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ABSTRACT
In this contribution, we document changes in detrital zircon ages in the upper Devonian (Famennian) to lower Carboniferous 
(Mississippian) Billefjorden Group on Bjørnøya, the southernmost island of Svalbard. This alluvial, coal-bearing clastic succession 
is widely distributed across the archipelago and the Barents Shelf. The sediments were deposited in subsidence-induced lowlands 
that formed just after regional post-Caledonian collapse-related extension, which created the classical ‘Old Red Sandstone’ ba-
sins during the Devonian, and prior to localised rift-basin development in the middle Carboniferous (Serpukhovian–Moscovian). 
Moreover, the succession is little affected by Ellesmerian compressional deformation, which occurred in the latest Devonian. 
However, little is known of the provenance and regional sediment routing in this tectonically transitional period between the 
post-Caledonian structuring events in the Devonian and the middle Carboniferous rifting. It has previously been invoked that 
a regional fault running parallel to the western Barents Shelf margin, the West Bjørnøya Fault, controlled sedimentation in 
the area. Here, we combine detrital zircon U–Pb ages and sedimentological data to investigate stratigraphic provenance vari-
ations and test whether tectonics controlled deposition of the Billefjorden Group on Bjørnøya. Sedimentological investigations 
demonstrate changes in fluvial style with intercalations between successions dominated by meandering channel fills and abun-
dant overbank fines to sandstone-dominated sheet-like successions of braided stream origin. Palaeocurrent data show that two 
competing drainage directions accompany the changes in fluvial architecture. Northeasterly transport directions, recorded in 
the braided stream deposits, indicate possible fault-transverse drainage. The detrital zircon content in these deposits indicates 
sourcing from Caledonian terranes in Northeast Greenland. Northwest-oriented transport directions, measured in the meander-
ing channel deposits, are inferred to represent axially positioned drainage systems. These may have been sourced from either 
Northeast Greenland, a more localised source, or Baltica. The latter would require long-distance sourcing, which, given the tec-
tonic setting of the region, seems unlikely. Although our sedimentological observations point to syn-tectonic deposition, this is 
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not clearly captured in the detrital zircon data, suggesting a common source for the Late Devonian–Mississippian fluvial systems 
of Bjørnøya. Thus, combined with previously published provenance data from Svalbard and Greenland, we demonstrate that the 
East Greenland Caledonides formed a long-lived and significant source area which provided sediments to nearby basins from 
the Devonian to the Early Cretaceous.

1   |   Introduction

During the collapse of the Caledonian Orogen and the associ-
ated extensional collapse in the early–middle Devonian, several 
of the present-day Arctic regions were subsequently subject to 
periods of rifting and associated rift basin formation (Henriksen 
et al. 2011; Embry and Beauchamp 2019; Fyhn and Hopper 2021; 
Olaussen et al.  2024). In Svalbard, this culminated in the for-
mation of the Billefjorden Trough in the middle Carboniferous, 
with rift climax in the Bashkirian (Gjelberg and Steel  1981; 
Johannessen and Steel 1992; Smyrak-Sikora et al. 2018). However, 
the Arctic also saw the development of several orogenic belts in 
the late Palaeozoic, such as the Ellesmerian and Uralian oro-
gens (Embry 1988; Puchkov 1997; Piepjohn et al. 2015; Smelror 
and Petrov  2018). Collectively, the various structuring events 
created important local to supra-regional source terrains that, 
to variable degrees, have influenced the infill of all the major 
late Palaeozoic basins of the Arctic. Detrital zircon provenance 
analysis is one way to link sedimentary sinks to potential source 
areas and may thus aid in the reconstruction of sediment fair-
ways, palaeogeography, and tectonic evolution of basins (e.g., 
Fedo, Sircomebe, and Rainbrid 2003; Koshnaw et al. 2019).

Bjørnøya, the southernmost island of the Svalbard Archipelago, 
lies on the central western margin of the Barents Shelf and thus 
holds a key position for investigating post-Caledonian and pre-
Atlantic sediment routing in the region (Figure 1A). Particularly, 
the upper Devonian to lower Carboniferous (Mississippian) 
Billefjorden Group, which is exposed along the northern and 
eastern shores of the island, is interesting. This sedimentary 
succession post-dates both the Devonian ‘Old Red Sandstone’ 
successions on Spitsbergen and northeast Greenland and the 
Ellesmerian compressional tectonics (locally referred to as the 
Svalbardian event) but precedes the localised rift basin develop-
ment across the area in the middle Carboniferous (Gjelberg and 
Steel 1981; Worsley et al. 2001; Henriksen et al. 2011; Smyrak-
Sikora et al. 2018, 2021). As such, the Bjørnøya succession may 
shed light on the transitional period between these two import-
ant regional structuring events. The age of the lower part of the 
Billefjorden Group is well constrained on Bjørnøya by correla-
tion of Late Devonian palynological assemblages from Europe 
and the Arctic (e.g., Lopes et  al.  2021). The stratigraphy and 
depositional systems have been studied over the past century 
and are well established (Figure 1B,C) (Horn and Orvin 1928; 
Worsley and Edwards 1976; Gjelberg 1978, 1981; Dallmann 1999; 
Worsley et  al.  2001; Worsley and Mørk  2008; Mørk, Gjelberg, 
and Worsley  2014; Janocha et  al.  2024). On Bjørnøya, the 
Billefjorden Group comprises latest Devonian (Famennian) and 
early Carboniferous (Mississippian) coal-bearing siliciclastics 
that were deposited in an alluvial setting with low-lying flood-
plains transected by meandering and braided streams under 
humid climatic conditions (Figure 1C) (Horn and Orvin 1928; 
Gjelberg 1978, 1981; Gjelberg and Steel 1981; Worsley et al. 2001; 

Mørk, Gjelberg, and Worsley  2014). For most of the post-
Caledonian succession in Svalbard, including Bjørnøya, prove-
nance changes have been suggested based on sedimentological 
and petrographic observations, thus rarely being substantiated 
by zircon provenance data. As such, detrital zircon studies are 
scarce for much of the stratigraphy on Svalbard, albeit some 
exceptions exist. A limited number of studies deals with the 
detrital zircon age signature of the Devonian strata in north-
ern Spitsbergen (Beranek, Gee, and Fisher  2020; Anfinson 
et  al.  2022). Oordt et  al.  (2020) analysed some Palaeozoic 
strata in the Billefjorden area (central Spitsbergen), and Gasser 
and Andresen  (2013) investigated the Mesoproterozoic to 
Carboniferous detrital zircon evolution in the St. Jonsfjorden 
area (western Spitsbergen), which included one sample from the 
Billefjorden Group. The latter sample yielded an abundance of 
Meso- and Paleoproterozoic zircons pointing to a source from 
northern to north-eastern Greenland. The Mesozoic platform 
(Pózer Bue and Andresen 2013; Gilmullina et al. 2021; Harstad 
et al.  2023) and Paleogene foreland basin strata have received 
far more attention (Elling et  al.  2016; Petersen et  al.  2016; 
Flowerdew et al. 2023). Collectively, these studies demonstrate 
that a wide range of Arctic terranes have variably contributed 
to the development of the sedimentary record in Svalbard, in-
cluding terranes of Caledonian (Ordovician-earliest Devonian), 
Ellesmerian (Devonian) and Uralian (Permian–Triassic) affin-
ities, as well as younger terranes such as the Eurekan fold and 
thrust belt (Paleogene).

Little is known about the source terranes of the Billefjorden 
Group on Bjørnøya or for equivalent upper Palaeozoic strata in 
surrounding basins. Previous studies have inferred a major fault 
west of Bjørnøya during the late Palaeozoic, referred to as the 
West Bjørnøya Fault, or the Palaeo-Hornsund Fault (Gjelberg 
and Steel 1981, 1983), a possible precursor to the supra-regional 
De Geer Zone, which may have originated from a Caledonian 
weakness zone (e.g., Faleide, Vågnes, and Gudlaugsson  1993; 
Doré et  al.  2015). This lineament controlled sediment rout-
ing, accommodation space, and thus depositional style during 
the late Palaeozoic, particularly during the deposition of the 
Billefjorden Group alluvial sediments onwards from the Late 
Devonian (Gjelberg and Steel  1981, 1983). On Bjørnøya, the 
inferred fault-controlled sedimentation is evident in chang-
ing palaeocurrent directions and facies distribution, as well as 
stratigraphic variations in fluvial channel stacking patterns 
(Gjelberg  1981; Worsley and Mørk  2008; Mørk, Gjelberg, and 
Worsley 2014). Theoretically, significant changes in facies dis-
tribution and drainage directions may be accompanied by 
changing source provenance, as demonstrated in sedimentary 
basins elsewhere (Whitchurch et  al.  2011; Foster-Baril and 
Stockli 2023). However, there have been no attempts to quantify 
provenance changes in the Billefjorden Group to demonstrate 
the influence of the fault on sediment routing and changing 
drainage dynamics, neither at local nor regional scale. This leads 
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us to our research questions: What were the source terranes for 
the Billefjorden Group on Bjørnøya? And did fault activity along 
the West Bjørnøya Fault influence the provenance signature of 
this alluvial succession?

In this study, we aim to answer these questions by combining 
conventional sedimentological field observations and detri-
tal zircon provenance data from the upper Devonian–lower 
Carboniferous Billefjorden Group on Bjørnøya. The implication 
of our findings is discussed with respect to the late Palaeozoic 

regional palaeogeography and the tectonic evolution of the 
Arctic in the wake of the Caledonian collapse and prior to the 
Mesozoic to Cenozoic rifting that eventually resulted in the 
opening of the North Atlantic.

2   |   Geologic Setting

2.1   |   Tectonic Evolution

The present-day north-western corner of the Eurasian plate 
has undergone several orogenic and subsequent rifting events 
over its geologic history, which spans a period of more than 
3 billion years, dating back to the Archean (Figure 2, Table 1). 
Some of the most prominent mountain building events in the 
region which pre-date deposition of the Billefjorden Group 
are the: (i) Grenvillian (Mesoproterozoic), (ii) the Timanian 
(Neoproterozoic), (iii) the Caledonian (early Palaeozoic) and (iv) 
the Ellesmerian (late Palaeozoic) orogens (Dallmann 2019).

The Grenvillian Orogeny was caused by continent–continent 
collision between Laurentia and Baltica in the Mesoproterozoic 
around 1300–900 Ma (Bingen et  al.  2005, 2021; Pettersson, 

Summary

•	 Cratonic source.

•	 Fault activity changes fluvial style and drainage direc-
tion but has no influence on source provenance.

•	 Direct correlation of detrital zircons to Northeast 
Greenland eclogite province.

•	 Northeast Grenlandic Caledonides acted as a long-
lived catchment into to the Mesozoic.

FIGURE 1    |    Geographic, palaeogeographic and sedimentological overview of Bjørnøya. (A) Geographic overview of the Arctic with the outline 
of B marked in purple. Map modified from Jakobsson et al. (2012). (B) Geologic map of Bjørnøya with log and sample locations as well as outlines of 
digital outcrop models. Lithologic units in grey are those not studied in this contribution (Map modified after Dallmann and Krasil'Shchikov (1996)). 
(C) Composite stratigraphic log of the Billefjorden Group on Bjørnøya including rose diagrams for palaeocurrent readings for the individual mem-
bers. Sampled intervals marked in red. 1—B21-S30/S33; 2—B21-S4; 3—B21-S3; 4—B22-S05; 5—B21-S6/S7; 6—B21-S26/B22-S93; 7—B21-S23/
B22-S91/92. Stratigraphic log re-drawn after Gjelberg and Steel (1981), rose diagrams of palaeocurrent readings from Gjelberg (1981).
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FIGURE 2    |    Potential detrital zircon spectra for the different source areas. The KDE diagrams are a compilation of the available zircon U/Pb data 
referenced in Table 2. (A) represented zircon ages for the given source areas. Grey boxes symbolise igneous and metamorphic sources black boxes 
resemble detrital zircon sources. (B) KDE plot of all available zircon ages from Svalbard. (C) KDE plot of all available zircon ages from Ellesmere 
Island. (D) KDE plot of all available zircon ages from West Greenland. (E) KDE plot of all available zircon ages from North Greenland. (F) KDE plot 
of all available zircon ages from Northeast Greenland. (G) KDE plot of all available zircon ages from East Greenland. (Figure inspired from: Røhr, 
Andersen, and Dypvik 2008; Chronostratigraphic chart modified from: Cohen et al. 2013; updated).

 13652117, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/bre.70009 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [10/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



5 of 29

Pease, and Frei 2009; Lorenz et al. 2012, 2013; Gee et al. 2015) 
during assembly of the supercontinent Rodinia (Li et al. 2008). 
On the Fennoscandian Shield, the Grenvillian Orogeny is re-
ferred to as the Sveconorwegian Orogeny. While Slagstad 
et al. (2013) propose that the Sveconorwegian Orogeny formed 
as an accretionary orogen, others suggest a continent–continent 
collision similar to the Grenvillian Orogeny (e.g., Möller and 
Andersson 2018; Bingen et al. 2021). Between 610 and 560 Ma, 
the Timanian Orogeny took place along the northeast margin of 
Baltica. Deformation related to this event is readily recognised in 
Arctic Russia and eastern Finnmark in North Norway (Roberts 
and Siedlecka 2002; Gee and Pease 2004). Timanian and post-
Timanian magmatism are recorded in both northern Greenland 
and Arctic Russia (Pease et al. 2016; Rosa et al. 2016).

The Caledonian Orogeny, being one of the most prominent oro-
genic episodes of the entire North Atlantic region, controlled the 
development of the region during most of the Palaeozoic (500–
390 Ma) (e.g., McKerrow, Mac Niocaill, and Dewey 2000; Corfu, 
Gasser, and Chew  2014). During the Caledonian Orogeny, 
Laurentia, Baltica and Avalonia collided because of the clo-
sure of the Iapetus Ocean and Tornquist Sea. The main phases 
of the Caledonian Orogeny occurred through the Silurian 
and Devonian (Trench and Torsvik  1992; Higgins, Soper, and 
Leslie 2000; McKerrow, Mac Niocaill, and Dewey 2000; Gasser 
and Andresen 2013; McClelland et al. 2023). The remnant of the 
Caledonian orogenic belt stretches from modern day northeast 
North America over Scotland and Norway all the way into the 
Arctic with branches in Greenland and Svalbard (McKerrow, 
Mac Niocaill, and Dewey 2000).

The Ellesmerian Orogeny followed slightly after the Caledonian 
Orogeny in the Late Devonian to Carboniferous (Piepjohn 
et al. 2015; McClelland et al. 2023). At its peak, the Ellesmerian 
orogenic belt stretched from northern Canada in the west 
to Svalbard in the east (Embry  1988; Higgins, Soper, and 

Leslie 2000; Piepjohn et al. 2000, 2015; Smelror and Petrov 2018; 
McClelland et al. 2023). In Svalbard, structuring associated with 
the Ellesmerian deformation occurred in the Late Devonian and 
is referred to as the Svalbardian event which has folded parts 
of the Devonian succession on Spitsbergen, particularly in 
proximity to older, long-lived lineaments (Piepjohn et al. 2000; 
Dallmann and Piepjohn 2020, 2024).

At the end of the Caledonian Orogeny, late orogenic collapse-
related extension influenced the region, forming fault-bounded 
basins on the Barents Shelf, Svalbard, East Greenland, as well 
as on the west coast of Norway by backsliding of the Caledonian 
nappe complexes (e.g., Larsen and Bengaard 1991; Gudlaugsson 
et  al.  1998; Osmundsen and Andersen  2001; Larsen, Olsen, 
and Clack  2008; Henriksen et  al.  2011; Gernigon et  al.  2014; 
Worsley 2016; Klitzke et al. 2019).

Regional subsidence and local basin formation recommenced 
during the Late Devonian to Mississippian (Gudlaugsson 
et al. 1998). It has been demonstrated that the position and ori-
entation of these basins on the Barents Shelf is linked to an in-
herited Caledonian or Timanian structural grain, depending on 
their geographic location (e.g., Gudlaugsson et al. 1998; Gernigon 
et al. 2014; Klitzke et al. 2019; Hassaan et al. 2020). In the case 
of Bjørnøya and the Stappen High, a north–south-oriented 
Caledonian structural trend is evident (e.g., Braathen et al. 1999; 
Worsley et  al.  2001). By the latest Devonian, Bjørnøya held an 
equatorial position. Extensive post-Caledonian subsidence-
induced lowlands spanned large parts of the Barents Shelf and 
the Svalbard Platform and were possibly segmented by multi-
ple faults, Figure 3E,F) (Gudlaugsson et al. 1998; Worsley 2016; 
Klitzke et al. 2019; Marshall, Tel'nova, and Berry 2019; Hassaan 
et al. 2020; Blakey 2021; Lopes et al. 2021). Subsidence resulting in 
the development of these lowlands may either have been induced 
by lithospheric stretching during incipient rifting (which peaked 
in the middle Carboniferous), reactivation and backsliding of 

TABLE 1    |    Summary of the most relevant orogenic events recognised in the Arctic.

Age (Ma) Orogen Selected references

2000–1750 Ketilidian Lahtinen, Garde, and Melezhik (2008), 
Henriksen et al. (2009)

2000–1750 Svecofennian Åhäll and Larson (2000), Baltybaev (2013)

1900–1850 Nagssugtoqidian Lahtinen, Garde, and Melezhik (2008), 
Henriksen et al. (2009)

1700–1500 Gothian Åhäll and Gower (1997), Åhäll and 
Larson (2000), Roberts and Slagstad (2015)

1200–900 Grenville/Sveconorwegian e.g., Lorenz et al. (2012), Bingen et al. (2021)

600–570 Timanian Roberts and Siedlecka (2002), 
Kuznetsov et al. (2010)

500–390 Caledonian e.g., McKerrow, Mac Niocaill, and Dewey (2000), 
Corfu, Gasser, and Chew (2014)

500–390 Ellesmerian e.g., Piepjohn et al. (2015), Smelror and 
Petrov (2018), McClelland et al. (2023)

365–250 Uralian e.g., Bea, Fershtater, and 
Montero (2002), Puchkov (2009)
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Caledonian thrusts, or it may record continued subsidence and 
flexuring along Caledonian structures (Gudlaugsson et al. 1998; 
Stemmerik and Worsley  2005; Smelror et  al.  2009; Henriksen 
et  al.  2011). In the Wandel Sea Basin of Northeast Greenland, 
Mississippian (Viséan) basin development and accumulation 
of alluvial sediments, which is age equivalent to the Nordkapp 
Formation, have been attributed to initial rifting in the northern 
North Atlantic region (Dalhoff and Stemmerik 2000).

Following the closure of the Iapetus Ocean and the result-
ing Caledonian Orogeny, Laurentia and Baltica merged to 
form Laurussia, with Svalbard remaining connected to north-
east Greenland and northeast Canada (Ellesmere Island) 
until break-up and opening of the North Atlantic Ocean in 
the Cenozoic (Domeier and Torsvik  2014; Golonka  2020; 
Blakey 2021).

2.2   |   Source Terranes

The palaeogeographical location of terranes are important 
to identify potential source provinces for sedimentary units. 

Many of the Precambrian cratons and orogenic belts sur-
rounding the Barents Shelf may have acted as potential source 
areas for the terrestrial siliciclastics and detrital zircons of the 
Billefjorden Group on Bjørnøya. This includes various terranes 
on the northern margin of Laurentia and the northern margin 
of the East European Craton (i.e., the palaeo-continent Baltica, 
Figure  4) (Gaál and Gorbatschev  1987; Lorenz et  al.  2013; 
Pózer Bue and Andresen  2013). Figures  2 and 4 and Table  2 
summarise source areas for detrital zircons which we assume 
is most relevant for this study, including major orogenic belts 
(Gaál and Gorbatschev 1987; Lorenz et al. 2013; Pózer Bue and 
Andresen 2013). In addition, due to fault-related uplift, exhumed 
basement rocks and recycling of meta-sedimentary strata may 
also be considered as potential local sources.

2.3   |   Sedimentology and Stratigraphy

The age of the Billefjorden Group deposits on Bjørnøya spans 
the Late Devonian (Famennian) to Mississippian (Kaiser 1970; 
Lopes et  al.  2021). The deposits are exclusively terrestrial and 
accumulated in humid wetlands east of the proposed West 

FIGURE 3    |    Palaeogeographic reconstructions of the Billefjorden Group. (A–C) Palaeogeographic reconstructions of the Vesalstranda, Kapp 
Levin and Tunheim Members of the Røedvika Formation on Bjørnøya (modified from: Gjelberg 1981). (D) Palaeogeographic reconstruction of the 
Nordhamna Member (Nordkapp Formation) (modified from: Gjelberg 1981). (E) Regional palaeogeographic reconstruction at approximately 370 Ma 
(modified from: Golonka 2020). (F) Palaeogeographic reconstruction of Svalbard during the Viséan (modified from: Dallmann 2019).
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Bjørnøya Fault (Figure 3) (Horn and Orvin 1928; Gjelberg 1981; 
Gjelberg and Steel  1981; Worsley et  al.  2001; Mørk, Gjelberg, 
and Worsley  2014; Janocha et  al.  2024). The group comprises 
the basal Røedvika Formation and the overlying Nordkapp 
Formation (Gjelberg  1981; Gjelberg and Steel  1981; Worsley 
et al. 2001; Mørk, Gjelberg, and Worsley 2014), and thickens from 
approximately 220 m in the southwest of the island (measured in 
an old coal exploration bore hole west of Ellasjøen) to 590 m in 
outcrops on the east coast (Horn and Orvin 1928; Gjelberg 1981; 
Gjelberg and Steel 1981). The southward thinning of the group 
has been proposed to be an effect of syn-tectonic deposition 
(Gjelberg  1981). The apparent thickness variation may also be 
less pronounced than previously thought, as the bore hole, from 
which the old thickness estimate was derived, was drilled in a 
structurally complex area (see Horn and Orvin  1928). Recent 
observations from the coastal cliff at the very southern tip of 
the island show thick developments of both the Røedvika and 
Nordkapp formations (Grundvåg et al. 2023).

Several exhumed Devonian basins, for which formation is gen-
erally linked to the collapse of the Caledonides, occur across the 
modern-day Arctic, including basins on Svalbard, Greenland, 
Norway, Canada and Alaska. Most of these basins host several 
kilometre thick successions predominantly consisting of allu-
vial sandstones, conglomerates and mudstones assigned to the 
‘Old Red Sandstone’ succession (e.g., Friend and Williams 2000; 
Piepjohn et  al.  2000; Anfinson, Leier, Embry, et  al.  2012; 
Blakey  2021). Devonian-aged coal-bearing terrestrial depos-
its are reported from Canada, North Greenland and Bjørnøya 

(Goodarzi and Goodbody 1990; Janocha et al. 2024), suggesting 
periods of humid climate and the development of vegetated low-
lands across the region despite the dominant arid climate char-
acterising the period.

The Røedvika Formation is of Famennian age (Figure 1C) (Lopes 
et al. 2021) and is divided into three members: the Vesalstranda 
(Figures  1C and 3A), Kapp Levin (Figures  1C and 3B) and 
Tunheim members (Figures 1C and 3C) (Gjelberg 1978, 1981). 
The Røedvika Formation thickens from a minimum of 100 m in 
the southwest at Landnørdingsvika (in an incomplete section) 
to 360 m in the northeast near Tunheim (Horn and Orvin 1928; 
Gjelberg  1981; Worsley et  al.  2001; Mørk, Gjelberg, and 
Worsley 2014). During deposition of the Vesalstranda Member, 
the area was characterised by meandering streams transect-
ing a low-lying, alluvial plain (Figure 1C). Palaeocurrent data 
suggest a northwest directed drainage system (Figures 1C and 
3A) (Gjelberg 1981; Gjelberg and Steel 1981; Worsley et al. 2001; 
Mørk, Gjelberg, and Worsley 2014). The overlying Kapp Levin 
Member records a shift to a braided stream setting with an east 
to dominantly north-easterly drainage (Figures  1C and 3B) 
(Gjelberg  1981; Gjelberg and Steel  1981; Worsley et  al.  2001; 
Mørk, Gjelberg, and Worsley  2014). The base of the Tunheim 
Member is represented by a prominent conglomerate horizon, 
referred to as the Rifleodden Conglomerate. The Tunheim 
Member records a shift back to a northwest-directed drainage 
with large meandering streams running across an alluvial plain 
(Figures  1C and 3C) (Gjelberg  1981; Gjelberg and Steel  1981; 
Worsley et al. 2001; Mørk, Gjelberg, and Worsley 2014).

FIGURE 4    |    Arctic Centred maps showing orogens, basins, and potential zircon source areas. (A) Most relevant orogenic events of northeast 
Laurentia and Baltica and most important place names. (B) Coloured are Devonian and Carboniferous basins. Black circles indicate potential source 
areas. The numbers refer to the potential source areas. For details and references, please see Table 2 and Figure 2.
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The overlying Nordkapp Formation has been assigned a Viséan 
age (Kaiser 1970; Lopes et al. 2021). The thickness of the unit 
ranges from minimum 110 m in the southwest (in the previously 
mentioned bore hole west of Ellasjøen) to 230 m in the north (Horn 
and Orvin 1928), and the unit is divided into the Kapp Harry and 
the Nordhamna Members (Figures 1C and 3D). Both members 
consist of cross-stratified sandstones, occasional mudstones and 
subordinate conglomerates, inferred to represent braided stream 
deposits of an alluvial fan complex that built north-eastwards 
into the basin (Gjelberg 1981; Gjelberg and Steel 1981; Worsley 
et al. 2001; Worsley and Mørk 2008). Large-scale soft-sediment 
deformation structures are evident throughout the succession 
and point to tectonic activity during, or shortly after, deposi-
tion (Worsley and Edwards  1976; Gjelberg  1981; Gjelberg and 
Steel 1981; Worsley et al. 2001; Worsley and Mørk 2008; Mørk, 
Gjelberg, and Worsley 2014). A gradual transgression under arid 
climatic conditions is inferred for the deposits of the Gipsdalen 
Group overlying the Billefjorden Group (Gjelberg 1981; Gjelberg 
and Steel 1981; Worsley et al. 2001).

3   |   Methods and Data Set

The main objectives of our two field campaigns to Bjørnøya 
were to investigate the sedimentology of the Billefjorden 
Group, particularly focusing on previously reported changes in 
depositional styles between its various stratigraphic units, as 
well as collecting samples for detrital zircon geochronology to 
explore potential changes in source terrains and sediment rout-
ing. Thus, to provide a stratigraphic framework for the detrital 
zircon analysis, we logged c. 220 m of strata of the Røedvika 
and Nordkapp Formations wherever accessible along the steep 
and rugged coastal cliffs of Bjørnøya (see Figure 1B for location 
and Figure 5 for a selection of logs). The sedimentary logs were 
measured bed-by-bed at decimetre-scale and include descrip-
tions of lithology, grain size, sorting, sedimentary structures 
and trace fossils (Figure 5). In addition, we collected an exten-
sive data set of photographs to accompany the logged sections 
(see Figures 6 and 7 for representative outcrop photos). A total 
of 12 samples were collected for detrital zircon provenance 
analysis, spanning all the lithostratigraphic subunits of the 
two formations of the Billefjorden Group (see data presented 
in Figure  9 and Table  3, Figure  1 for sampling location and 
Figure 5 for stratigraphic levels). A subset of eight samples was 
used for petrographic thin section analysis (Figure 8, Table 3).

When it comes to detrital zircon provenance, common limita-
tions are sampling bias, zircon recycling, mineral fertility, hy-
draulic fractionation and statistical adequacy (Vermeesch 2004; 
Lawrence et  al.  2011; Malusà et  al.  2013; Malusà, Resentini, 
and Garzanti 2016; Flowerdew et al. 2019; Andersen et al. 2022; 
Lowey 2024).

To perform the detrital zircon provenance analysis, we first car-
ried out conventional heavy-mineral separation on all samples. 
This included: crushing, grinding, water tabling as well as mag-
netic and heavy liquid separation. The actual zircon analyses 
were carried out at the UT Chron Geochronology facilities at the 
University of Texas. To avoid any bias and to capture all major 
age components, we randomly selected 120 grains per sample 
(Vermeesch 2004). The analytical protocol we followed is based #
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on Marsh and Stockli (2015), and Anfinson et al. (2022). To tran-
sition between 206Pb/238U and 207Pb/206Pb ages, we chose 850 Ma 
as this age lies outside any major age mode in our samples. For 
ages younger than 850 Ma, 206Pb/238U ages are reported, while 

for older grains, the 207Pb/206Pb age is reported. Uncertainties 
are given at 2 sigma level. We disregarded grains based on dis-
cordance and error thresholds. The thresholds for younger 
than 850 Ma grains are greater than 10% discordance between 

FIGURE 5    |    Stratigraphic logs of sampling locations of the Røedvika and Nordkapp formations along the north and east coast of Bjørnøya. (A) 
Log A of the Vesalstranda Member logged at Røedvika. (B) Log B is a logged section of the Vesalstranda Member at Røedvika. (C) Log C is a logged 
section of the Kapp Levin Member logged at Rifleodden. (D) Log D is a logged section of the Kapp Levin Member logged at Rifleodden. (E) Log E is 
a logged section of the Nordkapp Formation logged at Nordhamna. (F) Log F is a logged section of the Tunheim Member logged at Jacobsenodden. 
For locations of the stratigraphic logs, refer to Figure 1.
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12 of 29 Basin Research, 2024

206Pb/238U and 207Pb/235U ages or if the 206Pb/238U age error is 
more than 10%. For older grains, the threshold is greater than 
10% discordance between the 206Pb/238U and the 207Pb/206Pb 

ages. Rejected ages are marked with ‘NA’ in the ‘Best age’ and 
‘Best age error’ column of Supporting Information S1. The data 
have also been uploaded to the geochronological repository 

FIGURE 6    |    (A) Syn-sedimentary fault in a coal seam of the Tunheim Member terminating at the top of the coal seam. (B) Soft sediment defor-
mation (SSD) features on the top surface of a sandstone layer in the Tunheim Member. (C) Large-scale SSD in the Nordkapp Formation. (D) Tabular 
cross-bedded sandstone of the Nordkapp Formation. (E) Trough cross-bedded sandstone of the Tunheim Member. (F) Overbank and coal deposits 
of the Tunheim Member. (G) Meandering channel sandstone body of the Kapp Levin Member. (H) Vesalstranda Member showing thin coal seams, 
silty overbank and sandy channel deposits.
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13 of 29

geoch​ron.​org. Optical imagery of the analysed zircons with their 
respective ages can be found in the Supporting Information. To 
plot the kernel density estimate plots (KDE), cumulative distribu-
tion plot (CDP), multidimensional scale plot (MDS) and pie plots 
(see Figures 9, 10 and 11) of the zircon age distributions, we used 
detritalPy version 1.3 (Sharman, Sharman, and Sylvester 2018).

4   |   Results

Because our sedimentary logs and sample collection span all 
the stratigraphic units of the Billefjorden Group on Bjørnøya, 

our data set should, in principle, account for the previously re-
ported stratigraphic variations in palaeocurrent directions and 
fluvial styles within the Billefjorden Group (see Gjelberg 1981; 
Mørk, Gjelberg, and Worsley  2014). The effects of lateral fa-
cies variations across the basin, however, cannot be sampled 
and accounted for in a representative manner, which is com-
monly done in many other sedimentary basins (e.g., Fonneland 
et al. 2004; Dobbs et al. 2022). This is due to the gently dipping 
nature of the strata combined with outcrop limitations (e.g., 
steepness, accessibility, lack of exposures in the interior of the 
island etc.) and the limited size of Bjørnøya (20 × 15 km) which 
inhibit detailed sampling laterally across the basin. However, 

FIGURE 7    |    Different fluvial systems operated during the deposition of the Billefjorden Group on Svalbard, as evident by the variability in fluvial 
architectures and sandstone content. Highlighted with yellow stippled lines are the channel bases. (A) Meandering channel fill within fine-grained 
overbank deposits. Example representative for channel bodies of the Vesalstranda and Tunheim members of the Røedvika Formation. (B) Cross-
cutting, sandstone-dominated channel bodies of an interpreted braided stream channel system. Example representative for the Kapp Levin Member 
of the Røedvika Formation and the Nordkapp Formation.

TABLE 3    |    Analysed samples, their corresponding stratigraphic unit, lithology, sampling location and petrography.

Sample Formation Member Age Lithology Latitude Longitude Petrography

B21-S30 Røedvika Vesalstranda Famennian f sst 74.400929° N 19.173261° E Yes

B21-S33 Røedvika Vesalstranda Famennian f-m sst 74.401900° N 19.172366° E Yes

B21-S4 Røedvika Kapp Levin Famennian f sst 74.446537° N 19.260266° E Yes

B21-S3 Røedvika Kapp Levin Famennian f-m sst 74.449941° N 19.262402° E Yes

B22-S05 Røedvika Kapp Levin Famennian CGL 74.450158° N 19.264637° E No

B21-S6 Røedvika Tunheim Famennian f-m sst 74.465329° N 19.266490° E Yes

B21-S7 Røedvika Tunheim Famennian vf sst 74.484979° N 19.178234° E Yes

B21-S26 Nordkapp Kapp Harry Visean f sst 74.377881° N 18.976018° E Yes

B22-S93 Nordkapp Kapp Harry Visean m sst 74.501389° N 18.952166° E No

B22-S91 Nordkapp Nordhamna Visean m sst 74.501212° N 18.951384° E No

B22-S92 Nordkapp Nordhamna Visean m-c sst 74.501212° N 18.951384° E No

B21-S23 Nordkapp Nordhamna Visean c-vc sst 74.381798° N 18.969173° E Yes

Note: The ages in the age column are from Kaiser (1970) and Lopes et al. (2021) and are based on palynology.
Abbreviations: CGL, conglomerate; c-vc sst, coarse to very coarse sandstone; f sst, fine sandstone; f-m sst, fine to medium sandstone; m sst, medium sandstone; m-c sst, 
medium to coarse sandstone; vf sst, very fine sandstone.
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given the small outcrop window, significant lateral variations 
are not expected, neither in terms of major facies shifts nor de-
trital zircon contents.

4.1   |   Sedimentological Analysis

The logged sections typically consist of erosively based, fine- 
to coarse-grained, planar and trough cross-bedded sandstone 
units of variable thicknesses (typically ranging between 1 m 
and 15 m), which commonly exhibit blocky to weakly fin-
ing upward grain size motifs (Figures  5 and 6). Large-scale 
lateral accretion surfaces and internal truncations occur 
(Figure  6D,G). In places, some units exhibit plane-parallel 
stratification and subordinate current-ripple cross-lamination, 
whereas convolute bedding or other dewatering structures of 
assorted sizes (some being at meter scale) are locally abundant 
(Figure  6B,C). Pervasively soft sediment deformed horizons 
involving multiple beds are relatively common, particularly 
in the Nordkapp Formation. Small-scale faults with decime-
tre to metre-scale offset and which display bed thickening to-
wards the fault planes have been recognised in a few cases 
(Figure 6B). Locally, various plant and tree fragments, as well 
as horizons of mudstone intraclasts or lithic conglomerates 
occur within the sandstones, the latter predominantly forming 

basal lags demarcating the erosive base of cross-bedded sand-
stone units.

In terms of thicknesses, external geometries, stacking pat-
terns and relative sandstone to mudstone ratios, two principal 
types of erosively based sandstone units have been recognised 
(here referred to as types I and II). The first type rarely exceeds 
10 m in thickness, typically exhibits lenticular geometries with 
smooth concave upward or stepped basal surfaces and inter-
mittently displays lateral accretion surfaces within (Figure 7). 
These units tend to show fining upward trends and commonly 
intercalate with siltstone-rich heterolithics or mudstone-
dominated units with thicknesses of 1–10 m (occasionally 
more). Collectively these deposits form several tens to hundreds 
of metres thick, mudstone-dominated successions (e.g., in the 
Vesalstranda Member), which host and encapsulate the ero-
sively based sandstones (Figures 6 and 7). Coal seams, occasion-
ally exceeding a thickness of 1 m, commonly occur within these 
fine-grained deposits, including the renowned A-Coal of the 
Tunheim Member mined during the 1920s (Figure 6) (Horn and 
Orvin 1928; Gjelberg 1981; Worsley et al. 2001; Mørk, Gjelberg, 
and Worsley 2014; Janocha et al. 2024). Thin sandstone beds, 
some exhibiting rootlets, also occur locally within the fine-
grained units, and may occasionally form sheet-like, coarsening 
and thickening upward units of a few metre thickness.

FIGURE 8    |    Thin section images through cross-polarised light. All samples are mature sandstones with distinct quartz overgrowth and are 
dominated by monocrystalline quartz. (A) Sample B21-S33, Vesalstranda Member (Røedvika Formation); (B) Sample B21-S3, Kapp Levin Member 
(Røedvika Formation); (C) Sample B21-S6, Tunheim Member (Røedvika Formation); (D) B21- S23, Nordhamna Member (Nordkapp Formation).
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The second type of erosively based sandstone units (type II) 
have flat to undulating bases and form more laterally per-
sistent (at the scale of the outcrops), sheet-like units with thick-
nesses up to several tens to hundreds of metres (e.g., the Kapp 
Harry Member of the Nordkapp Formation; Figures 6 and 7). 
Internally, they are characterised by multiple truncation sur-
faces demarcated by conglomerate lags up to a few decimetres 
thick, which defines vertically stacked and amalgamated, pla-
nar cross-bedded subunits of variable thicknesses (typically 
between 2 and 15 m, with individual set thicknesses rang-
ing from 0.2 to 2 m). Fine-grained intercalations are rarely 

associated with the type II sandstone units, albeit being more 
common in the Nordhamna Member on the northern coast of 
Bjørnøya.

Based on our detailed stratigraphic logging and facies descrip-
tion, we interpret the investigated Billefjorden Group strata to 
represent terrestrial and fluvial deposits, including channel fills 
of meandering (type I) and braided streams (type II), as well as 
inter-channel sandstone sheets and overbank fines (Figures 5, 
6 and 7), in line with previous work (Horn and Orvin  1928; 
Gjelberg 1978, 1981; Gjelberg and Steel 1981; Worsley et al. 2001; 

FIGURE 9    |    Cumulative distribution plot (CDP), kernel density estimate (KDE) and pie diagrams for the detrital zircon age distribution of 
the Billefjorden Group on Bjørnøya. The colours of the pie diagrams correspond to the same colours as those of the KDE plots. Colouring of the 
KDE plots: 0–700 Ma—midnight blue, 700–1200 Ma—cadet blue, 1200–1500 Ma—sea green, 1500–1700 Ma—olive, 1700–2250 Ma—dark khaki, 
2250–4000 Ma—pink.
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16 of 29 Basin Research, 2024

Mørk, Gjelberg, and Worsley 2014). A more thorough interpre-
tation and discussion on the depositional system, including the 
repeated changes in palaeocurrent directions and fluvial styles 
between the various lithostratigraphic subunits, is provided in 
the discussion (Section 5).

4.2   |   Detrital Zircon Analysis

The CDP of the detrital zircon ages is strikingly similar for all 
samples (Figure 9). For most samples, 70% of the detrital zircons 
give ages between 1000 and 2000 Ma. The MDS plot in Figure 10 
shows the dissimilarities between the samples and clusters to-
gether similar samples. The detrital zircon age distribution over 
time is seen in the KDE diagrams (Figure 9).

Our detrital zircon age distribution over time is polymodal 
(Figure 9). The youngest mode (300–500 Ma) is apparent in seven 
of the samples but missing in Samples B21-S30, B21-S03, B22-
S05 and B21-S07. Other important age modes are 900–1100 Ma, 
1100–1500 Ma, 1500–1700 Ma, 1700–2000 Ma and 2400–
2900 Ma. The modes are chosen based on important orogenic 
phases and visual grouping of important zircon age groups. All 
modes are represented with variable intensities across all sam-
ples. The peaks in the KDE plot can be linked to potential source 
areas and will be discussed in the following section.

4.3   |   Petrography

The eight thin sections selected for petrographic analysis show a 
clear dominance of monocrystalline quartz grains. All samples 
contain some few grains of chert and individual grains of poly-
crystalline quartz. The remaining pore space is often coated by 
clay minerals. Generally, all samples have experienced extensive 
quartz overgrowth. In individual samples, we were able to ob-
serve single zircons (Figure 8).

FIGURE 10    |    MDS plot showing the dissimilarities between the 
samples were similar samples cluster together. The colours correspond 
to the age modes in Figure 7.

FIGURE 11    |    Rim versus core plot showing ages of zircon overgrowth rims and the ages of the inherited core. The rim ages stem from zircon 
overgrowth during re-heating of the original zircon and can often be related to metamorphic events.
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5   |   Discussion

5.1   |   Depositional Environments and Drainage 
Directions

The sedimentary strata of the Vesalstranda and Tunheim mem-
bers of the Røedvika Formation, which are both dominated by 
type I erosively based sandstone units characterised by fining 
upward trends, lateral accretion surfaces, and which occurs 
within thick mudstone-rich successions, thus exhibit features 
consistent with deposition in meandering fluvial channels 
and on adjacent low-lying inter-channel alluvial (flood) plains 
(see also Gjelberg  1978, 1981). Similar meandering channel 
systems occur among others in the Upper Devonian of East 
Greenland (Olsen and Larsen 1993). The abundance of fine-
grained deposits and the single-story nature of the sandstone 
channel fills is typical of high accommodation fluvial systems 
(Shanley and McCabe 1992). In contrast, the much thinner (c. 
75 m), sheet-like Kapp Levin Member, which is sandwiched 
between the other two units, is dominated by type II sand-
stone units characterised by stacks of planar cross-bedded sets 
and multiple internal truncation surfaces, and thus exhibit 
features consistent with deposition in a braidplain setting 
(Gjelberg 1978, 1981). Such laterally extensive fluvial systems 
of limited thicknesses points towards a drastic decrease in 
vertical accommodation space (Shanley and McCabe  1992; 
Martinsen et  al.  1999; Grundvåg and Skorgenes  2022). The 
sedimentological characteristics and sandstone-dominated 
nature of the Nordkapp Formation, mostly being composed 
of amalgamated type II sandstone units, are also typical of 
braided stream deposits (Gjelberg  1981). However, its exten-
sive thickness (c. 230 m) is not consistent with a low accom-
modation space setting. As such, it is suggested here that the 
unit was deposited in a period of significant upland erosion 
and concurrent high rates of basin subsidence, pointing to 
syn-tectonic deposition for the Nordkapp Formation. This 
is supported by the abundance of soft sediment deformation 
structures in the unit, including pervasively deformed hori-
zons spanning multiple beds, as well as the overall north-
ward stratal thickening. Similar interpretations have been 
proposed for thick, cross-bedded fluvial sandstone sheets lo-
cated near structural lineaments elsewhere (Grundvåg and 
Skorgenes 2022). Additionally, Ryan et al. (2023) argue for an 
extensional regime during the Late Palaeozoic on Bjørnøya 
and the Stappen High.

Based on > 1300 dip-azimuth readings of forests in the cross-
bedded sandstones (summarised in Figure 1C), previous work 
has documented a change from an averaged north-north-
westerly drainage direction in the interpreted meandering 
channel fills of the Vesalstranda Member (104 readings, with 
an average of 323°) to an averaged east-north-easterly drainage 
direction in the overlying braided stream deposits of the Kapp 
Levin Member (64 readings, with an average of 66° N), before 
changing back to an averaged north-north-westerly drain-
age direction in the meandering channel fills of the Tunheim 
Member (864 readings, with an average of 332°) (Figure  3) 
(Gjelberg 1978, 1981; Gjelberg and Steel 1981; Worsley et al. 2001; 
Mørk, Gjelberg, and Worsley 2014). Interestingly, the overlying 
Nordkapp Formation, dominated by braided stream deposits, 
records yet another change back to an averaged north-easterly 

drainage direction (305 readings, with an average of 65°) 
(Gjelberg  1981; Mørk, Gjelberg, and Worsley  2014). Although 
some of the variability in the data set can be attributed to lateral 
migration of high-sinuosity channel belts or changing migration 
directions of fluvial dunes and bars, the systematic stratigraphic 
change in averaged palaeocurrent directions may suggest drain-
age response to allogenic forcing, such as fault-induced uplift 
and subsidence. It is widely known that tectonics directly in-
fluence fluvial drainage systems, and particularly alluvial ar-
chitecture (Gawthorpe and Leeder  2000; Schumm, Holbrook, 
and Dumont  2000; Bridge  2006). Land surface gradients may 
be altered due to fault activity, which may affect channel pat-
terns and concurrently force rivers to divert, and differential 
subsidence, for example, may influence the stacking style and 
distribution of both fluvial channels and overbank fines (Bridge 
and Mackey  1993; Olsen and Larsen  1993; Ryseth  2000). It is 
therefore intriguing that the recurrent changes in palaeocurrent 
patterns coincide with alternations between the two principally 
distinctive styles of fluvial architectures documented here (i.e., 
the type I and II sandstone bodies; Figure 7). One explanation 
could be competing axial and transverse fluvial drainage, possi-
bly controlled by fault-controlled topographic changes, which is 
a common sedimentary response to fault activity in extensional 
basins (Gawthorpe and Leeder  2000). In periods of high sub-
sidence rates and low basin gradients, axially positioned mean-
dering channels dominated (i.e., the Vesalstranda and Tunheim 
members), whereas periods of footwall uplift resulted in less ver-
tical accommodation space and higher depositional gradients 
in the basin, which favoured the development of alluvial fans 
with braided streams oriented near perpendicular to the fault 
(i.e., the Kapp Levin Member). The thickness of the Nordkapp 
Formation deviates slightly from these models and may indi-
cate a situation of high, yet balanced rates of sediment influx 
and basin subsidence, giving rise to an aggradationally stacked 
succession of braided stream deposits. Alternatively, both the 
changing fluvial styles and palaeocurrent directions record cli-
matic forcing, which control source area erosion and sediment 
supply, combined with intrinsic factors (Bridge  2006). It has 
also been demonstrated that astronomical forcing of the climate 
can impact discharge and consequently channel sinuosity (e.g., 
Olsen  1990). However, it is beyond the scope of this study to 
investigate such relationships. Syn-sedimentary faults, which 
previously have not been reported in the Røedvika Formation 
(see also examples provided in Grundvåg et al. 2023), and abun-
dant decimetre- to metre-scale soft sediment deformation struc-
tures, commonly involving multiple beds in both the Røedvika 
and Nordkapp formations (Figure  6) could point towards re-
current seismically induced liquefaction, which collectively is 
compatible with syn-tectonic deposition for the entire succes-
sion. Similar interpretations have also been postulated for this 
type of features in inferred tectonically active, fault-bounded 
basins elsewhere (e.g., Plaziat, Purser, and Philobbos  1988; 
Rossetti  2002; Grundvåg and Skorgenes  2022). The proximity 
to a fault, such as the inferred West Bjørnøya Fault suggested 
by Gjelberg and Steel (1981, 1983), may thus offer a viable expla-
nation for the abundant deformation, alluvial architectures and 
palaeocurrent directions. Interestingly, Rotevatn et al. (2018) re-
ported K-Ar ages from dating of illite from fault gouge samples 
in northern East Greenland and found evidence of an earliest 
Mississippian (or older rift initiation phase). In addition, exten-
sion and block faulting in the Late Devonian to Mississippian 
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resulted in the formation of several NW-SE oriented half gra-
bens on the Barents Shelf (e.g., Gudlaugsson et al. 1998; Klitzke 
et al. 2019; Hassaan et al. 2020). Several of these faults and ba-
sins exploited inherited Caledonian and locally Timanian base-
ment fabrics during the Late Devonian to Mississippian regional 
extension event. It has, for example, been suggested that the 
supra-regional De Geer Zone, which runs just west of Bjørnøya, 
was initiated already in the Palaeozoic during the Caledonian 
Orogeny, following a zone of weakness (Faleide, Vågnes, and 
Gudlaugsson 1993; Gresseth et al. 2021). As such, given the re-
gional framework and the sedimentological characteristics of 
the investigated succession, it does not seem unlikely that a fault 
system existed west of Bjørnøya during the Late Devonian to 
Mississippian, thereby controlling subsidence and sedimenta-
tion rates in the basin. Elsewhere, such fault activity has been 
shown to alter the drainage pattern of fluvial systems, and in 
extreme cases, also completely changing the catchment area and 
thus the resulting detrital zircon composition of the fluvial sedi-
ments in the basin (e.g., Whitchurch et al. 2011; Foster-Baril and 
Stockli  2023). Basin inversion may yield similar sedimentary 
response and drainage reversals (e.g., Olsen  1993). However, 
we see no signs of compressional tectonics (of Late Devonian 
to Mississippian age) in the investigated succession, albeit the 
slight northward thickening of the group can be interpreted 
because of tectonically induced, syn-sedimentary uplift of the 
Caledonian basement high exposed in the southern part of the 
island.

5.2   |   Petrographic Considerations

The petrographic study of eight selected samples (Table 3) has 
shown a dominance of monocrystalline quartz (Figure 8). Thus, 
with the thin sections, we demonstrate that the mineralogical 
composition remains nearly identical throughout the entire 
stratigraphic succession (Figure 8). Similar results have previ-
ously been reported by Gjelberg (1978, 1981). The petrography 
shows that the sampled sandstones are mature and potentially 
indicate that the sediments have been subject to long transport 
distances and long exposure, as well as pointing to a source area 
yielding erosional products predominantly consisting of quartz 
grains. The quartz overgrowth is a result of deep burial, adher-
ing to the long and complex burial history of the Stappen High 
(e.g., Worsley et al. 2001). Because of the similarity between all 
the samples, which clearly indicate a similar type of source area 
for the entire succession, they cannot be used to infer prove-
nance changes.

5.3   |   Source Areas

Multiple studies have shown that zircons of different ages 
and sources may have different sizes (e.g., Pirkle and 
Podmeyer  1993). Deposition of grains transported by a flow-
ing medium is size and density dependent. In fluvial systems, 
flow velocity to a large part determines which grain size frac-
tion is deposited at any given time (e.g., Rubatto, Williams, and 
Buick 2001; Corfu, Hanchar, Hoskin, et al. 2003). As a result, 
zircons with a certain grain size may be deposited together with 
the sand fraction of similar size or density. This process may 

lead to peak mismatch, or even the complete lack of age popula-
tions in some samples (Lawrence et al. 2011; Malusà, Resentini, 
and Garzanti 2016). We do not possess a full hydraulic data set, 
but we aimed to sample sandstones of similar grain sizes to mi-
nimise the effects of hydraulic fractionation (Table 3). However, 
this do not exclude the possibility that some of the peak mis-
matches and potentially missing age modes are the result of 
hydraulic fractionation rather than changes in source area. All 
the analysed samples have a broad spread in their detrital zircon 
age modes. However, a series of age modes can be recognised 
in our data, these are (from youngest to oldest): (i) 300–600 Ma 
(Palaeozoic—latest Neoproterozoic), (ii) 900–1200 Ma (latest 
Mesoproterozoic—earliest Neoproterozoic), (iii) 1200–1500 Ma 
(Mesoproterozoic), (iv) 1500–1700 Ma (latest Paleoproterozoic—
earliest Mesoproterozoic), (v) 1700–2000 Ma (Paleoproterozoic), 
(vi) 2400–2900 Ma (Archean—earliest Paleoproterozoic). 
Prominent missing age intervals in the data set are 600–900 Ma, 
2000–2400 Ma, and > 3000 Ma. As such, potential source 
areas are many and include Archean to Palaeozoic terrains on 
Svalbard, the Canadian Arctic Islands, Greenland and Baltica 
(Figures 2 and 4, Table 2).

	 i.	 The 300–500 Ma age mode has potential Palaeozoic 
source areas on Svalbard, the Canadian Arctic Islands, 
Greenland, and Baltica and comprises mainly zircons re-
lated to the Caledonian and Ellesmerian orogenic events 
(Trettin, Parrish, and Loveridge  1987; Watt, Kinny, and 
Friderichsen  2000; Corfu, Ravna, and Kullerud  2003; 
Johansson et  al.  2004) (Table  2). In our samples, this age 
mode is rare in the Røedvika Formation, albeit a minor mode 
is recognised in the samples of the Nordkapp Formation. 
Even though this age mode is only minor in our samples it 
serves as a good indicator for source provenance. Especially 
ages younger than 400 Ma which are present in the samples 
of the Nordkapp Formation (Figure 9). Sources for zircons 
younger than 400 Ma are mostly found in the East Greenland 
Caledonides (Kalsbeek, Nutman, and Taylor  1993; Gilotti, 
Nutman, and Brueckner  2004). Late Devonian dolerite 
dykes in North Norway yield zircons younger than 400 Ma 
(Roberts 2011), but given the distance between the source 
and the sink, as well as their localised and scattered occur-
rences, they are disregarded as a major contributor.

	 ii.	 The age mode from 900 to 1200 Ma (latest 
Mesoproterozoic—earliest Neoproterozoic) is a major age 
mode in most samples (Figure 9). The peaks and intensities 
of this age mode vary across the samples. While all sam-
ples exhibit zircon ages between 1000 and 1200 Ma, the 
stratigraphically youngest samples B22-S91/S92 & B21-S23 
additionally exhibit zircons of around 960 Ma. The overall 
Mesoproterozoic age mode (900–1200 Ma) can be attributed 
to the Grenvillian and the associated Sveconorwegian oro-
gens (Lorenz et al. 2012; Bingen et al. 2021). The latter is re-
stricted to the southern parts of Sweden and Norway (e.g., 
Bingen et al. 2021). In Greenland, Svalbard, the Canadian 
Arctic Islands and Baltica, zircons of this age mode may 
be derived from Neoproterozoic to Cambrian sedimentary 
successions, as well as smaller intrusions (e.g., Watt, Kinny, 
and Friderichsen  2000; Paulsson and Andréasson  2002; 
Johansson et  al.  2004; Kirkland et  al.  2009; Pettersson, 
Pease, and Frei 2009; Malone et al. 2017).
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	iii.	 The 1200–1500 Ma (Mesoproterozoic) age mode is ap-
parent in all samples with varying peaks and intensities 
(Figure  9). Crystalline basement yielding these ages is 
lacking across the discussed source terranes, but detri-
tal modes are found in pre-Devonian sedimentary se-
quences in Greenland (Figure  2) (e.g., Watt, Kinny, and 
Friderichsen  2000; Paulsson and Andréasson  2002). The 
1380 Ma old flood basalts of the Zig-Zag Dal Basalts are 
missing in our sample set, despite their great extent and 
their proximity to Bjørnøya during the Devonian. This is 
not surprising as flood basalts are too silica-poor to crys-
tallize zircons and therefore, consequently, lack zircons 
(Upton et al. 2005; Shumlyanskyy et al. 2016).

	iv.	 The 1500–1700 Ma (latest Palaeoproterozoic—earliest 
Mesoproterozoic), age mode is present in all samples, albeit 
with varying peaks and intensities. Potential source areas 
for this age mode exist in Svalbard, Greenland and Baltica 
(Figure  2) (e.g., Watt, Kinny, and Friderichsen  2000; 
Johansson et  al.  2002; Paulsson and Andréasson  2002). 
This mode corresponds, agewise, to the Gothian Orogen, 
which is most prominent in southeast Sweden (Åhäll 
and Gower  1997; Åhäll and Larson  2000; Roberts and 
Slagstad 2015). However, given the distance, this terrane is 
not considered here.

	 v.	 The most dominant age mode in most samples is 
Palaeoproterozoic zircons with ages between 1700 
and 2000 Ma (Figure  9). Potential source areas are lo-
cated on the Canadian Arctic Islands, Greenland and 
Baltica (Figure  2) (e.g., Frisch and Hunt  1988; Kalsbeek, 
Nutman, and Taylor  1993; Daly et  al.  2001). Prominent 
orogenic events of this age are the Svecofennian Orogeny 
and the Trans-Scandinavian Intrusive Belt on Baltica, 
and the Ketilidian and Nagssugtoqidian orogenies in 
Greenland (Åhäll and Larson 2000; Lahtinen, Garde, and 
Melezhik 2008; Henriksen et al. 2009; Baltybaev 2013).

	vi.	 The last prominent zircon age mode in our sam-
ple is that spanning 2400–2900 Ma (Archean—earli-
est Paleoproterozoic). Most samples show prominent 
peaks around 2500 Ma, 2700 Ma and 2900 Ma (Figure 9). 
Potential source areas for this age mode occur in Svalbard, 
Greenland and Baltica (Figure  2) (e.g., Nutman and 
Kalsbeek  1994; Levchenkov et  al.  1995; Hellman, Gee, 
and Witt-Nilsson 2001). The distinct Archean peaks (i.e., 
those older > 2500 Ma) correspond well with the detrital 
zircon spectrum of metasandstones reported in Greenland 
(Kalsbeek et al. 1999). On north-eastern Svalbard, a quartz 
monzonite within a Caledonian thrust sheet yields zir-
con ages of c. 2700 Ma (Neoarchean) (Hellman, Gee, and 
Witt-Nilsson 2001).

A potential local source unit that hitherto has not been but should 
be considered is the Ediacaran (Neoproterozoic) Sørhamna 
Formation. Quartzites of this unit are variably exposed in scat-
tered outcrops within the otherwise highly metamorphic base-
ment on Bjørnøya. Similar-aged meta−/sandstones exposed 
in North Norway have yielded significant Mesoproterozoic 
age peaks (Roberts and Siedlecka  2012; Zhang, Roberts, and 
Pease 2016). However, because the quartzites of the Sørhamna 
Formation have not yet been studied in detail, neither for their 

petrography nor detrital zircon composition, they can at best be 
considered as a potential source with unconstrained detrital zir-
con ages.

The Canadian Arctic Islands, the northern Svalbard Archipelago, 
Greenland and Baltica all comprise terranes yielding the broad 
zircon age spectrum observed in our samples. The spectrum of 
Mesoproterozoic zircons is predominately found in meta−/sedi-
mentary strata (e.g., Kirkland, Stephen Daly, and Whitehouse 2007; 
Kirkland et al. 2009; Gasser and Andresen 2013; Hadlari, Davis, 
and Dewing 2014). Palaeozoic, Neoproterozoic, Palaeoproterozoic 
and Archean zircons all have potential direct source areas (e.g., 
Trettin, Parrish, and Loveridge  1987; Levchenkov et  al.  1995; 
Kalsbeek et  al.  1999; Watt, Kinny, and Friderichsen  2000; 
Hellman, Gee, and Witt-Nilsson  2001; Johansson et  al.  2002; 
Corfu, Ravna, and Kullerud 2003; Kirkland, Stephen Daly, and 
Whitehouse  2007; Nutman et  al.  2008; Kirkland et  al.  2009; 
Malone et al. 2017; Gilotti et al. 2018).

The broad zircon age spectrum that we record may thus 
suggest the presence of a large cratonic catchment and/or 
recycling of older sedimentary basin strata. As discussed 
above, the exposed basement of the all the terranes provides 
mainly Palaeozoic, Paleoproterozoic and Archean age modes 
while Mesoproterozoic age groups are mainly attributed to 
older sedimentary units. Multiple scenarios for the source 
of Mesoproterozoic zircons in the Billefjorden Group on 
Bjørnøya are therefore possible:

	 i.	 Local contributions from Mesoproterozoic basement rocks 
hidden beneath younger (Palaeozoic) sedimentary strata 
on the island itself or occurring elsewhere in the subsur-
face of the Stappen High (the submerged structural high 
on which Bjørnøya is located). We regard this scenario less 
likely as no Mesoproterozoic basement exposures are re-
corded in any of the discussed terranes.

	 ii.	 Long distance transport of Mesoproterozoic zircons from 
sources in the southern parts of Greenland, Norway or 
Sweden. This scenario also seems unlikely given the long 
distance and given the many fault-bounded basins and 
local highs any transported sediment must have bypassed 
on its way to Bjørnøya.

	iii.	 From an unknown Mesoproterozoic terrane for example 
hidden beneath the present Greenland Ice Sheet.

	iv.	 Recycling of older (Precambrian) sedimentary sequences 
exposed in the East Greenland Caledonides (e.g., Watt, 
Kinny, and Friderichsen 2000) and on Svalbard (e.g., Gasser 
and Andresen 2013; Beranek, Gee, and Fisher 2020), or less 
likely, in northern Norway (Roberts and Siedlecka  2012; 
Zhang, Roberts, and Pease  2016). In addition, a poten-
tial local source is the Sørhamna Formation, as already 
discussed.

Apparent differences across the samples are mostly seen in vary-
ing intensities of certain age modes. Lower intensities of the 
1200–1500 Ma age mode correspond to higher intensities in the 
1700–2000 Ma age mode. We argue that samples with a domi-
nant 1700–2000 Ma age mode were mainly sourced from base-
ment rocks in the Northeast Greenland Caledonides (Figures 4 
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and 12). This Palaeoproterozoic dominance could be related to a 
source originating from the Northeast Greenland eclogite prov-
ince as shown for the locally derived Carboniferous Sortebakker 
Formation in the Wandel Sea Basin (McClelland et  al.  2016), 
which was located near Bjørnøya in the Palaeozoic. Conversely, 
we attribute the Mesoproterozoic age signature to the recycling 
of Neoproterozoic-aged metasedimentary units of northern 
Greenland, as inferred for other Devonian basins in the Arctic 
(Slama et al. 2011; Anfinson, Leier, Embry, et al. 2012; Anfinson, 
Leier, Gaschnig, 2012; Malone et al. 2019). Additionally, the el-
evated Archean age modes in our samples correspond well to 
basement and pre-Cambrian metasedimentary units within the 
East Greenland Caledonides (Kalsbeek et al. 1999).

The most diagnostic for our study are age groups (i) (300–500 Ma) 
and (ii) (900–1200 Ma). Both age groups have few source locali-
ties across the discussed terranes (Table 2). The lack of sources 
yielding zircon ages younger than 400 Ma in the Basement 
Provinces of Svalbard, the Canadian Arctic Islands and Baltica 
indicates that the sediments were supplied from other source 
areas (also not considering the Late Devonian dolerite dykes in 
North Norway), at least during the deposition of the Nordkapp 
Formation in the earliest Mississippian. The East Greenland 
Caledonides, on the contrary, have proven sources for these ages 
(Gilotti, Nutman, and Brueckner 2004).

Rim and core ages are an additional tool to pinpoint sources which 
contributed to the Billefjorden Group sediments of Bjørnøya. 

Specifically for combinations of Caledonian (Palaeozoic; 
~380 Ma) rims with Mesoproterozoic or Paleoproterozoic cores 
(~1300 Ma and ~1900 Ma; Figure  11), we were able to deter-
mine point sources in northeast Greenland that contributed 
to the Billefjorden Group on Bjørnøya. These point sources 
are in the Southern Liverpool Land Eclogite Terrane and the 
Northeast Greenland Eclogite Province (see Gilotti, Nutman, 
and Brueckner 2004; Corfu and Hartz 2011).

The Billefjorden Group on Bjørnøya displays slight variability 
in the detrital zircon spectra throughout the succession. Based 
on the minor changes in detrital zircon spectra across the sam-
ples and the large variability of detrital zircon ages within each 
sample, we argue for a continued sourcing from a cratonic 
source terrane. Based on the previously published palaeocur-
rent directions (Gjelberg 1981; Gjelberg and Steel 1981; Worsley 
et al. 2001; Mørk, Gjelberg, and Worsley 2014), both northern 
Baltica and Northeast Greenland are potential source areas for 
the Billefjorden Group on Bjørnøya. While the palaeocurrent 
data suggest a shift in drainage direction, the detrital zircon 
data do not indicate a change in provenance. The clear correla-
tion of Caledonian aged detrital zircons from the Nordkapp 
Formation to metamorphic point sources in Northeast 
Greenland, thus confirms sediment sourcing from the north-
east Greenland Caledonides (Figure 12). Further evidence for 
a Northeast Greenlandic source is the geographic proximity to 
Bjørnøya during the Late Devonian and early Carboniferous 
(Domeier and Torsvik 2014; Golonka 2020; Blakey 2021).

FIGURE 12    |    Palaeogeographic maps of the Arctic showing the modern-day coastlines of Svalbard, Bjørnøya, northern Greenland, Ellesmere 
Island, and north-eastern Scandinavia (Baltica). (A) Potential source areas for the inferred axial meandering streams of the Vesalstranda and 
Tunheim members. (B) Source area in northeast Greenland for the inferred transverse braided streams of the Nordkapp Formation. The palaeogeo-
graphic reconstruction is based on Domeier and Torsvik (2014) and Blakey (2021). Blue highlights a potential fluvial network connecting the source 
area in northeast Greenland to Bjørnøya. The black arrow indicates the main direction of sediment transport. Orange: Old Red Sandstone Basins; 
Green: Carboniferous Troughs; Purple: Outline of the Caledonides. BFZ, Billefjorden Fault Zone; HFZ, Hornsund Fault Zone; LFZ, Lomfjorden Fault 
Zone; TLFZ, Trolle Land Fault Zone; WBF, West Bjørnøya Fault.
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5.4   |   Arctic Devonian and Carboniferous Basins

Several ‘Old Red Sandstone’ continental basins developed across 
the Arctic during the Devonian (Friend and Williams  2000). 
Here, we compare our sample set to adjacent basins located 
in Greenland, Spitsbergen and the Canadian Arctic Islands 
(Figure 13).

Only one sample of the Billefjorden Group on Spitsbergen has pre-
viously been analysed for its detrital zircon provenance (Figure 13) 
(Gasser and Andresen 2013). Intriguingly, the authors found that 
the sediments were most likely sourced from northern Greenland, 
recording the same major zircon age modes as in our data set. 
However, some major differences are evident in our sample set. 
Both the pronounced Archean ages around 2.7 Ga and major con-
tributions of Paleoproterozoic ages between 1.7 and 2.0 Ga are not 
as distinct in sample S6-73-582 of Gasser and Andresen (2013) col-
lected in the St. Jonsfjorden Trough on Spitsbergen (Figure 13). 
Detrital zircon provenance studies of the Devonian ‘Old Red 
Sandstone’ basins on Svalbard, on the contrary, show that the sed-
iments, predominately, were derived from local sources (Beranek, 
Gee, and Fisher 2020; Anfinson et al. 2022).

Analysed samples derived from the Devonian to Carboniferous 
basins of East and Northeast Greenland, as well as from the 
Franklinian Basin on Ellesmere Island, show very simi-
lar detrital zircon age spectres as reported here (Figure  13). 
The Northeast Greenland Caledonides have previously been 
inferred as the main source for the sedimentary strata in 
these basins (Slama et  al.  2011; Anfinson, Leier, Embry, 
et  al.  2012; Anfinson, Leier, Gaschnig,  2012; Hadlari, Davis, 

and Dewing  2014; Malone et  al.  2019). More specifically, the 
Northeast Greenland eclogite province, which yields distinct 
1750 Ma and 1900–2000 Ma peaks, acted as a local source for the 
early Carboniferous strata of the Wandel Sea Basin in Northeast 
Greenland (McClelland et al. 2016). Interestingly, this basin fill 
strata is very similar to the Nordkapp Formation in terms of its 
Viséan age and sandstone-dominated alluvial facies (Dalhoff 
and Stemmerik 2000). Here, we demonstrate that the broad de-
trital zircon age spectrum of the Nordkapp Formation contains 
similar age peaks similar to those of the Carboniferous strata in 
the Wandel Sea Basin (Figure 9) (McClelland et al. 2016).

As such, we postulate that the East Greenland Caledonides, in-
cluding old basement rocks in the orogenic wedge, as well as 
its underlying, exposed basement, formed a long-lived source 
area. Literary being the same for Triassic strata on western 
Spitsbergen, as well as for Cretaceous strata in the Wandel 
Sea Basin and Spitsbergen (Figure  12) (Røhr, Andersen, 
and Dypvik  2008; Pózer Bue and Andresen  2013; Grundvåg 
et al. 2019). This points to a regionally important source area, 
which has contributed to the infill of several Arctic basins 
throughout the Palaeozoic and Mesozoic.

5.5   |   Palaeogeography

Palaeogeographical reconstructions show that Svalbard, including 
Bjørnøya, was situated at the north-eastern corner of Greenland 
during the Late Devonian and early Carboniferous (Domeier 
and Torsvik 2014; Golonka 2020; Blakey 2021) (Figure 12). More 
specifically, some reconstructions place Spitsbergen near Peary 

FIGURE 13    |    KDE plots of selected Devonian and Carboniferous basins in the Arctic, including basins located on Svalbard (Pettersson, Pease, and 
Frei 2010; Gasser and Andresen 2013; Beranek, Gee, and Fisher 2020; Anfinson et al. 2022), Greenland (Slama et al. 2011; McClelland et al. 2016), 
and Ellesmere Island, Canada (Anfinson, Leier, Embry, et al. 2012; Anfinson, Leier, Gaschnig, 2012; Hadlari, Davis, and Dewing 2014; Malone 
et al. 2019).
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Land at the very northern tip of Greenland during the early 
Carboniferous, consequently placing Bjørnøya further south 
near the north-eastern tip of Kron Prins Christian Land and the 
southern reaches of the Wandel Sea Basin (Harland 1997; Dalhoff 
and Stemmerik 2000; Brekke et al. 2001). The close resemblance 
of our detrital zircon age modes to those reported from the East 
Greenland Caledonides and the Northeast Greenland eclogite 
province, indicate a palaeogeographical proximity to these ter-
rains, thus supporting these reconstructions (Figure 12).

Our data show that the detrital zircon age spectrum of the sedi-
ments that accumulated on Bjørnøya during the Late Devonian to 
early Carboniferous principally remained the same irrespective of 
the changes in fluvial style and drainage direction, or the inferred 
fault activity along the West Bjørnøya Fault. Possible scenarios are:

1.	 The fault activity was the main cause for the observed 
changes in drainage direction in the fluvial system sup-
plying sediments to the basin as suggested by previous 
work (Gjelberg 1978, 1981; Gjelberg and Steel 1983); how-
ever, the activity was not of such extent that it changed the 
catchment area for the fluvial drainage systems. This may 
also indicate an exceptionally large, lithologically uniform 
(with respect to zircon-hosting rocks) and long-lived catch-
ment, which despite faulting did not change or segment 
into smaller subcatchments of variable bedrock lithologies.

2.	 The observed changes in fluvial style and drainage direc-
tion have not been caused by the inferred West Bjørnøya 
Fault but reflect climatically driven changes in sediment 
supply combined with intrinsic factors which have caused 
random changes. However, given the systematic and coin-
ciding changes, compatible with tectonic forcing, in com-
bination with the regional tectonic framework, we find this 
less likely and favour the former scenario.

This contribution cannot answer to what extent the East Greenland 
Caledonides also controlled deposition of the Billefjorden Group 
and associated Palaeozoic strata elsewhere on Svalbard during the 
Late Devonian to early Carboniferous. Did the principal source 
area remain the same for the entire region throughout the pe-
riod, contributing with sediments way into the Mesozoic? Or did 
onset of localised rifting in the middle Carboniferous intervene 
and eventually forcing a provenance change which affected the 
overlying syn-rift deposits of the Gipsdalen Group? Further inves-
tigations are clearly required to unravel the full extent and impor-
tance of the East Greenland Caledonides as a source terrain for 
sedimentary strata on the Barents Shelf and Svalbard, as well as 
to fully distinguish this provenance signal from other sources and 
understand the implications of being located at the border of a sub-
stantial, long-lived sedimentary source.

6   |   Conclusion

This case study is the first attempt to show detrital zircon prove-
nance of the Billefjorden Group along the western Barents Shelf 
margin focusing on exposed strata on Bjørnøya, the southern-
most island of the Svalbard archipelago and the exposed crest 
of the Stappen High. Our most significant conclusions are sum-
marised below:

–	Broad detrital zircon age spectra indicate sourcing from 
a cratonic source terrane

–	The data set reveals a series of distinct age modes spanning 
the Archean (oldest zircon ages of c. 2.9 Ga) to the Palaeozoic 
(zircons younger than < 500 Ma).

–	Mesoproterozoic ages are most likely sourced from metased-
imentary units exposed in Northeast Greenland, locally on 
Bjørnøya, or less likely in North Norway.

–	Direct correlation of Caledonian metamorphic detrital zir-
cons to the Northeastern Greenland eclogite province

–	The proposed West Bjørnøya Fault has seemingly had lit-
tle influence on the detrital zircon age distribution, albeit it 
appears to have controlled the drainage direction and dep-
ositional styles of the fluvial systems in the basin. This is 
evident by the stratigraphically repeated changes in palae-
ocurrent directions and the concurrent alternation of mean-
dering and braided fluvial strata.

–	Strong similarities to provenance data from Mesozoic strata 
in the Canadian Arctic Islands, Northeast Greenland, 
and Spitsbergen suggests that the Caledonian terranes of 
Northeast Greenland acted as a long-lived catchment pro-
viding sediments to adjacent Arctic basins onwards from the 
Devonian through the Mesozoic.
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