X,Y )∗ set of pointed morphisms in Smk Section 2.6
	 naive homotopy relation Definition 39
[X, Y ]N set of pointed naive homotopy classes Definition 39
[J ,P1]Nn set of pointed naive homotopy classes of degree n Section 2.7
[X, Y ]A

1
set of pointed A1-homotopy classes Section 6

ν canonical map [J ,P1]N → [J ,P1]A
1

Section 6
π∗

N map [P1,P1]N → [J ,P1]N induced by π Section 5
π∗
A1 map [P1,P1]A

1 → [J ,P1]A
1

induced by π Section 6
ξ map ξ = (π∗

A1 )−1 ◦ ν : [J ,P1]N → [P1,P1]A
1

Equation (8)
⊕ group operation on [J ,P1]N Definition 77
⊕N monoid operation on [P1,P1]N Section 5
⊕A1

group operation on [P1,P1]A
1

Section 6
ϕ group isom. 

(
[J ,P1]N,⊕

) ∼ = −→
(
[P1,P1]A

1
,⊕A1

)
Theorem 80

degA1
Morel’s A1-Brouwer degree [P1,P1]A

1 → GW(k) Section 6.1
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2. The Jouanolou device and morphisms to P1

In this section we work out the details needed about the Jouanolou device J , mor-
phisms J → P 1, and the pointed naive homotopy relation. We keep the terminology 
as elementary as possible and hope that the details provided help make our approach 
accessible.

2.1. Definition of J , π, and ξ

Throughout this paper k will always denote a field. All schemes are schemes over 
Spec k. We denote by P 1 the projective line over k pointed at ∞ := [1 : 0] ∈ P 1. The 
letter R will always denote the following ring.

Definition 5. Let R denote the ring

R = k[x, y, z, w] 
(x + w − 1, xw − yz) .

The Jouanolou device of P 1 is the smooth affine k-scheme J = SpecR. We consider J
to be pointed at j = (x− 1, y, z, w).

The ring R may be interpreted as the ring representing (2 × 2)-matrices with trace 
1 and determinant 0. Namely, a ring homomorphism R → S is equivalent to a (2 × 2)-
matrix over S with trace 1 and determinant 0.

While we will discuss morphisms J → P 1 in more detail later, we point out that 
there are two evident morphisms that exhibit J as an affine torsor bundle over P 1. The 
matrices (

x y
z w

)
and 

(
x z
y w

)
over R are idempotent. When viewed as linear transformations from R2 to R2, the image 
of each matrix defines a projective module, denoted by P1 and Q1 respectively. Both P1
and Q1 have rank 1 and so they yield invertible sheaves on J .

Definition 6. We define the morphism of schemes π : J → P 1 by selecting the invertible 
sheaf associated to P1 and the generating sections

s0 =
(
x
z

)
and s1 =

(
y
w

)
.

Similarly, we define the morphism of schemes π̃ : J → P 1 by using Q1 and the choice of 
generating sections
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s0 =
(
x
y

)
and s1 = −

(
z
w

)
.

We intuitively understand the map π as sending a point in J corresponding to a 

matrix 
(
x y
z w

)
to either the point with homogeneous coordinates [x : y] or [z : w], 

depending on which is defined. When both points make sense in P 1, they agree, so the 
map is well-defined. A similar argument shows that π̃ is well-defined. Both π and π̃
exhibit J as an affine torsor bundle over P 1, hence they are A1-homotopy equivalences. 
It follows that

π∗
A1 :

[
P 1,P 1]A1

→
[
J ,P 1]A1

(7)

is a bijection. We show in Proposition 131 in Appendix A that the canonical map 
ν : [J ,P 1]N → [J ,P 1]A1 is a bijection because J is affine and P 1 is A1-naive. Thus, 
the composition of the bijection ν and the inverse of π∗

A1 is a bijection

ξ :
[
J ,P 1]N →

[
P 1,P 1]A1

. (8)

This bijection may be described as follows. A naive pointed homotopy class of maps [f ]
represented by the pointed scheme morphism f : J → P 1 is sent to ξ([f ]) = [f ◦ π−1]A1 , 
the pointed A1-homotopy class of the zig-zag P 1 π←− J f−→ P 1.

In the following sections we will investigate the set [J ,P 1]N of pointed naive homotopy 
classes of pointed morphisms J → P 1.

2.2. Convenient coordinates for J

The map π : J → P 1 encourages the choice of a convenient set of coordinate charts 
for J . For P 1, we use the standard notation U0 = P 1 \ {[0 : 1]} and U1 = P 1 \ {[1 : 0]}. 
It is straightforward to verify that the preimages under π of U0 and U1 are π−1(U0) =
D(x)∪D(z) and π−1(U1) = D(y)∪D(w). Both of these open sets are isomorphic to A2

under the following maps.

Lemma 9. The open set D(x) ∪D(z) ⊆ J is isomorphic to Spec(k[a, b]) under the map 
Ψ0 : A2 → J given by x �→ 1 − ab, y �→ a(1 − ab), z �→ b, and w �→ ab.

Similarly, the open set D(y) ∪D(w) ⊆ J is isomorphic to Spec k[c, d] under the map 
Ψ1 : A2 → J given by x �→ cd, y �→ d, z �→ c(1 − cd), and w �→ 1 − cd.

Proof. The proof proceeds by studying the map locally. For instance, Ψ0 induces an 
isomorphism of rings k[a, b][(1− ab)−1] → R[x−1] and also of k[a, b][b−1] → R[z−1]. The 
open sets D(1 − ab) and D(b) cover A2, so it follows that Ψ0 maps surjectively onto 
D(x) ∪D(z). The inverse map is obtained by gluing the maps that are defined on D(x)
and D(z), giving the result. A similar argument works for Ψ1. �
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Remark 10. The open affine subschemes D(x) ∪D(z) and D(y) ∪D(w) of SpecR have 
the odd property that their ring of global sections is not a localization of R.

2.3. Invertible sheaves on J

By [16, Theorem II.7.1], a morphism J → P 1 is determined by an invertible sheaf 
L on J and two generating global sections of L. We now take the time to study the 
invertible sheaves on J to enable our study of the morphisms J → P 1. We will assume 
familiarity with the basic terminology presented in both [25, Chapter 1] and [7].

Since J = SpecR is an irreducible affine scheme, the invertible sheaves on J corre-
spond to projective R-modules of rank 1. We have already seen the projective modules 
P1 and Q1 used to define π and π̃ above. Since the map π : J → P 1 is an A1-weak equiv-
alence and the Picard group functor is homotopy invariant, the induced map on Picard 
groups is an isomorphism π∗ : Pic(P 1) → Pic(J ). Since π∗(O(1)) = P1 and Pic(J ) ∼ = Z, 
it follows that P1 generates the Picard group of J . For future reference, we state this as 
a lemma.

Lemma 11. The Picard group of J is isomorphic to Z and P1 is a generator.

Furthermore, Q1 = −P1 in Pic(J ) as the following proposition shows.

Proposition 12. There is an isomorphism P1 ⊗Q1 ∼ = R.

Proof. The R-module P1 ⊗Q1 is generated by{[
x
z

]
⊗
[
x
y

]
,

[
x
z

]
⊗
[
z
w

]
,

[
y
w

]
⊗
[
x
y

]
,

[
y
w

]
⊗
[
z
w

]}
.

Consider the module homomorphism m : R2 ⊗ R2 −→ R2 induced by component-wise 

multiplication m
([

a
b

]
⊗
[
c
d

])
=
[
ac
bd

]
. We restrict m to P1 ⊗Q1 and observe that the 

image of P1 ⊗ Q1 under m is the submodule 
〈[

x
w

]〉
⊆ R2 (use x + w = 1). This is a 

free R-module of rank 1. As m : P1 ⊗ Q1 →
〈[

x
w

]〉
is surjective, it follows that it is 

locally an isomorphism at all maximal ideals m ⊆ R. Hence the map m itself restricted 
to P1 ⊗Q1 is an isomorphism onto its image. �

We would like to understand the tensor powers of P1 and Q1.

Definition 13. Let Pn and Qn denote the submodules of R2 generated by

Pn =
〈[

xn

zn

]
,

[
xn−1y
zn−1w

]
, . . . ,

[
yn

wn

]〉
and Qn =

〈[
xn

yn

]
,

[
xn−1z
yn−1w

]
, . . . ,

[
zn

wn

]〉
.
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The following lemma is useful for simplifying proofs. It shows that what we prove 
about Pn by symmetry holds for Qn.

Lemma 14. Define the involution τ : R → R by

τ(x) = x τ(y) = z

τ(z) = y τ(w) = w.

Pulling back along τ gives R-module isomorphisms τ∗Pn
∼ = Qn and τ∗Qn

∼ = Pn.

Proof. To more easily distinguish between them, we give the domain and codomain of 
τ different names and write τ : R → R′. Pulling back the R′-module Pn, we get the 
R-module τ∗Pn, where the multiplication is defined by r ·R p = τ(r) ·R′ p. The map 
τ∗Pn → Qn is defined on basis elements by[

xn−iyi

zn−iwi

]
�→
[
xn−izi

yn−iwi

]
.

It is easily checked that f is bijective and R-linear and hence an R-module isomorphism.
To see that τ∗Qn

∼ = Pn, we pull back the isomorphism Qn
∼ = τ∗Pn, which we just 

proved, along τ on both sides. Since τ ◦ τ = id, this simplifies to τ∗Qn
∼ = τ∗τ∗Pn =

Pn. �
Proposition 15. The R-modules Pn and Qn are also generated in the following way

Pn =
〈[

xn

zn

]
,

[
yn

wn

]〉
and Qn =

〈[
xn

yn

]
,

[
zn

wn

]〉
.

Proof. We only prove the claim for Pn, as the proof for Qn is analogous by Lemma 14. 
Containment in one direction is clear by definition of Pn. Now fix n and pick a number 
0 ≤ i ≤ n. We then have[

xn−iyi

zn−iwi

]
= (x + w)n

[
xn−iyi

zn−iwi

]
=

n ∑
d=0 

(
n

d 

)
xn−dwd

[
xn−iyi

zn−iwi

]
.

For each d, one of the following holds:

xn−dwd

[
xn−iyi

zn−iwi

]
= xn−i−dyiwd

[
xn

zn

]
if i + d ≤ n,

xn−dwd

[
xn−iyi

zn−iwi

]
= xn−dzn−iwd+i−n

[
yn

wn

]
if i + d > n.

This completes the proof. �
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We will now show that the R-modules Pn and Qn are algebraic line bundles, that 
is, finitely generated R-modules of constant rank 1. We check locally and in the process 
give a description of Pn and Qn with open patching data [25, 2.5 on page 14].

Proposition 16. The R-modules Pn and Qn are algebraic line bundles over R, that is, 
finitely generated R-modules of constant rank 1, and determine invertible sheaves on J . 
They are described in terms of open patching data by

Pn
∼ = 
{

(fx, fw) ∈ R[x−1] ×R[w−1] | fw =
( z
x

)n
fx

}
,

Qn
∼ = 
{

(fx, fw) ∈ R[x−1] ×R[w−1] | fw =
(y
x

)n
fx

}
.

Proof. The canonical projections Pn[x−1] → R[x−1] and Pn[w−1] → R[w−1] are isomor-
phisms. Since D(x)∪D(w) = J , we conclude Pn is locally free of constant rank 1 and is 

thus an algebraic line bundle [25, Lemma 2.4]. For 
[
f
g

]
∈ Pn[x−1, w−1], one checks that 

(z/x)nf = g, which determines Pn in terms of open patching data. A similar calculation 
works for Qn. �
Remark 17. Proposition 16 shows us how to interpret an element

s0 = a0

[
xn

zn

]
+ a1

[
yn

wn

]
, with a0, a1 ∈ R

that is a global section of the invertible sheaf associated to Pn. Namely, the global 
section s0 restricted to D(x) is described by a0x

n + a1y
n, while on D(w) the section is 

a0z
n+a1w

n. On the overlap, the two sections agree when compared using the appropriate 
transition functions.

Combining Propositions 15 and 16 it follows that any tuple (fx, fw) ∈ R[x−1]×R[w−1]
satisfying fw =

(
z
x

)n
fx can be expressed as[
fx
fw

]
= a0

[
xn

zn

]
+ a1

[
yn

wn

]
, for some a0, a1 ∈ R.

The algebraic line bundles Pn and Qn may also be described as the image of an 
idempotent (2 × 2)-matrix of rank 1. For n ≥ 1, let A =

∑n−1
i=0

(2n−1
i 
)
xn−1−iwi and 

B =
∑2n−1

i=n

(2n−1
i 
)
x2n−1−iwi−n. Then xnA + wnB = (x + w)2n−1 = 1. Define

Mn =
(
xnA ynB
znA wnB

)
and M ′

n =
(
xnA znB
ynA wnB

)
. (18)

Proposition 19. For every n ≥ 1, the matrices Mn and M ′
n are idempotent of rank 1. 

When viewed as linear transformations from R2 to R2, the image of Mn and M ′
n is Pn

and Qn respectively.
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Proof. It is straightforward to verify that Mn is idempotent using the relation 1 =
xnA + wnB and that Im(Mn) ⊂ Pn. Note that

xn

[
xnA
znA

]
+ zn

[
ynB
wnB

]
= (xnA + wnB)

[
xn

zn

]
=
[
xn

zn

]
and similarly,

yn
[
xnA
znA

]
+ wn

[
ynB
wnB

]
= (xnA + wnB)

[
yn

wn

]
=
[
yn

wn

]
.

So Pn ⊂ Im(Mn), and the image is equal to Pn. The argument for M ′
n and Qn is 

similar. �
Proposition 20. For every n ≥ 1, the morphisms Pn ⊗ P1 → Pn+1 and P⊗n

1 → Pn ob-
tained from component-wise multiplication are isomorphisms. A similar statement holds 
for Qn.

Proof. Consider the R-module map m : R2 ⊗ R2 → R2 induced by component-wise 
multiplication. By the description of the generators of the modules Pn, it is clear that m
restricts to a map m : Pn ⊗P1 → Pn+1 and this map is surjective. As both Pn ⊗P1 and 
Pn+1 are algebraic line bundles, the map m is surjective locally at every maximal ideal 
m ⊆ R and hence an isomorphism. Thus m : Pn ⊗ P1 → Pn+1 is itself an isomorphism 
by [7, Proposition 3.9]. This proves the first claim. The second claim now follows by 
induction. �

We now have a complete description of the isomorphism Z ∼ = Pic(J ).

Proposition 21. Under the isomorphism Pic(J ) ∼ = Pic(P 1) ∼ = Z arising from the A1-
homotopy equivalence π : J → P 1, the modules Pn and Qn correspond to n and −n, 
respectively, while the trivial invertible sheaf O corresponds to 0.

Proof. By Lemma 11, Pic(J ) = Z, and P1 generates the Picard group. By Proposi-
tion 12, the inverse of P1 is Q1. By Proposition 20, the modules Pn and Qn correspond 
to n and −n in the Picard group. �
2.4. Pointed morphisms P 1 → P 1 and J → P 1

We will now study morphisms to P 1 in more detail. By [16, Theorem II.7.1], for a 
smooth k-scheme X, the data needed to give a morphism f : X → P 1 are an invertible 
sheaf L over X and the choice of two global sections s0, s1 ∈ Γ(X,L) that generate the 
invertible sheaf L. That is, at every point p ∈ X, the stalks of the sections (s0)p and 
(s1)p generate the local ring Lp. We then write [s0, s1] for the morphism X → P 1 given 
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by the data above, where we usually omit the invertible sheaf L from the notation. We 
note that throughout the paper we use the terms morphism and map interchangeably.

The scheme P 1 is pointed at ∞ = [1 : 0]. A pointed morphism f : P 1 → P 1 by 
definition is a morphism satisfying f(∞) = ∞. A pointed morphism f : P 1 → P 1 given 
by the invertible sheaf O(n) on P 1 with two generating sections σ0, σ1 ∈ k[x0, x1](n) has 
the following special form by work of Cazanave [12].

Proposition 22. [12, Proposition 2.3] A pointed k-scheme morphism f : P 1 → P 1 corre-
sponds uniquely to the data of a natural number n and a choice of two polynomials, 
A =

∑n
i=0 aiX

i and B =
∑n−1

i=0 biX
i in k[X] for which an = 1 and the resul-

tant res(A,B) is non-zero. The integer n is called the degree of f and is denoted 
deg(f); the scalar res(f) = res(A,B) ∈ k× is called the resultant of f . We recall that 
res(A,B) = det (Syl(A,B)) ∈ k, where Syl(A,B) is the Sylvester matrix of the pair of 
polynomials (A,B) which we recall in Definition 132.

Remark 23. One easily translates from the morphism f : P 1 → P 1 given by n, A, and 
B in Proposition 22 to the morphism given by the invertible sheaf O(n) and the choice 
of global sections σ0 =

∑n
i=0 aix

i
0x

n−i
1 and σ1 =

∑n
i=0 bix

i
0x

n−i
1 where we understand 

bn = 0. The resultant condition guarantees that these global sections generate O(n). The 
condition an = 1 is a normalizing condition to give a bijective correspondence between 
morphisms and the data n, A, and B. We will find it more convenient to use the data 
[σ0, σ1] : P 1 → P 1 and O(n) to describe a pointed map in what follows.

We will now explain in detail how we can use this perspective to describe morphisms 
via line bundles and generating sections in the special case J → P 1.

Proposition 24. Consider a pointed map [σ0, σ1] : P 1 → P 1 with invertible sheaf O(n), 
σ0 =

∑n
i=0 aix

i
0x

n−i
1 and σ1 =

∑n
i=0 bix

i
0x

n−i
1 . The composition [σ0, σ1] ◦ π is the map 

[s0, s1] : J → P 1 with invertible sheaf Pn and global sections

s0 =
n ∑

i=0 
ai

[
xiyn−i

ziwn−i

]
and s1 =

n ∑
i=0 

bi

[
xnyn−i

ziwn−i

]
. (25)

Proof. This is a straightforward calculation. The condition on the resultant ensures that 
the sections s0 and s1 generate Pn. �
Remark 26. We note that the difference between a general map [s0, s1] : J → P 1 with 
invertible sheaf Pn and a map J → P 1 which factors as f ◦ π with f : P 1 → P 1 is that 
the coefficients ai and bi in the expressions of the sections in Equation (25) are in the 
field k when the map factors, but in general the coefficients are in R.

We now look at the data needed to describe a general morphism J → P 1 and also 
see what condition pointedness imposes.



14 V. Balch Barth et al. / Advances in Mathematics 461 (2025) 110080 

Construction 27. A morphism f : J → P 1 is determined by the following data: an in-
vertible sheaf L on J and the choice of two global sections s0, s1 ∈ Γ(J ,L) that generate 
L [16, Theorem II.7.1]. Since Pic(J ) ∼ = Z, the invertible sheaf L may be chosen to be 
either Pn, Qn, or O. We call the integer corresponding to the class of L in Pic(J ) ∼ = Z
the degree of f .

We will now make the assignment (L, s0, s1) �→ f explicit. We will study only the case 
of Pn, as Qn is handled in the same way by Proposition 15. The case of O is discussed 
later in Section 2.7.

For L = Pn, two generating sections s0, s1 ∈ Γ(J ,Pn) may be chosen to be of the 
form

s0 = a0

[
xn

zn

]
+ a1

[
yn

wn

]
s1 = b0

[
xn

zn

]
+ b1

[
yn

wn

]
.

Define D(si) = {p ∈ J | (si)p �∈ mp(Pn)p}. The map [s0, s1] is defined on the open set 
D(si) to map into Ui = {[x0, x1] | xi �= 0}. Here U0 ∼ = Spec k[y1] and U1 ∼ = Spec k[y0], 
where y0 = x0/x1 and y1 = x1/x0. The map D(si) → Ui is given by the corresponding 
map of rings k[yj ] → Pn[s−1

i ] determined by yj �→ sj/si. This requires some explanation 
due to the description of the sheaf Pn. Proposition 16 shows that the components of each 
section si describe the section on the open sets D(x) and D(w). Hence there are four 
cases to consider to get a description of the map in concrete terms of affine open sets.

(1) D(x) ∩ D(s0): Here s0 is described by a0x
n + a1y

n in the ring R[x−1] and s1 is 
given by b0xn + b1y

n in the ring R[x−1]. Hence on D(s0) the corresponding ring 
map k[y1] → R[x−1, (a0x

n + a1y
n)−1] is given by y1 �→ b0x

n+b1y
n

a0xn+a1yn .
(2) D(x) ∩ D(s1): Here s0 is described by a0x

n + a1y
n in the ring R[x−1] and s1 is 

given by b0xn + b1y
n in the ring R[x−1]. Hence on D(s1) the corresponding ring 

map k[y0] → R[x−1, (b0xn + b1y
n)−1] is given by y0 �→ a0x

n+a1y
n

b0xn+b1yn .
(3) D(w) ∩ D(s0): Here s0 is described by a0z

n + a1w
n in the ring R[w−1] and s1 is 

given by b0zn + b1w
n in the ring R[w−1]. Hence on D(s0) the corresponding ring 

map k[y1] → R[w−1, (a0z
n + a1w

n)−1] is given by y1 �→ b0z
n+b1w

n

a0zn+a1wn .
(4) D(w) ∩ D(s1): Here s0 is described by a0z

n + a1w
n in the ring R[w−1] and s1 is 

given by b0zn + b1w
n in the ring R[w−1]. Hence on D(s1) the corresponding ring 

map k[y0] → R[w−1, (b0zn + b1w
n)−1] is given by y0 �→ a0z

n+a1w
n

b0zn+b1wn .

This information can be consolidated into the two maps D(x) → P 1 and D(w) → P 1

given in terms of the pair of sections [a0x
n+a1y

n, b0x
n+b1y

n] and [a0z
n+a1w

n, b0z
n+

b1w
n] respectively. Written in this form, we see that a map J → P 1 given by the invertible 

sheaf Pn with two generating sections s0, s1 should be interpreted as giving a map to P 1

on the open sets D(x) and D(w) according to the first component of the sections s0, s1

on D(x) and according to the second component of the sections s0, s1 on D(w).
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Remark 28. Recall that J is pointed at j = (x − 1, y, z, w) and P 1 is pointed at ∞ =
[1 : 0]. A map f : J → P 1 is pointed if f(j) = ∞. If f = [s0, s1] with line bundle L and 
generating sections s0, s1, pointedness can be verified by checking that the stalk s1(j)
satisfies s1(j) = 0 in the local ring Lj. For us, it suffices to work on D(x) where our line 
bundles are trivial, and verify that modulo j the section s1 vanishes.

We give a concrete criterion for checking pointedness of a map f : J → P 1 with line 
bundle Pn. The case of Qn is similar.

Proposition 29. A map [s0, s1] : J → P 1 with invertible sheaf Pn and generating sections

s0 = a0

[
xn

zn

]
+ a1

[
yn

wn

]
, s1 = b0

[
xn

zn

]
+ b1

[
yn

wn

]
is pointed if and only if b0 ∈ j, i.e., b0(j) = 0.

Proof. First, assume the map [s0, s1] is pointed. Construction 27 gives a description 
of the map in local coordinates. Note that for j to map to ∞ ∈ U0, it is necessary 
that j ∈ D(s0). Since j ∈ D(x) ∩ D(s0), the map in local coordinates is obtained by 
taking Spec of the ring map g : k[y1] → R[x−1, (a0x

n + a1y
n)−1] which is given by 

g(y1) = b0x
n+b1y

n

a0xn+a1yn . The condition for pointedness is then that the preimage of j under g
is the maximal ideal (y1). This is equivalent to the condition that y1 maps into the ideal 
(x−1, y, z, w) ⊆ R[x−1, (a0x

n +a1y
n)−1]. By the definition of g, the requirement is that 

b0x
n+b1y

n

a0xn+a1yn ∈ (x − 1, y, z, w), which is equivalent to b0xn + b1y
n ∈ (x − 1, y, z, w). Since 

y ∈ (x − 1, y, z, w) and x is invertible, this condition is met when b0 ∈ j. Thus when 
[s0, s1] is pointed, j ∈ D(s0) and b0 ∈ j.

Now assume that b0 ∈ j. This implies j ∈ D(s0), since the sections s0, s1 generate 
(Pn)j, and b0 ∈ j implies s1(j) = 0. Here we can use the same construction above, since 
j ∈ D(x) ∩D(s0). The algebra above shows that when b0 ∈ j the preimage of j under s
is (y1), i.e., the map [s0, s1] is pointed. �
Proposition 30. Let f = [s0, s1] : J → P 1 be a pointed map with invertible sheaf Pn. If 
r = s0(j), then 

[
s0
r ,

s1
r

]
: J → P 1 is a pointed map that is equal to f . Thus any pointed 

map with line bundle Pn may be represented by a pair of generating global sections [s0, s1]
where s0(j) = 1 and s1(j) = 0.

Proof. Proposition 29 has established that s1(j) = 0 and s0(j) = r is a unit. We verify 
that the maps [s0, s1] and 

[
s0
r ,

s1
r

]
are equal in local coordinates by Construction 27, 

where the constants 1
r cancel out in every local coordinate chart. �

Proposition 31. Let s0 and s1 be the following sections in Pn

s0 = a0

[
xn

zn

]
+ a1

[
yn

wn

]
, s1 = b0

[
xn

zn

]
+ b1

[
yn

wn

]
.
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The sections s0, s1 generate Pn if and only if there exist Ux, Vx, Uw, Vw ∈ R such that

Ux(xna0 + yna1) + Vx(xnb0 + ynb1) + Uw(zna0 + wna1) + Vw(znb0 + wnb1) = 1.

Employing similar notation, sections s0, s1 generate Qn if and only if there exist 
Ux, Vx, Uw, Vw ∈ R such that

Ux(xna0 + zna1) + Vx(xnb0 + znb1) + Uw(yna0 + wna1) + Vw(ynb0 + wnb1) = 1.

Proof. By Lemma 14, it suffices to prove this for Pn. Assume s0, s1 generate Pn. Then 

there exist U, V such that Us0 +V s1 =
[
xn

zn

]
. The first component of this identity gives

(U(xna0 + yna1) + V (xnb0 + ynb1)) = xn.

Similarly, there exist U ′, V ′ such that U ′s0 + V ′s1 =
[
yn

wn

]
. This gives the relation

(U ′(zna0 + wna1) + V ′(znb0 + wnb1)) = wn.

We need to show that the ideal (xn, wn) is the unit ideal. However, the equation 1 = (x+
w)2n = Σ2n

i=0
(2n

i 
)
x2n−iwi demonstrates that 1 can be expressed as a linear combination 

of xn and wn over R, since each summand 
(2n

i 
)
x2n−iwi can be written as rixn with 

ri =
(2n

i 
)
xn−iwi ∈ R or r′iwn with r′i =

( 2n 
n+i

)
xn−iwi ∈ R for i = 0, 1, . . . , n. Thus, 

(xn, wn) is the unit ideal. Now we assume that there exist elements Ux, Vx, Uw, Vw ∈ R

such that

Ux(xna0 + yna1) + Vx(xnb0 + ynb1) + Uw(zna0 + wna1) + Vw(znb0 + wnb1) = 1.

A straight forward computation yields (Uxx
n + Uwz

n)s0 + (Vxx
n + Vwz

n)s1 =
[
xn

zn

]
, 

and (Uxy
n + Uww

n)s0 + (Vxy
n + Vww

n)s1 =
[
yn

wn

]
. These two elements generate Pn, 

thus [s0, s1] do as well. �
For brevity, we write maps J → P 1 of nonzero degree using the following notation.

Definition 32. Let n be a positive integer. Let (a0, a1 : b0, b1)n denote the map J → P 1

with invertible sheaf Pn and generating sections

s0 = a0

[
xn

zn

]
+ a1

[
yn

wn

]
, s1 = b0

[
xn

zn

]
+ b1

[
yn

wn

]
with a0, a1, b0, b1 ∈ R.

Similarly, let (a0, a1 : b0, b1)−n denote the map J → P 1 with invertible sheaf Qn and 
generating sections
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s0 = a0

[
xn

yn

]
+ a1

[
zn

wn

]
, s1 = b0

[
xn

yn

]
+ b1

[
zn

wn

]
with a0, a1, b0, b1 ∈ R.

2.5. Detecting morphisms J → P 1 via resultants

For later purposes, we extend the definition of the resultant to homogeneous polyno-
mials in two variables. We collect some further facts about resultants in Appendix B. 
The main goal of this subsection is to prove Proposition 35. Motivated by the observation 
of Remark 23 make the following definition.

Definition 33. Let R[α, β] denote the polynomial ring over R in variables α and β, and let 
R[α, β](n) denote the R-submodule of homogeneous polynomials of degree n. For every 

n ≥ 1, the map s : R[α, β](n) → Pn, defined by s(αiβn−i) =
[
xiyn−i

ziwn−i

]
for all 0 ≤ i ≤ n

is a surjective morphism of R-modules.

Definition 34. The resultant of a pair of homogeneous polynomials

(F0, F1) =
(

n ∑
i=0 

aiα
iβn−i,

n ∑
i=0 

biα
iβn−i

)
∈ (R[α, β](n))2

is defined to be the resultant of the associated univariate polynomials (F0,F1) =(∑n
i=0 aiX

i,
∑n

i=0 biX
i
)

in the indeterminate X. That is,

res(F0, F1) := res(F0,F1) = res
(

n ∑
i=0 

aiX
i,

n ∑
i=0 

biX
i

)
= det (Syl(F0,F1)) ,

where Syl(F0,F1) is the Sylvester matrix of the pair of polynomials (F0,F1) in R[X]. 
See Definition 132 for a definition of the Sylvester matrix.

Proposition 35. Consider a pair (F0, F1) of homogeneous polynomials of degree n ≥ 1 in 
R[α, β](n). If res(F0, F1) is a unit, then the pair of sections (s(F0), s(F1)) generates Pn

and defines a morphism [s(F0), s(F1)] : J → P 1.

Proof. Consider (F0, F1) =
(∑n

i=0 aix
iyn−i,

∑n
i=0 bix

iyn−i
)

with unit resultant. It suf-
fices to show that (s0, s1) = (s(F0), s(F1)) generate Pn on the open patches D(x) and 
D(w). On D(x), this requires showing that the ideal 

(∑n
i=0 aix

iyn−i,
∑n

i=0 bix
iyn−i

)
is 

the unit ideal in R[x−1]. The ideal is the same as the ideal 
(∑n

i=0 ai(
y
x )n−i,

∑n
i=0 bi(

y
x )n−i

)
which corresponds to a pair of polynomials of degree n in the variable y

x . By 
Lemma 134, this pair of polynomials has unit resultant. Since the resultant is 
a unit, there exists Ux, Vx ∈ R[x−1] by Lemma 133 giving a Bézout relation 
Ux

∑n
i=0 ai(

y
x )n−i + Vx

∑n
i=0 bi(

y
x )n−i = 1. On D(w) we need to prove that the ideal (∑n

i=0 aiz
iwn−i,

∑n
i=0 biz

iwn−i
)

is the unit ideal in R[w−1]. The ideal is equal to 
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(∑n
i=0 ai(

z
w )i,

∑n
i=0 bi(

z
w )i

)
. This pair of polynomials has unit resultant by assumption. 

By Lemma 133, unit resultant implies existence of a Bézout relation Uw

∑n
i=0 ai(

z
w )i + 

Vw

∑n
i=0 bi(

z
w )i = 1 in R[w−1]. This proves that [s0, s1] defines a morphism J → P 1. �

Remark 36. Let [σ0, σ1] : P 1 → P 1 be a pointed map given by invertible sheaf O(n), 
and sections σ0 =

∑n
i=0 aix

i
0x

n−i
1 and σ1 =

∑n
i=0 bix

i
0x

n−i
1 . Then the pair of ho-

mogeneous polynomials F0 =
∑n

i=0 aiα
n−iβi and F1 =

∑n
i=0 biα

n−iβi in R[α, β](n)
has unit resultant. By Proposition 35, the pair (s(F0), s(F1)) defines a morphism 
[s(F0), s(F1)] : J → P 1. This morphism is equal to the morphism [s0, s1], constructed 
from [σ0, σ1] in Proposition 24.

Remark 37. We note that there exist pairs of polynomials (F0, F1), (F ′
0, F

′
1) such that 

(s(F0), s(F1)) = (s(F ′
0), s(F ′

1)), while res(F0, F1) �= res(F ′
0, F

′
1). An example is given by 

(xα + zβ, β) and (α, β). We calculate

(s(xα + zβ), s(β)) =
(
x

[
x
z

]
+ z

[
y
w

]
,

[
y
w

])
=
([

x
z

]
,

[
y
w

])
= (s(α), s(β)).

The resultants are

res(xα + zβ, β) = x �= 1 = res(α, β).

2.6. The pointed naive homotopy relation

Naive homotopy theory for schemes is a generalization of the homotopy theory of rings 
in classical algebra, see [15] for a definition. Naive homotopy classes of maps between 
schemes do not generally have the good properties one expects from a homotopy theory. 
In our case, however, the work of Asok, Hoyois, and Wendt in [6] shows that naive homo-
topy classes behave sufficiently well. We denote by Smk the category of smooth finite type 
k-schemes. We denote the set of morphisms between objects X,Y ∈ Smk by Smk(X,Y ). 
If X and Y are pointed, we denote by Smk(X,Y )∗ the set of pointed morphisms in Smk.

Definition 38. Let X and Y be smooth schemes finite type k-schemes. For a ∈ k, let 
ia = idX ×a be the map obtained by taking the Cartesian product of idX and the 
inclusion map a : Spec k → A1 given by the ring map k[t] → k sending t to a. An 
elementary homotopy between two morphisms f : X → Y and g : X → Y is given by a 
morphism H(T ) : X×A1 → Y satisfying H(0) = f and H(1) = g, i.e., H(0) = H(T )◦ i0
and H(1) = H(T )◦ i1. We say that f and g are elementarily homotopic and write f ∼ g.

The relation of morphisms being elementarily homotopic is symmetric and reflexive, 
but not transitive. To obtain an equivalence relation on the set of morphisms Smk(X,Y ), 
we take the transitive closure of ∼. That is, we define two morphisms f, g ∈ Smk(X,Y ) to 
be naively homotopic if there is a finite sequence of elementary homotopies Hi(T ) : X ×
A1 → Y , for 0 ≤ i ≤ n with H0(0) = f , Hn(1) = g, and for all 0 ≤ i < n Hi(1) =
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Hi−1(0). We write f � g in this case. The relation � is now an equivalence relation on 
Smk(X,Y ), so we can study the set of naive homotopy classes of morphisms from X to Y .

For our constructions, we will work with pointed maps and pointed naive homotopies. 
We define the latter next.

Definition 39. If X and Y are smooth k-schemes, pointed at k-points x and y respectively, 
we say that an elementary homotopy H(T ) : X ×A1 → Y is pointed if the generic point 
of {x} × A1 maps to y. Said another way, the points x and y correspond to morphisms 
x : Spec k → X and y : Spec k → Y , and we require that H(T ) ◦ (x × idA1) = y ◦ p1
where p1 : Spec k ×A1 → Spec k is the projection onto the first factor.

As in the unpointed case, the relation on the set of pointed morphisms Smk(X,Y )∗
given by pointed elementary homotopies is not an equivalence relation. We say that 
pointed morphisms f, g ∈ Smk(X,Y )∗ are naively homotopic, and write f � g, if there 
is a chain of pointed elementary homotopies from f to g. The naive homotopy relation 
is an equivalence relation on pointed morphisms. We write [X,Y ]N = Smk(X,Y )∗/ �
for the set of equivalence classes.

Remark 40. For us, the most important case is when X = J = SpecR with basepoint 
j = (x− 1, y, z, w). This ideal extends to j′ = (x− 1, y, z, w) ⊆ R[T ]. The condition that 
a homotopy H(T ) : J ×A1 → Y be pointed is simply that H(T )(j′) = y, where y is the 
basepoint of Y .

We now formulate a criterion which will help us to construct homotopies of the 
form J × A1 → P 1. Let p1 : J × A1 → J denote the projection to the first factor. 
Similar to Definition 33, we will use the following notation. Let (R[T ])[α, β] be the 
polynomial ring over R[T ] in variables α and β, and let (R[T ])[α, β](n) denote the R[T ]-
submodule of homogeneous polynomials of degree n. For every n ≥ 1, we consider the 

map s : (R[T ])[α, β](n) → p∗1Pn, defined by s(αiβn−i) =
[
xiyn−i

ziwn−i

]
for all 0 ≤ i ≤ n.

Proposition 41. Let F0, F1 ∈ (R[T ])[α, β](n) be a pair of homogeneous polynomials of 
degree n ≥ 1 over the ring R[T ]. If res(F0, F1) is a unit, then the pair of sections 
(s(F0), s(F1)) generates the line bundle p∗1Pn and defines a morphism [s(F0), s(F1)] : J ×
A1 → P 1.

Proof. The proof is analogous to the proof of Proposition 35 after replacing the ring R
with R[T ]. �
2.7. Morphisms J → A2 \ {0}

We write deg : [J ,P 1]N → Pic(J ) ∼ = Z for the map that sends a map f to f∗O(1). 
Our choices thus far set deg(π) = 1 and deg(π̃) = −1. Write [J ,P 1]Nn for the set 
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of naive homotopy classes of maps J → P 1 with degree n. Our goal for this section 
is to describe the maps J → P 1 of degree 0. We consider the scheme A2 \ {0} =
Spec (k[t0, t1]) \ {(t0, t1)} to be pointed at (t0 − 1, t1) and write η : A2 \ {0} → P 1 for the 
Hopf map given by the trivial algebraic line bundle OA2\{0} with the choice of sections 
η0 = t0, η1 = t1. A scheme morphism J → A2 \ {0} is given by a morphism J → A2

that does not have {0} in the image. Thus, a morphism J → A2 \ {0} is given by a pair 
(s0, s1) ∈ R2 such that the ideal (s0, s1) generates R, i.e., there are U, V ∈ R for which 
s0U + s1V = 1. In other words, a morphism J → A2 \ {0} is given by unimodular row 
(s0, s1) in R2.

Proposition 42. Consider a map f : J → P 1. Then we have deg(f) = 0 if and only if f
factors through the Hopf map η : A2 \ {0} → P 1.

Proof. First, since Pic(A2 \ {0}) = 0, it follows that any map that factors as J →
A2 \ {0} η−→ P 1 has degree 0. Second, assume that the morphism f : J → P 1 satisfies 
deg(f) = 0, i.e., f∗O(1) = OR. We recall from Construction 27 that then f is given by 
global sections s0, s1 ∈ R = Γ(J ,OR) that generate OR, i.e., the ideal (s0, s1) generates 
R. As we explained above, this shows that (s0, s1) determines a morphism J → A2 \
{0}. Since η is given by the trivial bundle, the composition J (s0,s1)−−−−→ A2 \ {0} η−→ P 1

corresponds to the trivial algebraic line bundle OR on J with global sections s0, s1. 
Thus, the composition (s0, s1) ◦ η equals f which finishes the proof. �
Corollary 43. Let f : J → P 1 be a pointed map of degree 0. Then there exists a unique 
pointed map f ′ : J → A2 \ {0} such that f = f ′ ◦ η.

Proof. Let (s0, s1) : J → A2 \ {0} be a factorization of f through the Hopf map. Note 
that r = s0(j) need not be 1, although r is a unit of k. Instead, the map f ′ =

( 1
r s0,

1
r s1

)
is pointed and satisfies f = f ′ ◦ η.

To show uniqueness, let (s′0, s′1) : J → A2 \ {0} be another pointed map that factors 
f through η. That is, we assume [s0, s1] = [s′0, s′1]. Note that in this case, D(s0) =
D(s′0) = D(f∗x0) and D(s1) = D(s′1) = D(f∗x1). Working locally in D(s1) = D(s′1), 
we have s0/s1 = s′0/s

′
1 in R[s−1

1 ] by construction. We may write s′0 = c0s0 for c0 =
s′1/s1 ∈ R[s−1

1 ]. Similarly, in D(s0) = D(s′0), we obtain s′1 = c1s1 for c1 = s′0/s0. In the 
intersection D(s0) ∩D(s1) we have s′0/s

′
1 = s0/s1, which implies s′0/s0 = s′1/s1. This is 

exactly the equation c0 = c1. The elements c1 ∈ R[s−1
0 ] and c0 ∈ R[s−1

1 ] therefore glue 
together to an element c ∈ R. Hence c satisfies s′0 = cs0 and s′1 = cs1. Observe that 
c(s0u

′ + s1v
′) = 1, that is, c ∈ R× = k×. The pointedness assumption forces c(j) = 1, 

hence, c = 1 with which we conclude (s0, s1) = (s′0, s′1). �
Remark 44. The previous proposition says, in other words, that a map J → A2 \ {0} is 
equivalent to a unimodular row (A,B) of length two in R. Furthermore, a pointed map 
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J → A2 \ {0} is equivalent to a unimodular row (A,B) of length two in R that also 
satisfies A(j) = 1 and B(j) = 0.

Pointed elementary homotopies between maps of degree 0 can also be lifted to a 
pointed elementary homotopy of maps J → A2 \ {0}.

Proposition 45. Let H(T ) = [s0(T ), s1(T )] : J ×A1 → P 1 be a pointed elementary homo-
topy between maps H(0) and H(1) which have degree 0. There is a pointed elementary 
homotopy H ′(T ) : J ×A1 → A2 \ {0} between the lifts H ′(0) and H ′(1).

Proof. Since H(0) and H(1) have degree 0, the homotopy H(T ) is degree 0 too, that is, 
the line bundle it determines is the trivial one OJ×A1 . We can use the two generating 
global sections s0(T ), s1(T ) ∈ R[T ] to build a map (s0(T ), s1(T )) : J × A1 → A2 \ {0}. 
Note that since s0(T ) and s1(T ) generate R[T ], there are u(T ), v(T ) ∈ R[T ] for which 
s0(T )u(T )+s1(T )v(T ) = 1. Since H(T ) is pointed, s1(T )(j′) = 0 in R[T ]/j′. This implies 
that s0(T )(j′)u(T )(j′) = 1 in R[T ]/j′. The ring R[T ]/j′ is easily seen to be isomorphic to 
k[T ]. Hence r = s0(T )(j′) is a unit of k[T ], and the units of k[T ] are exactly the units of 
k. Thi shows that the map 

(1
r s0(T ), 1

rs1(T )
)

: J ×A1 → A2 \{0} is a pointed homotopy 
between H ′(0) and H ′(1). �

Let SL2 denote the affine scheme Spec (k[a, b, c, d]/(ad− bc− 1)) pointed at the ideal 
(a − 1, b, c, d − 1). Intuitively, this is the scheme of (2 × 2)-matrices with determinant 
1, pointed at the identity matrix. Let (A,B) be a unimodular row in R. That is, there 
exist U, V ∈ R for which AU + BV = 1. Thus the data of a map J → A2 \ {0} can be 

used to produce a matrix 
(
A −V
B U

)
∈ SL2(R), in other words, a map J → SL2.

Lemma 46. A pointed map (A,B) : J → A2 \ {0} can be lifted to a pointed map (
A −V
B U

)
: J → SL2.

Proof. Let 
(
A −V1
B U1

)
be an arbitrary lift of (A,B). Note that A(j) = 1, B(j) = 0, and 

U1(j) = 1, but V1(j) = v for some v ∈ k. For any d ∈ R, we can construct a different lift 
by setting U2 = U1 + Bd and V2 = V1 − Ad. Set d = v. Then U2(j) = 1, and V2(j) = 0, 

so 
(
A −V2
B U2

)
is pointed. �

Remark 47. The pointed lift of Lemma 46 is not unique in general. For example, the 
unimodular row (1, 0) lifts to the pointed maps

(
1 0
0 1

)
or

(
1 y
0 1

)
.
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However, we now show that any two pointed lifts of a pointed unimodular row (A,B)
are naively homotopic.

Lemma 48. Let (A,B) : J → A2 \ {0} be a pointed map. Any two lifts of (A,B) to a 
pointed map J → SL2 are naively homotopic.

Proof. Let

f̃i =
(
A −Vi

B Ui

)
for i ∈ {1, 2} be two pointed lifts of (A,B). A pointed elementary homotopy between f̃1
and f̃2 is given by

f̃t =
(
A −(TV1 + (1 − T )V2)
B TU1 + (1 − T )U2

)
which proves the claim. �
Proposition 49. Every pointed elementary homotopy

H(T ) = (s0(T ), s1(T )) : J ×A1 → A2 \ {0}

can be lifted to a pointed elementary homotopy(
s0(T ) −V (T )
s1(T ) U(T )

)
: J ×A1 → SL2.

Proof. Recall j′ = (x− 1, y, z, w) must map to the basepoint for the homotopy H(T ) to 
be pointed. The sections s0(T ) and s1(T ) generate the unit ideal, hence there exist u(T )
and v(T ) in R[T ] for which s0(T )u(T ) + s1(T )v(T ) = 1. The pointedness assumption 
gives the relation among ideals (s0(T ) − 1, s1(T )) ⊆ j′ ⊆ R[T ].

With these data, we construct the matrix(
s0(T ) −v(T )
s1(T ) u(T )

)
∈ SL2(R[T ]).

This matrix determines a map J×A1 → SL2 that lifts the unimodular row (s0(T ), s1(T ))
we started with. This homotopy need not be a pointed homotopy. However, for any choice 
of d(T ) ∈ R[T ], the matrix (

s0(T ) −v(T ) + s0(T )d(T )
s1(T ) u(T ) + s1(T )d(T )

)
is also a lift of (s0(T ), s1(T )). We will now show that, for d(T ) = v(T ), the map 
this matrix determines is a pointed homotopy. Write u2(T ) = u(T ) + s1(T )v(T ) and 
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v2(T ) = v(T ) − s0(T )v(T ). Our assumption that (s0(T ), s1(T )) is pointed gives us 
(s0(T ) − 1, s1(T )) ⊆ j′ ⊆ R[T ]. We must show that (v2(T ), u2(T ) − 1) ⊆ j′ too. Since 
(s0(T ) − 1) ∈ j′, we have v2(T ) = −v(T )(s0(T ) − 1) ∈ j′. Observe that u2(T ) − 1 ∈ j′
if u(T ) − 1 ∈ j′ since s1(T ) ∈ j′. Since s0(T )u(T ) + s1(T )v(T ) = 1, it follows that 
s0(T )u(T )−1 ∈ j′. This can be rewritten as s0(T )u(T )−1 = (s0(T )−1)u(T )+u(T )−1. 
Since s0(T ) − 1 ∈ j′ it follows that u(T ) − 1 ∈ j′ too. �
Definition 50. Let φ : SL2 → A2 \ {0} be the morphism determined by the ring map 
f : k[t0, t1] → k[a, b, c, d]/(ad− bc− 1) given by f(t0) = a and f(t1) = c. Intuitively, this 
is the morphism that extracts the first column from a matrix in SL2. As given, this map 
has codomain A2, but it is clear from the relation ad− bc = 1 that φ maps into A2 \{0}.

Proposition 51. The maps φ : SL2 → A2 \ {0} and η : A2 \ {0} → P 1 induce bijections of 
naive homotopy classes of pointed maps

[J ,SL2]N
φ∗−→ [J ,A2 \ {0}]N η∗−→ [J ,P 1]N0 .

Proof. The map φ∗ is surjective by Lemma 46, and φ∗ is injective by Lemma 48. Corol-
lary 43 shows that η∗ is bijective on the level of pointed morphisms. This shows that η∗
is surjective. To show that η∗ is injective, it suffices to show that a pointed elementary 
homotopy H(T ) : J × A1 → P 1 between degree 0 maps lifts to a pointed elementary 
homotopy H ′(T ) : J ×A1 → A2 \ {0}, which is done in Proposition 45. �
3. Operations on naive homotopy classes of morphisms

3.1. Group structure on maps of degree 0

We may now define a binary operation on naive homotopy classes of morphisms J →
A2 \ {0}. This is analogous to Cazanave’s naive sum of pointed rational functions. The 
group structure is obtained by lifting maps f, g : J → A2 \ {0} to f̃ , g̃ : J → SL2, 
multiplying the two resulting maps using the group structure on SL2, then mapping 
back down to A2 \ {0} via the map φ : SL2 → A2 \ {0}.

A morphism f : J → SL2 is equivalent to the data of a matrix M ∈ SL2(R). A matrix 
M ∈ SL2(R) corresponds to a pointed morphism if upon evaluation at j, the resulting 
matrix is the identity matrix. The set of pointed maps corresponds to a subgroup of 
SL2(R). The operation of matrix multiplication respects the naive homotopy relation for 
pointed maps and therefore defines a group operation on [J ,SL2]N, the set of pointed 
naive homotopy classes of morphisms. It suffices to prove the following proposition, 
given that the naive homotopy relation is the transitive closure of pointed elementary 
homotopies.

Proposition 52. Let M(T ) ∈ SL2(R[T ]) be a pointed elementary homotopy between the 
matrices M0 = M(0) ∈ SL2(R) and M1 = M(1) ∈ SL2(R) corresponding to pointed 
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morphisms. Let M ′(T ) ∈ SL2(R[T ]) be another elementary homotopy where similar no-
tation is employed. The pointed morphisms corresponding to M0 ·M ′

0 and M1 ·M ′
1 are 

elementarily homotopic.

Proof. All that needs to be verified is that the morphism corresponding to the matrix 
product M(T ) ·M ′(T ) is pointed. Since both M(T ) and M ′(T ) are pointed, evaluation 
at j′ gives the identity matrix in SL2(k[T ]). It’s clear then that the product M(T )·M ′(T )
will evaluate to the identity matrix at j′ too. �
Definition 53. Consider two pointed naive homotopy classes [(Ai, Bi) : J → A2 \{0}] for 
i = 1, 2 represented by the unimodular rows (Ai, Bi) ∈ R2. Pick completions of the uni-
modular rows to matrices corresponding to pointed maps, as guaranteed by Lemma 46:(

A1 −V1
B1 U1

)
,

(
A2 −V2
B2 U2

)
∈ SL2(R).

We define [(A1, B1)]⊕[(A2, B2)] to be the naive homotopy class [(A3, B3)] where (A3, B3)
is the unimodular row obtained from the matrix product(

A3 −V3
B3 U3

)
=
(
A1 −V1
B1 U1

)
·
(
A2 −V2
B2 U2

)
.

Proposition 54. The operation ⊕ of Definition 53 is well-defined and gives the set [J ,A2\
{0}]N the structure of a group.

Proof. We first show that the operation does not depend on the particular completion to 
a matrix in SL2(R). Let M1 and M ′

1 be two pointed completions of (A1, B1), and similarly 
let M2 and M ′

2 be two pointed completions of (A2, B2). There are two representatives for 
the product [(A1, B1)]⊕ [(A2, B2)] from these choices. They are (A3, B3), taken from the 
first column of M1 ·M2 and (A′

3, B
′
3), the first column of M ′

1 ·M ′
2. Any two completions of 

a unimodular row to a matrix in SL2(R) are homotopic by Lemma 48, hence [M1] = [M ′
1]

and [M2] = [M ′
2] in [J ,SL2]N. By Proposition 52, the products M1 · M2 and M ′

1 · M ′
2

are homotopic as maps J → SL2. Extracting the first column of this homotopy gives a 
homotopy between the resulting unimodular rows defining the resulting map.

We now show that the operation does not depend on the representative of the naive 
homotopy class chosen. Let (A1(T ), B1(T )) and (A2(T ), B2(T )) be pointed elementary 
homotopies. These can be completed to matrices M1(T ) ∈ SL2(R[T ]) and M2(T ) ∈
SL2(R[T ]) by Proposition 49. The first column of the product M1(T ) ·M2(T ) provides 
the homotopy between the two possible representations of the product. We conclude that 
the operation is well-defined on the set [J ,A2 \{0}]N of pointed naive homotopy classes.

The identity for the operation is given by the unimodular row (1, 0) : J → A2 \ {0}. 
Associativity of ⊕ follows from the associativity of matrix multiplication. Finally, let 
(A,B) : J → A2 \ {0} be given by the unimodular row (A,B) ∈ R2 and complete it to a 
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matrix 
(
A −V
B U

)
∈ SL2(R) giving a pointed map. The inverse of this matrix in SL2(R)

is the matrix 
(

U V
−B A

)
, and the first column of this matrix represents the inverse of 

(A,B) in [J ,A2 \ {0}]N for ⊕. That is, −[(A,B)] = [(U,−B)]. �
Lemma 55. The map φ : SL2 → A2 \ {0} induces an isomorphism of groups

φ∗ : [J ,SL2]N
∼ = −→ [J ,A2 \ {0}]N.

Proof. The map φ∗ is a group homomorphism by our definition of ⊕ on [J ,A2 \ {0}]N
in terms of matrix multiplication. We have shown in Proposition 51 that φ∗ is bijective, 
hence the result. �

For the next result, we recall that the cogroup structure of P 1 ∼ = S1∧Gm in the pointed 
A1-homotopy category endows [P 1, X]A1 with a group operation for any motivic space 
X. It is a simple exercise to produce an A1-weak equivalence P 1 � S1 ∧ Gm using the 
standard covering of P 1 by two affine lines with intersection Gm. The simplicial circle 
S1 (or some suitable homotopy equivalent model of it, like ∂Δ2) admits the structure 
of an h-cogroup, or just a cogroup in the homotopy category. Explicitly, the pointed 
simplicial set ∂Δ2 � S1 admits two maps: a pinch map p : S1 → S1 ∨ S1 and an inverse 
map S1 → S1. These operations fit into homotopy commutative diagrams that give 
the expected algebraic properties, like associativity and the definition of the inverse [24, 
Chapter 2]. These two observations together allow us to define a group operation on 
[S1 ∧ Gm,P 1]A1 as follows. Given two maps f, g : S1 ∧ Gm → P 1 in the A1-homotopy 
category, the composition below represents the sum f ⊕A1

g of the maps f and g.

S1 ∧Gm

p∧1
(S1 ∨ S1) ∧Gm

∼ = (S1 ∧Gm) ∨ (S1 ∧Gm)
f∨g

P 1 (56)

Note that the morphism f ∨ g exists by the universal property of wedge sums. One must 
take the time to verify that the operation defined above does indeed make [P 1,P 1]A1

into a group, but the pleasant properties of the A1-homotopy category make this doable. 
We refer to the operation ⊕A1 as the conventional group structure.

Definition 57. Let ξ0 : [J ,A2 \ {0}]N → [P 1,A2 \ {0}]A1 denote the composition of the 
natural map ν0 : [J ,A2 \ {0}]N → [J ,A2 \ {0}]A1 and the bijection (π∗

A1)−1 : [J ,A2 \
{0}]A1 → [P 1,A2 \ {0}]A1 that is given by the inverse of the bijection π∗

A1 . We note that 
ν0 is a bijection by Proposition 128 since A2 \ {0} is A1-naive.

Theorem 58. The map ξ0 is an isomorphism of groups between the group [J ,A2 \ {0}]N
with operation ⊕ and the group [P 1,A2 \ {0}]A1 with the conventional group operation.

Proof. Let ξ′0 : [J ,SL2]N → [P 1,SL2]A
1 denote the composition of the canonical map 

[J ,SL2]N → [J ,SL2]A
1 and the bijection [J ,SL2]A

1 → [P 1,SL2]A
1 which is given by 
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the inverse of the bijection π∗
A1 . Since both groups [P 1,SL2]A

1 and [P 1,A2 \ {0}]A1

inherit their operation from the cogroup structure of P 1, the A1-weak equivalence SL2
φ−→

A2 \ {0} induces an isomorphism of groups φ∗ : [P 1,SL2]A
1 → [P 1,A2 \ {0}]A1 . By 

Lemma 55 the map φ∗ : [J ,SL2]N → [J ,A2 \ {0}]N is a group isomorphism. We then 
have the following commutative diagram.

[J ,A2 \ {0}]N
ξ0 [P 1,A2 \ {0}]A1

[J ,SL2]N
ξ′0

∼ = φ∗

[P 1,SL2]A
1

∼ = φ∗

Hence, in order to establish that ξ0 is a group isomorphism, it suffices to show that 
ξ′0 is a group isomorphism. Since J is affine and SL2 is A1-naive by [6, Theorem 4.2.1], 
we know that ξ′0 is a bijection by Proposition 128. Hence it suffices to show that ξ′0 is a 
group homomorphism.

Again, because SL2 is A1-naive, the canonical map [J ,SL2]N → [J ,SL2]A
1 is a bijec-

tion by Proposition 128. This bijection is a group isomorphism because the operation on 
both sets is defined using the same construction, that is, the sum of two maps is given 
by

J Δ−→ J × J f×g−−−→ SL2 × SL2
m−→ SL2,

where m : SL2 × SL2 → SL2 is the multiplication on SL2. In other words, the group 
structure is induced by the group object structure on SL2.

Similarly, the set [P 1,SL2]A
1 also obtains the structure of a group using that SL2 is 

a group object in the pointed A1-homotopy category. The Eckmann–Hilton argument 
given in [24, Proposition 2.25] can be applied in this scenario to show that this group 
structure coincides with the conventional group structure, see also [2, Proposition 2.2.12]. 
Hence we may assume that the group operation on [P 1,SL2]A

1 is induced by the group 
object structure on SL2. Combining these observations shows that the composition

[J ,SL2]N → [J ,SL2]A
1 → [P 1,SL2]A

1

is a group homomorphism. This is the map ξ′0 which proves the assertion. �
Corollary 59. The group [J ,A2 \ {0}]N is abelian.

Proof. Since [J ,A2 \ {0}]N is isomorphic to [P 1,SL2]A
1 , the Eckmann–Hilton argument 

shows that this group is abelian. �
Remark 60. Morel shows in [22, §7.3] that the group [P 1,A2 \ {0}]A1 is isomorphic to 
KMW

1 (k), the first Milnor–Witt K-theory group of the field k (see Definition 118 below). 
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In short, the computation [22, Theorem 7.13] and the A1-weak equivalence between SL2
and A2 \ {0} gives πA1

1 (A2 \ {0}) ∼ = KMW
2 . The contraction of this sheaf evaluated at 

Spec k then computes [P 1,A2 \ {0}]A1 :

[P 1,A2 \ {0}]A1 ∼ = πA1

1 (A2 \ {0})−1(Spec k) ∼ = (KMW
2 )−1(Spec k) ∼ = KMW

1 (k).

Hence our results show that there is an isomorphism [J ,SL2]N ∼ = KMW
1 (k). We make 

this isomorphism explicit in Section 6.3.

Remark 61. For any two pointed matrices M,M ′ ∈ SL2(R), which represent pointed 
morphisms J → SL2, there is a chain of elementary homotopies connecting M ·M ′ and 
M ′ · M . We do not know of a general algorithm to construct this chain of homotopies 
explicitly.

The following explicit naive homotopies will be used in the later sections.

Lemma 62. Consider a matrix M =
(
A −V
B U

)
∈ SL2(R). Then M and (M−1)T are 

naively homotopic. Thus, the unimodular rows (A,B) and (U, V ) are naively homotopic.

Proof. Consider the matrix H =
(

1 − T 2 −T
T (2 − T 2) 1 − T 2

)
∈ SL2(R[T ]). The matrix H

defines an unpointed homotopy from the identity matrix to 
(

0 −1
1 0

)
. It is straightfor-

ward to verify that the product HMH−1 is a pointed homotopy between M and (M−1)T
as claimed. �
Lemma 63. Consider a matrix 

(
A −V
B U

)
∈ SL2(R) and let u ∈ k×. Then there is an 

elementary homotopy (
A −V
B U

)
�
(

A − 1 
u2V

u2B U

)
. (64)

Thus, the unimodular row (A,B) is naively homotopic to the unimodular row (A, u2B).

Proof. The matrix on the right-hand side of Equation (64) can be written as the following 
product (

A − 1 
u2V

u2B U

)
=
( 1 

u 0
0 u

)(
A −V
B U

)(
u 0
0 1 

u

)
.

The diagonal matrices can be decomposed to a product of elementary matrices, which 
are all homotopic to the identity. �



28 V. Balch Barth et al. / Advances in Mathematics 461 (2025) 110080 

3.2. Action of degree 0 maps on degree n maps

Recall that we write [J ,P 1]Nn for the set of naive homotopy classes of maps J → P 1

with degree n. We define a group action of [J ,A2 \ {0}]N ∼ = [J ,SL2]N ∼ = [J ,P 1]N0 on 
[J ,P 1]Nn for all n �= 0. We start by first defining an operation on actual morphisms, and 
then show that the operation respects the naive homotopy equivalence relation.

Definition 65. Let M : J → SL2 be a morphism with corresponding matrix(
A −V
B U

)
and consider a map [s0, s1] : J → P 1 determined by n ∈ N, the algebraic line bundle Pn

or Qn, and generating global sections s0, s1.
We define M⊕[s0, s1] : J → P 1 to be the morphism determined by the same algebraic 

line bundle with the generating global sections M ⊕ [s0, s1] = [As0 − V s1, Bs0 + Us1]
which are obtained from the following matrix multiplication(

A −V
B U

)(
s0
s1

)
=
(
As0 − V s1
Bs0 + Us1

)
.

Proposition 66. Given a map [s0, s1] : J → P 1 with algebraic line bundle L (either Pn

or Qn) and a map M : J → SL2, the construction M ⊕ [s0, s1] is a morphism from J
to P 1. If both maps are pointed, the result is also pointed. Furthermore, the operation of 
Definition 65 defines a left group action of [J ,SL2]N on the set Smk(J ,P 1).

Proof. The morphism M : J → SL2 is described by a matrix(
A −V
B U

)
∈ SL2(R).

We observe that U(As0−V s1)+V (Bs0+Us1) = s0 and −B(As0−V s1)+A(Bs0+Us1) =
s1. By assumption, the sections s0, s1 generate the algebraic line bundle L. Hence the 
pair of sections As0 −V s1, Bs0 +Us1 generate L as well. This proves the first assertion.

That the map [s0, s1] is pointed means that s1 ∈ j ⊆ R, or equivalently, s1(j) = 0
in R/j. That M is pointed means M(j) is the identity matrix. To verify M ⊕ [s0, s1] is 
pointed, we must check that B(j)s0(j) +U(j)s1(j) = 0, but this is clear as B(j) = 0 and 
s1(j) = 0 from our assumptions.

The fact that the operation is a left group action follows from the associativity of 
matrix multiplication and the definition of the group structure on maps J → SL2. �

The next theorem employs the notation of Definition 32 for morphisms J → P 1.

Theorem 67. Let f : J → P 1 be a map of degree n. Then there exists a matrix M ∈
SL2(R) such that f = M ⊕ (1, 0 : 0, 1)n.
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Proof. We prove the assertion for n > 0. The proof for n < 0 is similar. Let f = (a0, a1 :
b0, b1)n with the notation introduced in Definition 32. For c, c′, d, d′ ∈ R, consider the 
matrix

M =
(
a0 + ync + wnc′ a1 − xnc− znc′

b0 − ynd− wnd′ b1 + xnd + znd′

)
. (68)

The matrix M can be written as the sum

M =
(
a0 a1
b0 b1

)
+
(

ync + wnc′ −xnc− znc′

−ynd− wnd′ xnd + znd′

)
.

By definition of ⊕ and the notation in Definition 32 we compute(
ync + wnc′ −xnc− znc′

−ynd− wnd′ xnd + znd′

)
⊕ (1, 0 : 0, 1)n

=
(

ync + wnc′ −xnc− znc′

−ynd− wnd′ xnd + znd′

)⎛⎜⎜⎝
[
xn

zn

]
[
yn

wn

]
⎞⎟⎟⎠

=

⎡⎢⎢⎣ (ync + wnc′)
[
xn

zn

]
+ (−xnc− znc′)

[
yn

wn

]
(−ynd− wnd′)

[
xn

zn

]
+ (xnd + znd′)

[
yn

wn

]
⎤⎥⎥⎦ =

[
0
0

]

The last equality follows from the relations yn
[
xn

zn

]
= xn

[
yn

wn

]
and wn

[
xn

zn

]
=

zn
[
yn

wn

]
. Hence, for any choice of c, c′, d, d′ ∈ R, we have

M ⊕ (1, 0 : 0, 1)n = M ⊕
[[

xn

zn

]
,

[
yn

wn

]]
=
[
a0

[
xn

zn

]
+ a1

[
yn

wn

]
, b0

[
xn

zn

]
+ b1

[
yn

wn

]]
= (a0, a1 : b0, b1)n.

We now show that there always exist c, c′, d, d′ such that M ∈ SL2(R). The determinant 
of M is given by the formula

det(M) = a0b1−a1b0+c(xnb0+ynb1)+c′(znb0+wnb1)+d(xna0+yna1)+d′(zna0+wna1).

Since (a0, a1 : b0, b1)n determines a morphism of schemes, it follows from Proposition 31
that the ideal I := (xna0 +yna1, z

na0 +wna1, x
nb0 +ynb1, z

nb0 +wnb1) is the unit ideal. 
Thus 1 − a0b1 − a1b0 is in I, and there exist elements c, c′, d, d′ such that det(M) = 1. 
This shows there exists M ∈ SL2(R) satisfying f = M ⊕ (1, 0 : 0, 1)n as desired. �
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Theorem 67 implies that the action ⊕ is transitive. More concretely, the theorem has 
the following consequence:

Corollary 69. Let f, g : J → P 1 be two morphisms of degree n. Then there exists a matrix 
M ∈ SL2(R) such that M ⊕ f = g.

Proof. By Theorem 67, there exist M ′ and M ′′ such that M ′ ⊕ (1, 0 : 0, 1)n = f and 
M ′′ ⊕ (1, 0 : 0, 1)n = g. The desired matrix is given by M = M ′′ · (M ′)−1. �
Remark 70. The SL2(R)-matrix M constructed in the proof of Theorem 67 is not al-
ways pointed, even if the map f we started with is pointed. For example, following the 

construction for the map f = (1, 1 : 0, 1)1 yields the matrix M =
(

1 1
0 1

)
which is not 

pointed, since M(j) is not the identity matrix.

Remark 70 shows that we have to improve our argument in order to get an action on 
pointed homotopy classes. We will now prove the necessary adjustments.

Proposition 71. Let f : J → P 1 be a pointed map of degree n �= 0. Then there is a pointed 
naive homotopy between f and a map of the form M ⊕ (1, 0 : 0, 1)n for some pointed 
matrix M ∈ SL2(R).

Proof. Let f = (a0, a1 : b0, b1)n, where we may assume a0(j) = 1 by Proposition 30. By 
Theorem 67 we can find a matrix M ′ ∈ SL2(R) such that M ′⊕(1, 0 : 0, 1)n = f . However, 
M ′ may not be pointed. We can replace M ′ with a pointed map M as follows. Assuming 
M ′ is of the form given in Equation (68) we get b1(j) + d(j) = 1. Moreover, this implies 

that there is an element e ∈ k such that M ′(j) =
(

1 e
0 1

)
and e = a1(j)−c(j). Define M

to be M =
(

1 −e
0 1

)
M ′. We compute M ⊕ (1, 0 : 0, 1)n = (a0 − eb0, a1 − eb1 : b0, b1)n. 

The assertion now follows from the fact that the morphism (a0−Teb0, a1−Teb1 : b0, b1)n
is a pointed homotopy between M ⊕ (1, 0 : 0, 1)n and f , where T denotes the parameter 
for the homotopy. �
Corollary 72. Let f, g : J → P 1 be two pointed morphisms of degree n. There exists a 
pointed map M : J → SL2 such that M ⊕ f is pointed naively homotopic to g.

Since the line bundle corresponding to the morphisms M ⊕ f and f are the same by 
definition of ⊕, it is clear that ⊕ preserves degrees of morphisms. Hence we make the 
following definition.

Definition 73. Let [(A,B)] ∈ [J ,A2 \ {0}]N ∼ = [J ,P 1]N0 be a pointed naive homotopy 
class represented by the map with unimodular row (A,B) in R. Let [f ] ∈ [J ,P 1]Nn be a 
pointed naive homotopy class of degree n with n �= 0 represented by a pointed morphism 
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f : J → P 1. We define [(A,B)]⊕ [f ] := [M ⊕ f ] where M is a completion of (A,B) to a 
matrix in SL2(R) corresponding to a pointed map.

It remains to show that ⊕ respects naive homotopy classes.

Theorem 74. The operation of Definition 73 is well-defined and for each n ∈ Z provides 
the set [J ,P 1]Nn with a left-action by the group [J ,A2 \ {0}]N.

Proof. First, consider a pointed map f = [s0, s1]. We show that [(A,B)] ⊕ [f ] is inde-
pendent of the choice of completion of (A,B) to a matrix in SL2(R). So let

M =
(
A −V
B U

)
, M ′ =

(
A −V ′

B U ′

)
be two completions to matrices in SL2(R) which correspond to pointed maps. Then the 

naive homotopy H(T ) =
(
A −(TV + (1 − T )V ′

B TU + (1 − T )U ′

)
is pointed independently of T , and 

H(T ) ⊕ f is a pointed homotopy between M ⊕ f and M ′ ⊕ f .
Now we show that [(A,B)] ⊕ [f ] is independent of the choice of the representing 

unimodular row (A,B). Suppose we have a pointed elementary homotopy (A(T ), B(T ))
between two unimodular rows. Proposition 49 shows that we can lift it to a pointed 

elementary homotopy M(T ) =
(
A(T ) −V (T )
B(T ) U(T )

)
∈ SL2(R[T ]). Then M(T ) ⊕ f is a 

pointed homotopy between (A,B) ⊕ f and (A′, B′) ⊕ f . Now we consider a unimodular 

row (A,B) and let M =
(
A −V
B U

)
be a lift to a matrix in SL2(R). Let f0, f1 : J → P 1

be two pointed morphisms which are homotopic via a pointed naive homotopy. Let 
f(T ) : J × A1 → P 1 be a pointed naive homotopy. We let L′ denote the line bundle 
J × A1 which corresponds to the morphism f(T ). We define the map H(T ) := M ⊕
f(T ) : J ×A1 → P 1 with the same algebraic line bundle L′ on J ×A1 and global sections

(
A −V
B U

)
·
(
s0(T )
s1(T )

)
=
(
As0(T ) − V s1(T )
Bs0(T ) + Us1(T )

)
.

We note that H(T ) thus defined is in fact a morphism J × A1 → P 1, since we have 
U(As0(T ) − V s1(T )) + V (Bs0(T ) + Us1(T )) = s0(T ), and −B(As0(T ) − V s1(T )) +
A(Bs0(T ) + Us1(T )) = s1(T ). By assumption, the sections s0(T ), s1(T ) generate the 
line bundle L′. Hence (As0(T ) − V s1(T ), Bs0(T ) + Us1(T )) generate L′ as well. This 
shows that H(T ) defines a morphism. We now verify that H(T ) is pointed by showing 
Bs0(T )+Us1(T ) ∈ j′. Pointedness of [s0(T ), s1(T )] means that s1(T )(j′) = 0 in R[T ]/j′. 
Pointedness of (A,B) means M(j) is the identity matrix. We calculate

B(j′)s0(T )(j′) + U(j′)s1(T )(j′) = 0 · s0(T )(j′) + 1 · 0 = 0
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which completes the verification. This shows that ⊕ is independent of the choice of 
representatives in both naive homotopy classes and completes the proof of the first 
assertion. The second assertion then follows from Proposition 66. �
Remark 75. There are several variations to the operation given in Definition 73 that 
produce valid group actions. For M ∈ SL2(R), the operation in Definition 65 is given 
by the matrix multiplication M · (s0 s1)T . We could have taken equally well either 
MT · (s0 s1)T or M−1 · (s0 s1)T , although this would give a right-action rather than a 
left-action on maps. Up to homotopy, the latter two choices in fact agree, since MT is 
homotopic to M−1 by Lemma 62. Thus there are two natural choices for this action, 
one of which applies the inverse operation to the morphism in SL2(R) before acting. In 
Appendix C we will use real realization to check which of these operations can represent 
the group operation on [J ,P 1]A1 induced from Morel’s group structure on [P 1,P 1]A1

via π∗
A1 . In fact, in Examples 149 and 150 we show that only the choice of Definitions 65

and 73 can be compatible.

4. The group structure on [J , P1]N

4.1. The definition of the group structure

In this section we define an explicit group structure on [J ,P 1]N. We will then discuss 
some alternative approaches and open questions.

Definition 76. Let −[id] denote the additive inverse of [id : P 1 → P 1] under the con-
ventional group structure on [P 1,P 1]A1 . Define −π : J → P 1 to be a morphism which 
represents the A1-homotopy class −[id : P 1 → P 1] ∈ [P 1,P 1]A1 under the bijection 
ξ : [J ,P 1]N → [P 1,P 1]A1 of Equation (8). More generally, for any integer n, let nπ de-
note a morphism nπ : J → P 1 which represents the A1-homotopy class n[id : P 1 → P 1]
under the bijection ξ : [J ,P 1]N → [P 1,P 1]A1 .

We are now ready to define a group operation on [J ,P 1]N.

Definition 77. Let f : J → P 1 and g : J → P 1 be morphisms of degrees n and m
respectively. By Corollary 72 there are degree 0 maps f0 : J → P 1 and g0 : J → P 1 for 
which f � f0 ⊕ nπ and g � g0 ⊕mπ. We define the sum of [f ] and [g] to be

[f ] ⊕ [g] = ([f0] ⊕ [nπ]) ⊕ ([g0] ⊕ [mπ])

= ([f0] ⊕ [g0]) ⊕ [(n + m)π].

The term [f0] ⊕ [g0] is calculated by matrix multiplication via Definition 53. The group 
action of Definition 73 is used to compute (f0 ⊕ g0) ⊕ (n + m)π.
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Remark 78. It follows from Theorem 74 that the operation ⊕ of Definition 77 is well-
defined. We also note that, for n > 0, the proofs of Theorem 67 and Proposition 71 may 
be used to write down a concrete algorithm to find a map f0 such that f � f0 ⊕ nπ for 
any degree n map f .

Remark 79. For n > 0, we may construct morphisms nπ by using Cazanave’s group 
operation on morphisms [P 1,P 1]N and lift it to an element in [J ,P 1]N. A recursive 

description of the maps nπ for n > 0 can be given as follows: Set G0 = 1 and G1 =
[
x
z

]
. 

For n > 0, we define Gn+1 recursively by setting

Gn+1 =
[
x
z

]
·Gn −

[
y2

w2

]
·Gn−1

where we recall that multiplication of sections is induced by component-wise multiplica-
tion in R. For n > 0, the morphism nπ is given by sections[

Gn,

[
y
w

]
·Gn−1

]
.

We note that [(1, 0 : 0, 1)n] is in general not equal to [nπ] for n > 1. We will explain this 
observation in Remark 104 using Morel’s motivic Brouwer degree and the work of Kass 
and Wickelgren.

We are now ready to prove the following important result.

Theorem 80. The operation ⊕ turns the set [J ,P 1]N into an abelian group. Moreover, 
there is an isomorphism of groups ϕ :

(
[J ,P 1]N,⊕

) ∼ = −→
(
[P 1,P 1]A1

,⊕A1
)
.

Proof. We observe that the set {[nπ] : n ∈ Z} inherits the structure of an abelian group 
from Z. In Definition 77 we construct the group 

(
[J ,P 1]N,⊕

)
as the direct product of 

the two groups {[nπ] : n ∈ Z} and [J ,A2 \{0}]N. Both are abelian by Corollary 59. This 
implies the first assertion.

By definition of the operation ⊕, the group 
(
[J ,P 1]N,⊕

)
fits into the short exact 

sequence displayed in the top row of Diagram (81) below. By the work of Morel in [22, 
§7.3], the group 

(
[P 1,P 1]A1

,⊕A1
)

fits into the short exact sequence displayed in the 
bottom row.

1 [J ,A2 \ {0}]N

∼ = ξ0

[J ,P 1]N

ϕ

deg
Z

∼ = 

1

1 [P 1,A2 \ {0}]A1 [P 1,P 1]A1 deg
Z 1

(81)
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By Theorem 58, the vertical map ξ0 on the left-hand side is an isomorphism. The vertical 
map q on the right-hand side is an isomorphism as well. We define ϕ to be the unique 
group homomorphism satisfying ϕ([π]) = [id] and ϕ([f0]) = ξ0([f0]) for all [f0] ∈ [J ,A2\
{0}]N. The diagram commutes by our definition of ϕ. Since ξ0 and the right-hand vertical 
map in Diagram (81) are isomorphisms, ϕ is an isomorphism of groups as well by the 
five-lemma. �
4.2. Open questions and potential alternative approaches

Recall the map ξ : [J ,P 1]N → [P 1,P 1]A1 which is the composite of the canonical 
map ν : [J ,P 1]N → [J ,P 1]A1 and the inverse of the induced map π∗

A1 : [P 1,P 1]A1 →
[J ,P 1]A1 . Unfortunately, Theorem 80 does not imply that the bijection ξ is a group 
isomorphism. However, since ξ restricts to an isomorphism on the subgroups [J ,A2 \
{0}]N and {[nπ] | n ∈ Z}, we do believe that the bijection ξ is a group isomorphism, 
which we state as a conjecture below.

Conjecture 82. The bijection ξ : [J ,P 1]N → [P 1,P 1]A1 is a group isomorphism and 
equals ϕ.

One obstacle to prove Conjecture 82 is that, for n < 0, we do not know which mor-
phism J → P 1 is sent to n[id] under ξ. In particular, we do not know which morphism 
J → P 1 is mapped to the motivic homotopy class −[id : P 1 → P 1]. A potential candi-
date for −π may be the map π̃ = (1, 0 : 0,−1)−1 determined by the line bundle Q1 and 
generating sections

s0 =
(
x
y

)
and s1 = −

(
z
w

)
.

Question 83. Is π̃ the inverse of π for ⊕, i.e., is π̃ naively homotopic to −π?

In Appendix C we present further evidence for Conjecture 82. We use the real real-
ization functor for fields k ⊂ R and Morel’s theorem which states that the signature of 
the motivic Brouwer degree equals the topological Brouwer degree under real realiza-
tion. This provides a potential obstruction to the compatibility of ⊕A1 and the action 
of [J ,A2 \ {0}]N on [J ,P 1]N. We then compute concrete examples and show that other 
choices for the action of [J ,A2 \ {0}]N on [J ,P 1]N are not compatible with ⊕A1 , while 
our choice of operation in Definition 73 is compatible with ⊕A1 after real realization in 
the chosen examples.

In Proposition 103 we show that the naive homotopy class of π is mapped to the 
class (〈1〉, 1) in GW(k)×k×/k×2 k× as expected if ξ is a group homomorphism. Based on 
the computations in Appendix C we prove in Theorem 105 that the image of [π̃] under 
the motivic Brouwer degree is the class −〈1〉 in GW(k). This brings us very close to a 
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positive answer to Question 83. We are, however, not able to compute the resultant, i.e., 
the image of π̃ in k×.

We end this section with comments on potential alternative approaches:

Remark 84. Since π is an A1-weak equivalence, it induces a bijection π∗ : [J ,J ]N →
[J ,P 1]N. Hence there is a bijection between [P 1,P 1]A1 and the set of pointed naive 
homotopy classes [J ,J ]N. In [11, page 31] Cazanave speculates whether [J ,J ]N can 
be used to study the group structure on [P 1,P 1]A1 . A morphism J → J corresponds 
to a ring homomorphism R → R, or equivalently, the data of a (2 × 2)-matrix with 
entries in R and with trace 1 and determinant 0. For every map f : J → P 1 we can 
find a map F : J → J such that f = π ◦ F . We will refer to such a map F as a lift 
of f . There is a particularly nice way to construct a lift in the case f : J → P 1 has 
degree 0. Assume that f is given by a unimodular row (A,B). Let U, V ∈ R be such that (
A −V
B U

)
has determinant 1. Then F is given by the matrix 

(
AU BU
AV BV

)
which has 

trace 1 and determinant 0. Composing the map with π yields the J → P 1 map given 
by either [AU : BU ] or [AV : BV ], whenever they are defined, which coincides with the 
map corresponding to the unimodular row (A,B). If f has non-zero degree, there is also 
a concrete procedure to find a lift of f , which we leave to the reader.

Since morphisms J → J can be represented by matrices, it may seem plausible that 
one can find a suitable operation on [J ,J ]N which may help to describe the group 
([P 1,P 1]A1

,⊕A1). However, neither addition nor multiplication of matrices equip the set 
[J ,J ]N with an operation which is compatible with the conventional group structure on 
[P 1,P 1]A1 . We have verified in examples that composition of maps in [J ,J ]N descends 
to the operation ◦ on [P 1,P 1]N of [12, Definition 4.5]. As pointed out in [12, Remark 
4.7] the latter does not distribute over the conventional group structure on [P 1,P 1]A1 . 
We were not able to make a reasonable guess which other operation on [J ,J ]N might 
work. We have therefore not pursued this path further.

Remark 85. An alternative approach to construct a group structure on [J ,J ]N may be 
the following. One can hope to construct a cogroup structure on J . However, this is not 
so easy, even though Asok and Fasel have done much of the work to make this possible. 
In [3], Asok and Fasel give an explicit construction of a smooth scheme ̃J ∨ J that 
is A1-weak equivalent to the wedge sum J ∨ J . We have constructed an explicit map 
J → ̃J ∨ J that conjecturally represents the pinch map P 1 → P 1 ∨ P 1. We also have 
a candidate for a map representing the inverse map J → P 1, but unfortunately both of 
these claims have proven too difficult to verify. We therefore decided not to include this 
construction in this paper.

5. Compatibility with Cazanave’s monoid structure

The goal of this section is to show that the map



36 V. Balch Barth et al. / Advances in Mathematics 461 (2025) 110080 

π∗
N :

(
[P 1,P 1]N,⊕N)→ (

[J ,P 1]N,⊕
)

is a morphism of monoids, where ⊕N denotes the monoid operation defined by Cazanave 
in [12]. We will achieve this goal in Theorem 96.

5.1. Compatibility with certain degree 0 maps

We first study an important family of degree 0 morphisms and their compatibility 
with ⊕, ⊕N, and π∗

N.

Definition 86. For u, v ∈ k×, we write gu,v for the pointed morphism J → A2 \{0} given 
by the unimodular row 

(
x + v

uw, (u− v)y
)

in R. This unimodular row can be completed 
to the SL2(R)-matrix

mu,v =
(

x + v
uw

u−v
uv z

(u− v)y x + u
vw

)
.

We now prove some basic properties of the maps gu,v which will be necessary to show 
that π∗

N is a monoid morphism.

Lemma 87. For all u, v, s ∈ k×, we have the identity gu,v ⊕ gv,s = gu,s. In particular, we 
have gu,v ⊕ gv,u = (1, 0) and gu,v ⊕ gv,1 = gu,1.

Proof. A direct computation, using xw = yz, shows

mu,v ·mv,s =
(

x2 + uv+vs
uv xw + s 

uw
2 uv−sv

usv xz + −vs+uv
usv zw

(u− s)xy + (u− s)wy x2 + uv+sv
sv xw + u

s w
2

)
,

and since x + w = 1, this simplifies to the matrix mu,s. Then gu,v ⊕ gv,u = gu,u = (1, 0)
and gu,v ⊕ gv,1 = gu,1 are special cases for respectively s = u and s = 1. �
Lemma 88. Let u, v, c ∈ k×. Then [gu,v] = [gc2u,c2v].

Proof. By Lemma 63, we have

gu,v =
(
x + v

u
w, (u− v)y

)
�
(
x + v

u
w, c2(u− v)y

)
= gc2u,c2v. �

Lemma 89. Let u, v ∈ k× and let v be a square. Then we have [gu,1] ⊕ [gv,1] = [guv,1].

Proof. Lemma 88 and Lemma 87 imply

gu,1 ⊕ gv,1 � gu,1 ⊕ g1,1/v = gu,1/v � guv,1,

and hence the claim. �
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Now we study the relationship of the maps gu,v with ⊕ and π∗
N. We adopt the following 

notation from Cazanave [12]: For u ∈ k×, we identify a rational function X/u in the 
indeterminate X with the morphism P 1 → P 1 defined by [x0 : x1] �→ [x0 : ux1]. We then 
have

π = π∗
N

(
X

1 

)
=
[[

x
z

]
,

[
y
w

]]
and π∗

N

(
X

u 

)
=
[[

x
z

]
, u

[
y
w

]]
as maps J → P 1. Our next goal is to prove Proposition 92. To do so, we need some 
preparation.

Lemma 90. For every u ∈ k×, we have gu,1 ⊕ π = π∗
N
(
X
u 
)
.

Proof. A direct computation using the facts that x
[
y
w

]
= y

[
x
z

]
and z

[
y
w

]
= w

[
x
z

]
shows

gu,1 ⊕ π =
(

x + 1 
uw

u−1
u z

(u− 1)y x + uw

)
⊕
[[

x
z

]
,

[
y
w

]]
=
[(

x + 1 
u
w

)[
x
z

]
+
(
u− 1
u 

z

)[
y
w

]
, (u− 1)y

[
x
z

]
+ (x + uw)

[
y
w

]]
=
[[

x
z

]
, u

[
y
w

]]
and hence the result by definition of the maps involved. �
Lemma 91. For all u, v ∈ k×, we have the identity

gu,v ⊕ π∗
N

(
X

v

)
= π∗

N

(
X

u 

)
.

Proof. Using Lemmas 87, 90, and Definition 77 we get

gu,v ⊕ π∗
N

(
X

v

)
= (gu,v ⊕ gv,1) ⊕ π = gu,1 ⊕ π = π∗

N

(
X

u 

)
and hence the result. �

We are now ready to prove a key result for the compatibility of π∗
N with the monoid 

operations.

Proposition 92. Let u ∈ k× and f : P 1 → P 1 be a pointed morphism. Then there is a 
pointed naive homotopy

π∗
N

(
X

u 
⊕N f

)
� gu,1 ⊕

(
π∗

N

(
X

1 
⊕N f

))
.
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Proof. We begin by clearly describing the maps under consideration before defining our 
naive homotopy. A pointed morphism f : P 1 → P 1 of degree n can be expressed as a 
rational function A 

B = Xn+an−1X
n−1+...+a0

bn−1Xn−1+...+b0
where res(A,B) is a unit by Proposition 22. 

If we define

(F0, F1) = (αn + an−1α
n−1β + . . . + a0β

n, bn−1α
n−1β + . . . + b0β

n) ∈
(
R[α, β](n)

)2
,

then π∗
N (f) = [s(F0), s(F1)] with respect to the invertible sheaf Pn by Proposition 35

and Remark 36. Note res(F0, F1) = res(A,B) is a unit. Write f0 = s(F0) and f1 = s(F1), 
so that π∗

N (f) = [f0, f1] to simplify the notation.
The map π∗

N
(
X
u ⊕N f

)
is described as the following matrix product by the calculation 

of Cazanave [12, Example 3.3] when interpreted in the notation of Remark 36:

π∗
N

(
X

u 
⊕N f

)
=

⎛⎜⎜⎝
[
x
z

]
− 1 

u

[
y
w

]
u

[
y
w

]
0

⎞⎟⎟⎠ ·
(
f0
f1

)
.

Note that here we use the isomorphism Pn ⊗ P1
∼ = −→ Pn+1 of Proposition 20 to identify 

the product of a pair of column vectors with its image in Pn+1, where we recall that 
multiplication of sections is induced by component-wise multiplication of elements in R. 
The pair of generating sections that determine the morphism gu,1 ⊕

(
π∗ (X

1 ⊕N f
))

is 
given by the matrix product

gu,1 ⊕
(
π∗

N

(
X

1 
⊕N f

))
=
(

x + 1 
uw

u−1
u z

(u− 1)y x + uw

)
·

⎛⎜⎜⎝
[
x
z

]
−
[
y
w

]
[
y
w

]
0

⎞⎟⎟⎠ ·
(
f0
f1

)
.

Note that we have the following equality of matrix products

(
x + 1 

uw
u−1
u z

(u− 1)y x + uw

)
·

⎛⎜⎜⎝
[
x
z

]
−
[
y
w

]
[
y
w

]
0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
[
x
z

]
−(x + 1 

u )
[
y
w

]
u

[
y
w

]
(1 − u)y

[
y
w

]
⎞⎟⎟⎠

=

⎛⎜⎜⎝
[
x
z

]
− 1 

u

[
y
w

]
u

[
y
w

]
0

⎞⎟⎟⎠ ·
(

1 u−1
u y

0 1

)
.

This motivates the definition of the matrix h(T ) defined by the following product.

h(T ) =

⎛⎜⎜⎝
[
x
z

]
− 1 

u

[
y
w

]
u

[
y
w

]
0

⎞⎟⎟⎠ ·
(

1 u−1
u yT

0 1

)
·
(
f0
f1

)
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=

⎛⎜⎜⎝f0

[
x
z

]
+ u−1

u yTf1

[
x
z

]
− 1 

uf1

[
y
w

]
uf0

[
y
w

]
+ (u− 1)yTf1

[
y
w

]
⎞⎟⎟⎠

We claim that the rows of the matrix h(T ) provide generating sections of the line 
bundle p∗1Pn+1 on J × A1, where p1 : J × A1 → J is the projection to the first factor. 
This implies that h defines a morphism h : J × A1 → P 1, and that h is a pointed 
homotopy from h(0) = π∗

N
(
X
u ⊕N f

)
to h(1) = gu,1 ⊕

(
π∗

N
(
X
1 ⊕N f

))
.

Define H(T ) by

H(T ) =
(

α − 1 
uβ

uβ 0

)
·
(

1 u−1
u yT

0 1

)
·
(
F0
F1

)
=
(
F0α + u−1

u yTF1α− 1 
uF1α

uF0β + (u− 1)yTF1β

)
.

Since res(F0, F1) is a unit, Lemma 135 implies that the pair of polynomials 
(
F0+u−1

u yTF1, 
F1
)

over the ring R[T ] has unit resultant. Lemma 136 then implies that the resultant

res
(
F0α + u− 1

u 
yTF1α− 1 

u
F1α, uF0β + (u− 1)yTF1β

)
is a unit as well. Finally, Proposition 41 shows that h is a morphism and thus the desired 
pointed naive homotopy. �

To give a concrete example of the homotopy constructed in the proof of Proposition 92, 
we look at the special case f = X/1:

Example 93. For every u ∈ k×, the morphism H defined by

H =
[[

x2

z2

]
+ T

u− 1
u 

y

[
xy
zw

]
−
(
x + 1 

u
w

)[
y2

w2

]
, u

[
xy
zw

]
+(T (u− 1) − (u− 1)y)

[
y2

w2

]]
is a homotopy between H(0) = gu,1 ⊕ π∗

N
(
X
1 ⊕N X

1 
)

and H(1) = π∗
N
(
X
u ⊕N X

1 
)
.

5.2. The map π∗
N is a monoid morphism

We will now prove that the map π∗
N :

(
[P 1,P 1]N,⊕N) → (

[J ,P 1]N,⊕
)

induced by π
is a morphism of monoids.

Lemma 94. We have

π∗
N

(
X

1 
⊕N · · · ⊕N X

1 

)
� π ⊕ · · · ⊕ π,
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where there are n summands on both sides.

Proof. Since νP1
(
X
1 
)

= idP1 and νP1 is a morphism of monoids by [12, Proposition 3.23], 
we have the equality n[id] =

[
X
1 ⊕N · · · ⊕N X

1 
]

in [P 1,P 1]A1 . Thus, π∗
N
(
X
1 ⊕N · · · ⊕N X

1 
)

is naively homotopic to nπ. By definition, [π] ⊕ · · · ⊕ [π] = [nπ], hence the result fol-
lows. �

Proposition 95. For u1, . . . , un ∈ k× we have

π∗
N

(
X

u1
⊕N X

u2
⊕N · · · ⊕N X

un

)
� π∗

N

(
X

u1

)
⊕ π∗

N

(
X

u2

)
⊕ · · · ⊕ π∗

N

(
X

un

)
.

Proof. Since both ⊕N and ⊕ are commutative and ⊕ is associative, we may apply Propo-
sition 92 and Lemma 94 to compute

π∗
N

(
X

u1
⊕N · · · ⊕N X

un

)
� gu1,1 ⊕ π∗

N

(
X

1 
⊕N X

u2
⊕N · · · ⊕N X

un

)

� gu1,1 ⊕ gu2,1 ⊕ π∗
N

(
X

1 
⊕N X

1 
⊕N X

u3
⊕N · · · ⊕N X

un

)
� gu1,1 ⊕ · · · ⊕ gun,1 ⊕ nπ

� (gu1,1 ⊕ π) ⊕ (gu2,1 ⊕ π) ⊕ · · · ⊕ (gun,1 ⊕ π)

� π∗
N

(
X

u1

)
⊕ · · · ⊕ π∗

N

(
X

un

)
.

The final step follows from Lemma 90. �

Theorem 96. The map π∗
N :

(
[P 1,P 1]N,⊕N)→ (

[J ,P 1]N,⊕
)

induced by π is a morphism 
of monoids.

Proof. Let f, g : P 1 → P 1 be two pointed morphisms. By [12, Lemma 3.13], [P 1,P 1]N is 
generated by elements in degree 1. Hence we can assume f � X

u1
⊕N X

u2
⊕N · · ·⊕N X

un
and 

g � X
v1

⊕N X
v2

⊕N · · · ⊕N X
vm

for some u1, . . . , un, v1, . . . , vm ∈ k×. Then Proposition 95
implies the identity

π∗
N
(
[f ] ⊕N [g]

)
= [π∗

N(f)] ⊕ [π∗
N(g)]

and hence the result. �
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6. Group completion

The morphism π : J → P 1 induces the following commutative diagram of solid arrows.

[J ,P 1]N
νJ

[J ,P 1]A1

(π∗
A1 )−1

[P 1,P 1]N

π∗
N

νP1
[P 1,P 1]A1

ψ
π∗
A1

(97)

Recall that ξ = (π∗
A1)−1 ◦ νJ denotes the bijection ξ : [J ,P 1]N → [P 1,P 1]A1 of Equa-

tion (8).

Lemma 98. We have the identity of morphisms ξ ◦ π∗
N = νP1 .

Proof. Since the outer square in Diagram (97) commutes, we have (π∗
A1)−1 ◦ νJ ◦ π∗

N =
νP1 . Since ξ = (π∗

A1)−1 ◦ νJ by definition, this shows

ξ ◦ π∗
N = νP1

as desired. �
In [12, Theorem 3.22] Cazanave proves that the canonical map νP1 :

(
[P 1,P 1]N,⊕N)→(

[P 1,P 1]A1
,⊕A1

)
is a group completion. Hence there exists a unique group homomor-

phism

ψ :
(
[P 1,P 1]A

1
,⊕A1

)
→
(
[J ,P 1]N,⊕

)
making the lower triangle in Diagram (97) commute.

We will show in this section that π∗
N has image in a certain subgroup and induces a 

group completion. Together with Cazanave’s result this implies that we have a canonical 
isomorphism between the two group completions induced by π∗

N and νP1 , respectively. 
The main result is proven in Theorem 113.

6.1. Motivic Brouwer degree

In [21] Morel describes the analog of the topological Brouwer degree map in A1-
homotopy theory. For pointed endomorphisms of P 1 it defines a homomorphism

degA
1
: [P 1,P 1]A

1 → GW(k).

We recall that by the work of Cazanave [12, Corollary 3.10] and Morel [22, Theorem 
7.36] the map given by
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f �→
(
degA

1
(f), res(f)

)
,

where res(f) denotes the resultant of f as in [12], which we recalled in Proposition 22, 
induces an isomorphism of groups

ρ : [P 1,P 1]A
1 ∼ = −→ GW(k) ×k×/k×2 k×. (99)

Since our definition of deg is compatible with the notion of degree of a rational function 
used by Cazanave in [12], the work of Cazanave and Morel implies that, for every pointed 
morphism f : P 1 → P 1 we have

deg([f ]) = rank
(
degA

1
([f ])

)
,

where rank denotes the homomorphism GW(k) → Z induced by the rank of a quadratic 
form. For a pointed morphism g : J → P 1 with ξ([g]) = [f ], we have

deg([g]) = rank
(
degA

1
(ξ[g])

)
.

Hence we have the commutative diagram

1 [J ,A2 \ {0}]N

ξ0 ∼ = 

[J ,P 1]N

bijectionξ

deg
Pic(J )

∼ = 

1

1 [P 1,A2 \ {0}]A1

∼ = 

[P 1,P 1]A1 deg

ρ ∼ = 

Pic(P 1)

∼ = 

1

1 GW(k)0 ×k×/k×2 k× GW(k) ×k×/k×2 k×
rank

Z 1

(100)

where GW(k)0 ×k×/k×2 k× denotes the kernel of the rank homomorphism.

Proposition 101. The map π∗
N is injective.

Proof. By Lemma 98 we know ξ ◦ π∗
N = νP1 . Since ξ is a bijection, it suffices to show 

that νP1 is injective. The isomorphism ρ fits into the commutative diagram

[P 1,P 1]N

∼ = 

νP1
[P 1,P 1]A1

∼ = ρ

MWs(k) ×k×/k×2 k×
υ̂

GW(k) ×k×/k×2 k×
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where MWs(k) denotes the stable monoid of symmetric bilinear forms as in [12, Defini-
tion 3.8] and υ̂ is the group completion induced by the group completion υ : MWs(k) →
GW(k). Since the vertical maps are isomorphisms by [12, Corollary 3.10] and [22, §7.3], 
νP1 is injective if and only if υ̂ is injective. To show that υ̂ is injective, it suffices to show 
that the group completion υ : MWs(k) → GW(k) is injective. Since MWs(k) satisfies the 
cancellation property by the definition of MWs(k) in [12, Definition 3.8], respectively by 
Witt’s cancellation theorem, the map υ is indeed injective. This proves the assertion. �
Proposition 102. Let u, v ∈ k×. If u �= v, then [gu,1] �= [gv,1].

Proof. Assume that u �= v ∈ k×. By Cazanave’s work [12, Corollary 3.10], this implies 
[X/u] �= [X/v]. By Proposition 101 this implies π∗

N([X/u]) �= π∗
N([X/v]). By Proposi-

tion 92 we have π∗
N([X/u]) = [gu,1] ⊕ π and π∗

N([X/v]) = [gv,1] ⊕ π. Since [J ,P 1]N is a 
group, this implies [gu,1] �= [gv,1]. �
Proposition 103. For every u ∈ k× we have(

degA
1
(ξ[π∗

N(X/u)]), res(ξ[π∗
N(X/u)])

)
= (〈u〉, u) in GW(k) ×k×/k×2 k×.

In particular, for π∗
N(X/1) = π, we get

(
degA

1
(ξ[π]), res(ξ[π])

)
= (〈1〉, 1) in GW(k) ×k×/k×2 k×.

Proof. By Lemma 98 we know ξ[π∗
N(X/u)] = νP1([X/u]). In [12, 3.4] Cazanave shows 

that the image of νP1([X/u]) in GW(k)×k×/k×2 k× is (〈u〉, u) by assigning it to the rank 
1 symmetric matrix [u], which has determinant u and corresponds to the quadratic form 
〈u〉. �
Remark 104. We note that, since [(1, 0 : 0, u)n] = Xn/u, the work of Kass and Wickelgren 
in [18, Lemma 5] implies that we have degA

1
(ξ([(1, 0 : 0, u)n)])) = 〈u〉 + n−1

2 〈1,−1〉 for 
n odd, and degA

1
(ξ([(1, 0 : 0, u)n)])) = n

2 〈1,−1〉 for n even. On the other hand, by the 

choice of the morphism nπ in Definition 76 we have degA
1
(ξ([nπ])) = degA

1
(n[id]) =

n〈1〉. In particular, this implies that [(1, 0 : 0, 1)n] and [nπ] are in general not equal for 
n > 1 which explains our comment at the end of Remark 79.

In light of Question 83 we would like to show that ρ(ξ[π̃]) is the class (−〈1〉, 1) in 
GW(k) ×k×/k×2 k×. We are not able to confirm this yet, since we do not know how to 
compute the resultant of ξ[π̃]. We can, however, show the following fact based on the 
computations of topological degrees in Appendix C. We thank Kirsten Wickelgren for 
mentioning to us the idea to use the arguments of [8] and [9] to reduce the computation 
to the Grothendieck–Witt group of the integers.
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Theorem 105. For every field k, we have

degA
1
(ξ[π̃]) = −〈1〉 in GW(k).

Proof. First we assume k = F2. By [12, Lemma 3.13], [P 1,P 1]N is generated by elements 
in degree 1, i.e., the class of X/1 generates [P 1,P 1]N. Since νP1 : [P 1,P 1]N → [P 1,P 1]A1

is a group completion, this implies that degA
1

F2
: [P 1,P 1]A1 ∼ = −→ GW(F2) = Z is an isomor-

phism, where we refer to [20] for the Grothendieck group GW(F2) of symmetric bilinear 
forms over F2 and the isomorphism GW(F2) = Z (see [9, Lemma B.5], [20, III Remark 
(3.4)]). Since the right-hand side of Diagram (100) commutes, the fact that we have 
deg ([π̃]) = −1 implies degA

1
(ξ[π̃]) = −〈1〉 in GW(k).

Next we let k be a field of characteristic 2. Then the canonical morphism Speck →
SpecF2 induces a commutative diagram of group homomorphisms

[P 1,P 1]A1

F2

degA1
F2

[P 1,P 1]A1

k

degA1
k

GW(F2) GW(k).

Since π̃ is defined over F2 and degA
1

F2
(ξ[π̃]) = −〈1〉 by the first case, this implies 

degA
1

k (ξ[π̃]) = −〈1〉 in GW(k).
Now we assume that k is a field of characteristic �= 2. The proof for this case is also 

based on the fact that π̃ is already defined over Z and not just k. To make the argument 
work, however, requires a bit more effort. For a ring S, let SH(S) denote the stable 
motivic homotopy category over SpecS. Let KOk ∈ SH(k) denote the motivic spectrum 
over Spec k which represents Hermitian K-theory. It is equipped with a unit morphism 
εk : 1k → KOk in SH(k). Let s : [P 1,P 1]A1 → 10,0

k (Spec k) denote the homomorphism 
defined by stabilization and note that there is a canonical isomorphism KO0,0

k (Spec k) ∼ = 
GW(k). We then define the homomorphism δ as the following composition:

δ : [P 1,P 1]A
1 s−→ 10,0

k (Spec k) εk−→ KO0,0
k (Spec k) ∼ = GW(k).

We claim that the homomorphism δ can be identified with the motivic Brouwer degree 
degA

1

k over k. To prove the claim we follow the argument of Levine and Raksit in [19, proof 
of Theorem 8.6, page 1845]. By Morel’s computation [22, Theorem 6.40], the isomorphism 
GW(k) ∼ = 10,0

k (Spec k) sends 〈u〉 ∈ GW(k), for u ∈ k×, to s(νP1 [X/u]), the image of the 
class of X/u : P 1

k → P 1
k , [x0 : x1] �→ [x0 : ux1], in 10,0

k (Spec k). Hence the classes 
s(νP1 [X/u]) for all u ∈ k× generate 10,0

k (Spec k). Thus, in order to prove the claim it 
suffices to show that δ(νP1 [X/u]) = 〈u〉 in GW(k), since degA

1

k ([X/u]) = 〈u〉 ∈ GW(k). 
That is, we need to show εk(s(νP1 [X/u])) = 〈u〉. This follows from [1, Corollary 6.2] 
which proves the claim.
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In [8, §3.8.3] Bachmann and Hopkins construct a motivic spectrum KO′
Z ∈ SH(Z)

with a unit morphism ε′Z : 1Z → KO′
Z, and write KO′

k and ε′k for the pullback of KO′
Z

and ε′Z to SH(k) along the canonical morphism Spec k → SpecZ. Since the characteristic 
of k is not 2, there is an equivalence of ring spectra KO′

k � KOk by [8, Lemma 3.38 (3)], 
which induces an isomorphism (KO′

k)0,0(Spec k) ∼ = KO0,0
k (Spec k). Thus, there is an iso-

morphism (KO′
k)0,0(Spec k) ∼ = KO0,0

k (Spec k) which fits into the following commutative 
diagram.

10,0
k (Spec k)

εk

ε′k (KO′
k)0,0(Spec k)

∼ = 

KO0,0
k (Spec k)

By the above, we may therefore identify degA
1

k over k with the composed homomorphism

[P 1,P 1]A
1 s−→ 10,0

k (Spec k) ε′k−→ (KO′
k)0,0(Spec k) ∼ = KO0,0

k (Spec k) ∼ = GW(k).

Furthermore, by [8, Lemma 3.38 (2)], there is an isomorphism π0,0(KO′
Z) ∼ = GW(Z), 

where GW(Z) denotes the Grothendieck–Witt group over Z defined in [20, Chapter 
II]. Let [P 1,P 1]A1

Z denote the set of endomorphisms of P 1 in the pointed unstable A1-
homotopy category over SpecZ. We now define the homomorphism degA

1

Z : [P 1,P 1]A1

Z →
GW(Z) as the composition

degA
1

Z : [P 1,P 1]A
1

Z
sZ−→ 10,0

Z (SpecZ) ε′Z−→ (KO′
Z)0,0(SpecZ) ∼ = GW(Z).

The canonical homomorphism Z → k then induces the following commutative square

[P 1,P 1]A1

Z

degA1
Z GW(Z)

bk

[P 1,P 1]A1

k
degA1

k

GW(k)

where bk : GW(Z) → GW(k) denotes the change of coefficients homomorphism. As 
a consequence we see that if [f ] ∈ [P 1,P 1]A1

k is in the image of the homomorphism 
[P 1,P 1]A1

Z → [P 1,P 1]A1

k , then

degA
1

k ([f ]) = bk(degA
1

Z ([f ])). (106)

By [9, Lemma 5.6] (see also [20, Theorem II.4.3]), GW(Z) is generated over Z by the 
classes 〈1〉 and 〈−1〉. For a class ω ∈ GW(Z), let ωC and ωR denote the images of 
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ω in GW(C) and GW(R), respectively. Then ω ∈ GW(Z) is uniquely determined by 
the integers rank(ωC) and sgn(ωR), given by the rank and signature of ωC and ωR, 
respectively, via the formula

ω = rank(ωC) + sgn(ωR)
2 

〈1〉 + rank(ωC) − sgn(ωR)
2 

〈−1〉 ∈ GW(Z). (107)

Since J and both morphisms π and π̃ are defined over SpecZ, we can now apply 
the above observations to prove the assertion of the proposition. Since π is an A1-weak 
equivalence over SpecZ as well, we can form the pointed A1-homotopy class ξZ ([π̃]) :=
[π̃◦π−1]A1 ∈ [P 1,P 1]A1

Z defined by the zig-zag P 1
Z

π←− JZ
π̃−→ P 1

Z. The class ξZ ([π̃]) is sent 
to ξ ([π̃]) under base change. Thus, by the above arguments, to determine degA

1

k (ξ[π̃]) in 
GW(k) it suffices to compute the rank and signature of degA

1

Z (ξZ[π̃]) after base change 
to C and R, respectively. Since the right-hand side of Diagram (100) commutes, the 
fact that we have deg ([π̃]) = −1 implies rank(degA

1

C (ξ[π̃])) = −1. In Appendix C and 
Example 148 we show that the signature of degA

1

R (ξ[π̃]) over R is −1. Thus, by Formula 
(107), we get degA

1

Z (ξZ[π̃]) = −〈1〉 in GW(Z). By Equation (106) we can therefore 
conclude that degA

1

k (ξ[π̃]) = −〈1〉 in GW(k). �
6.2. Group completion of naive homotopy classes

We will now describe the homomorphism ψ :
(
[P 1,P 1]A1

,⊕A1
)

→
(
[J ,P 1]N,⊕

)
induced by the universal property of the group completion νP1 in more detail. By 
[12, Lemma 3.13], [P 1,P 1]N is generated by elements in degree 1, i.e., it is generated 
by the set of classes [X/u] for all u ∈ k×. Hence, since νP1 is a group completion, 
every element in [P 1,P 1]A1 of degree 0 can be written as a sum of the differences 
γu,v := νP1([X/u]) − νP1([X/v]) for suitable u, v ∈ k×. Thus the set of classes γu,v
for all u, v ∈ k× generates the subgroup [P 1,P 1]A1

0 of degree 0 elements. Because of 
this we would like to understand the image of the γu,v under ψ. Since ψ is a group 
homomorphism, we know ψ(γu,v)⊕ψ(νP1([X/v])) = ψ(νP1([X/u])). Since ψ ◦ νP1 = π∗

N, 
this implies ψ(γu,v) ⊕ π∗

N([X/v]) = π∗
N([X/u]). By Lemma 91, the map gu,v satisfies 

[gu,v] ⊕ π∗
N([X/v])) = π∗

N([X/u]). Hence, since [J ,P 1]N is a group, we get

ψ(γu,v) = [gu,v] in [J ,P 1]N.

This motivates the following definition of the subgroup G ⊆ [J ,P 1]N.

Definition 108. Let G0 := 〈[gu,v] | u, v ∈ k×〉 ⊆ [J ,A2 \ {0}]N denote the subgroup 
generated by the homotopy classes of the maps gu,v. Let G ⊆ [J ,P 1]N be the subgroup 
generated by G0 and [π].

We note that by Lemma 87, we have −[gu,v] = [gv,u], while [gu,u] is the neutral 
element, and we therefore have −([gu,v] ⊕±n[π]) = [gv,u] ⊕∓n[π] in G.
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Remark 109. By Lemma 87, we have [gu,v]⊕ [gv,1] = [gu,1] for all u, v ∈ k×. Thus, every 
element in G0 is a sum of differences of elements in the submonoid of [J ,A2 \ {0}]N
generated by the set of homotopy classes [gu,1] for all u ∈ k×. This implies that the 
inclusion of the submonoid of [J ,A2 \ {0}]N generated by the set of homotopy classes 
[gu,1] for all u ∈ k× into G0 is a group completion.

Lemma 110. The morphism of monoids π∗
N : [P 1,P 1]N → [J ,P 1]N has image in G.

Proof. By [12, Lemma 3.13], [P 1,P 1]N is generated by elements in degree 1, i.e., it is 
generated by the set of classes [X/u] for all u ∈ k×. Hence it suffices to show that 
π∗

N([X/u]) is contained in G. This follows from Lemma 90. �
Proposition 111. The morphism of monoids π∗

N : [P 1,P 1]N → G is a group completion.

Proof. Let H be an abelian group and μ : [P 1,P 1]N → H be a morphism of monoids. 
We will show that there is a unique homomorphism of groups μ̃ : G → H such that 
μ̃ ◦ π∗

N = μ.
We set μ̃([π]) := μ([X/1]). By Lemma 91, we have [gu,v] ⊕ π∗

N([X/v]) = π∗
N([X/u]) in 

G ⊆ [J ,P 1]N. Hence compatibility with μ forces the definition

μ̃([gu,v]) := μ([X/u]) − μ([X/v]).

By definition of G this induces a unique group homomorphism μ̃, once we have shown 
that it is well-defined.

Now we show that μ̃ is well-defined. Because G ∼ = G0 ⊕Z, all relations in G amongst 
the generators arise from relations of the classes [gu,v]. Consider a relation of the form

[gu1,v1 ] ⊕ . . .⊕ [gus,vs ] = 0. (112)

We must then show that 
∑

i μ̃ ([gui,vi ]) = 0 in H. Since G is a group and by Lemma 91, 
we have ∑

i 
gui,vi ⊕ π∗

N([X/vi]) =
∑
i 

π∗
N([X/ui]).

Since G is abelian, this implies∑
i 

[gui,vi ] =
∑
i 

π∗
N([X/ui]) − π∗

N([X/vi]) =
∑
i 

π∗
N([X/ui]) −

∑
i 

π∗
N([X/vi]) = 0.

Hence ∑
i 

π∗
N([X/ui]) =

∑
i 

π∗
N([X/vi])
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in [P 1,P 1]N. Since π∗
N is an injective monoid morphism, in [P 1,P 1]N we have the equation∑

i 
[X/ui] =

∑
i 

[X/vi].

It thus follows that

μ

(∑
i 

[X/ui]
)

= μ

(∑
i 

[X/vi]
)

in H.

We calculate

μ̃

(∑
i 

[gui,vi ]
)

=
∑
i 

μ([X/ui]) − μ([X/vi]) = 0,

as desired. This shows that μ̃ is well-defined.
It remains to show μ̃◦π∗

N = μ. By [12, Lemma 3.13], [P 1,P 1]N is generated by the set of 
classes [X/u] for all u ∈ k×. Hence μ is completely determined by the images of [X/u] for 
all u ∈ k×. Thus, in order to show μ̃◦π∗

N = μ, it suffices to show μ̃ (π∗
N([X/u])) = μ([X/u])

for every u ∈ k×. This is now immediate from the definition of μ̃ and Lemma 91:

μ̃ (π∗
N([X/u])) = μ̃ ([gu,1] ⊕ π∗

N([X/1]))

= μ̃ ([gu,1]) + μ̃ ([π])

= μ ([X/u]) − μ ([X/1]) + μ ([X/1])

= μ ([X/u]) .

This shows that π∗
N : [P 1,P 1]N → G has the universal property of a group completion 

and finishes the proof. �
Theorem 113. There is a unique isomorphism of groups

χ : G → [P 1,P 1]A
1

such that χ ◦ π∗
N = νP1 . The homomorphism χ sends [gu,v] to the unique element γu,v

that satisfies ν∗P1([X/u]) = γu,v ⊕A1
νP1([X/v]) and [π] to [id]. Moreover, χ and the 

homomorphism

ψ : [P 1,P 1]A
1 → G ⊆ [J ,P 1]N

are mutual inverses to each other.

Proof. The existence of χ and its definition is a consequence of Proposition 111 and 
its proof. The assertion that χ is the inverse of ψ follows from the fact that νP1 is a 
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group completion proven by Cazanave in [12, Theorem 3.22] and the universal property 
of group completion. �

As a particular consequence of Theorem 113 we get the following result.

Proposition 114. The restriction χ0 of the homomorphism χ to G0 defines an isomor-
phism of groups

χ0 : G0
∼ = −→ [P 1,A2 \ {0}]A1

.

Proof. The elements γu,v are of degree 0, and hence they lie in the subgroup [P 1,A2 \
{0}]A1 . As a consequence, the homomorphism χ and its restriction χ0 fit in the following 
commutative diagram of abelian groups.

1 G0

χ0

G
χ ∼ = 

Z

∼ = 

1

1 [P 1,A2 \ {0}]A1 [P 1,P 1]A1
Z 1

Since the middle and right-most maps are isomorphisms, the assertion follows from the 
five-lemma. �

The existence of the isomorphisms G χ−→ [P 1,P 1]A1 ϕ ←− [J ,P 1]N does not imply that 
G equals [J ,P 1]N. However, we make the following conjecture on the a priori subgroups 
G0 and G.

Conjecture 115. The inclusions G0 ⊆ [J ,A2 \ {0}]N and G ⊆ [J ,P 1]N are equalities.

We will show in Theorem 123 in Section 6.3 that Conjecture 115 is true whenever 
k = Fq is a finite field. This follows from an explicit computation of G0 and KMW

1 (Fq), 
the first Milnor–Witt K-theory of Fq.

Remark 116. It follows from the structure of the group G as a product of G0 and 
{n[π] | n ∈ Z} that in order to prove Conjecture 115 it suffices to show that the inclusion 
G0 ⊆ [J ,A2 \ {0}]N is an equality, i.e., that the set of homotopy classes [gu,v] for all 
u, v ∈ k× generates the group [J ,A2 \ {0}]N.

Remark 117. If Conjecture 115 is true, then the group homomorphism ψ : [P 1,P 1]A1 →
[J ,P 1]N, induced by the fact that νP1 is a group completion, is an isomorphism and it 
agrees with ϕ−1, the inverse of the isomorphism of Theorem 80. We note, however, that 
this does not yet imply that the bijection ξ = (π∗

A1)−1 ◦ ν : [J ,P 1]N → [P 1,P 1]A1 is a 
group homomorphism.
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6.3. Milnor–Witt K-theory and morphisms in degree 0

Our final goal is to prove Conjecture 115 for finite fields. For the proof we use the 
Milnor–Witt K-theory of a field which we now recall from [22, Definition 3.1].

Definition 118. The Milnor–Witt K-theory of the field k, denoted KMW
∗ (k), is the graded 

associative ring generated by symbols [u] in degree 1 for u ∈ k× and the symbol η in 
degree −1 subject to the following relations:

(1) Fo r each u ∈ k× \ {1}, [u].[1 − u] = 0.
(2) Fo r each pair u, v ∈ (k×)2, [uv] = [u] + [v] + η.[u].[v].
(3) Fo r each u ∈ k×, η.[u] = [u].η.
(4) Le t h := η.[−1] + 2. Then η.h = 0.

Remark 119. It follows directly from the defining relations for KMW
∗ (k) that [1] = 0

and η.[u2] = 0 for each u ∈ k×. See [22, §3.1] for a proof and other basic properties of 
Milnor–Witt K-theory.

Recall that G0 := 〈[gu,v] | u, v ∈ k×〉 ⊆ [J ,A2 \{0}]N denotes the subgroup generated 
by the homotopy classes of the maps gu,v. In this subsection we write G0(k) and G(k)
for the groups G0 and G, respectively, to emphasize the dependency of the base field k.

Proposition 120. For every field k, there is an isomorphism G0(k) ∼ = KMW
1 (k).

Proof. By Proposition 114, we have an isomorphism χ0 : G0(k)
∼ = −→ [P 1,A2 \ {0}]A1 . As 

recalled in Remark 60, the work of Morel in [22, §7.3] implies that there is an isomorphism 
of groups [P 1,A2 \{0}]A1 ∼ = KMW

1 (k). The composition of these isomorphisms yields the 
assertion. �
Lemma 121. Let k = Fq be a finite field of odd characteristic. Let v1, v2 be non-squares 
in F×

q . Then we have [v1v2] = [v1] + [v2] in KMW
1 (Fq).

Proof. Since q is odd, the kernel of the squaring homomorphism has two elements, −1
and 1, i.e., F×

q /F×2
q

∼ = Z/2Z. Because 1 is a square, the set Fq \ {0, 1} contains more 
non-squares than squares. Construct pairs (t, 1 − t) from elements t ∈ Fq \ {0, 1}, and 
observe that there must exist at least one non-square t such that 1 − t is also a non-
square. For the rest of the proof we fix t to be one such non-square. By relation (1) in 
KMW

1 (Fq), we have [t].[1 − t] = 0. Let v1, v2 be non-squares in F×
q . By relation (2) of 

Definition 118 we have

[v1v2] = [v1] + [v2] + η.[v1].[v2]
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Hence to prove the assertion of the lemma it suffices to prove η.[v1].[v2] = 0 in KMW
1 (Fq). 

Since F×
q /F×2

q
∼ = Z/2Z, there exist units c1 and c2 such that c21t = v1 and c22(1− t) = v2. 

Hence we get

η.[v1].[v2] = η.[c21t].[c22(1 − t)]

= η.([c21] + [t]).([c22] + [1 − t])

where the second equality follows from the fact, for every non-square v and every square 
c2, we have [vc2] = [v] + [c2]. Since we have η.[c2i ] = 0 by Remark 119 and [t].[1− t] = 0, 
we can conclude η.[v1].[v2] = 0 which proves the lemma. �
Proposition 122. Let k = Fq be a finite field. Then KMW

1 (Fq) is a finite cyclic group of 
order q − 1.

Proof. First we assume that q is even. Then the squaring homomorphism is surjective, 
and hence every unit is a square. Fix u to be a multiplicative generator of F×

q . It follows 
from [22, Lemma 3.6 (1)] that KMW

1 (Fq) is generated by the elements [v] for v ∈ k×, 
which are subject to the relation [vv′] = [v]+[v′] for all v, v′ ∈ F×

q . The fact that uq−1 = 1
yields the result that KMW

1 (Fq) is cyclic of order q − 1 generated by the symbol [u].
Now we assume that q is odd. Let u be a multiplicative generator of F×

q . Using 
induction and Lemma 121 we get [un] = n[u] for all n ≥ 1. Since F×

q is cyclic of order 
q− 1, this shows that KMW

1 (Fq) is cyclic of order q− 1 generated by the symbol [u]. �
Theorem 123. Let k = Fq be a finite field. Then Conjecture 115 is true, i.e., the inclusions 
G0(Fq) ⊆ [J ,A2 \ {0}]N and G(Fq) ⊆ [J ,P 1]N are equalities.

Proof. By Remark 116 it suffices to prove the assertion for G0(Fq). By Propositions 120
and 122, both G0(Fq) and KMW

1 (Fq) are finite groups of the same cardinality. Since 
[P 1,A2 \ {0}]A1 and KMW

1 (Fq) are isomorphic and since ξ0 : [J ,A2 \ {0}]N → [P 1,A2 \
{0}]A1 is an isomorphism, [J ,A2 \ {0}]N is a finite group of the same cardinality as 
G0(Fq) as well. Hence G0(Fq) ⊆ [J ,A2\{0}]N is an inclusion of finite groups of the same 
cardinality. This implies that the inclusion G0(Fq) ⊆ [J ,A2 \ {0}]N is an equality. �

We conclude this section with the following observation. While Proposition 120 shows 
that there is an isomorphism between G0(k) and KMW

1 (k), the proof of Proposition 122
suggests that the following map provides a concrete isomorphism. We consider this an 
interesting observation about KMW

1 (k) that arises from our work on maps J → A2 \{0}.

Proposition 124. Let k be one of the following fields: a quadratically closed field, a finite 
field, or R. Then the assignment [u] �→ [gu,1] defines an isomorphism κ : KMW

1 (k) →
G0(k).
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Proof. We will show that KMW
1 (k) and G0(k) are generated by the classes [u] and [gu,1], 

respectively, and that these generators satisfy exactly the same type of relations. This 
implies that κ is both a well-defined homomorphism and an isomorphism. We will prove 
the claim by looking at each type of field separately.

First we assume that k is a quadratically closed field, i.e., a field where every unit is 
a square. The group KMW

1 (k) is generated by the elements [u] and the relation [uv] =
[u]+ [v] for all u, v ∈ k×. To prove that κ is an isomorphism we need to show that G0(k)
is generated by the classes [gu,1] subject to the relation [guv,1] = [gu,1]⊕[gv,1]. Since every 
unit in k is a square, we get [gu,v] = [gu/v,1] by Lemma 88. Hence G0(k) is generated 
by elements [gu,1]. By Proposition 102 we know that [gu,1] �= [gv,1] for u �= v ∈ k×. By 
Lemma 89 we get the relation [gu,1]⊕ [gv,1] = [guv,1]. Thus, the map sending [u] to [gu,1]
induces a homomorphism which is surjective and injective. Hence κ is an isomorphism.

For k = Fq, Proposition 122 shows that KMW
1 (Fq) is generated by the symbol [u] for 

a multiplicative generator u ∈ F×
q . When q is even, every unit is a square, and in this 

case κ is an isomorphism. So we assume that q is odd, and will now show that every 
element in G0(Fq) can be written in the form m[gu,1] ⊕ [gu2m′ ,1] for some m,m′ ∈ Z. 
We will use that every square in Fq is equal to an even power of the generator u ∈ F×

q , 
and distinguish three cases: Assume first v1, v2 ∈ F×

q are squares. By Lemma 88 we then 
have [gv1,v2 ] = [gv1/v2,1] = [gu2m , 1] for some m. Second, if v1 is not a square and v2 is 
a square, then v1/v2 = u2m+1 for some m ∈ Z. Then by Lemma 88 and 89 we know 
[gv1,v2 ] = [gu2m+1,1] = [gu,1]⊕ [gu2m,1]. Note that [gv2,v1 ] = −[gv1,v2 ] = −[gu,1]⊕ [gu−2m,1]. 
Third, assume that both v1 and v2 are non-squares in F×

q . Since F×
q /F×2

q
∼ = Z/2Z, we 

can find an m ∈ Z such that v1/v2 = u2m. We have [gv1,v2 ] = [gu·u2m,u] by Lemma 88
and scaling by the square u/v2. We can now apply Lemma 87 and then Lemma 89 to 
get

[gu·u2m,u] = [gu·u2m,1] ⊕ [g1,u] = [gu,1] ⊕ [gu2m,1] ⊕ [g1,u] = [gu2m,1].

To conclude the argument we note that, for v1, v2 ∈ F×
q with v1 + v2 �= 1, there 

is the relation 〈v1〉 + 〈v2〉 = 〈v1 + v2〉 + 〈(v1 + v2)v1v2〉 in GW(Fq). For s and 1 − s

in F×
q , this gives 〈s〉 + 〈1 − s〉 = 〈1〉 + 〈s(1 − s)〉 = 〈1, 1〉. In particular, since u, s, 

and 1 − s all differ by squares and hence 〈u〉 = 〈s〉 = 〈1 − s〉 in GW(Fq), we have 
〈u〉 + 〈u〉 = 〈1, 1〉 = 〈u2, 1〉 in GW(Fq). By [12, Corollary 3.10] this relation implies 
[X/u] ⊕N [X/u] = [X/u2] ⊕N [X/1] in [P 1,P 1]N. By Proposition 95 and Lemma 91, 
this implies the equality [gu,1] ⊕ [gu,1] = [gu2,1] in G0(Fq). Iterating this argument, 
we get (q − 1)[gu,1] = [guq−1,1] = [g1,1]. Since [gv1 , 1] �= [gv2 , 1] for v1 �= v2 ∈ F×

q by 
Proposition 102, this implies that G0(Fq) is cyclic of order q − 1 generated by [gu,1]. 
Hence the map [u] �→ [gu,1] is a well-defined homomorphism which is surjective and 
injective. Thus κ is an isomorphism in this case as well.

Finally, we assume k = R. First we determine the generators and relations for 
KMW

1 (R). For u > 0, we have [−u] = [−1]+[u]+η.[−1].[u] = [−1]+[u] and −[u] = [1/u]. 
Thus every element in KMW

1 (R) can be written as n[−1]+ [u] with u > 0 for some n ∈ Z
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subject to the relation (n[−1] + [u]) + (m[−1] + [v]) = (n+m)[−1] + [uv]. Next we show 
that G0(R) has analogous generators and relations. Assume u, v > 0. Since v is a square, 
Lemmas 88 and 89 imply the identities

[gu,v] = [gu/v,1], and [g−u,v] = [g−u/v,1] = [g−1,1] ⊕ [gu/v,1].

Using that v is a square, Lemma 88 yields the following identity

[gu,−v] = [gu/v,−1] = [gu/v,1] ⊕ [g1,−1] = −[g−1,1] ⊕ [gu/v,1]

where we have [g1,−1] = −[g−1,1] by Lemma 87. Finally, using Lemma 88 and 89 we get

[g−u,−v] = [g−u/v,−1] = [g−u/v,1] ⊕ [g1,−1] = [g−1,1] ⊕ [gu/v,1] ⊕ [g1,−1] = [gu/v,1].

This implies every element of G0(R) can be written as a sum n[g−1,1]⊕ [gu,1] with u > 0
and n ∈ Z. By Proposition 102 we know that [gu,1] �= [gv,1] for u �= v ∈ R×. By Lemma 89
we get the relation (n[g−1,1] ⊕ [gu,1])⊕ (m[g−1,1] ⊕ [gv,1]) = (n+m)[g−1,1]⊕ [guv,1] when 
u, v > 0. Hence the map [u] �→ [gu,1] is a well-defined homomorphism which is surjective 
and injective. Thus κ is an isomorphism in this case. This finishes the proof. �
Appendix A. Affine representability for pointed spaces and homotopies

In this section, we discuss the results of Asok, Hoyois, and Wendt in [5], [6], and 
how we apply them. While the definition of our proposed group operation on [J ,P 1]N
in Definition 77 is independent of motivic homotopy theory and the results of [6], we 
use the affine representability results of [6] to compare our group operation with the 
conventional group structure on [P 1,P 1]A1 . A minor technical point to overcome is that 
Asok, Hoyois, and Wendt work in the unpointed motivic homotopy category, whereas 
we need the analogous results in the pointed setting. The purpose of this appendix is 
to explain how the pointed analogs can be deduced. To keep the presentation brief, we 
use the conventions and notation of the papers [5] and [6]. We thank Marc Hoyois for 
helpful comments.

Recall that we denote by Smk the category of smooth finite type k-schemes. Let 
sPre(Smk) denote the category of simplicial presheaves on Smk. Let sPre∗(Smk) de-
note the category of pointed simplicial presheaves on Smk. We refer to an object in 
sPre(Smk) (respectively in sPre∗(Smk)) as a (pointed) motivic space. We equip with the 
Nisnevich-local A1-model structure as in [6]. For a motivic space Y, let SingA

1
Y denote 

the singular functor defined in [5, §4.1], see also [23, page 88]. If Y is pointed by a mor-
phism y : Spec k → Y, then the pointed singular functor SingA

1

∗ Y is defined as the fiber 
over y. More precisely, let X be a pointed smooth k-scheme pointed by the morphism 
x : Spec k → X, then SingA

1

∗ Y is determined by the pullback square of simplicial sets
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(SingA
1

∗ Y)(X) (SingA
1
Y)(X)

x∗

point = (SingA
1
Spec k)(Spec k)

y∗ (SingA
1
Y)(Spec k).

(125)

We note that, on 0-simplices, x induces a map of sets x∗ : sPre(Smk)(X,Y) →
sPre(Smk)(Spec k,Y). Hence, (SingA

1

∗ Y)(X)0 is the set sPre∗(Smk)(X,Y) of pointed 
morphisms X → Y. On 1-simplices, x induces a map of sets x∗ : sPre(Smk)(X×A1,Y) →
sPre(Smk)(A1,Y). Hence, (SingA

1

∗ Y)(X)1 is the set of pointed naive A1-homotopies of 
pointed morphisms X → Y.

Remark 126. In particular, if Y = Y is represented by a pointed smooth finite type 
k-scheme Y , the set π0((SingA

1

∗ Y )(X)) is the set of pointed naive homotopy classes of 
pointed morphisms X → Y described in Section 2.6, that is,

π0((SingA
1

∗ Y )(X)) = [X,Y ]N.

We recall the following definition from [6]:

Definition 127. [6, Definition 2.1.1] Let F ∈ sPre(Smk) and let F → F̃ be a fibrant re-
placement in the A1-model structure on sPre(Smk). There is a canonical map SingA

1
F →

F̃ that is well-defined up to simplicial homotopy equivalence. Then F ∈ sPre(Smk) is 
called A1-naive if the map (SingA

1
F)(X) → F̃(X) is a weak equivalence of simplicial 

sets for every affine smooth finitely presented k-scheme X.

We will now show how the unpointed notion of A1-naivity of Definition 127 translates 
to the pointed setting.

Proposition 128. Let Y ∈ sPre∗(Smk) be a pointed motivic space. Assume that the un-
derlying unpointed motivic space Y is A1-naive. Then, for every affine pointed smooth 
finitely presented k-scheme X, the canonical map π0((SingA

1

∗ Y)(X))
∼ = −→ [X,Y]A1 is a 

bijection.

Proof. Let (X,x) be a pointed smooth k-scheme, and let p : X → Spec k denote the 
canonical morphism. Then p induces a map p∗ : (SingA

1
Y)(Spec k) → (SingA

1
Y)(X) of 

simplicial sets such that x∗ ◦ p∗ is the identity on (SingA
1
Y)(Spec k). This shows that 

the map x∗ is a Kan fibration. Since the Kan–Quillen model structure on simplicial sets 
is right proper, this implies that (SingA

1

∗ Y)(X) is the homotopy fiber of x∗.
Let Y → RA1Y be a fibrant replacement of Y in the A1-model structure on 

sPre∗(Smk). After forgetting the basepoint, RA1Y is fibrant in the A1-model structure on 
the category sPre(Smk) of unpointed motivic spaces. Since the singular functor preserves 
A1-fibrations, SingA

1
RA1Y is fibrant and we may assume Ỹ = SingA

1
RA1Y. Moreover, 
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we get the following commutative diagram of simplicial sets which, by the above argu-
ment, is a morphism of homotopy fiber sequences for every pointed smooth k-scheme 
(X,x).

(SingA
1

∗ Y)(X) (SingA
1

∗ RA1Y)(X)

(SingA
1
Y)(X)

x∗

(SingA
1
RA1Y)(X)

x∗

(SingA
1
Y)(Spec k) (SingA

1
RA1Y)(Spec k)

(129)

Now we assume that the underlying simplicial presheaf of Y is A1-naive and that 
X is affine. Since Y is A1-naive and both X and Spec k are affine, the horizontal 
maps in the middle and at the bottom are weak equivalences of simplicial sets. Thus, 
since Diagram (129) is a morphism of homotopy fiber sequences, the top horizontal 
map is a weak equivalence of simplicial sets. Hence it induces a bijection on π0. Since 
π0((SingA

1

∗ RA1Y)(X)) = [X,Y]A1 , this proves the assertion. �
Lemma 130. The smooth k-schemes J and P 1 are A1-naive.

Proof. Let Q2 be the smooth affine quadric over Z defined by xy = z(z + 1). By [6, 
Theorem 4.2.2], Q2 is A1-naive. The scheme endomorphism of SpecZ[x, y, z] given by the 
ring homomorphism defined by sending x �→ z, y �→ −y, z �→ −x induces an isomorphism 
Q2 ∼ = J . Hence J is A1-naive. By [6, Lemma 4.2.4] an affine torsor bundle over a base 
space is A1-naive if and only if the base space is A1-naive. Since J is A1-naive and an 
affine torsor bundle over P 1, it follows that P 1 is A1-naive. �
Proposition 131. The canonical map ν : [X,P 1]N

∼ = −→ [X,P 1]A1 is a bijection for every 
affine pointed finitely presented smooth k-scheme X.

Proof. The proposition follows from Remark 126 and Proposition 128, since Lemma 130
shows P 1 is A1-naive. �

For X = J , the Proposition 131 yields the comparison of the sets [J ,P 1]N and 
[J ,P 1]A1 of pointed homotopy classes that we wanted.

Appendix B. Facts about the resultant

In Sections 2.4 and 5.1 we used the following facts about the resultant for which we 
now provide references or proofs. All results can be found or deduced from [10, Chapter 
IV].
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Throughout this section we let S be an integral domain and let A = anX
n +

an−1X
n−1 + . . . + a0 and B = bnX

n + bn−1X
n−1 + . . . + b0 be polynomials over S

in the indeterminate X.

Definition 132. The Sylvester matrix Syl(A,B) is defined as follows

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an 0 . . . 0 bn 0 . . . 0

an−1 an
... bn−1 bn

...
...

...
. . .

...
...

...
. . .

a1 a2 . . . an b1 b2 . . . bn
a0 a1 . . . an−1 b0 b1 . . . bn−1

0 a0 . . . an−2 0 b0 . . . bn−2
...

. . .
...

...
. . .

...
0 0 . . . a0 0 0 . . . b0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

and we define res(A,B) := det(Syl(A,B)).

Lemma 133 (Remark 4 on page IV.76 in [10]). Assume res(A,B) ∈ S×. Then there exist 
polynomials U, V ∈ S[X] such that AU + BV = 1.

Lemma 134 (Remark 1 on page IV.76 in [10]). Let Ã = an + an−1X + . . . + a0X
n and 

B̃ = bn+bn−1X+ . . .+b0X
n be the reversed polynomials of A and B. If res(A,B) ∈ S×, 

then res(Ã, B̃) = (−1)nres(A,B) ∈ S×.

Lemma 135 (Remark 5 on page IV.77 in [10]). Assume res(A,B) ∈ S×. Let C ∈ S[X] be 
a polynomial such that deg(A) ≥ deg(BC). Then we have res(A + BC,B) = res(A,B).

Lemma 136. Assume res(A,B) ∈ S× and that A is monic. Then we have

res
(
AX − 1 

u
B, uA

)
= −u · res(A,B) for all u ∈ S×.

Proof. The strategy of the proof is as follows: We determine the Sylvester matrix for 
the pair 

(
AX − 1 

uB, uA
)

and will then use elementary row and column operations to 
confirm that it has the determinant claimed.

First note that res
(
AX − 1 

uB, uA
)

= un+1res
(
AX − 1 

uB,A
)
. Let A =

∑n
i=0 aiX

i, 
and B =

∑n
i=0 biX

i. Let ci = ai−1 − 1 
ubi for 0 ≤ i ≤ n + 1 and set a−1 = bn+1 = 0. 

Then AX − 1 
uB =

∑n+1
i=0 ciX

i. The Sylvester matrix for the pair 
(
AX − 1 

uB,A
)

is
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cn+1 0 . . . 0 0 0 . . . 0

cn cn+1
... an 0

...
...

...
. . .

...
...

. . .
c1 c2 . . . cn+1 a1 . . . an 0
c0 c1 . . . cn a0 . . . an−1 an
0 c0 . . . cn−1 0 a0 . . . an−1
...

. . .
...

...
. . .

...
0 0 . . . c0 0 0 . . . a0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since cn+1 = 1, we can remove the first row and first column to obtain a submatrix with 
the same determinant, namely

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cn+1 0 . . . 0 an 0 . . . 0 0

cn cn+1
... an−1 an

. . .
...

...
...

. . .
...

...
. . . . . .

...
c2 c3 . . . cn+1 a1 a2 . . . an 0
c1 c2 . . . cn a0 a1 . . . an−1 an
c0 c1 . . . cn−1 0 a0 . . . an−2 an−1
... c0

. . .
...

...
. . .

...
...

0 0
. . . c1 0 0 . . . a0 a1

0 0 . . . c0 0 0 . . . 0 a0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Subtracting column 1 from column n + 1 yields

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cn+1 0 . . . 0 0 0 . . . 0 0

cn cn+1
... 1 

ubn an
. . . . . . 0

...
...

. . .
...

...
...

. . .
c2 c3 . . . cn+1

1 
ub2 a2 . . . an 0

c1 c2 . . . cn
1 
ub1 a1 . . . an−1 an

c0 c1 . . . cn−1
1 
ub0 a0 . . . an−2 an−1

... c0
. . .

...
...

. . .
...

...

0 0
. . . c1 0 0 . . . a0 a1

0 0 . . . c0 0 0 . . . 0 a0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Once again, the determinant of this matrix is the same as that of the submatrix where 
the first row and first and column removed. We remove them and obtain
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cn+1 0 . . . 0 1 
ubn an 0 . . . 0 0

cn cn+1
... 1 

ubn−1 an−1 an
. . .

...
...

...
. . .

...
...

...
. . . . . .

...
c3 c4 . . . cn+1

1 
ub2 a2 a3 . . . an 0

c2 c3 . . . cn
1 
ub1 a1 a2 . . . an−1 an

c1 c2 . . . cn−1
1 
ub0 a0 a1 . . . an−2 an−1

c0 c1 . . . cn−2 0 0 a0 . . . an−3 an−2
... c0

. . .
...

...
. . .

...
...

0 0
. . . c1 0 0 0 . . . a0 a1

0 0 . . . c0 0 0 0 . . . 0 a0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We subtract column n + i from column i for each i < n, and the result is that at each 
entry ci, we get instead ci − ai−1 = − 1 

ubi.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1 
ubn+1 0 . . . 0 1 

ubn an 0 . . . 0 0

− 1 
ubn − 1 

ubn+1
... 1 

ubn−1 an−1 an
. . .

...
...

...
. . .

...
...

...
. . . . . .

...
− 1 

ub3 − 1 
ub4 . . . − 1 

ubn+1
1 
ub2 a2 a3 . . . an 0

− 1 
ub2 − 1 

ub3 . . . − 1 
ubn

1 
ub1 a1 a2 . . . an−1 an

− 1 
ub1 − 1 

ub2 . . . − 1 
ubn−1

1 
ub0 a0 a1 . . . an−2 an−1

− 1 
ub0 − 1 

ub1 . . . − 1 
ubn−2 0 0 a0 . . . an−3 an−2

... − 1 
ub0

. . .
...

...
. . .

...
...

0 0
. . . − 1 

ub1 0 0 0 . . . a0 a1

0 0 . . . − 1 
ub0 0 0 0 . . . 0 a0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Then multiplying the first n columns by u and applying a cyclic permutation of the n

first columns yields the Sylvester matrix of the pair (B,A). The sign of the permutation 
is (−1)n−1. Interchanging column i with n+ i for all i ≤ n yields (A,B), and this needed 
another permutation of sign (−1)n−1, so the signs cancel out. �
Appendix C. Testing compatibility via real realization and signatures

Now we provide the additional evidence for Conjecture 82 and a positive answer to 
Question 83 referred to in Section 4.

We assume that k is a subfield of R. Let H∗(k) denote the homotopy category of 
pointed smooth k-schemes and let H∗ be the homotopy category of pointed topological 
spaces. By [23] sending a smooth k-scheme X to the topological space X(R) equipped 
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with its usual structure of a smooth manifold extends to a functor � : H∗(k) → H∗, see 
also [4, page 14] and [13, Section 5.3].

For a smooth map f between oriented compact smooth manifolds of the same dimen-
sion, let degtop(f) ∈ Z denote the topological Brouwer degree of f . In [21] Morel describes 
the analog of the topological degree map in A1-homotopy theory. For endomorphisms of 
P 1 it defines a homomorphism

degA
1
: [P 1,P 1]A

1 → GW(k).

Let f : P 1 → P 1 be a morphism. Since we assume that k is a subfield of R, we can form 
the real realization �(f) : P 1(R) → P 1(R). Following Morel, the signature, denoted sgn, 
of the quadratic form given by the A1-Brouwer degree of f equals the topological Brouwer 
degree of �(f), i.e.,

sgn
(
degA

1
(f)

)
= degtop(�(f)). (137)

We note that, in some form, this was also shown by Eisenbud, Levine, and Teissier in 
[14, Theorem 1.2] for the local degree of maps between real affine spaces. The latter 
approach has been incorporated into the motivic theory by Kass and Wickelgren [17].

The motivic Brouwer degree map degA
1

is a homomorphism for the conventional 
group structure ⊕A1 on [P 1,P 1]A1 , and the signature is additive. Hence, for morphisms 
f, g : P 1 → P 1 and their sum f ⊕A1

g in [P 1,P 1]A1 , Equation (137) implies

degtop
(
�
(
f ⊕A1

g
))

= sgn
(
degA

1
(
f ⊕A1

g
))

(138)

= degtop(�(f)) + degtop(�(g)).

We will now use this fact to test the compatibility of the action of Definition 73 and 
thereby of Definition 77 with the conventional group structure in the following way.

The real points J (R) of J form a surface in R3 given by the equation x(1−x)−yz = 0. 
The intersection with the plane defined by y = z is the circle given by the set of points 
satisfying x(1−x)−y2 = 0. Its center is the point (1/2, 0, 0) ∈ R3. We parameterize this 
circle via the map γ : S1 → J (R) given by

γ : θ �→
(
1/2 + cos(θ)/2, sin(θ)/2, sin(θ)/2

)
.

The real realization of P 1 is the topological real projective line RP 1. Hence, for a 
morphism f : J → P 1, we may form the composition �(f) ◦ γ which is a smooth map 
S1 → RP 1. We can then apply the topological Brouwer degree to the composition 
�(f) ◦ γ. Since the real realization of a naive homotopy induces a homotopy of maps 
between topological spaces, this induces a well-defined map
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degtop(�(−) ◦ γ) : [J ,P 1]N −→ Z

f �−→ degtop(�(f) ◦ γ).

Lemma 139. The following diagram commutes.

[J ,P 1]N

ξ

ν

degtop(�(−)◦γ)

[J ,P 1]A1

(π∗)−1

degtop(�(−)◦γ)
Z

[P 1,P 1]A1

π∗

degtop(�(−))

(140)

Proof. To prove the assertion it suffices to show that both parts of the diagram commute. 
The functor � commutes with the canonical map ν : [J ,P 1]N → [J ,P 1]A1 . This implies 
that the upper part commutes. We verify in Example 146 that for π : J → P 1 the 
composite map �(π) ◦ γ : S1 → RP 1 is an orientation preserving diffeomorphism. Now 
let f : P 1 → P 1 be a morphism. Since the composition with �(π) ◦ γ preserves degrees, 
we obtain the identity

degtop(�(f ◦ π) ◦ γ) = degtop(�(f) ◦ �(π) ◦ γ) = degtop(�(f)).

This implies that the lower part of Diagram (140) commutes and finishes the proof. �
This implies the following necessary condition for the compatibility of the operations 

⊕ and ⊕A1 :

Proposition 141. Assume that ξ is a group homomorphism. Then we have

degtop(�(ξ(f ⊕ g))) = degtop(�(f) ◦ γ) + degtop(�(g) ◦ γ).

Proof. The assumption that ξ is a group homomorphism implies

degtop(�(ξ(f ⊕ g))) = degtop(�(ξ(f) ⊕A1
ξ(g))).

Identity (138) implies

degtop(�(ξ(f) ⊕A1
ξ(g))) = degtop(�(ξ(f))) + degtop(�(ξ(g))).

Commutativity of Diagram (140) implies

degtop(�(ξ(f))) + degtop(�(ξ(g))) = degtop(�(f) ◦ γ) + degtop(�(g) ◦ γ).

Putting these identities together yields the assertion. �
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As a special case, we get the following necessary condition for the compatibility of ⊕
with the conventional group structure:

Corollary 142. Let F : J → P 1 be a pointed morphism. Then, if ξ is a group homomor-
phism, we must have

degtop(�(F ⊕ π) ◦ γ) = degtop(�(F ) ◦ γ) + 1.

In the following section we will apply Corollary 142 in a concrete case in Example 147.
Moreover, we exclude a potential alternative to the operation ⊕ of Definition 73 in 

Example 150.

Remark 143. Let F : J → P 1 again be a pointed morphism. Assume that Question 83 has 
a positive answer, i.e., assume that π̃ is naively homotopic to −π. Then Proposition 141
shows that, if ξ is a group homomorphism, then we must expect to get

degtop(�(F ⊕ π̃) ◦ γ) = degtop(�(F ) ◦ γ) − 1. (144)

Note that, since we do not know whether π̃ is naively homotopic to −π, Equation (144)
may fail to hold for some F even though ξ is a group homomorphism.

However, we confirm Formula (144) in a concrete case in Example 149.

We will now compute the topological degrees and thereby the signatures of several 
maps and apply the previous observations. For the following computations we will often 
identify the ring R with the ring k[x, y, z]/(x(1 − x) − yz) where it is convenient.

Example 145. Consider the morphism g1,−1 : J → P 1 defined by the unimodular row 
(2x− 1, 2y). Its real realization is the map �(g1,−1) : �(J ) → �(P 1) defined by

�(g1,−1) : (x, y, z) �→ [2x− 1 : 2y].

Precomposing with γ gives

�(g1,−1) ◦ γ : θ �→ [cos(θ) : sin(θ)] ,

which is the usual double cover of RP1 by S1 and has topological Brouwer degree 2.

As explained in Section 2.4, a morphism f : J → P 1 may be described by gluing 
together partially defined maps on open subsets. In the following examples we will define 
a morphism �(f) ◦ γ : S1 → RP 1 by gluing �(f |D(x)) ◦ γ : γ−1(�(D(x))) → RP 1 and 
�(f |D(1−x)) ◦ γ : γ−1(�(D(1 − x))) → RP 1 on their overlaps in the respective domains.
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Example 146. The real realization of π : J → P 1 is defined on �(D(x)) by

�(π|D(x)) : (x, y, z) �→ [x : y],

and on �(D(1 − x)) by

�(π|D(1−x)) : (x, y, z) �→ [z : 1 − x].

Precomposing with γ gives

�(π|D(x)) ◦ γ : θ �→ [1/2 + cos(θ)/2 : sin(θ)/2],

�(π|D(1−x)) ◦ γ : θ �→ [sin(θ)/2 : 1/2 − cos(θ)/2],

which glue together to give a map of degree 1:

(�(π) ◦ γ)(θ) =
{

[1 + cos(θ) : sin(θ)] θ �= π,

[0 : 1] θ = π.

This shows that �(π)◦γ is an orientation preserving diffeomorphism and has topological 
Brouwer degree 1.

In the following example we test the necessary condition of Corollary 142 in a concrete 
case.

Example 147. Recall that the unimodular row g1,−1 = (2x− 1, 2y) can be augmented to 
the following matrix with determinant 1:

m1,−1 =
(

2x− 1 −2z
2y 2x− 1

)
.

The group action of Definition 73 yields the map F := g1,−1 ⊕ π = (2x − 1,−2z :
2y, 2x− 1)1.

Taking real realization and precomposing with γ yields the map �(F ) ◦ γ : S1 → RP 1

given by

(�(F ) ◦ γ)(θ) =
{

[cos(θ) + cos(2θ) : sin(θ) + sin(2θ)] θ �= π,

[0 : 1] θ = π.

The topological degree of this map is 3.
Hence our computation confirms that

degtop(�(F ) ◦ γ) = 3 = 2 + 1 = degtop(�(g−1,1) ◦ γ) + degtop(�(π) ◦ γ),

as required for the compatibility of ⊕ with ⊕A1 .
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The next example confirms that the signature of the motivic Brouwer degree of π̃ has 
the value −1 as expected if Question 83 has a positive answer.

Example 148. The real realization of the morphism π̃ = (1, 0 : 0,−1)−1 : J → P 1 is 
defined on �(D(x)) and �(D(1 − x)) respectively by �(D(x)) by

�(π̃|D(x)) : (x, y, z) �→ [x : −z],

�(π̃|D(1−x)) : (x, y, z) �→ [y : −1 + x].

Precomposing with γ gives

�(π̃|D(x)) ◦ γ : θ �→ [1/2 + cos(θ)/2 : − sin(θ)/2],

�(π̃|D(1−x)) ◦ γ : θ �→ [sin(θ)/2 : −1/2 + cos(θ)/2],

which glue together to give a map of topological Brouwer degree −1.

Now we confirm that Identity (144) of Remark 143 does hold in an example.

Example 149. Consider the unimodular row F = (2x − 1, 2z) which can be augmented 
to the following matrix

M =
(

2x− 1 −2y
2z 2x− 1

)
with determinant 1. Note that F is homotopic to g1,−1 by Lemma 62. We let F act 
on π̃ via the action of Definition 73. This yields the map L := F ⊕ π̃ = (2x − 1, 2y :
2z,−2x + 1)−1. Precomposing its real realization with γ yields the same map as in 
Example 146 where we showed it has topological Brouwer degree 1.

Hence our computation confirms

degtop(�(L) ◦ γ) = 1 = 2 − 1 = degtop(�(F ) ◦ γ) + degtop(�(π̃) ◦ γ),

as required in Remark 143.

Example 150. Consider now an alternative action � of [J ,P 1]N0 on [J ,P 1]N defined as 
follows. For [(A,B)] ∈ [J ,A2 \ {0}]N and [s0, s1] ∈ [J ,P 1]Nn , extend the unimodular row 
(A,B) to a matrix M in SL2(R) and define

[(A,B)] � [s0, s1] := [MT · (s0, s1)T ].

Again we look at the unimodular row F = (A,B) = (2x− 1, 2z) and the matrix M of 
Example 149. The action � of F on π yields the morphism H := F � π = (2x− 1, 2z :
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−2y, 2x − 1)1 = (1, 0 : 0,−1)1. Taking real realization and precomposing with γ yields 
the map �(H) ◦ γ : S1 → RP 1 given by

(�(H) ◦ γ)(θ) =
{

[1 + cos(θ) : − sin(θ)] θ �= π,

[0 : 1] θ = π.

This map has topological Brouwer degree −1. Hence our computation shows

degtop(�(F � π) ◦ γ) = −1 �= 3 = degtop(�(F ) ◦ γ) + degtop(�(π) ◦ γ).

Thus, by the analogous statement of Corollary 142 for �, we see that � cannot be used 
to define an operation compatible with the conventional group structure.
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