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Classifying breast cancer molecular subtypes is crucial for tailoring treatment strategies. While immunohistochemistry 
(IHC) and gene expression profiling are standard methods for molecular subtyping, IHC can be subjective, and gene 
profiling is costly and not widely accessible in many regions. Previous approaches have highlighted the potential ap-
plication of deep learning models on hematoxylin and eosin (H&E)-stained whole-slide images (WSIs) for molecular 
subtyping, but these efforts vary in their methods, datasets, and reported performance. In this work, we investigated 
whether H&E-stained WSIs could be solely leveraged to predict breast cancer molecular subtypes (luminal A, B, 
HER2-enriched, and Basal). We used 1433 WSIs of breast cancer in a two-step pipeline: first, classifying tumor and 
non-tumor tiles to use only the tumor regions for molecular subtyping; and second, employing a One-vs-Rest (OvR) 
strategy to train four binary OvR classifiers and aggregating their results using an eXtreme Gradient Boosting 
model. The pipeline was tested on 221 hold-out WSIs, achieving an F1 score of 0.95 for tumor vs non-tumor classifi-
cation and a macro F1 score of 0.73 for molecular subtyping. Our findings suggest that, with further validation, super-
vised deep learning models could serve as supportive tools for molecular subtyping in breast cancer. Our codes are 
made available to facilitate ongoing research and development. 
Introduction 

Breast cancer accounts for 12.5% of all diagnosed cancer types globally, 
with around 2.3 million new cases and 685,000 fatalities annually, and is 
expected to grow to 3 million newly diagnosed cases and 1 million deaths 
by 2040.1 Breast cancer is a heterogeneous disease, and its outcome de-
pends on patients' demographic factors and tumor characteristics, including 
the crucial distinction among molecular subtypes, which play a significant 
role in determining treatment strategies. Broadly, breast cancer has four 
molecular subtypes: luminal A (LumA), luminal B (LumB), HER2-enriched 
(HER2), and basal-like (BL). Normally, BL tumors exhibit higher rates of re-
currence during the initial 5 years following detection and treatment, but 
they show higher response to chemotherapy. On the other hand, luminal 
cancers, accounting for 60%–70% of all breast cancers,2 respond poorly 
to chemotherapy, and LumA tumors have lower early recurrence compared 
to other breast cancer molecular subtypes.3,4 Therefore, identifying the mo-
lecular subtypes of breast cancer is crucial for treatment decisions. 
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Currently, gene expression profiling serves as a new technology for 
breast cancer molecular subtyping, which is substantially more expensive 
and not available in all healthcare systems.5 As a result, immunohistochem-
istry (IHC) staining is still widely used to classify the subtypes in clinical 
practice. IHC staining involves using specific antibodies to detect and visu-
alize specific proteins' presence, localization, and abundance within breast 
cancer tissue samples. The IHC staining is typically performed for four key 
biomarkers: estrogen receptor (ER), progesterone receptor (PR), human 
epidermal growth factor receptor 2 (HER2), and antigen Ki-67. Based on 
the results of these four stainings, breast cancer can be classified into four 
main molecular subtypes: LumA, LumB, HER2, and BL.6 

In recent years, deep learning has emerged as a transformative technol-
ogy in many fields, notably in medical image analysis.7,8 As a branch of ma-
chine learning, deep learning uses neural networks with multiple layers to 
identify complex patterns in raw data without manual feature extraction, a 
major improvement over traditional methods. This capability is especially 
valuable in medical imaging, where it processes large volumes of data to
 November 2024 
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Table 1 
Characteristics of breast H&E WSIs used in this study. 

Dataset # 
WSIs 

Source Pixel size 
[μm/pixel] 

Scanner type Image 
format 

Classification of breast tumor and non-tumor image tiles 
TCGA-BRCA 195 USA 0.25, 0.50 Variant svs 
BRACS 129 Italy 0.25, 0.50 Aperio AT2 svs 

Classification of breast cancer molecular subtypes 
TCGA-BRCA 980 USA 0.25, 0.50 Variant svs 
CPTAC-BRCA 382 USA 0.25, 0.50 Variant svs 
HER2-Warwick 71 UK 0.23 NanoZoomer C9600 ndpi 
deliver precise and automated analyses. Deep learning has demonstrated ex-
ceptional performance in histopathology analysis, a critical aspect of cancer 
diagnosis and research. It can accurately identify subtle features in histopa-
thological slides, such as cell morphology, tissue structures, and biomarker 
expressions, with high precision.9–11 Such breakthroughs not only stream-
line the diagnostic process but also hold the potential to improve the accu-
racy and reproducibility of results, ultimately benefiting patient care and 
advancing our understanding of complex diseases like breast cancer. 

Traditional methods for classifying breast cancer molecular subtypes 
rely heavily on histopathological examination, which is often time-
consuming, subjective, and sometimes inconsistent in interpretation.12 

Additionally, new technologies, while promising, are indeed expensive 
and may not be readily available in many countries and healthcare systems. 
In contrast, hematoxylin and eosin (H&E) staining, as the gold-standard in 
histopathology,13 offers a more accessible and cost-effective approach. This 
technique is widely recognized for its reliability in tissue characterization 
and pathology diagnosis. 

In the field of digital pathology, several studies have utilized H&E-
stained histopathological images for classifying breast cancer molecular 
subtypes, each facing certain limitations. Couture et al.14 and Jaber 
et al.15 demonstrated the potential of deep learning for predicting BL and 
non-BL subtypes, highlighting its significant clinical implications, espe-
cially in resource-limited settings. However, their models faced challenges 
such as misclassification risks due to subtype heterogeneity and the pres-
ence of non-cancerous tiles (also known as patches) in cancer-rich clusters. 
In a similar vein, Abbasi et al.16 noted the variability in model performance 
across different scanners, underscoring the necessity for equipment-specific 
model tuning. Liu et al.17 explored the use of weakly supervised learning 
models on a private image dataset to classify breast cancer subtypes, con-
cluding that while AI can aid preliminary screening, it cannot yet fully re-
place traditional human analysis. 

Expanding on these aforementioned studies, we hypothesize that H&E-
stained histopathology images contain sufficient information to classify 
breast cancer molecular subtypes by exhibiting different morphological 
patterns in the breast tissue. To evaluate this hypothesis, we have devel-
oped a multi-stage model that labels H&E whole-slide images (WSIs) after 
performing non-relevant tile exclusion, color normalization, and tile classi-
fication. Additionally, we enriched our analysis with an expanded dataset 
combining slides from publicly available datasets, enhancing the reproduc-
ibility of our results. 

Building on this hypothesis, this study aims to investigate whether 
H&E-stained histopathology images contain sufficient information to clas-
sify molecular subtypes without carrying out additional analyses like IHC 
staining or gene expression profiling. This approach can offer cost and 
time efficiency, simpler diagnostics, wider accessibility, reduced high-
tech reliance, better resource use, and suitability for large-scale research. 

Methods 

The procedure of classification of breast cancer molecular subtypes in 
this article consists of two main parts. In the first part, we trained a deep 
learning model for classifying tumor and non-tumor tiles in a WSI, 
intending to utilize only tumor regions for the classification of molecular 
subtypes. In the second part, we trained separate classifiers for breast can-
cer molecular subtyping. In the following subsections, we delve into de-
scriptions of utilized datasets, preprocessing steps, and training of our 
models. The CNN classifier codes used in this study were adapted from 
the repository by Foersch et al.18 and modified as needed. The codes are 
available at https://github.com/uit-hdl/BC_MolSubtyping. 

Datasets 

Classification of tumor and non-tumor regions 
In this study, we used two publicly available sets of data, one for classi-

fying tumor and non-tumor tiles in H&E-stained WSIs and the other set for 
the classification of breast cancer molecular subtypes (Table 1). To develop 
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and test a binary deep learning model for tumor and non-tumor classifica-
tion of image tiles, we used 195 WSIs of TCGA-BRCA19 and 129 WSIs of 
BRACS20 datasets. The BRACS dataset has annotated regions of interest 
that can be used to extract tumor tiles from WSIs. The TCGA-BRCA dataset 
has no officially published annotations of regions in WSIs. However, there 
are 195 WSIs from TCGA-BRCA in DRYAD21 dataset that have annotated 
tumor regions. Because both images and annotations in the DRYAD dataset 
are downsized to a 1/10 scale, we replicated the annotated regions for the 
full-size WSIs and then extracted image tiles from those areas. 

Classification of breast cancer molecular subtypes 
The selection of datasets for classifying breast cancer molecular sub-

types was based on the availability of pertinent labels for WSIs. According 
to a review article we published earlier on publicly available datasets of 
breast cancer histopathology images,22 there were only two datasets featur-
ing these specific labels: TCGA-BRCA and CPTAC-BRCA.23 From 1139 
available WSIs in the TCGA-BRCA dataset, we acquired 980 WSIs labeled 
with molecular subtypes and excluded 159 WSIs that either lacked labels 
or were categorized as Normal-like tumors. This was the only selection cri-
terion we applied to the datasets used for the classification of breast cancer 
molecular subtypes. In the CPTAC-BRCA dataset, there are 653 WSIs of 
breast tissue. Of these, 382 WSIs are labeled with molecular subtypes, 
and the remaining 271—either unlabeled or labeled as Normal-like—were 
excluded from this study. In both TCGA-BRCA and CPTAC-BRCA datasets, 
the major and minor classes were LumA and HER2, with an overall share 
of 50.1% and 8.6%, respectively, which can cause significant dataset imbal-
ance. To mitigate this imbalanced distribution of classes, we added the 
HER2-Warwick dataset,24 which has 86 H&E-stained WSIs of invasive 
breast carcinomas from 86 patients, 71 of those with positive HER2 expres-
sion scores that were used in our study (Table 1). Detailed distribution of 
breast molecular subtypes in each dataset is presented in Table 2.

Preprocessing 

Classification of tumor and non-tumor regions 
Typically, WSIs are extremely large, containing billions of pixels, and 

cannot be directly fed into any deep learning model. Therefore, regions of 
interest within the WSIs are divided into tiles to be compatible with these 
algorithms. For the classification of tumor and non-tumor tiles, we used 
QuPath25 software to make and extract non-overlapping tiles with size 
512×512 at 0.5 μm/pixel magnification from the annotated tumor regions 
in TCGA-BRCA and BRACS WSIs. This yielded 38,392 tumor tiles from the 
TCGA-BRCA and BRACS datasets, sufficient to serve as the tumor class for 
training a binary classifier. Additionally, we extracted 37,407 tiles from 
the non-tumor areas in the same WSIs to have roughly balanced tumor 
and non-tumor classes. The non-tumor class comprised normal tissues (in-
cluding normal epithelium), folded tissue areas, marker signs, and white 
areas on the slides to prevent extra steps to remove low-quality and white 
tiles for the classification of breast molecular subtypes in the subsequent 
steps (Fig. S1). All 75,799 tiles were then split into 70%, 15%, and 15% 
for training, validation, and testing, respectively, ensuring that tiles from 
each WSI were assigned exclusively to one of these sets. This split also main-
tained the balance of classes in each set. Fig. 1 illustrates the workflow of

https://github.com/uit-hdl/BC_MolSubtyping
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Table 2 
Distribution of WSIs in the four classes used for the classification of breast molecular subtypes. 

Dataset Labels source LumA LumB HER2 BL Excluded 

TCGA-BRCA PAM50 507 219 78 176 122 unlabeled and 37 normal-like WSIs 
CPTAC-BRCA PAM50 176 44 39 123 258 unlabeled and 13 normal-like WSIs 
HER2-Warwick IHC 0 0 71 0 15 WSIs without positive HER2 expression scores 
Total – 683 263 188 299 445
preprocessing steps for classifying breast H&E images into tumor and non-
tumor classes. 

Classification of breast cancer molecular subtypes 
Data preprocessing for the classification of breast cancer molecular sub-

types was more comprehensive. In the first step, we used QuPath to detect 
the tissue areas in 1433 WSIs. Detected areas were then divided into tiles of 
size 512×512 pixels, all extracted at a consistent magnification of 20×, re-
gardless of their highest available magnification level. All extracted tiles 
were stored in TIFF format without data compression. For LumA, LumB, 
and BL classes, we extracted the tiles without overlapping. However, to in-
crease the number of extracted tiles (instances) for the minority class, we 
set vertical and horizontal overlaps of 64 pixels for the HER2 WSIs. We em-
ployed this approach to maximize the amount of training data, as existing 
literature suggests that the performance of deep learning models improves 
with larger datasets.26–28 Another reason for this choice was that WSIs in 
the HER2-Warwick dataset originate from biopsies rather than tissue resec-
tions, resulting in fewer tiles compared to surgical resections (Fig. S2). 

Because normal areas and artifacts in the image do not contribute to our 
classification task, we chose to use only tumor tiles. However, most of the 
WSIs in the TCGA-BRCA dataset and all WSIs of the CPTAC-BRCA and 
HER2-Warwick datasets lacked annotations of tumor areas. Therefore, to 
take only tumor tiles, we fed all 3,571,651 extracted tiles to the earlier 
trained binary tumor/non-tumor classifier to determine the likelihood of 
each tile belonging to the tumor class. Following that, to create a balanced 
dataset with a nearly equal number of tiles in each of four classes of breast 
cancer molecular subtypes, namely LumA, LumB, HER2, and BL, we used 
the minor class (HER2) as the reference class with 278,675 tumor tiles 
and balanced the four breast cancer classes based on that. Because the num-
ber of WSIs in each class was different, we took 441, 1180, and 1410 ran-
dom tumor tiles per WSI from LumA, LumB, and BL classes, respectively, 
to have a roughly equal distribution of tiles among each class (Fig. 2). For 
a detailed illustration of data partitioning, see Fig. S3. It is important to 
note that the actual counts of selected tumor tiles for model development 
differ from the expected values. This discrepancy arose because many 
WSIs contained small tumor regions, resulting in fewer tumor tiles than 
specified for each class.

The selected tumor tiles were then color normalized using the 
Macenko29 method to ensure consistency in color representation across 
all images and minimize potential variations caused by differences in 
image acquisition conditions. To normalize the color of tumor tiles, we gen-
erated a reference image using Python by picking one random tile out of the 
tumor tiles per 256 randomly selected WSIs (Fig. S4). Following that, to 
mitigate the risk of overfitting, the color-normalized tumor tiles were 
Fig. 1. The workflow of training a deep binary cl
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divided into three distinct sets: 70% for training and validation of 
convolutional neural networks (CNNs), 15% for training and validation of 
the eXtreme Gradient Boosting (XGBoost)30 model, and the remaining 
15% for testing the entire pipeline on the classification of BC molecular sub-
types. Each set maintained a stratified split to ensure a proportional repre-
sentation of images per class, and WSIs from each patient were restricted to 
a single set, ensuring that different images from the same patient were not 
included in multiple sets. 

Model training 

Deep convolutional neural networks 

Classification of tumor and non-tumor regions. To train the tumor/non-tumor 
classifier, we used the Inception_V331 architecture with pre-trained 
weights, implemented in PyTorch (version 1.7.1 + cu110). Inception_V3 
is known for its efficiency in capturing complex hierarchical features 
through the use of Inception modules, which perform convolutions of var-
ious sizes (1 × 1, 3 × 3, 5 × 5) within the same layer, allowing the net-
work to capture multi-scale features effectively. The architecture also 
incorporates auxiliary classifiers at intermediate layers to help propagate 
gradients and improve convergence during training. 

Inception_V3's modular approach allows it to capture intricate patterns 
and features within histopathology images,32,33 making it a suitable choice 
for this classification task. The auxiliary classifiers embedded within the 
network also aid in preventing gradient vanishing issues, which can be 
prevalent in deep networks. 

The training was performed using an RTX-3090 GPU with 24 GB of 
VRAM. The hyperparameters were set as follows: a batch size of 64, a learn-
ing rate of 1e-5, and a dropout rate of 0.33 to prevent overfitting. We used 
the ADAM optimizer, known for its robustness to sparse gradients, and the 
cross-entropy loss function, which is suitable for binary classification. 

Classification of breast cancer molecular subtypes. For classifying breast cancer 
molecular subtypes from H&E-stained images, we trained four separate bi-
nary classifiers using the One-vs-Rest (OvR) strategy to simplify a complex 
multi-class classification into binary tasks. For training and validation, 70% 
of the selected tumor tiles were allocated (the gray part of the pie chart in 
Fig. 2), with 80% (56% of the total data in light gray) for training and 
20% (14% of the total data in dark gray) for validation (model fine-
tuning). Each classifier was trained using the ResNet-18 architecture,34 

with pre-trained weights, incorporating all tiles from the target subtype 
and one-third from each of the other three subtypes as the rest class, ensur-
ing balanced binary classes (Fig. 2 and Fig.S3) for training the models.
assifier for tumor and non-tumor breast tiles. 
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Fig. 2. The workflow of classifying breast H&E WSIs into four molecular subtypes, where the results of four binary OvR classifiers were aggregated by an XGBoost model to 
predict the subtype in WSIs.
This architecture was chosen due to its proven effectiveness in various 
image classification tasks, offering a good balance between depth and com-
putational efficiency.35,36 Moreover, ResNet-18's relatively shallow depth 
compared to deeper variants ensures faster training and inference times 
without significant loss in accuracy, which is crucial when training four 
deep classifiers with large-scale datasets. The training was performed 
using the same hardware with the following hyperparameters: a batch 
size of 128, a learning rate of 5e-6, a dropout rate of 0.33, the ADAM opti-
mizer, and the cross-entropy loss function. Additionally, the training data 
underwent shuffling, along with random horizontal and vertical flips and 
rotations as image augmentation techniques, to enhance model training 
and mitigate potential bias arising from overlapping pixels in the extracted 
tiles. 

Thresholding. The output of a binary classifier for the target class is a single 
score between 0 and 1 for each image tile. To aggregate these scores into a 
definitive classification for each WSI, we set a threshold for each classifier, 
which determines the predicted class of each tile. Using a fixed threshold of 
0.5 for assigning classes to images can be sub-optimal.37,38 Therefore, we 
employed precision-recall (PR) analysis to establish the optimum decision 
thresholds for each classifier. PR analysis aids in identifying a threshold 
that balances precision (positive-predictive value) and recall (sensitivity) 
effectively. The PR curve plots precision against recall, enabling the selec-
tion of a threshold that maximizes the classifier's performance. Although 
our classes are balanced, this approach is particularly relevant as we train 
four separate binary OvR classifiers, where the target class in each classifier 
is treated as the positive class. This allows us to fine-tune each OvR classi-
fier for optimal performance in distinguishing the target class from all 
others. We used only the validation set, which constitutes 20% of the clas-
sification data (equivalent to 14% of the total tumor tiles), to adjust the 
threshold of OvR classifiers. The optimum thresholds for LumA, LumB, 
HER2, and BL classifiers were determined to be 0.434, 0.415, 0.481, and 
0.424, respectively. These thresholds were applied in subsequent stages of 
our study. 

XGBoost 
By feeding the tumor tiles into the four binary OvR classifiers, we ob-

tained eight scores for each tile, two from each classifier. Each pair of scores 
4

represents the classifier's confidence in the images belonging to either the 
target class or the rest class. To aggregate the tile-wise predictions of four 
OvR CNNs to classify the molecular subtype of WSIs, we quantified the 
number of tiles within a WSI that had scores exceeding the optimal thresh-
old for each class. This process involved counting the tiles classified as 
LumA, LumA (not-LumA), LumB, LumB, HER2, HER2, BL, and 
BL. Subsequently, these eight values were used as new features to train an 
XGBoost model, which predicts the molecular subtype of the WSIs 
(Fig. 3). XGBoost, an implementation of gradient-boosted decision trees, 
is a highly flexible and versatile machine learning tool, proven effective 
in a wide range of supervised learning tasks, demonstrating its ability to 
learn complex patterns in large volumes of data.30,39

To train and fine-tune the XGBoost model, we allocated 15% of the en-
tire dataset (the yellow part of the pie chart in Fig. 2), which was further di-
vided randomly into 80% for training and 20% for validation. We used the 
thresholds established in the earlier classification step to count the tiles pre-
dicted as either the target class or the rest class for all four breast cancer mo-
lecular subtypes in each WSI. 

Results 

Classification of tumor and non-tumor tiles 

The  model  trained  on  75,799  tiles  labeled  as  ‘tumor’ or ‘non-tumor’ 
from TCGA-BRCA and BRACS datasets was evaluated using the F1 score, 
achieving a value of 0.954. The F1 score provides a balance between preci-
sion and recall (sensitivity), making it a suitable metric for our classification 
task. Such a high F1 score indicates that the model is reliable and performs 
very well in distinguishing between tumor and non-tumor tiles. Table 3 
demonstrates additional performance metrics of our model on the test set. 
In addition, the model's overall accuracy was 0.955, indicating a high 
level of overall correct predictions across both classes (Fig. 4).

Classification of breast cancer molecular subtypes 

We evaluated the entire pipeline on a hold-out test set (15% of the en-
tire data, shown as the red part in the pie chart of Fig. 2) consisting of 
221 H&E WSIs that had not been used in any part of the workflow.
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Fig. 3. Aggregation of four OvR binary classifiers for predicting breast cancer molecular subtypes in a WSI. Randomly selected tumor tiles are independently processed by 
each classifier. The counts of tiles classified into target and non-target classes are used as features in an XGBoost model, which integrates the results from all four 
classifiers to determine the molecular subtype.
Table 4 presents the classification results for breast cancer molecular sub-
types within the test set at the WSI level, obtained using an XGBoost 
model that aggregates predictions from four binary OvR models.

The performance of our model varies significantly across different 
breast cancer subtypes. We present the F1 score as our primary metric, com-
monly used in multi-class classification problems to balance precision and 
sensitivity, thereby providing a more comprehensive view of model perfor-
mance. For the LumA subtype, the model achieved an F1 score of 0.922, in-
dicating strong performance in correctly identifying cases of this subtype. 
Conversely, the HER2 subtype presented more of a challenge, with an F1 
score of 0.545. This lower score suggests that whereas the model is partic-
ularly effective at ruling out false positives (high specificity), it frequently 
misses actual cases of HER2 (low sensitivity). For the LumB and BL sub-
types, the F1 scores were 0.742 and 0.698, respectively, suggesting a mod-
erate capability of the model to differentiate these subtypes. However, 
these scores also highlight potential limitations in distinguishing these sub-
types from others or each other. 

Given the imbalance in class distribution, with LumA comprising a sig-
nificant majority of the WSIs in the test set (46%), to ensure a balanced 
evaluation, we employed a macro-averaging approach to report the accu-
racy. Macro-averaging calculates metrics independently for each class and 
then computes their average, thereby treating all classes with equal impor-
tance, irrespective of their frequency. The individual accuracy rates for 
Table 3 
Classifier's performance metrics on breast histopathology tumor/non-tumor tiles. 

Class F1 score Precision Sensitivity Specificity Accuracy 

Tumor 0.954 0.963 0.945 0.965 0.965

5

LumA, LumB, HER2, and BL were 0.931, 0.837, 0.469, and 0.667, respec-
tively, resulting in a macro-average accuracy of 0.726. 

Fig. 5 shows our classifier's confusion matrix and PR curves. The confu-
sion matrix presents a detailed insight into the model's ability to classify 
breast cancer molecular subtypes at the WSI level. For LumA, the model 
demonstrates a high accuracy, correctly identifying 94 out of 101 instances, 
reflecting a solid capability to distinguish this subtype from others with 
minimal confusion, as indicated by the misclassification of only seven 
LumA cases as LumB (n = 3) and HER2 (n = 4). LumB WSIs were classified 
with lower accuracy; out of 43 samples, 36 were correctly identified. Most 
misclassifications occurred with the BL subtype (n = 5), suggesting possi-
ble similarities in the features recognized by the model between these 
two subtypes. The classification of the HER2 subtype poses significant chal-
lenges, with only 13 correct predictions out of 32 samples, highlighting a 
critical area of weakness in the model's performance. Misclassifications 
are broadly distributed across all other subtypes, implying a fundamental 
difficulty in isolating defining features of HER2 within the model's current 
framework. BL subtype classification shows a better outcome, with 30 out 
of 45 cases correctly identified. However, misclassifications into LumB 
and HER2 suggest overlapping characteristics or insufficient specificity in 
the model's learning parameters.

Due to class imbalance in our dataset, we opted to use PR curves instead 
of receiver operating characteristic (ROC) curves. PR curves are more infor-
mative than ROC curves for imbalanced datasets as they focus on the 
classifier's performance with respect to the minority class, offering a clearer 
picture of the trade-offs between precision and recall. 

The PR curves with 95% confidence intervals for each breast cancer mo-
lecular subtype, presented in Fig. 5, provide additional insights into the 
model's performance variability. The PR curve for the LumA subtype
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Fig. 4. Performance of the classification model in distinguishing between tumor and non-tumor tiles. (A) Original WSI from the TCGA-BRCA dataset. (B) Recreated WSI by 
stitching the tiles with an overlay heatmap to illustrate tumor areas in the WSI. Red and yellow areas in the stitched image show tumor areas with high- and low confidence 
scores, while green areas show non-tumor areas. (C) Confusion matrix showing the actual labels versus the model's predictions. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

Table 4 
WSI level classification metrics of breast cancer molecular subtypes with 95% confidence intervals. 

Class #WSIs F1 score Precision Recall Specificity 

Luminal A 101 0.922 (0.880, 0.956) 0.913 (0.856, 0.963) 0.931 (0.873, 0.973) 0.925 (0.876, 0.969) 
Luminal B 43 0.742 (0.629, 0.833) 0.667 (0.537, 0.788) 0.837 (0.714, 0.941) 0.899 (0.852, 0.941) 
HER2-enriched 32 0.545 (0.364, 0.690) 0.652 (0.435, 0.840) 0.469 (0.286, 0.647) 0.958 (0.927, 0.984) 
Basal-like 45 0.698 (0.571, 0.800) 0.732 (0.587, 0.868) 0.667 (0.532, 0.792) 0.938 (0.895, 0.972) 
Macro-average – 0.727 0.741 0.726 0.930
displayed an exemplary area under the curve (AUPRC) of 0.98, supported 
by a tight confidence interval ranging from 0.96 to 0.99. This result under-
scores the model's consistent and precise capability in identifying the LumA 
subtype. Conversely, the LumB subtype recorded an AUPRC of 0.87 with a 
broader confidence interval between 0.78 and 0.95, reflecting reliable yet 
slightly variable performance, which suggests minor challenges in accurate 
classification. The model exhibited more pronounced difficulties with the 
HER2 subtype, where the AUPRC was significantly lower at 0.64, and the 
confidence interval widened from 0.48 to 0.78, highlighting substantial in-
consistency and overlap with other subtypes in its classification. Lastly, the 
Basal subtype attained an AUPRC of 0.81 and a confidence interval from 
0.71 to 0.89, indicating a moderate level of performance with some degree 
of variability. This thorough analysis of the PR curves and their respective 
confidence intervals builds upon the earlier discussed F1 scores and accu-
racy metrics to provide a detailed assessment of the model's classification 
effectiveness and pinpoint areas needing further improvement. 
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Discussion 

In this study, we developed a supervised deep learning model to inves-
tigate whether H&E-stained histopathological images contain sufficient in-
formation for classifying breast cancer molecular subtypes. 

IHC staining is fundamental for molecular subtyping of breast cancer, 
offering greater precision than H&E staining but at a higher cost and longer 
processing time. However, it is susceptible to inter-observer variability, 
which can lead to diagnostic discrepancies. IHC-based classification may 
not always correspond with gene expression profiles, with discrepancies 
up to 31%.40 Additionally, about one out of five LumB cases are identified 
as HER2 positive through IHC analysis, highlighting the complexity of dif-
ferentiating between these subtypes.6 Therefore, achieving diagnostic in-
formation from H&E WSIs comparable to that obtained through IHC 
would significantly reduce the time and costs associated with the diagnostic 
process, including both laboratory work and pathologists' evaluation.
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Fig. 5. Performance of the XGBoost model in classifying breast cancer molecular subtypes. (A) Confusion matrix of model predictions. (B) PR curves of the subtypes with 95% 
confidence intervals.
To address this, we developed a two-step process. First, we trained a 
tile-wise CNN classifier to use only tumor regions for the classification of 
breast molecular subtypes. Our model achieved an overall F1 score and ac-
curacy of 0.954 and 0.955, respectively, indicating a high effectiveness in 
identifying tumor-containing tiles. This high level of performance is critical 
for ensuring that subsequent analyses for subtype classification are con-
ducted only on relevant tumor tissues. The decision to use Inception_V3 
for this task was based on its robust feature extraction capabilities, which 
are well-suited for a smaller dataset. 

One of the limitations in the classification of tumor and non-tumor tiles 
is the potential presence of both classes within a single tile. This issue is in-
herent in histology images, especially when extracting large tiles from 
WSIs. Therefore, during inference, a given tile may be classified as tumor 
while also containing small non-tumor regions, which can introduce noise 
into the training data for subsequent molecular subtype classification. Addi-
tionally, class imbalance within the non-tumor classes could affect the per-
formance of the classifier. For instance, tiles with folded tissue artifacts or 
those containing normal epithelium were substantially fewer than those 
with normal stroma, which may limit the model's performance on such 
cases (Fig. 6). 

The main part of the workflow focused on classifying breast cancer mo-
lecular subtypes, where we used the OvR strategy to simplify the problem of 
multi-class classification into a series of binary classification tasks, particu-
larly given the complexity and similarity among the histology images of dif-
ferent breast cancer molecular subtypes. In this approach, the goal is to 
distinguish a specific class from all others. One benefit of this method is 
its interpretability; because each class is represented by a single classifier, 
it allows for a better understanding of the target class by analyzing its cor-
responding classifier. Moreover, the aggregation of predictions from four 
CNN binary classifiers with an XGBoost classifier model allowed us to 
Fig. 6. An illustration of two non-tumor tiles containing normal breast epithelium that w
tumor and non-tumor, respectively. (For interpretation of the references to color in this
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leverage the strengths of binary classification while effectively addressing 
the complexities inherent in the classification of breast cancer molecular 
subtypes. The use of ResNet-18 for the CNNs in this part of the workflow 
was driven by its balance between computational efficiency and perfor-
mance. With fewer parameters than deeper models like Inception_V3, 
ResNet-18 was a practical choice for handling the large dataset of 1.1 mil-
lion images of size 512×512 pixels, ensuring reasonable training times 
and memory usage while still providing strong performance. 

Our results revealed that the model performed differently across various 
subtypes with a macro F1 score of 0.72. It exhibited strong discrimination 
for LumA and LumB subtypes, but there were areas for improvement, espe-
cially for the HER2 class. The challenges in achieving high precision and 
sensitivity may be attributed to the underlying complexity of histopatholo-
gical images, the variability in tissue preparation, staining procedures and 
scanners, and the subtle differences that separate the molecular subtypes 
of breast cancer in practice. The impact of factors such as tumor cellularity 
and heterogeneity, as well as variations in tissue preparation and WSI scan-
ners, on model performance, could be an important area for future research, 
depending on the availability of data. 

While a comparison of several similar studies follows, it is important to 
acknowledge that using deep learning models for analyzing histopatholo-
gical WSIs is a relatively young field of research. In addition, the existing 
studies have used different datasets, which limits the direct comparability 
of the findings. Despite this, we present performance metrics from various 
studies below to offer readers a general impression of how our results 
stack up against others in the field. Couture et al.14 trained a VGG-16 binary 
classifier specifically for BL and non-BL tumors, achieving an overall accu-
racy of 0.77, with a sensitivity of 0.78 and specificity of 0.73, using a pri-
vate dataset. In contrast, our model, which is not explicitly trained to 
distinguish between BL and non-BL tumors, can still be evaluated in this
ere classified as tumor. Tiles with red and green overlays indicate classification as 
 figure legend, the reader is referred to the web version of this article.) 
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binary context by grouping LumA, LumB, and HER2 as non-BL. In this ad-
justed setting, our model achieves an overall accuracy of 0.75 for BL and 
non-BL WSIs with a sensitivity of 0.67 and a specificity of 0.94. 

Jaber et al.15 applied a deep learning model to extract features from 
multiscale tiles of WSIs in the TCGA-BRCA dataset. Their approach in-
volved using principal component analysis alongside gene expression data 
to exclude patients with tumors exhibiting heterogeneous subtype charac-
teristics from the training data. Using a multiclass support vector machine 
algorithm, they achieved an accuracy of 0.66 for WSIs in the test set, 
which is lower than the macro-average of our multi-class model (0.73). In 
addition, they trained a binary classifier for BL/non-BL tumors with an 
AUC-ROC of 0.86 and an accuracy of 0.87 for a balanced dataset. Despite 
its advantages, their model still faced challenges, such as the risk of misclas-
sification due to subtype heterogeneity and the non-cancer richness of some 
tiles within cancer-rich clusters. 

Abbasi et al.16 investigated the predictiveness of morphological features 
in H&E-stained tissues for the classification of breast molecular subtypes. 
They leveraged a specialized backbone pre-trained on H&E WSIs in a self-
supervised setting for large unlabeled data. Their network showcased en-
hanced generalizability to unseen data from new scanner types despite 
the dataset's relatively modest size used for backbone pre-training. Their 
model achieved an average AUC-ROC of 0.73. Their results showed the in-
consistent performance of two models with different backbones when 
tested on unseen data from different scanners, which points to the potential 
of model tuning specific  to  the  imaging  sourc  e.

Liu et al.17 proposed a weakly supervised learning model, where they 
used co-teaching to reduce the effect of noise patches and multi-instance 
learning for the classification of WSIs. Their top multi-class classifier demon-
strated  an  accuracy  of  0.58  and  a  macro  F1  score  of  0.65;  however,  aggregat-
ing the results of four binary classifiers andusing the weighted fusionmethod 
improved their classification metrics to an accuracy and F1 of 0.64 and 0.69, 
respectively. They concluded that suchAI models can be used for preliminary 
screening, making molecular subtyping more accessible and cost-effective, 
although it cannot yet replace t raditional pathologist analysis entirely.

The XGBoost model in our study was trained on a dataset with imbal-
anced classes at the WSI level. Training on imbalanced data, however, 
can lead to several issues, particularly affecting the model's performance 
for the less-represented classes. Although we balanced the data at the tile 
level, this approach did not compensate for the imbalances at the WSI 
level, where the XGBoost model was trained. This imbalance was 
reflected in our results, with the model performing best for the major 
class (LumA) and underperforming for the minor class (HER2), which ex-
perienced the most misclassifications. Recognizing these challenges, fu-
ture research could explore the impact of balancing the dataset on 
performance metrics. Specifically, adjusting the training set to better 
represent minority classes like HER2 could potentially improve the 
model's overall accuracy. 

Our evaluation of minimum tumor content for reliable classification 
of breast cancer molecular subtypes  demonstrates  an  overall  positive  
correlation between the number of tumor tiles and model accuracy, as 
shown in Fig. S5. However, determining a cut-off for the minimum num-
ber  of  tumor  tiles  is  complex  due  to  several  factors.  The  number  of
tumor tiles per WSI in each class was adjusted to balance the number 
of images used for training the four binary OvR classifiers. Additionally, 
aggregation of OvR classifiers predictions occurs at the WSI level, where 
data imbalance is significant.  As  a  result,  defining a clear cut-off for 
minimum tumor content at the WSI level remains difficult, as it is influ-
enced by both the tumor content and th e inherent variabilities in the
datasets.

While our model demonstrated potential during internal validation (the 
hold-out test set), external validation is critical to ensure its generalizability 
and robustness across different datasets from diverse institutes and scan-
ners. Our study lacked external test set validation due to the unavailability 
of publicly accessible datasets with the necessary annotations for breast 
cancer molecular subtypes. This limitation reflects a common challenge in 
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this field, where high-quality, annotated data are scarce and often proprie-
tary. External validation ensures that the model is not overfitted and per-
forms reliably in practical applications. It also helps identify potential 
weaknesses when exposed to unseen data, highlighting areas that require 
further refinement. Demonstrating effectiveness across multiple institu-
tions enhances credibility and facilitates broader acceptance within the re-
search community. Additionally, the explainability of AI models remains an 
important consideration, as it provides insights into the decision-making 
process of the models. Although our work did not focus on explainability 
due to moderate model performance, future research should incorporate 
methods to enhance transparency and trust in the model's predictions. 

Conclusion 

Our findings contribute to the evidence that H&E-stained WSIs contain 
pertinent information for classifying breast cancer molecular subtypes. 
Nonetheless, as this research is still emerging, our model, while promising, 
needs further enhancements and validation to ensure its generalisability. 
Future efforts could focus on refining these models to better manage the 
variability in histopathological images and extend their validation through 
external datasets. 

Declaration of competing interest 

All authors declare they have no conflicts of interest. 

Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jpi.2024.100410. 

References 

1. Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: Global 
statistics for 2020 and 2040. The Breast 2022;66:15–23. https://doi.org/ 10.1016/j. 
breast.2022.08.010.ISSN 0960-9776. URL: https://www.sciencedirect.com/science/ 
article/pii/S0960977622001448. 

2. Mir MA, Ud" Din IM. Molecular Subtypes of Breast Cancer and CDk Dysregulation. 
Singapore: Springer Nature Singapore. 2023:133–148. https://doi.org/10.1007/978-
981-19-8911-7_6. ISBN 978-981-19-8911-7". 

3. Sarkar DK, ed. Breast Diseases, Guidelines for Management. CRC Press; 2024. https:// 
doi.org/10.1201/9780367821982. ISBN 9780367421281 (hbk). 

4. Değerli E, Öztaş NŞ, Alkan G, et al. Relationship between pathological response and mo-
lecular subtypes in locally advanced breast cancer patients receiving neoadjuvant chemo-
therapy. J Chemother 2023;35(1):29– 38. https://doi.org/10.1080/1120009X .2022. 
2043514. [PMID: 35220928]. 

5. Nguyen TMT, Le RD, Nguyen CV. Breast cancer molecular subtype and relationship with 
clinicopathological profiles among vietnamese women: a retrospective study. Pathol Res 
Pract 2023;250:154819. https://doi.org/10.1016/j.prp.2023.154819. ISSN 0344-0338. 
URL: https://www.sciencedirect.com/science/article/pii/S0344033823005198. 

6. Johnson KS, Conant EF, Soo MS. Molecular subtypes of breast cancer: a review for breast 
radiologists. J Breast Imaging 12 2020;3(1):12–24. https://doi.org/10.1093/jbi/ 
wbaa110. ISSN 2631-6110. 

7. Suk H-I, Liu M, Cao X, Kim J. Editorial: advances in deep learning methods for medical 
image analysis. Front Radiol 2023;2. https://doi.org/10.3389/fradi.2022.1097533. 
ISSN 2673-8740. 

8. Szilágyi L, Kovács L. Special issue: artificial intelligence technology in medical image 
analysis. Appl Sci 2024;14(5). https://doi.org/10.3390/app14052180.  ISSN  2076-
3417. URL: https://www.mdpi.com/2076-3417/14/5/2180. 

9. Andrew S, Lee H, Tan X, et al. A deep learning model for molecular label transfer that 
enables cancer cell identification from histopathology images. npj Precis Oncol 2022;6 
(1):14. https://doi.org/10.1038/s41698-022-00252-0. ISSN 2397-768X. 

10. Farahani H, Boschman J, Farnell D, et al. Deep learning-based histotype diagnosis of 
ovarian carcinoma whole-slide path ology images. Modern Pathol 2022;35(12):1983– 
1990. https://doi.org/10.1038/s41379-022-01146-z. ISSN 0893-3952. URL: https:// 
www.sciencedirect.com/science/article/pii/S0893395222055107. 

11. Sandarenu P, Millar EKA, Song Y, et al. Survival prediction in triple negative breast can-
cer using multiple instance learning of histopathological images. Sci Rep 2022;12(1): 
14527. https://doi.org/10.1038/s41598-022-18647-1. ISSN 2045-2322. 

12. Rashmi R, Prasad K, Chethana Babu KU. Breast histopathological image analysis using 
image process ing techniques for diagnostic purposes: a methodological review. J Med 
Syst 2021;46(1):7. https://doi.org/10.1007/s10916-021-01786-9. ISSN 1573-689X 
(Electronic), 0148-5598 (Print), 0148-5598 (Linking). URL: https://pubmed.ncbi.nlm. 
nih.gov/34860316/.

https://doi.org/10.1016/j.jpi.2024.100410
https://doi.org/10.1016/j.jpi.2024.100410
https://doi.org/10.1016/j.breast.2022.08.010
https://doi.org/10.1016/j.breast.2022.08.010
https://www.sciencedirect.com/science/article/pii/S0960977622001448
https://www.sciencedirect.com/science/article/pii/S0960977622001448
https://doi.org/10.1007/978-981-19-8911-7_6
https://doi.org/10.1007/978-981-19-8911-7_6
https://doi.org/10.1201/9780367821982
https://doi.org/10.1201/9780367821982
https://doi.org/10.1080/1120009X.2022.2043514
https://doi.org/10.1080/1120009X.2022.2043514
https://doi.org/10.1016/j.prp.2023.154819
https://www.sciencedirect.com/science/article/pii/S0344033823005198
https://doi.org/10.1093/jbi/wbaa110
https://doi.org/10.1093/jbi/wbaa110
https://doi.org/10.3389/fradi.2022.1097533
https://doi.org/10.3390/app14052180
https://www.mdpi.com/2076-3417/14/5/2180
https://doi.org/10.1038/s41698-022-00252-0
https://doi.org/10.1038/s41379-022-01146-z
https://www.sciencedirect.com/science/article/pii/S0893395222055107
https://www.sciencedirect.com/science/article/pii/S0893395222055107
https://doi.org/10.1038/s41598-022-18647-1
https://doi.org/10.1007/s10916-021-01786-9
https://pubmed.ncbi.nlm.nih.gov/34860316/
https://pubmed.ncbi.nlm.nih.gov/34860316/


M. Tafavvoghi et al. Journal of Pathology Informatics 16 (2025) 100410
13. Tehrani KF, Park J, Chaney EJ, Tu H, Boppart SA. Nonlinear imaging histopathology: a 
pipeline to correlate gold-standard hematoxylin and eosin staining with modern nonlin-
ear microscopy. IEEE J Select Top Quant Elect 2023;29(4 Biophotonics):6800608. 
https://doi.org/10.1109/jstqe.2022.3233523. ISSN 1077-260X (Print), 1558-4542 
(Electronic), 1077-260X (Linking). URL: https://pubmed.ncbi.nlm.nih.gov/37193134/. 

14. Couture HD, Williams LA, Geradts J, et al. Image analysis with deep learning to predict 
breast cancer grade, er status, histologic subtype, and intrinsic subtype. NPJ Breast Can-
cer 2018;4:30. https://doi.org/10.1038/s41523-018-0079-1. ISSN 2374-4677. 

15. Jaber MI, Song B, Taylor C, et al. A deep learning image-based intrinsic molecular subty 
pe classifier of breast tumors reveals tumor heterogeneity that may affect survival. Breast 
Cancer Res 2020;22(1):12. https://doi.org/10.1186/s13058-020-1248-3. ISSN 1465-
542X. 

16. Abbasi-Sureshjani S, Yüce A, Schönenberger S, et al. Molecular subtype prediction for 
breast cancer using H&E specialized backbone. MICCAI Workshop on Computational 
Pathology. PMLR; 2021. p. 1–9. 

17. Liu H, Xu W-D, Shang Z-H, et al. Breast cancer molecular subtype prediction on patholog-
ical images with discriminative patch selection and multi-instance learning. Front Oncol 
2022;12, 858453. https://doi.org/10.3389/fonc.2022.858453. 

18. Foersch S, Glasner C, Woerl A-C, et al. Multistain deep learning for prediction of progno-
sis and therapy response in colorectal cancer. Nat Med 2023;29:430–439. https://doi. 
org/10.1038/s41591-022-02134-1. 

19. The Cancer Genome Atlas (TCGA). Genomic Data Commons Data Portal (GDC). https:// 
portal.gdc.cancer.gov/projects/TCGA-BRCA. Accessed 07 Jul. 2023. 

20. BRACS: BReAst Carcinoma Subtyping. Institute of High-Performance Computing and 
Networking. 2020. https://www.bracs.icar.cnr.it/. Accessed 07 Jul. 2023. 

21. Cruz-Roa A, Gilmore H, Basavanhally A, et al. High-throughput adaptive sampling for 
whole-slide histopathology image analysis (hashi) via convolutional neural networks: ap-
plication to invasive breast cancer detection. PLoS One 2018;13(5):e0196828. https:// 
doi.org/10.5061/dryad.1g2nt41. Accessed 07 Jul. 2023 via. 

22. Tafavvoghi M, Bongo LA, Shvetsov N, Busund L-TR, Møllersen K. Publicly available 
datasets of breast histopathology H&E whole-slide images: a scoping review. J Pathol In-
form 2024;15, 100363. https://doi.org/10.1016/j.jpi.2024.100363. 

23. National Cancer Institute Clinical Proteomic Tumor Analysis Consortium. The Clinical 
Proteomic Tumor Analysis Consortium Breast Invasive Carcinoma Collection (CPTAC-
BRCA). The Cancer Imaging Archive. 2020 https://wiki.cancerimagingarchive.net/ 
pages/viewpage.action?pageId=70227748. [Accessed 07 Jul. 2023]. 

24. Her2 Scoring Contest. Tissue Image Analytics (TIA) Centre. 2016. https://warwick.ac. 
uk/fac/cross_fac/tia/data/her2contest/. Accessed 07 Jul. 2023. 

25. Bankhead P, Loughrey MB, Fernández JA, et al. QuPath: Open source software for digital 
pathology image analysis. Sci Rep 2017;7:16878. https://doi.org/10.1038/s41598-017-
17204-5. 

26. Richter ML, Byttner W, Krumnack U, Wiedenroth A, Schallner L, Shenk J. Input size mat-
ters for cnn classifiers. In: Farkaš I, Masulli P, Otte S, Wermter S, eds. Artificial Neural Net-
works and Machine Learning – ICANN 2021. Lecture Notes in Computer ScienceCham: 
Springer; 2021. p. 11–18. https://doi.org/10.1007/978-3-030-86340-1_11. 

27. Luo C, Li X, Wang L, He J, Li D, Zhou J. How does the data set affect cnn-based image 
classification performance?. 2018 5th International Conference on Systems and 
9

Informatics (ICSAI); 2018. p. 361–366.Nanjing, China. https://doi.org/10.1109/ICSAI. 
2018.8599448. 

28. Uchida S, Ide S, Iwana BK, Zhu A. A further step to perfect accuracy by training cnn with 
larger data. 2016 15th International Conference on Frontiers in Handwriting Recognition 
(ICFHR); 2016. p. 405–410.Shenzhen, China. https://doi.org/10.1109/ICFHR.2016. 
0082. 

29. Macenko M, Niethammer M, Marron JS, et al. A method for normalizing histology slides 
for quantitative analysis. 2009 IEEE International Symposium on Biomedical Imaging: 
From Nano to Macro; 2009. p. 1107–1110. https://doi.org/10.1109/ISBI.2009. 
5193250. 

30. Chen T, Guestrin C. Xgboost: a scalable tree boosting system. Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 
2016. URL: https://api.semanticscholar.org/CorpusID:4650265. 

31. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architec-
ture for computer vision. Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition; 2016. p. 2818–2826. 

32. Xie J, Liu R, Luttrell J, Zhang C. Deep learning based analysis of histopathological images 
of breast cancer. Front Genet 2019;10. https://doi.org/10.3389/fge ne.2019.00080. 
ISSN 1664-8021. 

33. Diao S, Luo W, Hou J, et al. Deep multi-magnification similarity learning for histopathol-
ogical image classification. IEEE J Biomed Health Inform 2023;27(3):1535–1545. 
https://doi.org/10.1109/JBHI.2023.3237137. 

34. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016 IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR); 2016. p. 770–778. 
https://doi.org/10.1109/CVPR.2016.90. 

35. Tan Y, Feng Lj, Huang Yh, Xue Jw, Long Ll, Feng Z-B. A comprehensive radiopathological 
nomogram for the prediction of pathological staging in gastric cancer using ct-derived 
and wsi-based features. Translat Oncol 2024;40:101864. https://doi.org/10.1016/j. 
tranon.2023.101864. ISSN 1936-5233. URL: https://www.sciencedirect.com/science/ 
article/pii/S1936523323002504. 

36. Sun Q, Zhong W, Zhou J, Lai C, Teng X, Lai M. Rcdpia: A Renal Carcinoma Digital Pathology 
Image Annotation Dataset Based on Pathologists. 2024. 

37. Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot 
when evaluating binary classifiers on imbalanced datasets. PLoS One 2015;10(3), 
e0118432. https://doi.org/10.1371/journal.pone.0118432. 

38. Brownlee J. ROC Curves and Precision-Recall Curves for Imbalanced Classification. URL: 
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-
imbalanced-classification; 2018. Accessed: 2024-05-16. 

39. Liew XY, Hameed N, Clos J. An investigation of xgboost-based algorithm for breast can-
cer classification. Mach Learn Appl 2021;6:100154. https://doi.org/10.1016/j.mlwa. 
2021.100154. ISSN 2666-8270. URL: https://www.sciencedirect.com/science/article/ 
pii/S2666827021000773. 

40. Prat A, Pineda E, Adamo B, et al. Clinical implications of the intrinsic molecular subtypes 
of breast cancer. The Breast 2015;24:S26–S35. https://doi.org/10.1016/j.breast.2015. 
07.008. ISSN 0960-9776. URL: https://www.sciencedirect.com/science/article/pii/ 
S0960977615001460. 14th St.Gallen International Breast Cancer Conference – Proceed-
ings Book.

https://doi.org/10.1109/jstqe.2022.3233523
https://pubmed.ncbi.nlm.nih.gov/37193134/
https://doi.org/10.1038/s41523-018-0079-1
https://doi.org/10.1186/s13058-020-1248-3
http://refhub.elsevier.com/S2153-3539(24)00049-X/rf0080
http://refhub.elsevier.com/S2153-3539(24)00049-X/rf0080
http://refhub.elsevier.com/S2153-3539(24)00049-X/rf0080
https://doi.org/10.3389/fonc.2022.858453
https://doi.org/10.1038/s41591-022-02134-1
https://doi.org/10.1038/s41591-022-02134-1
https://portal.gdc.cancer.gov/projects/TCGA-BRCA
https://portal.gdc.cancer.gov/projects/TCGA-BRCA
https://www.bracs.icar.cnr.it/
https://doi.org/10.5061/dryad.1g2nt41
https://doi.org/10.5061/dryad.1g2nt41
https://doi.org/10.1016/j.jpi.2024.100363
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70227748
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70227748
https://warwick.ac.uk/fac/cross_fac/tia/data/her2contest/
https://warwick.ac.uk/fac/cross_fac/tia/data/her2contest/
mailto:masoud.tafavvoghi@uit.no
mailto:masoud.tafavvoghi@uit.no
https://doi.org/10.1007/978-3-030-86340-1_11
https://doi.org/10.1109/ICSAI.2018.8599448
https://doi.org/10.1109/ICSAI.2018.8599448
https://doi.org/10.1109/ICFHR.2016.0082
https://doi.org/10.1109/ICFHR.2016.0082
https://doi.org/10.1109/ISBI.2009.5193250
https://doi.org/10.1109/ISBI.2009.5193250
https://api.semanticscholar.org/CorpusID:4650265
http://refhub.elsevier.com/S2153-3539(24)00049-X/rf0150
http://refhub.elsevier.com/S2153-3539(24)00049-X/rf0150
http://refhub.elsevier.com/S2153-3539(24)00049-X/rf0150
https://doi.org/10.3389/fgene.2019.00080
https://doi.org/10.1109/JBHI.2023.3237137
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.tranon.2023.101864
https://doi.org/10.1016/j.tranon.2023.101864
https://www.sciencedirect.com/science/article/pii/S1936523323002504
https://www.sciencedirect.com/science/article/pii/S1936523323002504
http://refhub.elsevier.com/S2153-3539(24)00049-X/rf0175
http://refhub.elsevier.com/S2153-3539(24)00049-X/rf0175
https://doi.org/10.1371/journal.pone.0118432
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification
https://doi.org/10.1016/j.mlwa.2021.100154
https://doi.org/10.1016/j.mlwa.2021.100154
https://www.sciencedirect.com/science/article/pii/S2666827021000773
https://www.sciencedirect.com/science/article/pii/S2666827021000773
https://doi.org/10.1016/j.breast.2015.07.008
https://doi.org/10.1016/j.breast.2015.07.008
https://www.sciencedirect.com/science/article/pii/S0960977615001460
https://www.sciencedirect.com/science/article/pii/S0960977615001460

	Deep learning-�based classification of breast cancer molecular subtypes from H&E whole-�slide images
	Introduction
	Methods
	Datasets
	Classification of tumor and non-tumor regions
	Classification of breast cancer molecular subtypes

	Preprocessing
	Classification of tumor and non-tumor regions
	Classification of breast cancer molecular subtypes

	Model training
	Deep convolutional neural networks
	Classification of tumor and non-tumor regions
	Classification of breast cancer molecular subtypes
	Thresholding

	XGBoost


	Results
	Classification of tumor and non-tumor tiles
	Classification of breast cancer molecular subtypes

	Discussion
	Conclusion
	Declaration of competing interest
	Supplementary data
	References




