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Abstract. We consider a spectral problem for convolution type operators in environments with
locally periodic microstructure, and study the asymptotic behavior of the bottom of the spectrum.
We show that the bottom point of the spectrum converges as the microstructure period tends to
zero, and identify the limit in terms of an additive eigenvalue problem for effective Hamilton-Jacobi
equation. In the periodic case, we establish a more accurate two-term asymptotic formula.
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1. Introduction. This work deals with the homogenization of spectral prob-
lems for nonlocal convolution type operators in environments with locally periodic
microstructure. In a bounded C1-domain Ω ⊂ Rd we consider the spectral problem

(1.1) Lερε = λερε(x) in Ω

for the operator

(1.2) Lερ = − 1

εd

∫
Ω

J
(x− y

ε

)
κ
(
x, y,

x

ε
,
y

ε

)
ρ(y)dy + a

(
x,

x

ε

)
ρ(x),

with a small parameter ε > 0 that characterizes the microscopic length scale of the
medium. Under natural positiveness and periodicity conditions as well as fast decay
of J at infinity we study the bottom of the spectrum of this problem. The main focus
of this work is on the asymptotic behavior as ε → 0 of the point of the spectrum with
the smallest real part.

Many models in mathematical biology and population dynamics take into account
nonlocal interactions in the studied systems. These interactions are described by
convolution-type integral operators with integrable kernels. More specifically, the
simplest nonlocal model of population dynamics reads (see, e.g., [14]), [20])

∂tρ(x, t)−
∫
Ω

J(x−y)ρ(y, t)dy+

∫
Rd

J(y−x)dy ρ(x, t) = 0 in Ω, ρ = 0 on Rd\Ω,

where ρ denotes population density, J(x− y) ≥ 0 is a dispersal kernel that describes
the rate of jumps from the location y to the location x and the above equation defines
nonlocal transport in Ω, while the Dirichlet condition ρ = 0 (imposed everywhere on
Rd \Ω) represents the case of a hostile exterior domain. In the case when the growth
of the population is taken into account the above equation is also supplemented by an
additional KPP type (local) nonlinear term (see, e.g., [11], [13]). Then the large time
behavior of ρ(x, t) can be qualitatively characterized by linearizing the problem and
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2 A. PIATNITSKI AND V. RYBALKO

studying the bottom part of the spectrum of the corresponding operator, in particular,
an optimal persistence criterion is formulated in terms of the bottom point of the
spectrum [2], [6], [8], [12], [16], [26].

To model nonlocal diffusion in strongly inhomogeneous media, in [24], [25] evo-
lution problems with dispersal kernels of the form J(x − y)κ(x, y) with integrable
J ≥ 0 and positive periodic κ were considered in the parabolic scaling t → t/ε2,
x → x/ε. It was shown in [24] that the asymptotic behavior of solutions is described
by a local effective diffusion problem in the symmetric case (when J(z) = J(−z) and
κ(x, y) = κ(y, x)), while [25] revealed a large effective drift appearing in asymmetric
case, and the corresponding homogenization result was established in rapidly moving
coordinates. The approach in [25] was developed for problems stated in the whole
space Rd, and it fails to work in the case of a bounded domain because of the presence
of large effective drift. To overcome this difficulty one can combine the study of the
evolution problem with the spectral analysis of problem (1.1).

Peculiar features of the spectral problem (1.1) can be seen in the case of nonlocal
diffusion operator in Rd

(1.3) L̂ερ = − 1

εd

∫
Rd

J
(x− y

ε

)
κ
(x
ε
,
y

ε

)
(ρ(y)− ρ(x)) dy

with a periodic coefficient κ. One can formally assign to L̂ε the singularly per-
turbed differential operator D̂ε given by the two-term asymptotic formula D̂ε =
−ε2div(A∇ · ) + εB · ∇ with a constant matrix A > 0 and a constant vector B.

Indeed, as shown in [25] the semigroups e−tL̂ε/ε
2

and e−tD̂ε/ε
2

generated by operators
1
ε2 L̂ε and 1

ε2 D̂ε are close as ε → 0 (uniformly on finite time intervals). Therefore, it
can be expected that the asymptotic behavior of the bottom part of the spectrum
of the operator Lε is also somehow similar to that of singularly perturbed elliptic
differential operators.

It should be noted that, in contrast with differential operators, the point of the
spectrum of Lε with the smallest real part need not be a principal eigenvalue, it might
lie on the edge of the essential spectrum. However, we show that the limit of this point
as ε → 0 can be specified in terms of an additive eigenvalue for an effective Hamilton-
Jacobi equation, like in the case of principal eigenvalues of singularly perturbed elliptic
differential operators. Despite this similarity of the results, related to the fact that the
operator Lε is becoming more and more localized for small ε, many technical aspects
in proofs in local and nonlocal cases are quite different.

The asymptotic behavior of the principal eigenpair of singularly perturbed local
(differential) convection-diffusion operators with oscillating coefficients was studied in
[23] (see also [22]), where the Cole–Hopf transformation e−Wε(x)/ε of the first eigen-
function was used, yielding a perturbed Hamilton-Jacobi equation. The latter was
naturally dealt with by means of the vanishing viscosity techniques. In the case of non-
local operators the Cole–Hopf transformation does not lead to a perturbed Hamilton-
Jacobi equation, and we rather exploit the monotonicity of the map Wε 7→ e−Wε/ε

to devise a version of perturbed test functions method [10] for nonlocal operators.
The main difficulty however is in finding relevant uniform bounds for the function
Wε. In the case of local operators, appropriate tools are Bernstein’s estimates and
Harnack’s inequality. Bernstein’s method is developed for local operators and it is not
clear how to adapt it in the nonlocal case, while the known results [7] on the Harnack
type inequalities are established for dispersal kernels with a finite support and are not
scaling invariant. We prove instead uniform estimates in Lemma 4.2 to establish the
existence of half-relaxed limits of Wε.



HOMOGENIZATION OF NONLOCAL SPECTRAL PROBLEMS 3

When the functions κ and a in (1.2) does not depend on the slow variables (peri-
odic case) the solution of the effective Hamilton-Jacobi problem is a linear function.
In this case, using a factorization trick inspired by asymptotic analysis of differential
operators with periodic coefficients [4], we establish a more accurate two-term asymp-
totic formula for eigenvalues (if exist) in the bottom part of the spectrum. This, in
particular, generalizes an asymptotic result of [3] obtained for symmetric operators
with homogeneous dispersal kernels (remark however that in this special case, the
analysis in [3] covers also unbounded domains that are outside of the scope of the
present work).

It is known that operator (1.3) is the generator of a jump Markov process in
Rd. Therefore, one of the ways of obtaining homogenization results for problems
involving operator (1.3) is based on probabilistic interpretation of solutions to these
problems and on the limit theorems for the corresponding jump Markov processes.
In particular, an alternative approach of studying the principal eigenpair of problem
(1.1)–(1.2) could rely on a probabilistic interpretation of operator (1.2). Since this
operator is the generator of a jump Markov process with birth and death, one can try
to exploit the large deviation principle for this process to investigate the asymptotic
properties of problem (1.1)–(1.2). In the case of operators defined in (1.3) and similar
locally periodic operators the large deviation result for the mentioned jump processes
was obtained in [21].

The paper is organized as follows. In Section 2 we state Theorem 2.1 describing
the limit as ε → 0 of the bottom point of the spectrum of the operator (1.2) in
the general locally periodic case. Section 3 is devoted to establishing more precise
asymptotics of eigenvalues in the case of periodic environments. Finally, Section 4
contains the proof of Theorem 2.1.

2. Problem setup. Convergence result for the bottom point of the spec-
trum. We begin with specifying assumptions on the functions J , κ and a appearing
in the definition (1.2) of Lε. We assume that J satisfies

(2.1) J ∈ C(Rd), J(0) > 0 and 0 ≤ J(z) ≤ Ce−|z|1+β

∀z ∈ Rd,

for some C, β > 0, besides,

(2.2) κ > 0 and κ ∈ C(Ω× Ω× Td × Td), a ∈ C(Ω× Td),

where Td denotes the torus Td = Rd/Zd and we identify periodic functions in Rd with
functions defined on Td. Thus coefficients κ and a in (1.2) are periodic functions of
the fast variables ξ = x/ε and η = y/ε, so that operator (1.2) correspond to a locally
periodic environment.

We are interested in the asymptotic behavior as ε → 0 of the following quantity
introduced in [6],

(2.3) λε = sup
{
λ
∣∣∃v ∈ C(Ω), v > 0 such that Lεv ≥ λv in Ω

}
.

It is known [18] (Theorem 2.2) that λε belongs to the spectrum σ(Lε) of the operator
Lε (considered in L2(Ω) or C(Ω)) and λε = inf{Reλ |λ ∈ σ(Lε)}, i.e. λε is the
bottom point of the spectrum. Typically λε is the principal eigenvalue of the operator
Lε, i.e. an isolated simple eigenvalue (with minimal real part) whose corresponding
eigenfunction can be chosen strictly positive, as in the case of elliptic differential
operators. However if λε = minΩ a(x, x

ε ) rather than λε < minΩ a(x, x
ε ), the principal
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eigenvalue does not exist and λε is the bottom point of the essential spectrum of
Lε. In both cases the sign of λε is crucial for stability of the corresponding evolution
semigroup e−Lεt or for the maximum principle to hold, see Theorem 2.3 in [18].

To state the main result on the asymptotic behavior of λε for locally periodic
environments, introduce the following function
(2.4)

H(p, x) = sup

{
λ
∣∣∣ ∃φ ∈ C(Td), φ > 0, such that

−
∫
Rd

J(z)ep·zκ(x, x, ξ, ξ − z)φ(ξ − z)dz + a(x, ξ)φ(ξ) ≥ λφ(ξ) on Td

}
.

Theorem 2.1. Suppose that J satisfies (2.1) and κ, a satisfy (2.2). Then

(2.5) λε → −Λ as ε → 0,

where Λ is a unique additive eigenvalue of the problem

(2.6) −H(∇W (x), x) = Λ in Ω, −H(∇W (x), x) ≥ Λ on ∂Ω.

Both the equation and the boundary condition in (2.6) are understood in the viscos-
ity sense, see, e.g., [9]. It follows from the definition (2.4) that function H(p, x) is
continuous, H ∈ C(Rd × Ω), concave in p and H(p, x) → −∞ uniformly in x ∈ Ω
as |p| → ∞. Then (see, e.g., [5]) there is a unique Λ such that problem (2.6) has a
continuous viscosity solution. Moreover, the additive eigenvalue Λ can be calculated
by the following formula

(2.7) Λ = inf
W∈C1(Ω)

max
x∈Ω

−H(∇W (x), x).

Yet another representation for Λ is given by minimization of action functional for the
Lagrangian L(q, x) = maxp∈Rd(q · p+H(p, x)),

(2.8) Λ = − inf

{
1

T

∫ T

0

L(ξ̇(t), ξ(t))dt
∣∣∣ T > 0, ξ ∈ W 1,∞(0, T ; Ω)

}
.

In the periodic case H(p, x) is independent of x, H(p, x) = H(p), and one can
show that the additive eigenvalue Λ in this case is given by Λ = −maxH(p) while
solutions W (x) of (2.6) are linear functions W (x) = p · x with p solving H(p) = −Λ.
This suggests the representation (3.10) for eigenfunctions with the exponential factor
e−p·x/ε. In this case however we find much more accurate asymptotic formulas for
eigenvalues (see Theorem 3.1) and eigenfunctions (see Remark 3.7).

3. Periodic case. In this section we consider a particular case of problem (1.1)
when functions κ and a do not depend on the slow variables x and y, so that the
operator Lε has the following form

(3.1) Lερ(x) = − 1

εd

∫
Ω

J
(x− y

ε

)
κ
(x
ε
,
y

ε

)
ρ(y)dy + a

(x
ε

)
ρ(x)

with

(3.2) κ ∈ C(Td × Td), κ > 0, a ∈ C(Td),
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and J satisfying (2.1).
Let us introduce the notation

(3.3) m = min a(x), M = max a(x),

and for any p ∈ Rd define

(3.4)

H(p) = sup

{
λ
∣∣∣∃φ ∈ C(Td), φ > 0, such that

−
∫
Rd

J(ξ − η)ep·(ξ−η)κ(ξ, η)φ(η)dη + a(ξ)φ(ξ) ≥ λφ(ξ) on Td

}
.

It follows from (3.4) that H(p) is a continuous concave function, taking finite values
for all p ∈ Rd and such that H(p) → −∞ as |p| → ∞. Also, by Theorem 2.2 in [18]
one has H(p) ≤ m. Let p0 be a maximum point of H(p),

(3.5) H(p0) = maxH(p).

The asymptotic behavior of the bottom part of the spectrum of the operator Lε

in the periodic case is described in the following

Theorem 3.1. Assume that conditions (2.1), (3.2) are fulfilled. Let λε be the
point of the spectrum of Lε with the minimal real part. Then λε belongs to the essential
spectrum of Lε for sufficiently small ε in the case H(p0) = m, or λε is the principal
eigenvalue of Lε in the case H(p0) < m, and

(i) If H(p0) = m then λε = H(p0) for sufficiently small ε;
(ii) If H(p0) < m then

(3.6) λε = H(p0) + Λ1ε
2 + o(ε2) as ε → 0,

where Λ1 is the principal eigenvalue of the operator

(3.7) L0v = −div
(
A∇v

)
in Ω, v = 0 on ∂Ω,

whose matrix of coefficients A has entries

(3.8) Aij = −1

2
∂2
pipj

H(p0).

Moreover, in the case H(p0) < m the operator Lε has a large or infinite number of

other eigenvalues λ
(j)
ε for small ε. Assuming that eigenvalues of both Lε and L0 are

arranged by their increasing real parts (and repeated according to their multiplicities),
we have

(3.9) λ(j)
ε = H(p0) + Λjε

2 + o(ε2) as ε → 0,

where Λj are eigenvalues of the operator L0.

Remark 3.2. The following example inspired by [6] shows that the case H(p0) =
m and H(p0) < m do occur. Assume that d ≥ 3, κ = 1 and consider J(z) given by

J(z) =
µe−|z|2∑

l∈Zd e−|z+l|2 ,
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where µ > 0. Then
∫
Rd J(x − y)φ(y)dy = µ

∫
Td φ(y)dy for every φ ∈ C(Td). Let

a(x) be a smooth periodic function strictly positive in Rd \Zd and such that a(0) = 0
and a(x) > τ |x|2 (τ > 0) in a neighborhood of zero. For such J , κ and a, we have
m = 0, while H(0) = 0 if µ is small and H(0) < 0 if µ is sufficiently large. Indeed,
according to [18] it always holds that H(0) ≤ 0 and H(0) < 0 iff ∃ φ ∈ C(Td), φ > 0
satisfying −µ

∫
Td φ(y)dy + a(x)φ = H(0)φ, i.e. φ = 1

a(x)−H(0) (up to multiplication

by a positive constant) and
∫
Td

µ
a(y)−H(0)dy = 1. Thus H(0) < 0 iff

∫
Td

µ
a(x)dx > 1.

3.1. Problem reduction. Similarly to spectral problems for differential oper-
ators with periodic oscillating coefficients [4], problem (1.1) can be transformed via
a factorization trick to a form more convenient for the asymptotic analysis. First we
set

(3.10) ρε(x) = e−p·x/εuε(x) in Ω,

so that the new unknown uε(x) satisfies

(3.11) − 1

εd

∫
Ω

J
(x− y

ε

)
e

1
εp·(x−y)κ

(x
ε
,
y

ε

)
uε(y)dy + a

(x
ε

)
uε(x) = λεuε(x) in Ω.

Then consider a periodic counterpart of (3.11) in the rescaled variables ξ = x/ε,
η = y/ε,

(3.12) −
∫
Rd

J(ξ − η)ep·(ξ−η)κ(ξ, η)φ(η)dη + a(ξ)φ(ξ) = H(p)φ(ξ) in Td.

Specifically, we are interested in the principal eigenvalue H(p) (with the minimal
real part), which, if exists, is real and simple, its corresponding eigenfunction is sign
preserving and thus can be chosen strictly positive, φ > 0. It is known [18] that H(p)
given by (3.4) is always the principal eigenvalue of the problem (3.12) provided that
H(p) < m (otherwise H(p) = m, it lies at the bottom point of the essential spectrum
and principal eigenvalue does not exist). In the case H(p) < m the adjoint problem

(3.13) −
∫
Rd

J(η − ξ)ep·(η−ξ)κ(η, ξ)φ∗(η)dη + a(ξ)φ∗(ξ) = H(p)φ∗(ξ) in Td

has the same principal eigenvalue H(p) and there also is a positive eigenfunction φ∗.
Now we perform another change of the unknown

(3.14) uε(x) = φ
(x
ε

)
vε(x),

where φ is a positive solution of (3.12), and introduce an affine change of the spectral
parameter

(3.15) µε =
1

ε2
(λε −H(p))

to transform (1.1) to the spectral problem

(3.16) L̃εvε = µεvε in Ω,

where

(3.17) L̃εv = − 1

εd+2

∫
Ω

K
(x
ε
,
y

ε

)
v(y)dy +

1

εd+2

∫
Rd

K
(x
ε
,
y

ε

)
dy v(x),
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and

(3.18) K(x, y) =
1

φ(x)
J(x− y)ep·(x−y)κ(x, y)φ(y).

In what follows we will also deal with the kernel

(3.19) Q(x, y) = φ∗(x)φ(x)K(x, y),

by virtue of (3.12)–(3.13) this kernel satisfies the following important property

(3.20)

∫
Rd

Q(x, y)dy =

∫
Rd

Q(y, x)dy ∀x ∈ Rd.

Since the operators in problems (3.12) and (3.13) analytically depend on pi, and
H(p) is a simple isolated eigenvalue if H(p) < m, then by perturbation theory [17]
H(p) is an analytic function of pi and eigenfunctions φ, φ∗ can also be chosen analytic
in pi, i = 1, . . . , d.

Proposition 3.3. Let p0 be the maximum point of H(p), and assume that H(p0) <
m. Then the function χ∗

i := ∂pi logφ
∗
∣∣
p=p0

satisfies

(3.21)

∫
Rd

Q
(
ξ + z, ξ

)(
zi + χ∗

i (ξ + z)− χ∗
i (ξ)

)
dz = 0 in Td, i = 1, . . . , d,

and

(3.22) ∂2
pipj

H(p0) = − 1∫
Td φ(ξ)φ∗(ξ)dξ

∫
Td

∫
Rd

Q
(
ξ+z, ξ

)(
zizj+2χ∗

i (ξ+z)zj

)
dzdξ.

Proof. To derive (3.21) we differentiate (3.13) with respect to pi at p = p0, then
multiply by φ(ξ) and change the variables in the integral by setting z = η − ξ.
Similarly, (3.22) is obtained by taking second derivatives of (3.13) and integrating the
result over Td with the weight φ(ξ).

Lemma 3.4. Let p0 be the maximum point of H(p), and assume that H(p0) < m.
Then

(3.23) ∂2
pipj

H(p0)qiqj < 0 ∀q ∈ Rd \ {0}.

Hereafter we assume summation over repeated indices.

Proof. By (3.22) we have to show positive difiniteness of the matrix A∗ with
entries

(3.24) A∗
ij =

∫
Td

∫
Rd

Q
(
ξ + z, ξ

)(1
2
zizj + χ∗

i (ξ + z)zj

)
dzdξ,

where χ∗
i ∈ L2(Td) are solutions of problems (3.21). To this end for any q ∈ Rd we

write, using (3.21),

2A∗
ijqiqj =

∫
Td

∫
Rd

Q(ξ + z, ξ) (qiziqjzj + 2qi(χ
∗
i (ξ + z)− χ∗

i (ξ))qjzj) dzdξ

− 2qiqj

∫
Td

∫
Rd

Q(η, ξ)χ∗
i (ξ)(χ

∗
j (η)− χ∗

j (ξ))dηdξ.
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Thanks to (3.20) we have

(3.25)

−
∫
Td

∫
Rd

Q(η, ξ)
(
χ∗
i (ξ)(χ

∗
j (η)− χ∗

j (ξ)) + χ∗
j (ξ)(χ

∗
i (η)− χ∗

i (ξ))
)
dηdξ =∫

Td

∫
Rd

Q(η, ξ)χ∗
i (ξ)χ

∗
j (ξ)dηdξ +

∫
Td

∫
Rd

Q(ξ, η)χ∗
i (ξ)χ

∗
j (ξ)dηdξ

−
∫
Td

∫
Rd

Q(η, ξ)
(
χ∗
i (ξ)χ

∗
j (η) + χ∗

i (η)χ
∗
j (ξ)

)
dηdξ,

also∫
Td

∫
Rd

Q(ξ, η)χ∗
i (ξ)χ

∗
j (ξ)dηdξ =

∑
l∈Zd

∫
Td×Td

Q(ξ, η + l)χ∗
i (ξ)χ

∗
j (ξ)dηdξ

=
∑
l∈Zd

∫
Td×Td

Q(ξ − l, η)χ∗
i (ξ − l)χ∗

j (ξ − l)dηdξ

=

∫
Td

∫
Rd

Q(η, ξ)χ∗
i (η)χ

∗
j (η)dηdξ.

Therefore

2A∗
ijqiqj =

∫
Td

∫
Rd

Q(ξ+z, ξ)qi(zi+χ∗
i (ξ+z)−χ∗

i (ξ))qj(zj+χ∗
j (ξ+z)−χ∗

j (ξ))dzdξ ≥ 0.

The inequality is strict unless q = 0, otherwise qiχ
∗
i (x) is a linear function whose

gradient equals −q and hence qiχ
∗
i (x) cannot be periodic if q ̸= 0.

From now on we will assume that p = p0, in particular, this assumption will
always be tacitly made when we refer to (3.12)–(3.13) and (3.15)–(3.21).

3.2. Resolvent convergence. Assume that H(p0) < m, and consider, for a
given fε ∈ L2(Ω) the following problem

(3.26) L̃εvε + vε = fε in Ω, vε = 0 in Rd \ Ω,

where L̃ε is given by (3.17). Since vε = 0 in Rd \ Ω we can rewrite

(3.27) L̃εvε = − 1

εd+2

∫
Rd

K
(x
ε
,
y

ε

)(
vε(y)− vε(x)

)
dy.

Theorem 3.5. There is a unique solution vε(x) of the problem (3.26) in L2(Rd)
for any fε ∈ L2(Ω). If ∥fε∥L2(Ω) ≤ C with a constant C independent of ε then

the sequence of solutions vε contains a subsequence converging strongly in L2(Rd) as
ε → 0. If additionally fε → f strongly in L2(Ω) then the whole sequence of solutions
vε converges to the unique solution of the problem

−Aij∂
2
xixj

v(x) + v(x) = f(x) in Ω,(3.28)

v(x) = 0 on ∂Ω,(3.29)

extended by setting v = 0 in Rd \ Ω.
Proof. It is convenient to extend fε(x) by zero into Rd \ Ω. Observe that the

Fredholm alternative applies to the problem (3.26) since the operator on the left hand
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side is represented as the sum of a compact operator and an invertible one. To show
that there is a solution of (3.26) and to derive an a priori estimate multiply (3.26) by
φ(xε )φ

∗(xε )vε(x) and integrate over Rd. Using (3.20) we obtain

(3.30)

1

2εd+2

∫
Rd

∫
Rd

Q
(x
ε
,
y

ε

)
|vε(y)− vε(x)|2 dydx

+

∫
Rd

(
|vε(x)|2 − fε(x)vε(x)

)
φ
(x
ε

)
φ∗

(x
ε

)
dx = 0

It follows that problem (3.26) cannot have nonzero solution for fε = 0. Thus (3.26)
has a unique solution and using the Cauchy-Schwartz inequality we get

(3.31)

∫
Rd

∫
Rd

Q
(x
ε
,
y

ε

)
|vε(y)− vε(x)|2 dydx ≤ Cεd+2, ∥vε∥L2(Rd) ≤ C,

with a constant C independant of ε. Due to the fact that Q(ξ, η) = φ∗(ξ)J(ξ −
η)ep0·(ξ−η)φ(η) and J(0) > 0, we then have

(3.32)

∫
Rd

dx

∫
|z|≤r0ε

|vε(x+ z)− vε(x)|2dz ≤ Cεd+2

for some r0 > 0 independent of ε.

Lemma 3.6. Let vε ∈ L2(Rd) be a sequence of functions satisfying (3.32) and such
that vε = 0 in Rd \ Ω. Then, up to extracting a subsequence, functions vε converge
strongly in L2(Rd) to some limit v as ε → 0. Moreover v ∈ H1(Rd) and v = 0 in
Rd \ Ω.

Proof. Without loss of generality we can assume that vε ∈ C∞
0 (Rd). By Fubini’s

theorem ∫ r0ε

0

dr

∫
Rd

dx

∫
|z|=r

|vε(x+ z)− vε(x)|2dS ≤ Cεd+2,

therefore there exists rε such that r0ε/2 ≤ rε ≤ r0ε and

(3.33)

∫
Rd

dx

∫
|z|=rε

|vε(x+ z)− vε(x)|2dS ≤ 2Cεd+1/r0.

Consider functions

vε(x) =
1

|B1| rdε

∫
|z|≤rε

vε(x+ z)dz.

where |B1| =
Γ( d

2+1)

πd/2 is the volume of the unit ball in Rd. From (3.32) using Jensen’s
inequality we get

(3.34)

∫
Rd

|vε(x)− vε(x)|2dx ≤ Cε2.

Next observe that ∀ i = 1, . . . , d,

∂xi
vε(x) =

1

|B1|rdε

∫
|z|=rε

vε(x+ z)νidS =
1

2|B1|rdε

∫
|z|=rε

(vε(x+ z)− vε(x− z))νidS,

where νi = νi(z) = zi/|z| denotes the i-th component of the unite outward pointing
normal to the (d − 1)-sphere |z| = rε. Hence, using the Cauchy-Schwarz inequality
we obtain

|∂xi
vε(x)|2 ≤ C

εd+1

∫
|z|=rε

|vε(x+ z)− vε(x)|2 dS.
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Thus, thanks to (3.33) we have

(3.35)

∫
Rd

|∇vε(x)|2 dx ≤ C,

and since functions vε vanish in Rd \Ω it holds that vε = 0 in Rd \Ω′ for sufficiently
small ε, where Ω′ is any bounded domain containing Ω. Then it follows from (3.35)
that, up to extracting a subsequence, functions vε converge weakly in H1

0 (Ω
′) to a

function v ∈ H1(Rd) vanishing in Rd\Ω. Thanks to the compactness of the embedding
H1

0 (Ω
′) ⊂ L2(Ω′) and (3.34) we also have the strong L2-convergence of functions vε

to v. Finally, since v = 0 in Rd \ Ω and ∂Ω is C1-smooth, v = 0 on ∂Ω. Lemma 3.6
is proved.

We continue the proof of Theorem 3.5. By Lemma 3.6 we can extract a subsequence
of functions vε converging strongly to some function v ∈ H1(Rd) such that v = 0 in
Rd \ Ω. Thus to complete the proof, it suffices to show that (3.28) is satisfied in the
sense of distributions. To this end consider an arbitrary ϕ ∈ C∞

0 (Ω) (ϕ = 0 in Rd \Ω)
and construct test functions ϕε(x) such that, as ε → 0,

− 1

εd+2

∫
Rd

Q
(y
ε
,
x

ε

)
(ϕε(y)− ϕε(x)) dy ⇀ −A∗

ij∂
2
xixj

ϕ(x) weakly in L2(Ω),(3.36)

ϕε(x) → ϕ(x) strongly in L2(Ω),(3.37)

where A∗
ij are given by (3.24). We set

(3.38) ϕε(x) = ϕ(x) + ε∂xiϕ(x)χ
∗
i (x/ε),

where χ∗
i are solutions of (3.21). Then it is straightforward to see that (3.37) holds.

To check (3.36) perform changes of variables x/ε = ξ, y = x+ εz,

1

εd+2

∫
Rd

Q
(y
ε
,
x

ε

)
(ϕε(y)− ϕε(x)) dy =

1

ε2

∫
Rd

Q
(
ξ + z, ξ

)
(ϕε(x+ εz)− ϕε(x)) dz,

and substitute the expansion

ϕε(x+ εz) = ϕε(x) + ε(zi + χ∗
i (ξ + z)− χ∗

i (ξ))∂xi
ϕ(x) +

ε2

2
∂2
xixj

ϕ(x)zizj

+ ε2χ∗
i (ξ + z)

(
zj∂

2
xixj

ϕ(x) +O(ε|z|2)
)
+O(ε3|z|3).

Taking into account (3.21) we find that

1

εd+2

∫
Rd

Q
(y
ε
,
x

ε

)(
ϕε(y)− ϕε(x)

)
dy =

∫
Rd

Q(ξ + z, ξ)∂2
xixj

ϕ(x)
(
zi
2 + χ∗

i (ξ + z)
)
zjdz

+O(ε).

Since functions a∗ij(ξ) =
∫
Rd Q(ξ + z, ξ)

(
1
2zj + χ∗

i (ξ + z)zj
)
dz are periodic, we have

a∗ij(x/ε)∂
2
xixj

ϕ(x) ⇀ ∂2
xixj

ϕ(x)

∫
Td

a∗ij(ξ)dξ weakly in L2(Ω),

so that (3.36) is also proved.
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Now we can use φ(x/ε)φ∗(x/ε)ϕε(x) as a test function in (3.26) and pass to the
limit as ε → 0. We have

1

εd+2

∫
Rd

vε(x)

∫
Rd×Rd

Q
(y
ε
,
x

ε

)(
ϕε(y)− ϕε(x)

)
dydx

−
∫
Rd

φ
(x
ε

)
φ∗

(x
ε

)(
vε(x)− fε(x)

)
ϕε(x)dx = 0,

whence we find in the limit ε → 0,

−
∫
Rd

v(x)A∗
ij∂

2
xixj

ϕ(x)dx =

∫
Td

φ(ξ)φ∗(ξ)dξ

∫
Rd

(
f(x)− v(x)

)
ϕ(x)dx.

Thus, v is a solution of the problem (3.28)–(3.29), and thanks to its uniqueness the
whole sequence of functions vε converge to v strongly in L2(Rd) as ε → 0. Theorem
3.5 is proved.

3.3. Proof of Theorem 3.1. Consider first the case H(p0) = m. By (3.4) we
have, ∀δ > 0 there is a function ϕ ∈ C(Td) such that

−
∫
Rd

J(ξ − η)ep0·ξ−η)κ(ξ, η)ϕ(η)dη + a(ξ)ϕ(ξ) ≤ (m− δ)ϕ(ξ).

On the other hand

λε = sup

{
λ
∣∣∣∃ρ ∈ C(Ω), ρ > 0, such that

− 1

εd

∫
Ω

J
(x− y

ε

)
κ
(x
ε
,
y

ε

)
ρ(y)dy + a

(x
ε

)
ρ(x) ≥ λρ(x) in Ω

}
,

then taking ρ(x) = ep0·x/εϕ(x/ε) we see that λε ≥ m − δ. Thus λε ≥ m and if
minx∈Ω a(x/ε) = m (that is always true for sufficiently small ε) then λε = m and it
belongs to the essential spectrum of Lε.

Now consider the caseH(p0) < m. Let vε be an eigenfunction corresponding to an
arbitrary (not necessarily principal) eigenvalue µε. First we show that if the real part
of µε is bounded then |µε| is bounded. To this end multiply (3.16) by φ(xε )φ

∗(xε )vε(x),
where vε denotes the complex conjugate, take real part and integrate over Rd. Then
using (3.20) we obtain the following equality
(3.39)

1

2εd+2

∫
Rd

∫
Rd

Q
(x
ε
,
y

ε

)
|vε(y)− vε(x)|2 dydx = Reµε

∫
Rd

|vε(x)|2 φ
(x
ε

)
φ∗

(x
ε

)
dx

Therefore if ∥vε∥L2(Ω) = 1 then (3.32) holds and by Lemma 3.6 functions converge
strongly in L2(Ω) to a (nonzero) function v as ε → 0 along a subsequence. Then
introducing ṽε = 1

1+µε
vε and passing to the limit in the equality L̃εṽε + ṽε = vε we

obtain by virtue of Theorem 3.5 that functions ṽε converge to a solution ṽ of the
problem L0ṽ = v. One the other hand ṽε → 0 (since |µε| → ∞), thus v = 0, a
contradiction.

Next we show that for µ from every compact subset M of C\∪∞
k=1{Λk} and suffi-

ciently small ε the operator
(
µI−L̃ε

)−1
: L2(Ω) → L2(Ω) exists and its operator norm

is uniformly bounded. Indeed, otherwise there exist functions vε with ∥vε∥L2(Ω) = 1
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and numbers µε ∈ M such that L̃εvε − µεvε → 0 strongly in L2(Ω) as ε → 0 (along a
subsequence). Then, by Theorem 3.5 one can extract a subsequence of functions vε
converging to a nontrivial solution v of the equation L0v − µv = 0 for some µ ∈ M ,
that is impossible since M ∩ ∪∞

k=1{Λk} = ∅. Moreover, applying Theorem 3.5 we

conclude that ∀f ∈ L2(Ω) and µ ∈ M ,
(
µI − L̃ε

)−1
f →

(
µI − L0

)−1
f strongly in

L2(Ω) as ε → 0, therefore spectral projectors Πε(ω) =
1

2πi

∫
∂ω

(
µI−L̃ε

)−1
dµ converge

strongly to the projector Π0(ω) = 1
2πi

∫
∂ω

(
µI − L0

)−1
dµ for any bounded open set

ω ⊂ C whose boundary is smooth and does not contain eigenvalues Λk. In fact, there
is the compact convergence of projectors, i.e. additionally to the strong convergence
it holds that for any sequence of functions fε bounded in L2(Ω) the sequence of pro-
jections vε = Πε(ω)fε contains a strongly converging subsequence. Indeed, observe
that vε satisfy

L̃εvε + vε =
1

2πi

∫
∂ω

(1 + µ)
(
µI − L̃ε

)−1
fεdµ

and thanks to the uniform boundedness of
(
µI − L̃ε

)−1
Theorem 3.5 guarantees that

the sequence of functions vε does contain a strongly converging (as ε → 0) subse-
quence. The compact convergence of spectral projectors in turn implies that the
dimensions of the subspaces Πε(ω)L

2(Ω) and Π0(ω)L
2(Ω) coincide as ε is sufficiently

small, i.e. operators L̃ε and L0 have the same number of eigenvalues (counting mul-
tiplicities) in the domain ω. This means, in particular, that there is an eigenvalue
of L̃ε converging to Λ1 as ε → 0. Therefore the principal eigenvalue of L̃ε exists for
sufficiently small ε. It remains bounded as ε → 0 since its real part remains bounded,
and it converges (up to a subsequence) to an eigenvalue of L0 (any compact subset
of C \ ∪∞

k=1{Λk} belongs to the resolvent set of L̃ε for sufficiently small ε). Thus the

principal eigenvalue of L̃ε converges to Λ1. Other eigenvalues can be treated similarly.
Thus Theorem 3.1 is proved.

Remark 3.7. It follows from the above proof of Theorem 3.1 that, in the case

H(p0) < m, the j-th eigenfunction ρ
(j)
ε of Lε can be represented as

ρ(j)ε (x) = e−p0·x/ε(v(j)ε (x) + o(1)),

where v
(j)
ε is a j-th eigenfunction of (3.7) with unit L2(Ω)-norm, and o(1) stands for

a function whose norm in L2(Ω) tends to zero as ε → 0.

4. Locally periodic case. This section is devoted to the proof of Theorem 2.1,
i.e. we study operator Lε given by (1.2) with generic functions κ and a satisfying
(2.2). Introduce the notation

Eε(x, y) =
1

εd
J
(x− y

ε

)
κ
(
x, y,

x

ε
,
y

ε

)
,

then Lε writes as

(4.1) Lερε = −
∫
Ω

Eε(x, y)ρε(y)dy + a
(
x,

x

ε

)
ρε(x),

and
(4.2)

λε = sup

{
λ
∣∣∣∃v ∈ C(Ω), v > 0 such that −

∫
Ω

Eε(x, y)
v(y)

v(x)
dy + a

(
x,

x

ε

)
≥ λ in Ω

}
.
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Assume first that λε < minΩ a(x, x/ε), then λε is the principal eigenvalue of Lε.

Therefore the corresponding eigenfunction can be written as ρε = e−
1
εWε(x). We

consider the following ansatz for Wε, Wε(x) = W (x)+εw(x, x/ε)+ . . . , where w(x, ξ)
is periodic in ξ. Together with the fast variable ξ = x/ε we also introduce η = y/ε and
regard these variables as independent of the slow ones, x and y. We also hypothesize
that λε converges to a finite number −Λ. Then, for fixed x ∈ Ω we expand

W (y) = W (x+ ε(η − ξ)) = W (x) + ε∇W (x) · (η − ξ) + . . .

and formally obtain in the leading term of the eigenvalue equation Lερε = λερε that
Λ = −H(∇W (x), x), H(p, x) being the principal eigenvalue of the cell problem
(4.3)

−
∫
Rd

J(ξ−η)ep·(ξ−η)κ(x, x, ξ, η)φ(η, p, x)dη+a(x, ξ)φ(ξ, p, x) = H(p, x)φ(ξ, p, x) on Td

depending on the parameters p ∈ Rd and x ∈ Ω, while w(x, ξ) = − logφ(ξ,∇W (x), x).
Adopting the normalization condition

∫
Tn φ(ξ, p, x)dξ = 1 we obtain a function φ(ξ, p, x)

continuous in all their arguments (ξ, p and x), provided that the principal eigenvalue
exists. Notice that the principal eigenvalue H(p, x) is given by (2.4) and always
satisfies H(p, x) < minξ∈Td a(x, ξ), moreover the latter inequality is sufficient and
necessary for existence of a principal eigenvalue of (4.3). We show below that if

(4.4) λε < min
Ω

a(x, x/ε) and H(p, x) < min
ξ∈Td

a(x, ξ)

then λε → −Λ as ε → 0, where Λ is in fact the minimal eigenvalue of the problem
−H(∇W (x), x) = Λ in Ω or, equivalently,

Λ = min
{
Λ̃ | ∃ a viscosity subsolution of −H(∇W (x), x) ≤ Λ̃ in Ω

}
.

As known, see, e.g., [19] this formula (along with (2.7) and (2.8)) determines the
unique additive eigenvalue Λ of problem (2.6).

The additional technical assumptions (4.4) will then be eliminated by devising
small deformations of a(x, ξ) regularizing eigenvalue problems, and in this way we
will get the proof of Theorem 2.1.

Theorem 4.1. Suppose that J satisfies (2.1) and κ, a satisfy (2.2). Assume also
that λε (given by (2.3)) and H(p, x) (given by (2.4)) satisfy (4.4). Then λε → −Λ as
ε → 0, where Λ is a unique additive eigenvalue of problem (2.6).

Proof. We begin with the following lower bound, obtained by using the test func-
tion

vε(x) = e−
1
εW (x)φ(x/ε,∇W (x), x)

in (4.2),

λε ≥ min
x∈Ω

{
−
∫
Ω

Eε(x, y)
vε(y)

vε(x)
dy + a

(
x,

x

ε

)}
,

where W is an arbitrary function of the class C∞
0 (Rd). Notice that uniformly in

x ∈ Ω,

−
∫
Ω

Eε(x, y)
vε(y)

vε(x)
dy + a

(
x,

x

ε

)
= a

(
x,

x

ε

)
+ o(1)

−
∫

x
ε−

1
εΩ

J(z)κ
(
x, x,

x

ε
,
x

ε
− z

)
e

1
ε (W (x)−W (x−εz))φ(x/ε− z,∇W (x), x)

φ(x/ε,∇W (x), x)
dz.
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Expanding W (x− εz) = W (x)− ε∇W (x) · z +O(ε2|z|2), using (4.3) and taking into
account (2.1) we get

(4.5) lim inf
ε→0

λε ≥ min
x∈Ω

H(∇W (x), x).

Therefore by density of functions W |Ω, W ∈ C∞
0 (Rd) in C1(Ω) we have

(4.6) lim inf
ε→0

λε ≥ −Λ, where Λ = inf
W∈C1(Ω)

max
x∈Ω

−H(∇W (x), x).

Next, considering a partial limit λ of λε as ε → 0, we use the techniques of half-
relaxed limits (introduced in [1]) to show that there is a viscosity subsolution W ∗(x)
of

(4.7) −H(∇W ∗(x), x) ≤ −λ in Ω.

Specifically, let e−
1
εWε(x) be the eigenfunction of Lε corresponding to the eigenvalue

λε and assume that this function satisfies the following normalization condition

(4.8)

∫
Ω′

Wε(x)dx = 0,

where Ω′ is a domain such that Ω′ ⊂ Ω. Since λε < minx∈Ω a(x, x/ε) and (4.6) holds,
we can assume, after passing to a subsequence that λε → λ as ε → 0. Then we
consider the half-relaxed limit

(4.9) W ∗(x) = lim
r→0

lim sup
ε→0

sup{Wε(ξ)| ξ ∈ Br(x) ∩ Ω}.

Lemma 4.2. Assume that functions Wε(x) satisfy (4.8). Then W ∗(x) given by
(4.9) is a bounded function in Ω.

Proof. As J(0) > 0 and J is continuous, there is r̂0 > 0 such that inf |z|≤r̂0 J(z) >
0. Furthermore, since ∂Ω is C1-smooth, there is r̃ε ≥ cε (with c > 0 independent of
ε) such that any ball Br̂0ε(x) centered at a point x ∈ Ω contains a ball Br̃ε(ξ) that is
also contained in Ω, i.e. Br̃ε(ξ) ⊂ Br̂0ε(x) ∩ Ω.

We argue as in Lemma 3.6. Thanks to (4.6) eigenvalues λε are uniformly bounded
from below and we have∫

Ω

∫
Ω

J
(x− y

ε

)
κ
(
x, y,

x

ε
,
y

ε

)
e

1
ε (Wε(x)−Wε(y))dxdy ≤ Cεd,

therefore ∫
Ωε

∫
|z|<r̃ε

e
1
ε |Wε(x+z)−Wε(x)|dzdx ≤ Cεd,

where Ωε = {x ∈ Ω |dist(x, ∂Ω) > r̃ε}. In particular,

(4.10)

∫
Ωε

∫
|z|<r̃ε

|Wε(x+ z)−Wε(x)|d+1dzdx ≤ Cε2d+1.

It follows that there is some rε, r̃ε/2 ≤ rε ≤ r̃ε such that∫
Ωε

∫
|z|=rε

|Wε(x+ z)−Wε(x)|d+1dSdx ≤ Cε2d.
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Set

W ε(x) =
1

|B1|rdε

∫
|z|<rε

Wε(x+ z)dz.

Using Jensen’s inequality we get

(4.11)

∫
Ωε

|W ε(x)−Wε(x)|d+1dx ≤ Cεd+1.

Then, arguing as in Lemma 3.6 we derive

(4.12)

∫
Ωε

|∇W ε(x)|d+1dx ≤ C.

Now, taking into account (4.8), (4.11) we can apply the Poincaré inequality to conclude
that

∫
Ωε

|W ε(x)|d+1dx ≤ C for small ε. Then by the compactness of the embedding

W 1,d+1(Ωε) ⊂ C(Ωε) (Morrey’s theorem) we derive that |W ε(x)| ≤ C on Ωε with C
independent of ε. Combining this with (4.11) we infer that W ∗(x) is bounded from
below.

Repeating the above reasonings for the positive part W+
ε (x) of Wε(x) (notice that

the inequality (4.10) is also valid for W+
ε (x)) we get that

W
+

ε (x) =
1

|B1|rdε

∫
|z|<rε

W+
ε (x+ z)dz

satisfies
∫
Ωε

|∇W
+

ε (x)|d+1dx ≤ C. Besides, using (4.11) one sees that
∫
Ω′ W

+

ε (x)dx ≤
C. Then applying the Poincaré inequality and exploiting the compactness of the em-

bedding W 1,d+1(Ωε) ⊂ C(Ωε) we obtain that W
+

ε (x) ≤ C on Ωε with C independent
of ε.

Taking log of

1

εd

∫
Ω

J
(x− y

ε

)
κ
(
x, y,

x

ε
,
y

ε

)
e−

1
εWε(y)dy = (a(x)− λε)e

− 1
εWε(x)

and using Jensen’s inequality we get

Wε(x) ≤
1∫

Ω
J
(
x−y
ε

)
κ(x, y, x

ε ,
y
ε )dy

∫
Ω

J
(x− y

ε

)
κ
(
x, y,

x

ε
,
y

ε

)
Wε(y)dy + εRε(x),

where

Rε(x) = log(a(x)− λε)− log

(
1

εd

∫
Ω

J
(x− y

ε

)
κ
(
x, y,

x

ε
,
y

ε

)
dy

)
.

Let xε ∈ Ω be a maximum point of Wε. Choose a ball Br̃ε(ξε) contained in Br0ε(xε)∩
Ω. Then ξε ∈ Ωε, Brε(ξε) ⊂ Br0ε(xε) ∩ Ω and we have

Wε(xε) ≤

∫
Brε (ξε)

J
(

xε−y
ε

)
κ
(
xε, y,

xε

ε , y
ε

)
Wε(y)dy∫

Brε (ξε)
J
(
xε−y

ε

)
κ(xε, y,

xε

ε , y
ε )dy

+ Cε

≤
C1

∫
Brε (ξε)

W+
ε (y)dy∫

Brε (ξε)
J
(
xε−y

ε

)
κ(xε, y,

xε

ε , y
ε )dy

+ Cε ≤ C2Wε
+
(ξε) + Cε ≤ C3.

Lemma 4.2 is proved.
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To show that W ∗ is a subsolution of (4.7) consider an arbitrary test function Φ ∈
C∞

0 (Rd) and assume that a maxx∈Ω(W (x)−Φ(x)) is attained at a point x0 ∈ Ω, and
this maximum is strict. Then we can extract a subsequence such that the maximum
points xε of

Ψε(x) = Wε(x)− Φ(x) + ε logφ(x/ε,∇Φ(x), x)

converge to x0. We have Ψε(xε)−Ψε(y) ≥ 0 for y ∈ Ω, or

Wε(xε)−Wε(y) ≥ Φ(xε)− Φ(y) + ε log
φ(y/ε,∇Φ(x), x)

φ(xε/ε,∇Φ(xε), xε)
,

therefore∫
Ω

Eε(xε, y)e
1
ε (Wε(xε)−Wε(y))dy ≥

∫
Ω

Eε(xε, y)e
1
ε (Φ(xε)−Φ(y)) φ(y/ε,∇Φ(y), y)

φ(xε/ε,∇Φ(xε), xε)
dy.

Then

−λε =

∫
Ω

Eε(xε, y)e
1
ε (Wε(xε)−Wε(y))dy − a

(
xε,

xε

ε

)
≥

∫
Ω

Eε(xε, y)e
1
ε (Φ(xε)−Φ(y)) φ(y/ε,∇Φ(y), y)

φ(xε/ε,∇Φ(xε), xε)
dy − a

(
xε,

xε

ε

)
,

and passing to the limit in this inequality as ε → 0 we derive −H(∇Φ(x0), x0) ≤
−λ. Thus W ∗(x) is indeed an upper semicontinuous subsolution of (4.7), being a
subsolution of (4.7) function W ∗(x) is in fact Lipschitz continuous on Ω (see, e.g.,
Appendix A.3 in [15]). Consequently −λ ≥ Λ. Theorem 4.1 is proved.

Proof of Theorem 2.1. For sufficiently small δ > 0 set

â(x) = minξ∈Td a(x, ξ), â(δ)(x) = max
{
â(x),miny∈Ω â(y) + δ/2

}
,

and
a(δ)(x, ξ) = max

{
a(x, ξ), â(δ)(x) + δ/2

}
.

Then for any x ∈ Ω the function a(δ)(x, ξ) attains its minimum over ξ ∈ Td on a
set of positive measure, and a(δ)(x, x

ε ) attains its minimum over x ∈ Ω on a set of

positive measure for sufficiently small ε. Hence we can replace a with a(δ) to modify
spectral problems (1.1) and (4.3) such that they do have some principal eigenvalues

λ
(δ)
ε and H(δ)(p, x) by Theorem 2.1 in [18]. Then applying Theorem 4.1 we get that

λ
(δ)
ε → −Λ(δ) as ε → 0, where Λ(δ) = infW∈C1(Ω) maxx∈Ω −H(δ)(∇W (x), x). On the

other hand |a(δ)(x, ξ)−a(x, ξ)| ≤ δ and therefore |λ(δ)
ε −λε| ≤ δ, |Λ−Λ(δ)| ≤ δ. Thus,

letting δ → 0 we obtain that λε → −Λ, Theorem 2.1 is proved.
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