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Abstract. Zero-shot learning (ZSL) is a machine learning paradigm
that enables models to recognize and classify data from classes they have
not encountered during training. This approach is particularly advanta-
geous in recognizing activities where labeled data is limited, allowing
models to identify new, unseen activities by leveraging semantic knowl-
edge from seen activities. In this paper, we explore the efficacy of ZSL
for activity recognition using Sentence-BERT (S-BERT) for semantic em-
beddings and Variational Autoencoders (VAE) to bridge the gap between
seen and unseen classes. Our approach leverages wrist-worn inertial sen-
sor events to capture activity data and employs S-BERT to generate se-
mantic embeddings that facilitate the transfer of knowledge between seen
and unseen activities. The evaluation is conducted on datasets contain-
ing three seen and three unseen activity classes with an average duration
of 2 seconds, as well as three seen and three unseen activity classes with
an average duration of 7 seconds. The results demonstrate promising
performance in recognizing unseen activities, with an accuracy of 0.84
for activities with an average duration of 7 seconds and 0.66 for activi-
ties with an average duration of 2 seconds. This highlights the potential
of ZSL for enhancing activity recognition systems which is crucial for
applications in fields such as healthcare, human-computer interaction,
and smart environments, where recognizing a wide range of activities is
essential.

Keywords: Zero-Shot Learning, Human Activity Recognition, Micro activities,
Hand movements

1 Introduction

Zero-shot learning (ZSL) for Human Activity Recognition (HAR) has garnered
significant attention due to its potential to classify activities without prior la-
beled examples [1,32,39,11]. This capability is crucial for applications in health-
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care, assistive technologies, smart environments, and human-computer interac-
tion [15,8]. HAR systems aim to quantify, classify, and interpret human activities
using sensor data from wearable devices, smartphones, or environmental sensors,
employing both classic Machine Learning (ML) and Deep Learning (DL) algo-
rithms [8,5,16].

ZSL is particularly important in smart home environments, where the range
of possible activities is vast and constantly evolving. Traditional HAR systems
focus on broad activities such as walking, sitting, and standing but often over-
look subtle hand-based micro activities that are crucial for understanding daily
routines and independence [15,17]. Micro activities include tasks like brushing
hair, washing hands, and chopping vegetables, which are essential for personal
hygiene, food preparation, and household chores [9,8] as shown in Fig. 1. Rec-
ognizing these activities is vital for assessing individuals’ functional capabilities
and their ability to live independently [22,21,2]. In addition, HAR is applied
in the research field related to healthcare [25,3] and Industry 4.0 regarding the
safety/security of workers and production monitoring [5].

Fig. 1: An example of ZSL-based human micro activity recognition.

The primary challenge with traditional Activities of Daily Living (ADL)
recognition systems is the extensive effort and cost required to collect and an-
notate training data for these micro activities [18]. Given the vast number of
potential activities in a smart home environment, it is impractical to gather
labeled examples for every possible action. These systems typically rely on pre-
defined algorithms tailored to specific activities, which may not generalize well
across different individuals or variations in movement patterns [10]. Addition-
ally, the subjective nature of hand-based micro activities complicates the data
collection and annotation process, making it difficult to develop robust models
that accurately capture the nuances of human behavior.
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Moreover, the varying durations of activities, such as washing hands versus
opening a bottle, add to the complexity of accurate recognition [31,21]. This
diversity in activity durations necessitates the development of sophisticated al-
gorithms capable of handling these variations effectively.

This paper introduces a ZSL approach to recognize six hand-based micro
ADLs. By leveraging semantic information and transfer learning, the proposed
approach can generalize to new, unseen activities without requiring labeled ex-
amples. This approach addresses the limitations of existing HAR systems and
enhances the recognition of micro ADLs in real-world settings. We demonstrate
effective performance on six different classes (three seen and three unseen) for
training and testing, using activity segments of 2 seconds and 7 seconds duration.

Sensor data is first aggregated, reshaped, and differentiated to compute the
derivatives. We then calculate statistical features from the original, and the first
order derivative data, forming an aggregated feature set. In addition, descriptions
of actions are encoded into embeddings using the Sentence-BERT (S-BERT)
model [36]. Our model architecture comprises a Variational Autoencoder (VAE)
[23] that encodes the input features into a latent space and decodes them back
to the original feature space. The latent space is then mapped to the S-BERT
embedding space using a regressor. For zero-shot learning, we use the latent
space of the VAE and the regressor to predict embeddings for unseen activities
and perform nearest neighbor classification to assign action labels based on the
closest S-BERT embeddings.
The main features of the proposed ZSL approach are:

– Incorporation of zero-shot learning to enable recognition of unseen micro
ADLs based on semantic information and transfer learning.

– Demonstration of effective performance on six different classes (three seen
and three unseen) for training and testing, using activity segments of 2 sec-
onds and 7 seconds duration.

The paper is organized as follows: Section 2 provides background information,
Section 3 outlines the HAR pipeline, Section 4 presents experimental findings,
Section 5 analyzes state-of-the-art research, and Section 6 offers concluding re-
marks and outlines future work.

2 Preliminaries

In this section, we outline the data collection methodology used in our study,
detailing the sensors utilized, their placement on the subjects’ bodies, the data
collection protocol, and specifics about the dataset.

Sensors: For data collection, we used an STM Nucleo LR103FB board along
with an STM X-Nucleo-IKS01A3 sensor board, which includes both inertial and
environmental sensors. Figure 2.a shows the STM boards used in our study, and
Figure 2.b illustrates their positioning on the subjects’ wrists. These inertial
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Fig. 2: Data collection device: a) board, b) on body position.

sensors provide a dependable way to capture motion data crucial for recognizing
hand-based micro ADLs.
Cohort of Studied Subjects: Data was gathered from a cohort of 30 subjects,
including 12 females and 18 males. The females had an average age of 24.3 years
(± 4.9), an average height of 167.2 cm (± 7), and an average weight of 61.9 kg
(± 13). The males had an average age of 27.5 years (± 7.2), an average height
of 179.4 cm (± 6.9), and an average weight of 84.4 kg (± 17.3).

Data Collection Process: Subjects were asked to perform 24 different hand-
based micro ADLs, each repeated 3 to 5 times. They conducted the data col-
lection independently in their home environments without external supervision
or training. Subjects were instructed to carry out the specified micro ADLs as
they normally would in their daily routines. Figure 3 offers a detailed overview
of the data collection setup used in our study, which incorporated three different
sensors (accelerometer, gyroscope, and magnetometer) integrated into the STM
X-Nucleo-IKS01A3 sensor board.

The sensor data was perceived at a frequency of 100 Hz, ensuring high tempo-
ral resolution and capturing subtle variations in hand movements during micro
ADL performance. This sampling frequency balances data granularity and com-
putational efficiency, enabling effective analysis of hand motion patterns while
minimizing computational overhead.

Besides the raw sensor data, various derived features were generated to en-
hance the analysis of hand movements. These features included:

– Pitch, Roll, and Yaw: These angles represent the orientation of the sensor
relative to a fixed reference frame and provide insights into the orientation
of the subject’s wrist during micro ADL performance.

– Quaternions (Q1, Q2, Q3, and Q4): Quaternions offer an alternative
representation of orientation, providing a compact and computationally ef-
ficient way to represent rotations in three-dimensional space.

– Linear Acceleration: This acceleration component excludes gravity’s con-
tribution and provides a measure of the subject’s acceleration in the absence
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Fig. 3: Data collection setup.

of gravitational effects, offering insights into the subject’s movement dynam-
ics.

– Gravity Vector: The gravity vector represents the direction and magnitude
of gravitational acceleration acting on the sensor, aiding in estimating the
sensor’s orientation relative to the Earth’s gravity field.

– Heading: Heading refers to the direction in which the sensor points rel-
ative to the magnetic north and provides information about the subject’s
orientation in space.

Overall, the dataset is composed of a total of 24 features/columns, namely
1) timestamp, 2-4) accelerometer_xyz, 5-7) gyroscope_xyz, 8-10) magnetome-
ter_xyz, 11-13) linear_accelerometer_xyz, 14-16) pitch, roll, yaw, 17-20) Q1,
Q2, Q3, Q4, 21-23) gravity_xyz, and 24) heading, for a total of 10.78 hours
(aka., 3882540 samples) collected activity data.

Data Characteristics: Table 1 offers a thorough summary of the micro ADLs,
detailing their descriptions, the number of repetitions requested from each par-
ticipant, and statistics on the duration of each activity in seconds (minimum,
maximum, mean, standard deviation, 25%, 50%, 75% quantiles). It also includes
the total collected data for each activity in terms of 1-second segments. Addi-
tionally, Table 2 illustrates the distribution of each activity in 1-second segments
for each subject. This detailed segmentation facilitates a granular analysis of ac-
tivity patterns and durations among different individuals.

The data in Tables 1 and 2 reveal significant variations between different
activities and subjects, highlighting the challenges in recognizing hand-based
micro ADLs. These variations emphasize the subjective nature of performed mi-
cro ADLs and the complexity involved in capturing and analyzing such data.

Uniqueness of this data: Unlike many existing datasets, such as those in [9]
and [20], our data collection is unsupervised, without video/audio recording,
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Table 2: Summary of ADLs Total Counts and Percentages per Subject
Subject 0000 1125 1279 1313 1324 1358 1390 1396 1405 1435 1453 1505 1570 1697 1735

1 Second
segments (%)

2255
(6%)

1247
(3%)

1013
(3%)

1068
(3%)

1343
(3%)

1069
(3%)

1691
(4%)

649
(2%)

2300
(6%)

1144
(3%)

1017
(3%)

649
(2%)

1418
(4%)

1248
(3%)

918
(2%)

Subject 1751 1777 1803 1825 1975 1978 2045 2056 2097 2115 2116 2136 2155 2159 2160

1 Second
segments (%)

2598
(7%)

1121
(3%)

872(
2%)

1718
(4%)

1126
(3%)

1011
(3%)

784
(2%)

1219
(3%)

1091
(3%)

2220
(6%)

1056
(3%)

1281
(3%)

863
(2%)

1496
(4%)

1325
(3%)

and weakly annotated. This distinctive method ensures our dataset genuinely
reflects everyday reality, capturing all the complexities and subtleties of human
movement. The lack of supervision during data collection allows participants
to interact with their environment and perform activities naturally, free from
external influence or guidance. Consequently, this dataset encompasses human
movements’ authentic variability and complexity in real-life contexts.

Additionally, the weak annotation in our dataset mirrors the inherent subjec-
tivity and ambiguity in human activity labeling. This provides a more realistic
representation of the challenges in activity recognition, such as variations in
movement patterns, participant compliance, and annotation inconsistencies.

3 Methodology

3.1 Problem Definition

ZSL aims to develop a predictive model capable of understanding sensors read-
ings and semantic indicators to classify unseen activities. Generative ZSL be-
comes crucial when there are no labeled examples for all classes (activities) in
question. Consequently, the micro-activity dataset is divided into a training set
with seen classes denoted as Yseen = y1seen, y

2
seen, . . . , y

n
seen and a testing set with

unseen classes represented as Yunseen = y1unseen, y
2
unseen, . . . , y

n
unseen. It is critical

to ensure that Yseen ∩Yunseen = ∅. The challenge lies in constructing a function
Rd → Yunseen, which learns to predict the unseen classes using the training set
and subsequently tests its efficacy on the unseen class data, maintaining the
condition Yseen∩Yunseen = ∅. ZSL aspires to mimic human adaptability to novel
scenarios by leveraging models that can anticipate without prior examples.

3.2 Data Preparation

The principle of data split follows the principle of sharing contextual similari-
ties between seen and unseen activities, enabling the model to leverage learned
features from the seen classes to recognize the unseen ones. Detailed semantic
descriptions are provided in the appendix. The seen classes, which the model was
trained on, include activities such as "Washing hands," "Writing," and "Brush-
ing teeth" for the 7-second duration, and "Open a bottle," "Take off a jacket,"
and "Put on glasses" for the 2-second duration as shown in Table 3. The unseen
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classes, which the model had to generalize to, are "Washing dishes," "Typing on
a keyboard," and "Brushing hair" for the 7-second duration, and "Open a box,"
"Take off a shoe," and "Take off glasses" for the 2-second duration. In addition,
the sensor readings were downsampled from 100 Hz to 50 Hz.

Table 3: Seen and unseen Classes for Different Durations.
Duration Seen Classes Unseen Classes

7 seconds
Washing hands Washing dishes

Writing Typing on a keyboard
Brushing teeth Brushing hair

2 seconds
Open a bottle Open a box

Take off a jacket Take off a shoe
Put on glasses Take off glasses

Semantic Embedding S-BERT, or Sentence-BERT [36], is a modification of
the BERT (Bidirectional Encoder Representations from Transformers) architec-
ture [19] that is designed to generate sentence embeddings. The goal of S-BERT
is to produce meaningful sentence representations that can be compared using
cosine similarity for tasks like semantic textual similarity, clustering, and infor-
mation retrieval. Traditional BERT models are computationally expensive for
pairwise sentence comparisons because they require passing both sentences to-
gether through the model. S-BERT, however, fine-tunes BERT using a siamese
and triplet network structure to derive semantically significant sentence embed-
dings, enabling efficient similarity comparisons.

The key improvements of S-BERT include: (a) By processing sentences in-
dependently through a shared BERT model, it generates fixed-sized sentence
embeddings and (b) Uses supervised data with sentence pairs to fine-tune the
model, optimizing it for tasks requiring semantic similarity. This approach signif-
icantly reduces computation time while maintaining high performance in various
sentence similarity and clustering tasks.

Sensor Data Aggregation In this process, we are dealing with sensor data
represented by X ∈ RN×M , where N denotes the number of samples, and M
indicates the number of sensor readings (measurements) per sample. To capture
the dynamic changes in the sensor data, we calculate the first derivatives along
the measurement axis (i.e., the time axis, assuming measurements are taken
sequentially over time). The first derivative Xdiff1 is computed as:

Xdiff1 =
∂X

∂t
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This derivative provides insight into the rate of change of sensor readings
over time, highlighting trends and variations that may not be evident from the
raw data alone. For both the original sensor data X and the derived data Xdiff1,
a variety of statistical features are extracted. These features are intended to
summarize key characteristics of the data distributions. The statistical features
calculated include the mean (the average value of the data), standard deviation
(a measure of the amount of variation or dispersion in the data), minimum (the
smallest value in the data set), maximum (the largest value in the data set),
median (the middle value when the data is sorted), variance (the expectation of
the squared deviation of the data from its mean), range (the difference between
the maximum and minimum values), interquartile range (the range within which
the central 50% of the data lies, i.e., the difference between the 75th and 25th
percentiles), root mean square (the square root of the mean of the squares of the
data values), signal magnitude area (the sum of the absolute values of the data
divided by the number of samples), and median absolute deviation (the median
of the absolute deviations from the median of the data). These features can be
represented as:

features(X) =



mean(X)
std(X)
min(X)
max(X)

median(X)
var(X)

range(X)
iqr(X)
rms(X)
sma(X)
mad(X)


To form a comprehensive feature set, we aggregate the statistical features

derived from both the original sensor data X and its first derivative Xdiff1. The
aggregated feature matrix Xaggregated is constructed as:

Xaggregated = [features(Xreshaped), features(Xdiff1)]

This combined feature set includes both the original statistical features and
those computed from the first derivatives, providing a rich and informative rep-
resentation of the sensor data. By preparing the data in this manner, we ensure
that the most pertinent characteristics of the sensor readings are captured and
ready for subsequent analysis, such as machine learning or statistical model-
ing. This process enhances the ability to detect patterns, trends, and anomalies
within the sensor data, ultimately leading to more accurate and insightful con-
clusions.
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3.3 Model Architecture

The Variational Autoencoder (VAE) is used as our generative model. It learns to
encode data into a latent space and then decodes it back to the original space.
The architecture consists of an encoder, a latent space representation, and a
decoder [23].

Given the input Xaggregated, the encoder consists of dense layers with ReLU
activation, batch normalization, and dropout to prevent overfitting. Specifically,
the input passes through three dense layers with 512, 256, and 128 units re-
spectively, each followed by batch normalization and dropout (0.1). The encoder
outputs the mean and log variance of the latent space z, each of dimension
latent_dim.

The decoder mirrors the encoder, decoding the latent variable z back to the
input space through three dense layers with 128, 256, and 512 units respectively,
each followed by batch normalization and dropout.

Additionally, the latent space is projected to an embedding dimension:

zprojected = Denseembedding_dim(z).

The total loss for the VAE combines the reconstruction loss and the KL diver-
gence. The reconstruction loss Lrecon measures how well the decoder reconstructs
the input:

Lrecon =
1

N

N∑
i=1

∥xaggregated,i − xrecon,i∥2,

while the KL divergence LKL regularizes the distribution of the latent variables:

LKL =
1

2

n∑
i=1

(
σ2
i + µ2

i − log(σ2
i )− 1

)
,

where µi is the mean of the latent variable zi and σ2
i is the variance of zi.

The total VAE loss is:

LVAE =
1

N

N∑
i=1

(Lrecon + βLKL),

where β is a weighting factor.
After training the VAE, a regression model g is trained which is a neural

network that maps latent representations obtained from the encoder to S-BERT
embeddings. The purpose of this regressor is to translate the latent space rep-
resentations, which capture the underlying structure of the input data, into the
S-BERT embedding space, which is used for zero-shot learning. The regressor is
trained using the Adam optimizer to minimize the mean squared error (MSE)
loss between the predicted embeddings and the true S-BERT embeddings of the
seen classes. Formally, the regressor model is defined as:

ypred = g(z),
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where z is the latent representation from the encoder, and ypred is the predicted
S-BERT embedding.

The regression model designed to map the latent space representations to S-
BERT embeddings consists of a sequential neural network. This regressor begins
with an input layer that matches the dimension of the latent space, followed by
a dense layer with 256 units and ReLU activation to introduce non-linearity. To
mitigate overfitting, a dropout layer with a dropout rate of 0.1 is applied, and
batch normalization is used to stabilize and accelerate training. This structure is
repeated in subsequent layers: a dense layer with 128 units, followed by dropout
and batch normalization, and then a dense layer with 64 units, again followed
by dropout and batch normalization. The final output layer is a dense layer with
a number of units equal to the embedding dimension, using a linear activation
function to produce the final embeddings.

3.4 Zero-Shot Learning

Embedding Prediction Once the regressor is trained, it is used to predict
the S-BERT embeddings for the unseen classes data. The latent representations
zunseen of the unseen classes data are first obtained using the encoder. These
latent representations are then passed through the regressor to generate the
predicted embeddings:

ypred = g(zunseen)

This step translates the latent space of unseen classes data to the S-BERT em-
bedding space, enabling the comparison with the embeddings of unseen classes.

Nearest Neighbor Classification After obtaining the predicted embeddings
ypred for the unseen classes data, the next step is to classify these embeddings.
This is done using a nearest neighbor search in the S-BERT embedding space.
The embeddings of the unseen classes yunseen(k) are precomputed using S-BERT.
For each predicted embedding, the nearest neighbor among the unseen class
embeddings is found by minimizing the Euclidean distance:

ŷ = argmin
k

∥ypred − yunseen(k)∥

where ŷ is the predicted label for the unseen classes data, and k indexes the
unseen class embeddings. The nearest neighbor search effectively assigns the ac-
tivity labels to the test data based on the closest S-BERT embeddings, leveraging
the semantic similarity captured by S-BERT.

4 Results

The performance metrics for the selected activities demonstrate the effectiveness
and limitations of the ZSL approach in recognizing both seen and unseen activ-
ities. Table 4 evaluates activities "washing hands," "typing on a keyboard,"
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and "brushing hair". For "washing hands," the activity shows a precision of
0.72, recall of 0.91, and F1-score of 0.80, indicating high sensitivity but slightly
lower precision. "Typing on a keyboard" exhibits excellent performance with
a precision of 0.94, recall of 0.98, and F1-score of 0.96, showcasing the model’s
accuracy in recognizing this activity. "Brushing hair" demonstrates lower perfor-
mance with a precision of 0.87, recall of 0.57, and F1-score of 0.69, highlighting
the challenges in recognizing this unseen activity. Overall, the model achieves
an accuracy of 0.85, a macro average F1-score of 0.82, and a weighted average
F1-score of 0.84.

Table 4: Performance Metrics for Selected Activities. Seen classes: washing
hands, writing, brushing teeth. Unseen classes: washing dishes, typing on a key-
board, brushing hair (7 seconds).

Activity Precision Recall F1-Score Support

Washing hands 0.72 0.91 0.80 195
Typing on a keyboard 0.94 0.98 0.96 311
Brushing hair 0.87 0.57 0.69 190

Accuracy 0.85
Macro avg 0.84 0.82 0.82 696
Weighted avg 0.86 0.85 0.84 696

Table 5 focuses on the activities "open a box," "take off a shoe," and "take
off glasses". "Open a box" shows moderate performance with a precision of 0.70,
recall of 0.60, and F1-score of 0.64, indicating balanced but not outstanding
recognition capability. "Take off a shoe" achieves a precision of 0.85, recall of
0.48, and F1-score of 0.61, suggesting high precision but lower recall, likely due
to variability in how this activity is performed. "Take off glasses" presents a
precision of 0.58, recall of 0.92, and F1-score of 0.71, revealing high recall but
lower precision. The overall accuracy for this set of activities is 0.66, with a
macro average F1-score of 0.66 and a weighted average F1-score of 0.66. These
results reflect the challenges in recognizing activities with high variability and
those that were unseen during training.

The analysis reveals that the zero-shot learning model demonstrates the abil-
ity to generalize to new, unseen activities, although with varying degrees of suc-
cess.

These results emphasize the importance of continuous improvement in zero-
shot learning techniques to enhance the recognition of diverse and subtle activ-
ities in smart home environments. The current data is limited, focusing on a
small set of activities, and should be extended to include more classes to im-
prove the model’s generalization capabilities. The ability to accurately recognize
a wide range of human activities is crucial for applications in healthcare, assistive
technologies, and beyond, where understanding and adapting to a wide range of
human activities is essential. Expanding the dataset to include more activities
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Table 5: Performance Metrics for Selected Activities. Seen classes: open a bottle,
take off a jacket, put on glasses. Unseen classes: open a box, take off a shoe, take
off glasses (2 seconds).

Activity Precision Recall F1-Score Support

Open a box 0.70 0.60 0.64 324
Take off a shoe 0.85 0.48 0.61 253
Take off glasses 0.58 0.92 0.71 262

Accuracy 0.66
Macro avg 0.71 0.67 0.66 839
Weighted avg 0.71 0.66 0.66 839

with varying contexts and semantics will further enhance the robustness and
applicability of the ZSL approach in real-world settings.

5 Related Work

5.1 Non-ZSL Approaches

In this section, to conduct a thorough review of the literature, we employed a
systematic approach utilizing the research query shown in Table 6 on Scopus.
The query is specifically designed to capture relevant studies that a) focus on
accelerometers, gyroscopes, magnetometers, or inertial measurement unit (IMU)
sensors, b) mounted on the wrist, and c) aim to recognize a set of micro ADLs.

Table 6: Defined Research Query (2015-2024)
Operator Keywords

(accelerometer OR gyroscope OR magnetometer OR IMU)

AND (wrist-mounted OR wrist)

AND (drink water OR eat meal OR open a bottle OR open a box OR brush teeth
OR brush hair OR take off a jacket OR put on a jacket OR put on a shoe
OR take off a shoe OR put on glasses OR take off glasses OR sit down OR
stand up OR writing OR phone call OR type on a keyboard OR salute OR
wave hand OR sneeze cough OR blow nose OR washing hands OR dusting
OR ironing OR washing dishes)

Through this approach, 30 relevant studies were identified discussing the chal-
lenges of recognizing micro ADLs using wearable sensors and proposing potential
solutions. Out of these studies, only 12 delve into the recognition of hand-related
micro-ADLs. In particular, they are linked to the PAAL-ADL (Performance in
an Active and Assisted Living-ADL) dataset [9] and the HTAD (Home-Tasks
Activities Dataset) dataset [20]. The methodologies related to PAAL-ADL, such
as those outlined in [8] and [4], propose HAR methodologies achieving accura-

https://shorturl.at/cesu4
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cies of nearly 86% and 91%, respectively, in recognizing the 24 ADLs4 within
the PAAL-ADL dataset. Both methods employ data filtering, feature extraction
in both time and frequency domains, and the utilization of different algorithms,
precisely the Nondominated Sorting Genetic Algorithm III (NSGA-III) [8] and
Locally Weighted Random Forest (LWRF) [4].

On the other hand, the methodology [20] investigates the recognition of 7
activities (i.e., eating chips, mopping the floor, sweeping, brushing teeth, wash-
ing hands, typing on the keyboard, and watching TV) using data from a wrist
accelerometer and audio stream provided in the HTAD dataset. The methodol-
ogy proposes a Multilayer Perception (MLP) approach that takes as input a set
of 16 statistical features related to acceleration and 36 Mel Frequency Cepstral
Coefficients (MFCCs) related to audio, achieving an F1-Score of 0.91.

However, in [8,4,20], during the training and testing phases, the authors apply
a classic k-fold approach over the dataset. This implies that the proposed method
includes data from the same subject and the same data collection session of that
subject in both the training and testing phases, thereby posing a potential risk of
overfitting to specific individuals and sessions, which may limit the generalization
capability of the model to broader populations or different contexts.

In [12], the authors presented a multi-level segmentation approach for recog-
nizing a set of 24 hand-related micro activities, achieving higher accuracy results
for activities longer than 7 seconds of average duration.

In [37], authors present a transfer learning methodology that recognizes seven
toilet-related activities (i.e., dressing, undressing, brushing teeth, using the toi-
let, washing face, and washing hands), achieving an F1-Score of 0.84. Other
hand-related micro-activities recognition includes digit recognition [24,35], hand-
written signature [34,40], finger movements [6], and hand washing [41] through
wrist movements. Moreover, from the grey literature, various approaches were
proposed during the IEEE COINS 2023 Contest for In Sensor Machine Learn-
ing Computing [33]. However, regardless of the highly accurate results achieved,
the details of the proposed methods are missing.

5.2 ZSL Approaches

Finally, by updating the Scopus research query from Table 6 to include an ele-
ment related to ZSL (see Table 7), it was revealed that no prior work on hand-
related micro ADL has been proposed in the literature. This makes the present
work the first of its kind.

Table 7: Updated Research Query (2015-2024)
Operator Keywords

AND (zsl OR zero shot learning OR zero-shot learning OR zero-shot OR zero shot)

4 The PAAL-ADL and our dataset present the same ADLs.

https://shorturl.at/cesu4
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Based on our analysis, the existing literature mainly concentrates on: a) re-
duced sets of hand-based ADLs presenting similar temporal and functional char-
acteristics, b) data collection performed in a laboratory environment, undergoing
strict constraints, c) testing approaches that are not subject-independent, and
d) to the best of our knowledge, recognizing hand-based micro activities using
wrist-worn inertial sensors with ZSL has not been proposed in the state-of-the-
art.

6 Conclusions

This study focused on recognizing 12 hand-based Activities of Daily Living
(ADLs) using inertial sensor data, introducing a two-level segmentation strategy.

We examined the efficacy of Zero-Shot Learning (ZSL) for activity recogni-
tion, using Sentence-BERT (S-BERT) for semantic embeddings and Variational
Autoencoders (VAE) to link seen and unseen classes. Our approach leveraged
sensor data and S-BERT-generated embeddings to transfer knowledge effectively
between seen and unseen activities. Future work will focus on expanding the
number of recognized activities beyond the current 12, ensuring that seen and
unseen classes share contextual semantic similarities to facilitate a more effective
transfer learning process. We will also explore the use of large language models to
represent the semantic space, potentially enhancing the accuracy and robustness
of the ZSL framework.

7 Celebrating Prof. Tiziana Margaria

Tiziana has been a pivotal figure in my (Florenc Demrozi’s) academic journey,
as well as that of my colleague, Fadi al Machot. Our collaboration spans various
research activities, project involvements, and organizational endeavors, all of
which have been profoundly enriching.

We indirectly met in 2022 when my paper [14] and her paper [7] were the
best paper candidates at the IFIP International Internet of Things Conference.
After that, we meet within the IFIP Working Group 10.5 and the AWS Fellow-
ship context. This collaboration has led to notable contributions in the fields of
Human Activity Recognition (HAR) and educational methodologies in software
engineering, as well as a three-month visiting period at the Immersive Software
Engineering (ISE) program at the University of Limerick. During this visiting
period, we started our collaboration, which led to the first two joint publications.
In our paper Experiences from the First Delivery of a New Immersive Software
Engineering Course: Mathematical Foundations and Data Analytics [13], we ex-
plore the integration of mathematical foundations and data analytics into the
ISE course. This work underscores the transformative potential of innovative
teaching methodologies in software engineering education.

Another notable contribution is our research on CNN-based HAR on Edge
Computing Devices [38]. This study delves into the application of Convolutional
Neural Networks (CNN) for HAR on edge computing devices. It highlights the
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potential of edge computing in enhancing real-time data processing and activ-
ity recognition accuracy, paving the way for more efficient and effective HAR
systems. My collaboration with Tiziana also extends to organizing significant
conferences, such as Very Large Scale Integration - System on Chip (VLSI-SoC
2026), and prolific discussions towards European projects focused on predictive
health technologies dedicated to developing a human digital twin for health sta-
tus prediction and Alzheimer’s disease prevention. These endeavors showcase our
collective commitment to advancing research and development in crucial areas
of technology and health. Looking ahead, we are excited about potential future
collaborations in the context of the Research at Immersive Software Engineering
(R@ISE) project. This initiative, along with similar projects [30], promises to
further our exploration into immersive and practical aspects of software engineer-
ing education. The R@ISE project exemplifies our forward-thinking approach to
integrating immersive technologies into educational frameworks, enhancing the
learning experience, and preparing students for the evolving demands of the soft-
ware engineering industry. Additionally, the philosophy of simplicity [28,29] un-
derpins our methodologies, as articulated in several influential publications. This
philosophy advocates for streamlined, efficient approaches to complex problems,
ensuring that solutions are both effective and accessible. The foundational con-
cepts of Low-Code/No-Code (LCNC) [26] development have been a cornerstone
of our research, fostering innovative approaches to software and HAR model cre-
ation. These concepts promote the use of visual development environments and
pre-built components, enabling faster and more flexible software development
processes [27].

It is essential to highlight the academic journey of Fadi Al Machot, a former
student of Tiziana at Potsdam University. Under her mentorship, Fadi devel-
oped a deep understanding of software engineering and cyber-physical systems.
He created the Machine Learning and Neurocomputing group as an Associate
Professor at the Norwegian University of Life Sciences, where he applies his
expertise to advance the field and mentor the next generation of researchers.
Tiziana’s mentorship has been instrumental in shaping Fadi’s career, and her in-
fluence is evident in the quality and impact of his work. Our collaboration with
Tiziana has shaped our research directions and achievements. Her mentorship
and contributions have left an indelible mark on our professional paths, and we
look forward to continuing this fruitful partnership in future endeavors. Prof.
Margaria’s unwavering commitment to advancing the field of software engineer-
ing, combined with her innovative approach to research and education, makes
her a truly remarkable and inspirational figure in our academic community.

Appendix: Detailed Descriptions (Semantics) of Seen and
Unseen Activities used for ZSL

Seen Classes

1. The person washes their hands with soap and water for hygiene, typically
in a bathroom or kitchen. This involves rubbing their hands together with
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soap under running water, often for at least 20 seconds to ensure cleanliness
and reduce the risk of infection.

2. The person writes notes or a letter using a pen or pencil, typically at a desk
or table. This involves holding the writing instrument and making marks on
paper, often focusing on conveying thoughts clearly and legibly.

3. The person brushes their teeth with a toothbrush and toothpaste, typically
in a bathroom. This involves applying toothpaste to the brush and moving
it back and forth against the teeth, aiming to remove plaque and maintain
oral hygiene, and often results in a fresh minty taste in their mouth.

4. The person opens a plastic bottle by unscrewing the cap, typically to drink
or pour the contents. This involves gripping the bottle with one hand and
twisting the cap with the other, sometimes hearing a popping sound as the
seal breaks.

5. The person removes a jacket they are wearing by pulling it off, usually when
entering a warm indoor space. This involves unzipping or unbuttoning the
jacket and sliding it off their arms, often feeling relief from the heat as they
do so.

6. The person puts on glasses to improve their vision, typically done in a well-
lit area. This involves lifting the glasses and positioning them on their nose
and ears, allowing them to see more clearly and reduce eye strain.

Unseen Classes

1. The person washes dishes in the sink or a dishwasher after a meal, typically
in a kitchen. This involves scrubbing dishes with a sponge or loading them
into a dishwasher, often ensuring that all food residue is removed and the
dishes are clean and ready for future use.

2. The person types on a keyboard of a computer or laptop, typically sitting at
a desk. This involves pressing keys to input text or commands, often focusing
on accuracy and speed to complete a task or communicate online.

3. The person brushes their hair using a hairbrush or a comb, usually in front
of a mirror. This involves running the brush or comb through their hair to
detangle and smooth it, often making their hair look neat and presentable.

4. The person opens a cardboard box to retrieve an item inside, usually by
cutting or tearing the tape. This involves pulling open the flaps and reaching
inside the box, often feeling a sense of anticipation and curiosity about the
contents.

5. The person takes off a shoe they are wearing by pulling it off, often when
returning home. This involves loosening any laces or straps and sliding the
shoe off their foot, often feeling a sense of relief and comfort as their feet are
freed.

6. The person removes glasses they were wearing to see better, usually to clean
them or switch to contact lenses. This involves taking hold of the frames and
lifting them off their face, often feeling a temporary blur in their vision.
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