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A Cyber-Physical System (CPS) deployed in remote and resource-constrained environments faces multiple 
challenges. It has, no or limited: network coverage, possibility of energy replenishment, physical access by 
humans.
Cyber-physical nodes deployed to observe and interact with the Arctic tundra face these challenges. They are 
subject to environmental factors such as avalanches, low temperatures, snow, ice, water and wild animals. 
Without energy supply infrastructures and humans available, nodes must achieve long operational lifetime from a 
single battery charge. They must be extremely energy-efficient. To reduce energy costs and increase their energy 
efficiency, cyber-physical nodes sleep most of the time, and avoid to communicate when they are unreachable.
But, a CPS needs to disseminate data between the nodes for multiple purposes including data reporting to a back-
end service, resilient operations, safe-keeping of observational data, and propagating nodes updates. Loosely-
coupled data dissemination policies offer this possibility [1]. Although, investigations should be made on their 
applicability to large-scale CPS.
In this paper, we evaluate and discuss the efficiency in energy, time and number of successful delivery of four 
data dissemination policies proposed in [1]. This evaluation is based on flow-level simulations. We study small 
and large-scale CPS, and evaluate the effects of the number of nodes and the size of the disseminated data on the 
nodes energy consumption and the dissemination’s delivery success. To mitigate negative effects raised on large-
scale CPS and large disseminated data sizes, different strategies are proposed and evaluated. We show that energy 
saving strategies do not always imply energy efficiency, and better data dissemination often comes at a cost. This 
last result highlights the importance of simulation prior to real CPS deployments in constrained environments.
1. Introduction

Cyber-Physical Systems (CPS), Wireless Sensors Network (WSN) and 
the Internet Of Things (IoT) are applied in various domains [2] such 
as Environmental [3], Flora and Fauna monitoring [4], Habitat moni-
toring [5], Health Care [6], Military [7], Industry and Urban manage-
ment [8]. To communicate, they rely on various wireless technologies 
(such as LoRa, Wi-Fi, Nb-IoT etc.) to ensure connectivity among the 
nodes and a potential back-haul network. Wireless communications of-
fer great flexibility in terms of deployment since CPS are meant to reach 
a degree of autonomy, directing the research towards the optimization 
of communications and node operations.

The Arctic tundra is a particularly harsh environment and pushes 
existing monitoring solutions to their limits. Monitoring the Arctic tun-
dra requires to deploy energy efficient nodes, expected to operate for 
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long time periods. The Arctic tundra offers little to no coverage by cel-
lular networks coupled to extreme weather conditions. The success of 
this monitoring is driven by the energy efficiency of nodes and the avail-
ability of data when and where needed.

The Distributed Arctic Observatory (DAO) at The Arctic University 
of Norway (UiT), is the context of this paper. The DAO project relies on 
Computer Science research to address the challenges raised by the mon-
itoring of the Arctic tundra. Sensing nodes, called Observation Nodes 
(ON), are deployed in-situ. ON are expected to operate for months and 
even years. To ensure the availability of data collected by these nodes, 
an efficient data dissemination mechanism is required.

In [1], four loosely coupled data dissemination policies are proposed 
in the context of the DAO project. Simulations are carried out and the 
results reveal a great data dissemination capability on each of these 
policies. Reasonable amount of energy is consumed by the nodes for rel-
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atively small networks (up to 12 nodes). With the aim of extending this 
work, measuring the applicability of such policies on denser networks 
is important and can enable their usage in other contexts. Similarly, the 
disseminated data size can vary significantly depending on the context, 
it is also crucial to quantify its impact on the system. In addition, several 
energy saving and data dissemination strategies can be used to improve 
the performance of these policies in terms of energy consumption and 
data dissemination.

In this paper, we propose a study of these four data dissemination 
policies on large-scale deployments (up to 100 of nodes) using flow-level 
simulations. We also investigate the impact of various disseminated data 
sizes, ranging from 1 KB up to 1 GB. Several strategies that aim at im-
proving each policy in terms of energy and data dissemination efficiency 
are also proposed.

The contributions of this paper are:

• An analysis of the applicability of loosely coupled data dissemina-
tion policies for large-scale deployments and various disseminated 
data sizes

• The evaluation of four energy saving and data dissemination opti-
mization strategies

• A detailed numerical comparison between new proposed strategies 
and our previous work [1]

• A discussion on the data dissemination when applied to CPS in 
harsh environment

The paper is organized as follows. Section 2 details the challenges 
raised by the DAO project. Section 3 presents the related work. Section 4
presents the strategies for energy saving and data dissemination im-
provement along with the experimental setup used for their evaluation. 
The Section 5 details the simulation results for the scalability experi-
ments that study the number of nodes. Section 6 presents the results 
for the data size scalability study. The Section 7 presents the evaluation 
of the strategies and a comparison to our previous results [1]. A discus-
sion on the simulation results is proposed in Section 8. Finally, Section 9
concludes the work.

2. Motivating use-case: the DAO project

This section presents the use-case of this work: the DAO project. First, 
the Arctic tundra and the difficulties to monitor it are covered. Then, 
the needs and the challenges for a distributed observatory are exposed. 
Finally, a current deployment and the importance of data dissemination 
are described.

2.1. The Arctic tundra, a complicated eco-system

As depicted by Fig. 1, the Arctic tundra is a large, remote, hard to 
reach, and potentially dangerous area. It is divided into three regions 
(High, Low and Sub Arctic) that are characterized by their unique eco-
systems. By observing the Arctic tundra flora, fauna and environmental 
parameters, changes can be identified and tracked. Presently, less than 
1% of the Arctic tundra is monitored. However, it is one of the most sen-
sitive eco-system to climate change [9]. Therefore, to detect accurately 
climate changes, larger observations of the Arctic tundra are needed.

The Climate-Ecological Observatory for Arctic tundra (COAT1) ini-
tiative is responsible for observing the Norwegian Arctic tundra, detect-
ing and explain climate related changes to advise the public and the 
authorities.

To do so, the state of the Arctic tundra is determined based on mea-
surements of the flora, fauna, weather, and the atmosphere. From these 
measurements, several layers of data sets are generated. For example, 
2
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Fig. 1. North pole circumpolar area representing the Arctic tundra. It is divided 
into three regions: High, Low and Sub Arctic.

species of captured animals can be detected from a first data set of im-
ages, creating a new data set. This new data set is analyzed to extract 
significant information such as the number of foxes and eagles detected 
at the different monitored sites. These insights are used as input to cli-
mate models. Finally, based on the results history of climate models, 
human understanding and decision making take place [9].

A ground-based observation system can monitor large areas, do high 
resolution measurements at any time and promptly react to local events 
above and below ground. Data might be reported back at any time, reg-
ularly, or on-demand. To enable edge computing, significant processing 
and storage resources can be added to the nodes. The DAO project fo-
cuses on such ground-based observation approaches.

2.2. Towards a distributed Arctic observatory (DAO)

There are major obstacles to consider when building an observation 
system for the Arctic tundra. In this environment, energy is a scarce 
resource, especially in winter where the sun does not rise. Deep snow 
makes wind-based energy replenishment difficult to achieve. The lack of 
roads and associated infrastructures makes it impossible to visit deploy-
ment sites more than a very limited amount to fetch data, supply energy, 
do repairs and updates. Availability of a back-haul network to perform 
automated reporting of data can be limited or non-existent. Thus, it is 
challenging to have sufficient energy supply for nodes with advanced 
functionalities while still getting long operational lifetimes.

A distributed Arctic observatory system must manage carefully two 
fundamental resources: energy and wireless data networks. Nodes are 
working on a limited energy budget provided by batteries. As it is a 
complicated scenario (harsh weather, short periods of sun exposition 
during winter), swapping batteries by humans and regular energy har-
vesting are not plausible solutions. Nodes can also fail after deployment 
because of harsh weather conditions (snow, ice, low temperatures) that 
could damage the hardware, or simply prevent nodes from communi-
cating. Consequently, nodes must implement a set of functionalities, 
including autonomous operations to save energy while still striving to 
observe and report.

While a back-haul network cannot be expected to be available as 
the common case, a node can have multiple local networks enabling 
communication with neighbors. Using a multi-hop approach, data can 

be reported through multiple units and finally to one that have access 
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Fig. 2. Overview of the system imposed by the Arctic tundra characteristics. The 
back-end hosts a set of services [11]. Its connectivity to Observation Nodes (ON) 
deployed at the Arctic tundra is sparse and unexpected. The wireless gateway in 
the topology is only used for 1:1 communications between Observation Nodes 
forming a star topology.

to the back-haul network or is located on sites reachable by humans 
or drones [10]. However, using the radio is energy-expensive. One 
approach to reduce transmissions is to reduce the number of bits ex-
changed between nodes. But such leverage applies only if the data can 
still provide similar analytic precision [11].

In this paper we focus on delivering data from one node to neighbors 
in the context of nodes deployed and isolated on the Arctic tundra (i.e. 
not accessible by a back-haul network as a common case). This work 
does not consider multi-hopping nor modifying the data, as shown in 
Fig. 2.

2.3. Data dissemination, a crucial need

Presently, COAT ecologists use several approaches and instruments 
to observe the Arctic tundra [12,13]. Typically, tens to a few hundreds 
of small dedicated instruments are deployed according to the expected 
location of interesting events. These instruments are deployed for mul-
tiple purposes, including images capture of animals. For hard to reach 
installations, it takes up to 6-12 months before humans visit the site and 
fetch the data. These deployments are usually done in small clusters of 
10 to 15 instruments. Each instrument is separated from hundreds of 
meters to kilometers. In such deployment context, disseminating data 
from nodes to their neighbors is crucial in many cases.

a) Backing up important results Deployed nodes can do local computa-
tion on local observations. Due to the high probability that deployed 
units crash (e.g. through flooding, hardware failure) it can be important 
to duplicate the results from these computations. Important results must 
be disseminated to as many neighbors as possible, to keep the data safe 
and reduce the chance of loosing results. For example, in [11] we ease 
the dissemination of the data by reducing the size of captured pictures 
to reduce the number of transmitted bytes to a remote CNN deep learn-
ing application. For some deployments, both the full sized as well as the 
reduced sized photos should be disseminated inside a neighborhood for 
safe keeping purposes, until the data can be reported.

b) Disseminate updates Few to no nodes are expected to have connec-
tion with a back-haul network as it would be sporadic and unreliable. 
Since physically accessing to the Arctic tundra is complicated and expen-
sive, updates (e.g. configuration files, executable, packets or other newer 
content for a receiver) must be delivered by the back-end. Updates can 
come from users of the system such as ecologists or administrators, as 
shown in Fig. 2. When a node finally gets an update, we can expect it 
to disseminate it to its neighbors. As it is the only one getting the data 
from the back-end, it is the only node that can be trusted to have a valid 
version of the update files.

In all cases, the size of the disseminated data is not expected to be 
very high, due the wireless technologies limitations, energy and the 
availability of computing resources. The constraints related to batter-
3

ies and energy consumption are tackled in our previous work [4,10,11].
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3. Related work

3.1. Wireless technologies

Choosing the right wireless technology depends on the use case. In 
our work, the use case is the Distributed Arctic Observatory, and we are 
focusing on three main criteria: 1) the energy consumption 2) the com-
munication range 3) the bandwidth. The Arctic tundra is a particularly 
hostile environment. Nodes are expected to survive for almost a year 
without humans intervention. Having an energy efficient wireless tech-
nology allows to reduce nodes deployment campaigns and having longer 
sensing periods. Performing long range wireless communications is cru-
cial and allows to cover larger areas for the scientific measurements. 
Finally, using a wireless technology with sufficient bandwidth allows to 
generate finer grained data and improves the quality of measurements. 
Consequently, we selected wireless technologies that provide good com-
promise between these three criteria. Such technologies are part of the 
Low-Power Wide Area Networks (LPWAN) category.

The DASH7 Alliance (D7A) is an open source wireless solution for 
WSN [14,15]. Working at 433 MHz, D7A allows to achieve long range 
communications up to 2 km [16]. It can be used with the D7A protocol 
allowing for star-based network topology and device-to-device commu-
nications. Hence, it offers great flexibility on the network architecture. 
Moreover, D7A has good energy performance compared to others LP-
WAN technologies [17] while providing up to 200kbps of applicative 
bandwidth [16]. This makes it suitable for use in the Arctic tundra.

LoRa is another well known wireless LPWAN technology. In net-
works that uses LoRa, gateways are deployed to offer communication 
relay among the nodes and potentially a back-haul network. Depending 
on the physical layer configuration, LoRa provides long range wireless 
communications that can reach up to 5-6 km distances [18]. LoRa can 
deliver up to 50kbps [19] while being energy efficient. This makes LoRa 
a good candidate for our use-case.

Next, Narrow-Band IoT (Nb-IoT) is an interesting technology to con-
sider for our use case. It is a derivation of the Long-Term Evolution 
(LTE) that use the existing LTE infrastructure as a communication gate-
way [19]. Since the Arctic tundra is scarcely covered by cellular tower 
as mention in [4], Nb-IoT is suitable to our context. Similarly to LoRa, 
Nb-IoT uses a star topology with a gateway that relay the data. In addi-
tion, Nb-IoT has been designed for low-power and long range wireless 
communications. Despite being more energy consuming than LoRa, it 
provides more bandwidth (up to 200kbps [20]).

Several other wireless technologies are available in the litera-
ture [21,22]. To the best of our knowledge, none of them are relevant 
enough for our use-case. Consequently, we choose LoRa and Nb-IoT 
to conduct our study as they are use in DAO prototypes and deploy-
ments [10]. These technologies offer a good compromise among the 
three criteria exposed for the DAO project.

3.2. Data dissemination

The literature provides multiple data dissemination policies that aim 
at reducing the energy consumed by the nodes. In this section, we turn 
our focus on three of them.

Achieving energy frugal data dissemination for mobile nodes in wire-
less sensor networks has been proposed by basing the dissemination on 
a grid structure [23]. However, this approach requires coordination to 
maintain the grid structure and the coupling in time between nodes. 
This implies having to do more communications, leading to higher en-
ergy usage, and a faster drain of the battery. In our case, maintaining 
such an overlay network would lead to too many communications and 
drain nodes battery life. Thus, such approach could not be used in our 
context.

Solutions that deal with reducing redundant transmissions to be en-
ergy efficient, like in [24], usually comes with the hypothesis that sen-

sors are part of a virtual grid and maintain a node list. In the case of a 
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deployment in a scarce-resource environment such as the Arctic tundra, 
it will not be beneficial to have such a representation as the nodes must 
implement shutdown policies and be OFF most of the time. Thus, nodes 
are mostly unreachable leading to an obsolete virtual grid and node list.

Works such as [25] are providing policies to handle nodes that fail 
on the field. These types of contributions are effective for a limited num-
ber of failures. However, such failures are common in our use-case and 
the work do not account for scenarios where all nodes are failing in a 
deployment. For the Arctic tundra, we are in the opposite case. Most of 
the time, we expect a significant part of nodes to be unavailable. This is 
due to independent shutdown policies embedded on each node, trying 
to last as long as possible. Node suddenly shutting down unexpectedly 
is equivalent to a node failing, for a neighboring node.

A resource limited environment such as the Arctic tundra imposes 
conditions where it is complicated to evaluate if a solution to dissemi-
nate data has a positive impact on the energy consumption. Contribu-
tions covered in this section use hypothesis that do not match with the 
requirements of our use case. Quantifying the costs (in time and en-
ergy) of loosely coupled policies from calibrated values extracted from 
the literature under plausible hypothesis such as this work is essential. 
It allows to establish a relation between researchers works and reality, 
and having answers to build upon.

In a resource limited environment such as the Arctic tundra, existing 
energy efficient data dissemination cannot be used. Very few assump-
tions can be made about neighboring nodes and most of the hypothesis 
used in existing works do not match with this reality. Structure-less 
based schemes [26] are currently the best approach to disseminate the 
data in the use-case of the DAO, as propose in [1]. They provide mech-
anisms to disseminate data without having to maintain a data structure 
that would require more communications, synchronicity, and higher 
node availability. This work extends [1] with the aim of improving both 
energy and data dissemination efficiency.

4. Experimental setup

This section presents a brief summary of the different data dissem-
ination policies used in the contribution. Then, strategies that aim to 
improve CPS performance in terms of energy consumption and data de-
livery success are presented. Finally, the simulation setup along with the 
metrics used for the analysis are detailed.

4.1. Dissemination policies

Our previous paper [1], presents four different loosely-coupled data 
dissemination policies suitable for our use case.

Baseline - This policy corresponds to a sender node that wakes up 
randomly every hour and tries to send its data to receivers. Since we 
are in a resource limited environment, sender and receivers nodes are 
OFF most of the time. They wake up randomly for a duration called 
uptime. During this uptime, overlap between the sender and one or more 
receiver can occur. In that case, the sender tries to send its data to the 
receivers. Having such policy allows to have a baseline for comparison 
with more complex policies. Fig. 3(a) depicts the Baseline policy where 
a sender start to send its data around time 𝑡𝑥 to a receiver.

Extended - In some baseline scenarios, the uptime duration is not 
long enough to allow the data to be sent entirely. The communication 
is then interrupted when the node shuts down. This reduces the data 
delivery success. Extended policy introduces extra time at the end of 
every uptime to allow the data to be sent properly. It aims at a higher 
data delivery success. Fig. 3(b) details this policy where a sender and a 
receiver get their uptime extended.

Hints - This policy is an enhancement compare to the Baseline pol-
icy. It introduces an additional timestamp that is added to the data. This 
timestamp, notifies the receiver about the next time at which the sender 
is expected to wake up. This hint can be forwarded by the receivers 
4

during overlap with other receivers uptime to maximize the number of 
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overlap between sender and receivers. Note that the sender occasionally 
sends separate hint to receivers in addition to normal data communi-
cations. From these overlaps, sender can transmit the data to receivers, 
increasing the delivery success. Fig. 3(c) explains the Hints policy where 
a hint is delivered along with the data to a receiver that forwards it.

Hints and Extended - This policy is a combination of the Extended

and Hints policies. Both combined policies behave exactly the same as 
they were introduced. The objective is to further improve the delivery 
success by merging the impact of both policies. The Hints and Extended

policy allows to measure the benefits of combining policies in terms 
of various metrics detailed later in the paper. Fig. 3(d) depicts a given 
scenario where Hints and Extended policies are used together.

The lessons learned from our previous work [1], show that, these 
policies can be greatly improved regarding data delivery and energy per-
formance. The following sub-section introduces several strategies with 
the ambition to improve the dissemination of the data on these two axes.

4.2. Strategies

Policies presented in [1], provide a solution to disseminate data in 
loosely coupled networks and strive to mitigate the energy consumed. 
To further improve the efficiency of these data dissemination policies, 
this section introduces three distinct strategies. The first two aim at op-
timizing the existing dissemination policies by exploiting simple energy 
saving ideas. The third one proposes a mechanism for communications 
aggregations to leverage the data delivery success and reduce the energy 
consumption.

Strategy 1: Shutdown on receive In the current version of our data 
dissemination policies presented in Section 4, receivers wake up with the 
hope of receiving data from the sender. If a communication occurs and 
the data are successfully received, the receiver keeps on being awake for 
the complete duration of its uptime. It allows to communicate with other 
potential receivers, and being part of the hint forwarding mechanism to 
improve the efficiency of the hints dissemination.

However, this approach has a cost for the receiver in terms of energy 
consumption. Since the receiver already owns the data, the Shutdown on 
receive strategy turns off the receiver as soon as the data are received. 
Fig. 4(a) depicts a scenario where this strategy is applied. The energy 
saved depends on the uptime duration left after the data distribution 
ends (green area). This duration is impacted by: 1) The time at which 
the communication starts 2) The communication duration 3) The uptime 
duration. Consequently, having short communications on large uptime 
scenarios can lead to significant energy saving if the nodes are able to 
shut down.

But, since the receiver is part of the hint forwarding mechanism dur-
ing the remaining time period (after the data delivery), studying the 
impact of such strategy on the energy efficiency and the data delivery 
success is required.

Strategy 2: Unschedule on receive

Among the four studied policies, two of them use the hint forwarding 
mechanism. This mechanism increases the likelihood of uptime overlaps 
between sender and receivers. It dynamically schedules a new wake-up 
time on the receivers to get an uptime overlap with the sender on the 
next uptime.

In many situations, nodes could receive a hint from another node 
just before receiving the data (on the same uptime slot). As receivers 
propagate hints (see Fig. 3(c) and 3(d)), this new uptime slot is also 
used by the receivers to propagate hints. Hence, increasing the amount 
of overlap between sender and receivers uptime.

One approach to save energy in these situations is to unschedule 
the new uptime on nodes that already received the data. This strategy 
assumes that, the sender disseminates the same data on a given day. Re-
ceivers that own the data would unschedule the new uptime that occurs 
the same day.

This strategy, called Unschedule on receive, is presented on Fig. 4(b). 

Removing these additional uptimes impacts the hint forwarding mech-
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Fig. 3. Sender and receivers lifetime, with impact of proposed policies on observation nodes’ uptimes and communication. Messages, uptimes and added uptimes 
are represented as arrows, gray and green rectangles, respectively.

Fig. 4. Sequence diagram of the two first energy saving strategies. Green time slots represent additional wake up times due to the receive of hints.
anism, and could lead to lower overall energy and data delivery perfor-
mance. Hence, a study of the Unschedule on receive strategy is required.

Strategy 3: Far hint The Hints and Hints and Extended policies, from 
[1], rely on the hint forwarding mechanism to increase the likelihood of 
having uptime overlaps between sender and receivers. A hint contains 
a timestamp that notifies the receivers about the next sender uptime, 
and it is forwarded by the receivers. However, the duration between 
the first transmission of a given hint by the sender, and the timestamp 
contained in this hint may not be large enough to ensure proper hint 
dissemination. Small hint duration reduces its chances of propagation 
within the network. On the contrary, large hint duration leads to better 
hint propagation.

The Far Hint strategy proposes to extend this duration to highlight 
its impact on the energy and data delivery performance. Increasing this 
duration could lead to more communications among the nodes and in-
crease their energy consumption. As a result, even if an increase of data 
delivery success is noticeable, simulations should be conducted to quan-
tify the impact on the nodes energy consumption.

4.3. Simulation setup

The simulations conducted in this work have three purposes. First, 
evaluating the scalability of Baseline, Extended, Hints and Hints and Ex-

tended in terms of data dissemination efficiency and nodes energy con-
sumption while varying the number of nodes in the system. Second, 
providing a similar evaluation of the policies scalability when varying 
5

the amount of data disseminated. Third, quantifying the impact of the 
following strategies: Shutdown on receive, Unschedule on receive and Far 
Hint on the data dissemination efficiency and nodes energy consump-
tion.

Our experiments are based on the network simulator developed in 
[1]. This simulator uses flow-level network models provided by the Sim-
Grid simulation framework. Flow-level models allow to achieve com-
putationally efficient simulations by making use of abstract network 
models. In addition, SimGrid provides strongly validated models that 
ensure accurate predictions. Currently, this simulator implements the 
four data dissemination policies discussed in this paper. This simulator 
is extended to implement the three strategies presented in this work. 
With this approach, strategies can be applied directly on top of the 
dissemination policies, allowing to preserve the exact same simulation 
environment and initial conditions. All the experiments presented in this 
paper can be reproduced, and are available online [27].

The simulation parameters are detailed in Table 1. They are ex-
tracted from the literature and based on our previous deployments [4]. 
Compared to our previous study, the hint duration has increased from 
one to three hours [1]. Receivers are notified about the next sender up-
time located three hours away from the current one. We choose a hint 
duration of three hours to represent several wake up times, where nodes 
are going to sense their environment and potentially communicate. We 
choose a greater duration than [1], to quantify its impact on the dissem-
ination of the data and the nodes energy consumption.

For the strategies evaluation, each simulated scenario uses 1 sender 
and 12 receivers. To reproduce the use case presented in Fig. 2, each 

node is considered to be reachable by each other, forming a clique. The 
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Table 1

Simulation parameters.

Bandwidth (Latency)
LoRa 50kbps (0 s) [19,20]
Nb-IoT 200kbps (0 s) [20]

Power states

𝑃𝑖𝑑𝑙𝑒 0.4 W [28]
LoRa +0.16 W (+32 mA at 5 V) [29]
Nb-IoT +0.65 W (+130 mA at 5 V) [29]

Uptime
Short 1 min/hour
Long 3 min/hour

Data size
Fixed 1 MB
Varied 1 KB to 1 GB

Nodes
Fixed 1 Sender, 12 Receivers
Varied 1 Sender, 12 to 100 Receivers

Far hint duration 3 hours

Simulated time duration 24 hours

sender owns 1 MB of data that should be transmitted to the 12 receivers. 
This amount of data is fixed for the strategies evaluation scenarios. To 
communicate, each node wakes up once every hour for a duration called 
uptime. This uptime lasts 60𝑠 or 180𝑠 depending on the simulation in-
puts. The total simulated time for each run is 24 hours. Each run is 
performed 200 times with a different randomly generated nodes sched-
ule. Hence, all the studied metrics will be averaged over these 200 runs.

The scalability study for the number of nodes uses similar parame-
ters. Except that, the number of nodes are varied from 12 to 100 and 20 
runs are performed for each scenario. For this evaluation, all the studied 
metrics are averaged over these 20 runs.

Parameters from Table 1 are also used to study the impact of the 
disseminated data size. The amount of data disseminated by the sender 
varies from 1 KB up to 1 GB. For each data size, all the studied metrics 
are averaged over 200 runs.

4.4. Metrics

The energy overhead, %𝑒𝑂𝑣ℎ𝑑(𝑝), represents the relative energy 
overhead for a given policy 𝑝 compared to the Baseline policy. It is 
computed for the sender and the receivers. For readability reasons, it 
is displayed as a percentage.

%𝑒𝑂𝑣ℎ𝑑(𝑝) =
𝑒𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑝 ∗ 100
𝑒𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

− 100 (1)

𝑒𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑝 and 𝑒𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 represent the energy 
consumed (in Joules) during the complete simulated scenarios of a pol-
icy 𝑝 and 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒, respectively. An %𝑒𝑂𝑣ℎ𝑑(𝑝) of 0% for a given policy 
𝑝 indicates that no additional energy is consumed compared to the Base-

line one, thus the “-100”.
The uptime overhead 𝑢𝑝𝑂𝑣ℎ𝑑(𝑝) represents the uptime added by 

using policy 𝑝 compared to the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒.

𝑢𝑝𝑂𝑣ℎ𝑑(𝑝) =𝐴𝑐𝑐𝑈𝑝𝑡𝑖𝑚𝑒𝑝 −𝐴𝑐𝑐𝑈𝑝𝑡𝑖𝑚𝑒𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (2)

The accumulated uptime 𝐴𝑐𝑐𝑈𝑝𝑡𝑖𝑚𝑒𝑝 represents the sum of all nodes 
uptimes, during the simulation of policy 𝑝 in a given scenario. It is ex-
pressed in seconds.

The policy efficiency 𝑒𝑓𝑓 (𝑝) represents the energy consumption (in 
Joule) per number of delivery success (noted 𝐽∕𝑆).

𝑒𝑓𝑓 (𝑝) = 𝑒𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑝∕#𝑆𝑢𝑐𝑐𝑝 (3)

With 𝑒𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑝 representing the average energy consumption 
of the sender node or the receiver nodes, #𝑆𝑢𝑐𝑐𝑝 that represents the 
number of data delivery success for the policy 𝑝. The lower 𝑒𝑓𝑓 (𝑝) is, 
the more energy efficient the policy 𝑝 is on the given sender or receiver 
nodes. Energy consumption for sender and receivers are reported sepa-
rately to be able to identify imbalances, for a given or across different 
6

scenarios.
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5. Scalability: number of nodes

The scalability results for the four data dissemination policies intro-
duced in [1] are presented on Fig. 5. These results show the impact on 
the energy consumption and the delivery success of the senders and re-
ceivers while varying the number of nodes. The colored backgrounds 
show the standard deviation over the 20 runs for the given number of 
node.

5.1. Scenario using 60𝑠 uptime

The results for 60𝑠 uptime are presented on Figs. 5(a) 5(b) and 5(c). 
These results show a strong correlation between the energy consumption 
and delivery success of the senders visible on Figs. 5(a) and 5(c). This is 
due to the sender being the only node that propagate the data. Therefore, 
the sender drives the delivery success while impacting its own energy 
consumption. On Fig. 5(c), Baseline and Hints with LoRa are overlapping 
with a constant delivery success of 0. Under 60𝑠 uptime, LoRa does not 
provide enough bandwidth to disseminate 1 MB of data.

The results from Fig. 5(c) for the LoRa wireless technology show that, 
the Baseline and Hints policies are not able to disseminate the data. The 
Hints policy induces an additional cost on the receivers energy consump-
tion due to the hint forwarding mechanism. But, because of the use of 
the Extended policy, the Extended and Hints and Extended policies allow 
to disseminate data and provide better delivery success in this scenario.

Fig. 5(a) shows that using the LoRa, the sender exhibits a loga-
rithmic grow of the energy consumption on both Hints and Hints and 
Extended policies. With the Extended, the energy consumption of the 
sender quickly reaches high values compared to Nb-IoT. In short uptime 
scenarios, using a wireless technology with a higher bandwidth and a 
slightly higher energy consumption, could potentially save energy on 
the sender node.

Despite using Nb-IoT, the delivery success of the Hints policy has 
a bottleneck around 25 nodes. Although the Hints policy improves the 
likelihood of uptime overlap between senders and receivers, the fact 
that nodes cannot extend their uptime adds limitations to the dissemi-
nation performance. This bottleneck is also visible on the sender energy 
consumption for Nb-IoT. On the receiver side, the energy consumption 
is affected by the hint forwarding mechanism. Hence, Nb-IoT increases 
significantly the energy consumption of the receivers with the Hints and 
Hints and Extended policies. The lower energy consumption of LoRa al-
lows to mitigate this effect on the receivers.

Using a large number of nodes, the Extended policy with Nb-IoT offers 
the best trade off between energy consumption and delivery success. It 
has a limited impact on the sender and receiver energy consumption. It 
is able to provide up to 39 delivery successes with 100 nodes.

5.2. Scenario using 180𝑠 uptime

The 180𝑠 uptime results are depicted on Figs. 5(d), 5(e) and 5(f). 
Similarly to previous results, a strong correlation between the energy 
consumption of the nodes and the delivery success is visible.

On Fig. 5(f) the results for the LoRa wireless technology show a per-
formance bottleneck around 50 nodes with the Hints and Extended. In 
this case, the delivery success does not increase any further. This bot-
tleneck shows that LoRa does not provide enough bandwidth to dissem-
inate the data to all receivers. To further increase the delivery success 
with LoRa and a data size of 1 MB, increasing the uptime duration is 
the only leverage. This is also visible on the sender energy consump-
tion. But, the energy consumption of the receivers keep increasing with 
a logarithmic trend due to the Hints policy. Hence, for this scenario with 
LoRa, the only policy to offer a good compromise between delivery suc-
cess and energy consumption is the Extended.

Regarding Nb-IoT, the results on the delivery success show that the 

Baseline policy scales better than LoRa. The bandwidth of Nb-IoT can 
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Fig. 5. Scalability results obtained by varying the number of nodes from 12 to 100. Each run of 𝑛 nodes is composed of 1 sender and 𝑛 − 1 receivers. Standard 
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deviation of each curve over 20 runs is represented with their respective background color.
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be leverage to improve the data dissemination. Moreover, the aver-
age energy consumption of the senders and receivers follows a linear 
increase up to 100 nodes. In this case, Nb-IoT provides enough band-
width to disseminate the data to most receivers. Despite being more 
energy demanding, Nb-IoT combined to our four policies, offers great 
performance that allows to disseminate data in dense scenarios while 
mitigating the impact on the energy consumption to LoRa.

The Hints and Hints and Extended policies allow to disseminate the 
data to most of the receivers despite introducing a slightly higher energy 
consumption on the sender compared to the Baseline and Extended poli-
cies. But, their impact on the receiver energy consumption is significant. 
The Baseline policy performs well on dense scenarios. Still, the Extended

policy achieves better delivery success with an energy consumption sim-
ilar to Baseline and a narrow standard deviation.

5.3. Summary

These scalability results reveal interesting phenomenons on dense 
network scenarios. Having a too few wireless bandwidth leads to a low 
delivery success and a higher energy consumption since more uptimes 
are required for the data to reach the receivers. In dense networks, poli-
cies that use additional communications to improve the delivery success 
(such as the Hints policy) increase significantly the energy consumption 
of the receivers. This is particularly true on the receivers that are in-
volved in the hints dissemination. One way to mitigate this effect is to 
use different wireless technology for sending the data and the hints. Fi-
nally, on large-scale deployments, using rather simple policies such as 
Extended allows to save a lot of energy compare to more complex one 
such as Hints and Hints and Extended and offer decent data dissemination 
performance. On the other hand, the Hints policy is useful on lower-scale 
deployment (below 25 nodes in the 180𝑠 uptime scenario) and allows 
to achieve better delivery success while consuming less energy than the 
Extended policy. The Hints and Extended policy allows to maximize the 
delivery success when the energy consumption is not a critical resource.

Limiting the impact of a policy on the energy consumption is cru-
cial. For energy consumption reasons, policies that work perfectly on 
relatively small-scale deployments may not be used on large-scale one 
(as seen with the Hints policy). Several factors such as the size of the 
disseminated data can have a major impact on the policies efficiency 
and must be studied. It is also important to provide strategies that strive 
to limit the energy consumption of small-scale deployments. This could 
translate into bigger energy saving on denser networks. The remain-
ing of this work evaluates the impact of the disseminated data size and 
strategies that could help in this direction.

6. Scalability: data size

The scalability results for the four data dissemination policies intro-
duced in [1] are presented on Fig. 6. These results show the impact on 
the energy consumption and the delivery success of the sender and re-
ceivers while varying the size of the data disseminated by the sender. 
The colored backgrounds show the standard deviation over 200 runs 
for a given data size. For clarity, each policy gets a different line shape 
format to highlight overlaps between results.

6.1. Scenario using 60 s uptime

The results for 60𝑠 uptime are presented on Figs. 6(a) 6(b) and 6(c). 
It shows a negative relationship between the energy consumption of the 
nodes and the delivery success. As the data size increases, communica-
tions duration gets longer, leading to fewer amount of communications 
per day. Data gets disseminated to fewer receivers.

The energy consumed with the Extended and Hints and Extended poli-
cies gets higher for larger data size. In these cases, sender and receivers 
communicate for a longer duration due to their extended uptime dura-
8

tion. It increases significantly the energy consumption of the nodes. This 
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increase is particularly important on the sender node since it is involved 
in most communications. Consequently, for large data size, it is critical 
to ensure that the nodes energy budget is met when allowing nodes to 
extend their uptime duration.

The energy consumed with the Baseline and Hints policies increases as 
data size increases. It is not visible due to the difference in scale between 
policies results. With these two policies, communications duration is 
bounded by the uptime duration combined to the limited bandwidth. For 
these reasons and for larger data sizes, the energy consumption does not 
increase further compared to scenarios with extended uptime duration 
(Extended and Hints and Extended) and similar bandwidth.

On the wireless technologies perspective, LoRa has less bandwidth 
compared to Nb-IoT. A bottleneck is reached around 500 KB where the 
bandwidth of LoRa becomes a limitation. Under 60𝑠 uptime, the data 
cannot reach the receivers. This similar bottleneck is introduced in Sec-
tion 5.1. Nb-IoT offers more bandwidth which shifts this bottleneck to 
2 MB (Fig. 6(c)). The Nb-IoT bandwidth reduces the communications 
duration and provides higher delivery success. For the energy consump-
tion, LoRa and Nb-IoT consume roughly the same for large data size 
using the Extended and Hints and Extended policies. However, this is 
not the case for the Baseline and Hints. Even though it is not visible 
on Figs. 6(a) and 6(b), Nb-IoT consumes approximately 30% more en-
ergy with these policies with large data size. For a fine grain exploration 
of the data, the entire data set and the analysis scripts are available on-
line [27].

6.2. Scenario using 180 s uptime

Results for 180𝑠 uptime are presented on Figs. 6(d) 6(e) and 6(f).
Overall, the energy consumed by the nodes increases with 180𝑠 up-

time and for both, LoRa and Nb-IoT. Compared to the 60𝑠 case, the en-
ergy consumption trends are similar and a negative relationship with the 
delivery success is visible. Both wireless technology consume roughly 
the same for the Extended and Hints and Extended policies. However, for 
the Baseline and Hints, Nb-IoT consumes approximately 75% more en-
ergy with large data size (not visible on Figs. 6(d) and 6(e) but can be 
explored online [27]).

A 180𝑠 uptime duration allows to achieve longer communications 
with the Baseline and Hints policies. For LoRa the delivery success bot-
tleneck for the Baseline and Hints policies shown on Fig. 6(f) shifted 
from 500 KB to 2 MB. For Nb-IoT, this bottleneck arises at 10 MB. Up-
time duration is thus an important leverage to consider in this context 
to increase the delivery success with large data sizes.

Finally, larger uptime duration provides a delivery success that is 
more deterministic. Overall, the standard deviation is reduced with 180𝑠
uptime duration compared to 60𝑠.

6.3. Summary

These scalability results illustrate important leverages to consider 
when disseminating large data size in context like the DAO. First, the 
performance of wireless technology in terms of bandwidth and energy 
consumption has a major impact on the delivery success of the poli-
cies and the energy consumption of the nodes. In these cases, trading 
energy consumption for higher bandwidth can be a good solution to in-
crease the delivery success. Second, the uptime duration is a leverage 
that can improve significantly the delivery success of certain policies 
such as Baseline and Hints. Overall, having longer uptime duration pro-
vides higher delivery success. Third, using the correct policy can also 
be a crucial leverage to meet an energy budget and a delivery success 
target. Works as [30] provide early results on predicting which policy 
must be used in this use-case.

Overall, the scalability experiments show an energy consumed by 
nodes that can be drastically increased, on large-scale CPS and for large 

disseminated data size. Thus, providing energy saving strategies is a crit-
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Fig. 6. Scalability results obtained by varying the data size disseminated by the sender from 1 KB to 1 GB. Each run comprises 13 nodes, 1 sender and 12 receivers. 
9

Standard deviation of each curve over 200 runs is represented with their respective background color.
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Table 2

Energy consumption standard deviations (Std).

Strategy Table Min Std Max Std Median Std

Shutdown on receive 3 6𝐽 203𝐽 41𝐽
Unschedule on receive 4 6𝐽 231𝐽 39𝐽
Far Hint 5 6𝐽 301𝐽 46𝐽
Combined 6 6𝐽 223𝐽 43𝐽

ical need. The following section evaluates the energy saving strategies 
proposed in this work.

7. Strategies evaluation

This section analyzes the strategies presented in Section 4. Results 
for each metric are presented into tables, and correspond to an average 
over 200 runs conducted with different node schedule. Both wireless 
technologies and uptime duration are covered. The tables provide com-
parison between our previous results presented in [1] using color signed 
numbers. Green indicates positives impacts and red negatives impacts. 
To highlight the stability of the energy consumption results, a summary 
about the energy consumption standard deviations for all results is re-
ported on Table 2. Note that the median standard deviations are all low 
compared to the actual energy values presented in the tables. Thus, the 
standard deviation for each individual energy consumption results in Ta-
bles 3, 4, 5, 6 is omitted for clarity and readability. To further explore 
these standard deviations, the datasets are available online [27].

7.1. Strategy 1: shutdown on receive

The Table 3 shows the results for the Shutdown on receive strategy for 
both 60𝑠 and 180𝑠 uptime duration and using LoRa and Nb-IoT.

Using Shutdown on receive with LoRa and an uptime of 60𝑠 has no 
impact compared to our previous results. This policy does not introduce 
any change on the energy consumption, the delivery success nor the ac-
cumulated uptime. With an uptime of 60𝑠 the performance for LoRa does 
not allow to transmit 1 MB of data. In this scenario, nodes essentially 
rely on the extended policy to allows for data transmission. Although 
the Shutdown on receive shutdown the receiver when the data are re-
ceived, since nodes never receive the data, this strategy has no impact 
on the simulation outcomes.

Overall, the results using Nb-IoT and 60𝑠 show a small improvement 
on the energy consumption of the receivers with up to 7.21 J saved on 
the receive side for the Hints and Extended policy. This energy saving 
means that Nb-IoT provides faster data transmission that leads to early 
shutdown of the receivers. Despite the energy saved, this scenario pro-
vides less energy efficiency overall. The average delivery success of each 
policy is reduced at worst by 0.26 which is too high to benefit from the 
energy saved.

For 180𝑠 uptime using LoRa, results show improvement of the re-
ceivers energy consumption with up to 45.18 J saved with the Shutdown 
on receive strategy and the Hints policy. However, compare to our pre-
vious results, the Hints policy gives worse energy efficiency (+2.35J/S) 
with a significant drop in the data delivery success (−0.38). It shows 
that the Hints policy is very sensitive to the Shutdown on receive strat-
egy has the hint forwarding mechanism is impacted. The sender is also 
affected (+6.84J/S in energy efficiency for the Hints policy) since more 
hints are sent. Still, the Hints and Extended policy is less sensible to this 
strategy and has a slightly better energy efficiency (−1.14J/S).

Results for the 180𝑠 uptime and Nb-IoT show a clear improvement 
of the receiver energy consumption. Up to 130.97 J is saved with the 
Hints policy. Despite a minor reduction of the delivery success (−0.06) 
for the Hints and Extended policy, the energy efficiency has improved 
up to −10.29J/S for the receivers with a small increase on the energy 
efficiency on the sender side (up to +0.83J/S).

Results demonstrate that the Shutdown on receive strategy is not en-
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ergy efficient on low uptime scenarios. In such scenarios, the energy 
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saved by shutting down the nodes is so small, that a slightly lower data 
delivery success reduces the energy efficiency of the system. On long 
uptime scenarios, the energy efficiency is improved in most cases. The 
duration of the data transmission should also be taken into account. If 
this duration exceeds the uptime duration (scenarios with the extended 
policy), no energy can be saved with this strategy. The time left between 
the reception of the data and the end of the uptime should be considered 
to ensure a good energy efficiency.

The Shutdown on receive strategy has a side effect. The sender en-
ergy efficiency is equal or worst (up to +6.84𝐽∕𝑆) in all studied cases. 
Nodes that previously rely on receivers to get hints are now more likely 
to communicate directly with the sender, leading to a higher energy 
consumption for the sender. But, in most cases, the energy efficiency 
improvement on the receiver side is much higher and balances this
drawback.

7.2. Strategy 2: unschedule on receive

Table 4 shows the results for the Unschedule on receive strategy. The 
results for this strategy show that only on the Hints and Hints and Ex-

tended policies get impacted. Since the unscheduled uptimes are solely 
used by the hint forwarding mechanism, only the policies that uses hints 
are impacted.

With LoRa and 60𝑠 uptime, the Hints policy is not impacted. No data 
are delivered thus no unscheduled uptimes. Results for Hints and Ex-

tended show that not enough energy is saved by senders and receivers 
to achieve better energy efficiency.

Results for Nb-IoT with 60𝑠 uptime show an improvement on the 
nodes energy consumption with up to −5.01 J saved on the Hints and 
Extended policy. The energy improvement is also visible on the sender 
side since less hints are forwarded to the receivers due to fewer amount 
of uptime (unscheduled). The energy overhead is also lower with up to 
−0.84 on the Hints and Extended policy compared the previous results. 
However, these improvements are not sufficient to be energy efficient. 
This is due to the lower data delivery success that range between −0.14
and −0.15 for both Hints and Hints and Extended policies.

With LoRa and 180𝑠 uptime a greater energy is saved. This is par-
ticularly visible on the Hints and Extended policy that saves in average 
28.34 J on the receivers and 6.92 J on the senders. The delivery success 
is slightly higher with the Hints policy. This is caused by the receivers 
unscheduled time slots that allow the sender to reach other potential 
receivers and deliver either hints or data, leading to a higher delivery 
success. Even if this increase is very small on the Hints policy (+0.01) 
and the sender is consuming more energy (+1.69 J), this allows better 
energy efficiency on both sender and receiver.

Results for Nb-IoT and 180𝑠 uptime show improvements in the en-
ergy consumption, the energy overhead and the energy efficiency. Both 
impacted policies have a lower delivery success (at least −0.04) leading 
to worse sender energy efficiency. But, the energy saved on the receiver 
nodes allows for a more energy efficient CPS. For example, the Hints 
and Extended policy has a worse sender energy efficiency (+0.92J/S) 
still, the receiver energy efficiency has improved with −5.22J/S.

To summarize, the Unschedule on receive strategy impacts the policies 
that use extra uptimes to propagate hints namely the Hints and Hints and 
Extended policies. In theory, these extra uptimes can drastically increase 
the energy consumption of receiver nodes. However, the Unschedule on 
receive strategy shows a limited impact on the results compare to Shut-

down on receive. This means that, scenarios with extra uptimes are rare 
in that case. Overall, this strategy has a positive impact on the energy 
consumption of the senders and the receivers. But, on low uptime sce-
narios (60𝑠), this impact is not sufficient to compensate a lower delivery 

success.
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Table 3

Simulation results using the Shutdown on receive strategy. Comparison between our previous results [1] is in color. Green indicates improvements, 
red shows regressions and blue indicates no change.

Uptime Scenario #𝑆𝑢𝑐𝑐𝑝
Energy Consumption (J) 𝑒𝑂𝑣ℎ𝑑(𝑝) (%) 𝑒𝑓𝑓 (𝑝) (J/S)

Sender Receiver Sender Receiver Sender Receiver

LoRa

60

baseline 0 = 617.37 = 581.14 = 0 = 0 =

extended 6.02 = 1004.36 = 612.06 = +62.68 = +5.32 = 166.84 = 101.67 =

hint 0 = 628.74 = 586.07 = +1.84 = +0.85 =

hintandextended 6.54 = 1035.76 = 619.62 = +67.77 = +6.62 = 158.25 = 94.67 =

180

baseline 2.18 = 2032.69 = 1763.96 -1.05 0 = 0 = 932.43 = 809.16 -0.48

extended 10.86= 2201.59 = 1764.07 -2.93 +8.31 = +0.01 -0.11 202.82 = 162.51 -0.27

hint 10.8 -0.38 2133.02+1.35 2028.98 -45.18 +4.94 +0.07 +15.02 -2.49 197.59+6.84 187.96+2.35

hintandextended 11.85 -0.04 2251.64 -7.45 1879.74 -19.96 +10.77 -0.37 +6.56 -1.07 190.01+0.01 158.63 -1.14

Nb-IoT

60

baseline 2.44 = 714.79 = 592.29 -1.22 0 = 0 = 292.35 = 242.25 -0.5

extended 6.38 = 760.83 = 588.96 -2.32 +6.44 = -0.56 -0.19 119.25 = 92.31 -0.36

hint 4.69 -0.11 777.89 +6.03 608.42 -6.39 +8.83 +0.84 +2.72 -0.86 165.86+5.23 129.73+1.77

hintandextended 7.32 -0.26 785.91 -4.95 602.98 -7.21 +9.95 -0.69 +1.8 -1.01 107.29+3.09 82.32 +1.92

180

baseline 10.37= 2034.67 = 1729.62 -35.49 0 = 0 = 196.3 = 166.87 -3.42

extended 11.12= 2026.21 = 1717.55 -35.28 -0.42 = -0.7 = 182.3 = 154.53 -3.17

hint 11.79 -0.06 2054.06+0.27 1937.27 -130.97 +0.95 +0.01 +12.01 -5.17 174.22+0.83 164.31 -10.29

hintandextended 11.85 -0.06 2041.5 -1.05 1916.28 -123.44 +0.34 -0.05 +10.79 -4.77 172.35+0.78 161.78 -9.55

Table 4

Simulation results using the Unschedule on receive strategy. Comparison between our previous results [1] is in color. Green indicates improvements, 
red shows regressions and blue indicates no change.

Uptime Scenario #𝑆𝑢𝑐𝑐𝑝
Energy Consumption (J) 𝑒𝑂𝑣ℎ𝑑(𝑝) (%) 𝑒𝑓𝑓 (𝑝) (J/S)

Sender Receiver Sender Receiver Sender Receiver

LoRa

60

baseline 0 = 617.37 = 581.14 = 0 = 0 =

extended 6.02 = 1004.36 = 612.06 = +62.68 = +5.32 = 166.84 = 101.67 =

hint 0 = 628.74 = 586.07 = +1.84 = +0.85 =

hintandextended 6.46 -0.08 1031.35 -4.41 617.27 -2.34 +67.05 -0.71 +6.22 -0.4 159.53+1.28 95.48 +0.81

180

baseline 2.18 = 2032.69 = 1765.01 = 0 = 0 = 932.43 = 809.64 =

extended 10.86= 2201.59 = 1767 = +8.31 = +0.11 = 202.82 = 162.78 =

hint 11.19+0.01 2133.37+1.69 2073.37 -0.79 +4.95 +0.08 +17.47 -0.04 190.73 -0.02 185.37 -0.24

hintandextended 11.85 -0.04 2252.17 -6.92 1871.36 -28.34 +10.8 -0.34 +6.03 -1.61 190.14+0.14 157.99 -1.79

Nb-IoT

60

baseline 2.44 = 714.79 = 593.52 = 0 = 0 = 292.35 = 242.75 =

extended 6.38 = 760.83 = 591.28 = +6.44 = -0.38 = 119.25 = 92.68 =

hint 4.66 -0.14 768.19 -3.67 612.71 -2.1 +7.47 -0.51 +3.23 -0.35 164.67+4.03 131.34+3.39

hintandextended 7.44 -0.15 786.55 -4.31 605.19 -5.01 +10.04 -0.6 +1.97 -0.84 105.72+1.52 81.34 +0.95

180

baseline 10.37= 2034.67 = 1765.11 = 0 = 0 = 196.3 = 170.3 =

extended 11.12= 2026.21 = 1752.83 = -0.42 = -0.7 = 182.3 = 157.7 =

hint 11.8 -0.04 2053.65 -0.13 1994.3 -73.95 +0.93 -0.01 +12.98 -4.19 174.04+0.65 169.01 -5.6

hintandextended 11.84 -0.07 2041.39 -1.16 1965.96 -73.76 +0.33 -0.06 +11.38 -4.18 172.49+0.92 166.11 -5.22
7.3. Strategy 3: Far Hint

The results for the Far Hint strategy are presented in the Table 5. As 
this strategy impacts policies that use hints, only the Hints and Hints and 
Extended policies will be covered.

The results for the LoRa wireless technology and 60𝑠 uptime show 
an impact only on the Hints and Extended policy. Since data cannot be 
sent successfully in this scenario with the Hints policy, the simulation 
is most likely to be the same and only hint can be exchange among 
the nodes. The Hints and Extended policy shows great improvements in 
terms of energy efficiency. Even if the energy consumption and the en-
ergy overhead compare to the Baseline is worse (+97.74 J on the energy 
consumption of the receivers and +15.83 on the energy overhead of the 
senders), the number of delivery success has increase significantly with 
+1.56. Therefore, this strategy is a good approach to improve data dis-
semination on low delivery success scenarios.

Similarly, the results for the Nb-IoT wireless technology using 60𝑠
uptimes show a significant improvement in the delivery success with 
11

up to +2.92 of increase. Both impacted policies suffer from an increase 
in the energy consumption of the sender (up to +84.31 J for the Hints

policy) and the receiver (up to +51.62 J for the Hints and Extended pol-
icy) leading to worse energy overhead. It is the consequence of three 
factors. First, hint is located further away in the future, thus hints are 
propagated for a longer time (more communications), which increases 
the energy consumption. Second, since the delivery success increases, 
there is more data transmission, leading to more energy consumed. Fi-
nally, since hints are further away in the future, the Shutdown on receive

strategy tends to delay the moment were all receivers receive the data 
(#𝑆𝑢𝑐𝑐𝑝 = 12). Consequently, senders and receivers take more time to 
reach 12 successful deliveries and thus consume more energy. Nonethe-
less, the energy efficiency of the system is greatly improved. Taking into 
account all the scenarios, the average energy efficiency has improved 
with −49.73J/S and −41.8J/S for the sender and the receiver respec-
tively.

The results for the LoRa wireless technology and 180𝑠 uptime are 
balanced. The delivery success of the Hints and the Hints and Extended

policies are already good. Thus, it is more difficult to perform better in 

terms of energy efficiency with this strategy. As explain before, the Far 
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Table 5

Simulation results using the Far Hint strategy. Comparison between our previous results [1] is in color. Green indicates improvements, red shows regres-
sions and blue indicates no change.

Uptime Scenario #𝑆𝑢𝑐𝑐𝑝
Energy Consumption (J) 𝑒𝑂𝑣ℎ𝑑(𝑝) (%) 𝑒𝑓𝑓 (𝑝) (J/S)

Sender Receiver Sender Receiver Sender Receiver

LoRa

60

baseline 0 = 617.37 = 581.14 = 0 = 0 =

extended 6.02 = 1004.36 = 612.06 = +62.68 = +5.32 = 166.84 = 101.67 =

hint 0 = 628.74 = 586.07 = +1.84 = +0.85 =

hintandextended 8.11 +1.56 1133.5 +97.74 642.2 +22.58 +83.6 +15.83 +10.51 +3.89 139.85 -18.4 79.24 -15.44

180

baseline 2.18 = 2032.69 = 1765.01 = 0 = 0 = 932.43 = 809.64 =

extended 10.86= 2201.59 = 1767 = +8.31 = +0.11 = 202.82 = 162.78 =

hint 11.68+0.5 2137.52+5.85 2140.98+66.82 +5.16 +0.29 +21.3 +3.79 183.01 -7.75 183.3 -2.3

hintandextended 11.99+0.1 2254.61 -4.48 1985.64+85.94 +10.92 -0.22 +12.5 +4.87 187.96 -2.04 165.54+5.77

Nb-IoT

60

baseline 2.44 = 714.79 = 593.52 = 0 = 0 = 292.35 = 242.75 =

extended 6.38 = 760.83 = 591.28 = +6.44 = -0.38 = 119.25 = 92.68 =

hint 7.72 +2.92 856.17 +84.31 665.08 +50.27 +19.78 +11.8 +12.06 +8.47 110.9 -49.73 86.15 -41.8

hintandextended 10.22+2.63 864.57 +73.72 661.81 +51.62 +20.96 +10.31 +11.51 +8.7 84.55 -19.64 64.72 -15.67

180

baseline 10.37= 2034.67 = 1765.11 = 0 = 0 = 196.3 = 170.3 =

extended 11.12= 2026.21 = 1752.83 = -0.42 = -0.7 = 182.3 = 157.7 =

hint 11.98+0.14 2057.18+3.39 2259.92+191.67 +1.11 +0.17 +28.03 +10.86 171.65 -1.74 188.56+13.95

hintandextended 11.99+0.09 2044.79+2.24 2237.9 +198.18 +0.5 +0.11 +26.79 +11.23 170.54 -1.03 186.65+15.31
Hint strategy adds delay in scenario that reach 12 successful deliveries.
The slight +0.5 delivery success improvement for the Hints policy makes 
it more energy efficient on the sender and the receiver.

Using Nb-IoT with an uptime of 180𝑠 leads to worse energy effi-
ciency. Without any strategy enabled, these policies perform well in 
these scenarios with more than 10 delivery success. The Far Hint strat-
egy is an overhead in such case and has a negative impact on the energy 
consumption. This strategy adds around 200 J to the receiver energy 
consumption corresponding to more than two complete idle time slots 
leading to a worse receiver energy efficiency.

The key feature of the Far Hint strategy is its ability to improve the 
delivery success of all policies. The additional time used to propagate the 
hint allows to reach more receivers, leading to a better data deliveries. 
The main down side of this strategy is its impact on the node energy 
consumption that can increase significantly. Since hints timestamps are 
further away in the future, the Far Hint strategy is delaying the data 
delivery that impact the scenario with high delivery success. Hence, this 
strategy performs better in terms of energy efficiency on scenario with 
low delivery success.

7.4. Strategy 4: Combined

Results for the Combined strategy are presented in Table 6. Using 
the LoRa wireless technology and 60𝑠 uptime, the results show an im-
provement for the Hints and Extended policy on the delivery success 
with +1.51, the energy efficiency of the sender (−17.88J/S) and receiver 
(−15.27J/S). As expected, Hints and Extended are the only impacted pol-
icy. The Shutdown on receive and Far Hint strategies are the only ones to 
affect this scenario (negatively and positively). Since, Combined com-
bines the effects of both, it performs slightly worse compared to Far 
Hint alone. Still, the energy performance has improved.

The results for the Nb-IoT wireless technology and the 60𝑠 uptime 
show an increase of the delivery success. Using Shutdown on receive al-
lows to save energy on the Baseline and Extended policies by reducing 
the energy consumption of the receivers. Then, the Combined strategy in-
creases the delivery success of the Hints and Hints and Extended policies 
up to +2.23 and improves their energy efficiency. Still, the Combined

strategy offers less improvement on these policies compare to the Far 
Hint strategy. For example, the energy efficiency for the Combined strat-
egy improves by −26.21J/S for the Hints policy where the Far Hint policy 
provides an improvement of −49.73J/S (cf. Table 5).

The results for the LoRa wireless technology and the 180𝑠 uptime 
12

show better energy efficiency for most cases except for the Hints and Ex-
tended policy. Even if a small increase of +0.08 in the delivery success is 
noticeable, it is not enough to compensate for the expense of the sender 
(+21.51 J) and the receiver (+26.79 J). Since the strategies are com-
bined, it mitigates the negative effects that the Far Hint strategy has on 
the Hints and Extended policy.

Finally, the results for the Nb-IoT wireless technology and the 180𝑠
uptime show an improvement with all policies. Despite a high deliv-
ery success for each policy, the energy consumption of the receiver for 
the Baseline and Extended policies has decrease up to 3.9 J. Combining 
strategies allow to benefit from their individual effects.

To summarize, combining strategies allows to merge the effects of 
each individual strategy. It allows to leverage more scenarios. In this 
case, most of the scenarios improved in terms of delivery success and 
energy efficiency. In some scenarios such as the Nb-IoT/Hints/60𝑠, in-
dividual policy may perform better in terms of delivery success, energy 
overhead and energy efficiency. Combining strategies is a promising 
idea to maximize the performance of the system. Carefully selecting the 
strategies to combine is important, as it can strongly impact the perfor-
mance outcomes

8. Discussion

This section discusses the conclusions and future directions of the 
work. A summary of the results, including the ones from previous 
work [1] is given. Table 7 summarizes the results of policies and strate-
gies studies and, Table 8 the ones of the scalability studies.

8.1. Impact of the number of nodes

In the DAO context (i.e., having small cliques of nodes isolated from 
each other usually of size 10-15 [1]), 100 reachable nodes is large scale. 
The scalability evaluation for the number of nodes shows that it is chal-
lenging to achieve similar performance in small and large networks. 
Despite an increase of the uptime overlap likelihood with the number 
of node, reaching all the receivers is still challenging. The more receivers 
there is, the longer it takes to disseminate data to all of them, the more 
energy is consumed by the CPS. If delivering data to the same propor-
tion of nodes on small and large networks is critical, policies such as 
Hints and Hints and Extended must be used as they provide additional 
uptimes to disseminate the data.

The results also show that policies relying on hints lead to an increase 
of the receiver energy consumption. This phenomenon is even more sig-

nificant on dense networks. Hence, for large-scale CPS deployments, the 
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Table 6

Simulation results using the Combined strategy. Comparison between our previous results [1] is in color. Green indicates improvements, red shows 
regressions and blue indicates no change.

Uptime Scenario #𝑆𝑢𝑐𝑐𝑝
Energy Consumption (J) 𝑒𝑂𝑣ℎ𝑑(𝑝) (%) 𝑒𝑓𝑓 (𝑝) (J/S)

Sender Receiver Sender Receiver Sender Receiver

LoRa

60

baseline 0 = 617.37 = 581.14 = 0 = 0 =

extended 6.02 = 1004.36 = 612.06 = +62.68 = +5.32 = 166.84 = 101.67 =

hint 0 = 628.74 = 586.07 = +1.84 = +0.85 =

hintandextended 8.05 +1.51 1130.67+94.91 639.55 +19.93 +83.14 +15.37 +10.05 +3.43 140.37 -17.88 79.4 -15.27

180

baseline 2.18 = 2032.69 = 1764.97 -0.04 0 = 0 = 932.43 = 809.62 -0.02

extended 10.86= 2201.59 = 1766.76 -0.24 +8.31 = +0.1 -0.01 202.82 = 162.76 -0.02

hint 11.57+0.39 2136.67+5 2096.91+22.75 +5.12 +0.25 +18.81 +1.29 184.67 -6.08 181.24 -4.37

hintandextended 11.97+0.08 2280.6 +21.51 1926.49+26.79 +12.2 +1.06 +9.15 +1.52 190.53+0.53 160.94+1.17

Nb-IoT

60

baseline 2.44 = 714.79 = 593.47 -0.05 0 = 0 = 292.35 = 242.73 -0.02

extended 6.38 = 760.83 = 591.14 -0.14 +6.44 = -0.39 -0.02 119.25 = 92.65 -0.02

hint 6.11 +1.31 821.32 +49.46 627.96 +13.15 +14.9 +6.92 +5.81 +2.22 134.42 -26.21 102.78 -25.18

hintandextended 9.82 +2.23 858.74 +67.89 635.36 +25.17 +20.14 +9.5 +7.06 +4.25 87.45 -16.75 64.7 -15.69

180

baseline 10.37= 2034.67 = 1761.97 -3.14 0 = 0 = 196.3 = 169.99 -0.3

extended 11.12= 2026.21 = 1748.93 -3.9 -0.42 = -0.74 -0.04 182.3 = 157.35 -0.35

hint 11.96+0.12 2055.21+1.43 2028.09 -40.16 +1.01 +0.07 +15.1 -2.07 171.84 -1.55 169.57 -5.04

hintandextended 11.97+0.07 2044.19+1.64 2019.51 -20.2 +0.47 +0.08 +14.62 -0.94 170.71 -0.87 168.64 -2.69

Table 7

Summary of result’s trends for policies, strategies and wireless technologies.

Energy

Sender Receiver #𝑆𝑢𝑐𝑐

Policies

Baseline = = =

Extended -- = ++
Hints - - ++
Hints and Extended --- - +++

Strategies

Shutdown on receive - ++ -

Unschedule on receive + + -

Far Hint -- -- +
Combined --- = +

Wireless
LoRa = = =

NbIoT ++ = +++

+ good, ++ very good, +++ excellent, = fair, - bad, --

very bad, --- worst Policies comparisons use Baseline as reference. Wireless tech-

nologies comparisons use LoRa as reference.Strategies comparisons depict overall re-
sults trends.

Table 8

Summary of scalability result’s trends for policies and wireless technologies.

Many nodes Large data sizes

Energy Energy

Sender Receiver #𝑆𝑢𝑐𝑐 Sender Receiver #𝑆𝑢𝑐𝑐

Policies

Baseline = = = = = =

Extended -- = ++ --- --- ++
Hints - --- + - - +
Hints and Extended --- -- +++ --- --- +++

Wireless
LoRa = = = = = =

NbIoT = -- +++ - - ++

+ good, ++ very good, +++ excellent, = fair, - bad, -- very bad, --- worst Policies comparisons use 
13

Baseline as reference. Wireless technologies comparisons use LoRa as reference.Strategies comparisons depict overall results trends.



Journal of Parallel and Distributed Computing 197 (2025) 105013L. Guégan, I. Raïs and O. Anshus

Fig. 7. Comparison between the average sender node’s energy consumption and the average delivery success for each policy and strategies, using Nb-IoT with 60 s 
uptime. Pareto-front is highlighted, by a dashed line.
Extended policy is the best compromise between data dissemination and 
energy consumption.

Multiple solutions can be used to mitigate the impact of the poli-
cies on the receivers energy consumption. First, using a technology 
such as LoRa to disseminate hints and Nb-IoT to transfer the data. Fur-
ther studies must be conducted on this regard. Second, our evaluation 
does not investigate scenarios where part of the nodes uses different
policies. This approach of using heterogeneous policies may reduce sig-
nificantly the energy consumed by the receivers while maintaining good 
dissemination performance. Performing such extended studied, with an 
increased number of scenarios to investigate, is a future work. A model 
that chooses the correct policy to use on the fly can also be contributed 
as a future work.

The strong correlation between the delivery success and the sender 
energy consumption reveals that, allowing a subset of receivers to for-
ward the data (such as most data dissemination solutions) may help to 
avoid draining the sender’s node battery. This approach could help to 
reduce the amount of data transmitted on the sender side. Experimen-
tation is required to test these hypotheses on loosely coupled CPS.

8.2. Impact of the data size

The data size scalability experiments demonstrate that the wireless 
technology, uptime duration and policies play a major role for having 
high delivery success and energy efficient nodes. More studies are re-
quired to provide trade-offs between these different parameters for a 
given data size.

Depending on the use case, the size of the disseminated data can vary 
significantly for a given system. In that case, dynamically changing the 
policies, uptime duration and wireless technology of the nodes accord-
ing to the size of the disseminated data could ensure higher delivery 
success and lower energy consumption of the nodes. Further experi-
ments are required on this regard.

This work shows the importance of reducing and compressing data 
in constraints environment contexts like the DAO. Works such as [11]
14

provide valuable results on this leverage.
8.3. Energy consumption and delivery success trade-off

The strategies evaluation results show that, improvements in the 
delivery success often lead to higher energy consumption. A trade-off 
between both metrics must be found. Fig. 7(a) and Fig. 7(b), detail 
these existing trade-offs obtained section 7 using Nb-IoT and 60 s up-
time. The figures show a parallel between the average energy consumed 
by the sender and the delivery success, achieved by each data dissem-
ination policy and strategy. All configurations on the Pareto-front are 
highlighted and linked together with a dashed line. Among these con-
figurations, 18 are from Far Hint, 15 from Shutdown on receive, 18 from 
Unschedule on receive, 13 from Combined and 17 when no strategy is used. 
Concerning the policies, 5 are from Baseline, 5 from Hints, 55 Extended

and 16 from Hints and Extended.
As expected, the Extended policy offers a good trade-off between the 

energy consumption and the delivery success. However, choosing one 
of the strategies to balance the energy consumption and delivery suc-
cess depends on the objective trade-off. In addition, different wireless 
technology and uptime duration, lead to different configurations on the 
pareto-front. These results also demonstrate that, better dissemination 
is often associated with a higher energy consumption.

8.4. Predicting the impact of a strategy

The analysis of the results reveal that, predicting the impact of a 
strategy on the simulation outcomes is difficult. A strategy that appear to 
save energy can leads to lower delivery success and in turn, leverage the 
energy efficiency. Other factors such as the wireless technology and the 
uptime duration have a non-negligible impact on the simulation results. 
Performing simulations and real deployments is important to have a full 
understanding of an energy saving strategy. Having a strategy that saves 
energy is not sufficient to conclude that it is more energy efficient.

8.5. Choosing the correct strategy combination

In this work, we choose to combine all the strategies to study collec-
tive impact. Although, carefully choosing the strategies to combine is a 
better approach. Results show that, among the strategies, Unschedule on 

receive strategy is the one that provides least significant improvements. 
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Removing this strategy from the Combined one could lead to better over-
all improvements. But, this work aims to be as general as possible and 
provides new research insights and directions.

8.6. Strategies adaptability

Another concern that needs to be addressed is the adaptability of 
the proposed strategies to various changes in network conditions and 
node behavior over time. After deployment, nodes reachability and net-
work performance can vary. Clock drifts, energy shortage and node 
failures are phenomenons that affect nodes behavior during their op-
eration. These uncertainties can affect the performance of the strategies 
in terms of energy consumption and delivery success. This work inves-
tigates the best that can be leveraged from these strategies in a stable 
network scenario, but with nodes being autonomously turned On (for 
a short amount of time) and Off. To further evaluate the strategies un-
der more variable conditions, additional simulations must be performed 
along with the deployment of prototypes.

8.7. Far hint timestamp

Choosing the correct duration to use with the Far Hint strategy is 
not trivial. Far hint uses a hint duration of three hours. Receivers are 
informed of the next sender uptime, located three hours away from the 
current one. But, using different hint duration may produce different 
results. A too short hint duration may result in small to no improvements 
in terms of delivery success and energy consumption. The results show 
that, having larger hint duration induces more communications (due 
to the hint forwarding mechanism) causing higher energy consumption 
for both senders and receivers. But, long hint duration can significantly 
increase the delivery success, since hints have more time to propagate. 
Meanwhile, on scenarios that converge quickly toward a complete data 
dissemination (12 successful data deliveries), a long hint duration just 
results in higher energy consumption. The take-away message is that, 
choosing the correct hint duration depends on the use case, and whether 
trading energy consumption for delivery success can be afforded.

In real scenario, the density of the network should be taken into 
account. In this work, we use classical flooding to forward timestamps. 
In very dense networks such as dense Wireless Sensors Network, this 
could lead to broadcast storm effects [26]. Our case assumes that we are 
using less dense networks with sporadic data transmissions. The fact that 
hints forwarding stops as soon as the duration expires, allows to limit 
those effects and mitigate re-transmissions.

9. Conclusion

The Arctic tundra is a very hostile environment. Deploying nodes 
and ensuring proper power supply can be difficult, specially on hard 
weather conditions. It is important to provide energy efficient solutions 
to disseminate data to neighboring nodes and remotely located servers. 
In this work, we investigate such dissemination policies on small and 
large-scale networks. We quantify the impact of the size of the dissem-
inated data. In addition, we propose several strategies to optimize data 
dissemination and energy saving. This study is conducted using flow-
level network simulations.

The scalability study for the number of nodes reveals that the Ex-

tended policy is able to handle large-scale networks and consume a 
reasonable amount of energy. Other polices such as the Hints and Ex-

tended have a significant impact on the receiver energy consumption 
but are more efficient at data dissemination. The scalability study for 
the size of the disseminated data highlights the importance of the wire-
less technology and the uptime duration. Policies that extend the nodes 
uptime duration (e.g.: Extended and Hints and Extended) can drastically 
increase the nodes energy consumption.

This work also evaluates the effects of the proposed strategies with 
15

each data dissemination policies. A direct comparison to the previous 
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results details in [1] is exposed. The results reveal that, predicting the 
effects of a given strategy is very difficult and experimentation must be 
conducted prior to real CPS deployments. Strategies such as Shutdown on 
receive and Unschedule on receive appear to save energy. However, they 
impact the data delivery performance which may lead to lower energy 
efficiency. Similarly, the Far Hint strategy has counter intuitive effects 
since it increases nodes energy consumption but on the overall improves 
the energy efficiency. Finally, the Combined strategy shows that combin-
ing strategies have hardly predictable effects. Consequently, providing 
simulation tools to study such trade-offs is important and enable the 
development of more efficient Cyber-Physical Systems.

As a future work, experiments on dense networks with heteroge-
neous policies should be done to reduce the energy consumption of 
receiver nodes. Regarding the use of multiple strategies, the effects of 
different strategies combinations must be studied. The goal would be to 
optimize the energy and the dissemination performance of the system. 
Measuring the impact of energy saving strategies on the scalability study 
is envisioned. Investigating the effects of other parameters could help in 
the comprehension of such data dissemination approach. For example, 
the impact of environmental variables such as weather conditions (e.g.: 
temperatures, rain, snow) must be modeled and integrated to the simu-
lations. This will provide results that account for deployment challenges 
such as node failures. Finally, test-bed experiments are planned [31] for 
a having a transition from simulation to prototyping and a real-world 
deployment.
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