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Abstract

The proliferation of real-world healthcare data has substantially expanded oppor-
tunities for collaborative research, yet stringent privacy regulations hinder the
pooling of sensitive patient records in a single location. To address this dilemma,
we propose a multiparty homomorphic encryption-based framework for privacy-
preserving federated Kaplan–Meier survival analysis, surpassing existing methods
by offering native floating-point support, a detailed theoretical model, and explicit
mitigation of reconstruction attacks.
Compared to prior work, our framework provides a more comprehensive analy-
sis of noise growth and convergence, guaranteeing that the encrypted federated
survival estimates closely match centralized (unencrypted) outcomes. Formal
utility-loss bounds demonstrate that as aggregation and decryption noise dimin-
ish, the encrypted estimator converges to its unencrypted counterpart. Extensive
experiments on the NCCTG Lung Cancer and a synthetic Breast Cancer dataset
confirm that the mean absolute error (MAE) and root mean squared error
(RMSE) remain low, indicating only negligible deviations between encrypted and
non-encrypted federated survival curves. Log-rank tests further reveal no signifi-
cant difference between federated encrypted and non-encrypted analyses, thereby
preserving statistical validity. Additionally, an in-depth reconstruction-attack
evaluation shows that smaller federations (2–3 providers) with overlapping data
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are acutely vulnerable, a challenge our multiparty encryption effectively neutral-
izes. Larger federations (5–50 sites) inherently degrade reconstruction accuracy,
yet encryption remains prudent for maximum confidentiality.
Despite an overhead factor of 8–19× compared to non-encrypted computa-
tion, our results show that threshold-based homomorphic encryption is feasible
for moderate-scale deployments, balancing security needs with acceptable run-
time. By furnishing robust privacy guarantees alongside high-fidelity survival
estimates, this framework significantly advances the state of the art in secure,
multi-institutional survival analysis.

Keywords: Kaplan–Meier Survival Analysis, Federated Analytics, Threshold
Homomorphic Encryption, Privacy-Preserving Technologies

1 Introduction
In today’s data-driven world, the healthcare sector stands to benefit greatly from
advanced data sharing, analytics, and artificial intelligence. Nevertheless, the sen-
sitive nature of medical data demands robust privacy and security assurances. In
response, federated learning and privacy-preserving cryptographic techniques such as
homomorphic encryption have emerged as key enablers for multi-institutional col-
laboration, ensuring compliance with stringent regulations. Among these methods,
federated Kaplan–Meier survival analysis has garnered attention for its effectiveness
in estimating patient survival probabilities, a critical element in clinical research.

Recent advances in Multiparty Homomorphic Encryption (MHE) [1] and Fully
Homomorphic Encryption (FHE) [2] enable computations on encrypted data without
intermediate decryption, significantly reducing privacy risks. The FAMHE frame-
work [1] demonstrated scalability in federated survival analysis with integers, sup-
porting up to 96 providers. In parallel, Geva et al. [2] showcased multiparty FHE
for privacy-preserving analysis of oncological datasets, including Kaplan–Meier and
log-rank tests.

However, despite these milestones, several challenges persist. The FAMHE frame-
work proposed in [1] lacks native floating-point arithmetic, limiting its use for
real-world datasets requiring scaled survival times and advanced statistical workflows.
While Geva et al. [2] provided empirical results, they did not offer a detailed theoretical
analysis of noise growth, utility loss, and scalability across large federations. More-
over, neither baseline explicitly addresses vulnerabilities to reconstruction attacks in
federated environments, particularly when data overlap occurs among providers.

Data overlap refers to scenarios where patient records appear—either partially or
fully—at multiple institutions. In real-world healthcare, such overlap can arise when
patients move between hospitals, receive referrals from specialists, or otherwise share
treatment plans across sites. Whenever a substantial fraction of patient information
is shared across sites, an adversarial party can exploit that knowledge to “subtract
out” its own local data from the global aggregates, thereby inferring other sites’ pri-
vate counts or statistics. Consequently, greater overlap typically increases the risk
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of subtraction-based (reconstruction) attacks, as there are fewer truly unique patient
records to obscure the contributions from other institutions.

To address these gaps, we propose a novel framework for federated Kaplan–Meier
survival analysis leveraging multikey CKKS encryption and a star-based topology for
distributed key sharing. Our approach provides a rigorous theoretical foundation for
analyzing utility loss and noise growth, thereby ensuring both privacy and scalability.
Further, we evaluate the method’s robustness against reconstruction attacks, quantify
privacy risks, and demonstrate its capacity to scale to large federations.

1.1 Summary of Contributions
In comparison with earlier baselines [1, 2], our work achieves several notable advance-
ments in multiparty homomorphic encryption-based, privacy-preserving federated
Kaplan–Meier analysis:
1. Stronger Privacy Guarantees

• Reconstruction Attack Mitigation: While prior studies largely demon-
strated the feasibility of federated approaches, they did not deeply address
vulnerabilities stemming from overlapping datasets. By incorporating mul-
tikey CKKS encryption and quantifying the risks of reconstruction attacks,
this work explicitly tackles and mitigates a critical privacy gap that previous
methods left underexplored.

2. Robust Floating-Point Support
• CKKS Integration: Whereas prior frameworks [1] frequently depended on
integer-based homomorphic encryption schemes (e.g., BFV or BGV), our
approach leverages CKKS for native floating-point operations, enabling more
precise survival times, log-rank tests, and confidence intervals. This obviates
the need for coarse numeric approximations inherent in integer-only schemes.

3. Comprehensive Theoretical Framework
• Noise Modeling and Convergence: Earlier approaches mostly relied on
empirical evaluations or partial analyses of noise growth. Here, we develop
formal noise-growth models, utility-loss bounds, and convergence guarantees
for homomorphically encrypted survival estimates, thereby extending both
the rigor and breadth of existing methods.

4. Empirical Generalizability
• Diverse Datasets & Scenarios: Beyond single or toy datasets, this work
applies its method to both a smaller real-world dataset (NCCTG Lung
Cancer) [3] [4] and a larger synthetic breast cancer dataset [5]—under
various federation sizes and overlap conditions. Such extensive testing
demonstrates generalizability and highlights performance trends previously
under-documented.

5. Measured Scalability
• Realistic Performance Assessments: While prior studies [1] have shown
federations up to specific sizes (e.g., 96 providers), our work offers a
detailed performance analysis across up to 50 clients, revealing how compu-
tational overhead scales. This enables practitioners to weigh the trade-offs of
incorporating encryption in real-world multi-institutional collaborations.
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Overall, these contributions push the state of the art by reinforcing privacy (espe-
cially under partial data overlaps), providing a more rigorous theoretical underpinning,
incorporating floating-point arithmetic out of the box, and demonstrating empirical
feasibility across diverse datasets and sizable federations.

2 Related Work
Federated survival analysis seeks methods for implementing survival models across dis-
tributed datasets while respecting local data ownership. Several studies have explored
federated survival analysis under both horizontal and vertical data partitioning [6–
9]. These works addressed challenges such as decentralized modeling and aggregation
of survival estimates, yet they largely did not consider data security or potential
data leakage threats. Consequently, although these approaches facilitate collabora-
tion among healthcare institutions, they do not incorporate advanced cryptographic
safeguards to prevent misuse or unauthorized inference of sensitive patient-level infor-
mation. Furthermore, most existing solutions lack a rigorous theoretical foundation
for modeling the impact of distributed computations on survival estimates, such as
noise growth or utility-loss analyses under partial federated aggregations.

In contrast, research on confidential federated analytics has mostly focused on fed-
erated learning (FL), where homomorphic encryption is employed to protect gradients
during model updates. Pan et al. [10] introduced FedSHE, an FL scheme using Adap-
tive Segmented CKKS Homomorphic Encryption to guard against gradient leakage
at the aggregation server. However, they assume that all clients (and the Key Man-
agement Center) are trusted and do not collude, thus limiting its scope in adversarial
scenarios. Similar assumptions arise in [11–13], where a single public-private key pair
is shared by multiple clients, again presuming that the clients and/or a trusted key
generator will not abuse or collude to reveal private data. While [11] combines homo-
morphic encryption with authenticated encryption to verify aggregation integrity, and
[13] selectively encrypts privacy-sensitive parameters, both rely on a single-key setup.
A more general multiparty approach is briefly mentioned in [13], yet the evaluation
is confined to communication cost comparisons. Likewise, [14] discusses a single-key
homomorphic solution for genomic analyses, noting only in passing how a multiparty
extension might be realized. Other studies, such as [15] and [16], also employ single-
key or somewhat-homomorphic encryption in FL but assume minimal adversarial
behavior.

The framework introduced by Froelicher et al. [1] leverages a multiparty encryption
library (Lattigo) for genomic data, enabling collaborative survival curve computa-
tion, yet it does not fully explore advanced threshold key-management schemes or
nuanced reconstruction-attack scenarios. Additionally, while this line of work partly
addresses the theoretical underpinnings of homomorphic encryption in distributed
settings, deeper analyses of noise propagation, convergence guarantees, and privacy
thresholds in survival models remain relatively limited or empirical in nature.

Overall, although prior studies demonstrate the feasibility of federated survival
models and basic integration of homomorphic encryption for FL, the challenge of
strong adversarial models—particularly those involving partial collusion, reconstruc-
tion attacks, and formal theoretical guarantees—remains underexplored in existing
approaches.
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3 Background

3.1 Homomorphic Encryption
Homomorphic encryption, as introduced by Rivest et al. (1978) [17], is a form of
encryption that enables computations to be performed directly on ciphertexts. The
resulting encrypted output, when decrypted, corresponds to the outcome of operations
applied to the plaintext. This unique property of homomorphic encryption makes it
highly valuable in the fields of data privacy and federated analytics, where sensitive
data are processed.

The first practical Fully Homomorphic Encryption (FHE) scheme was proposed
by Craig Gentry in 2009 [18]. Since then, various homomorphic encryption schemes
have been introduced, each aiming to enhance computational efficiency [19–22]. These
schemes were initially proposed as single-key homomorphic encryption methods.
Although useful in several scenarios, single-key systems are not suitable for federated
analytics. In federated analytics, different clients need their own unique secret keys to
ensure that their data remains inaccessible to other parties.

The problem can be addressed by utilizing threshold homomorphic encryption
[23, 24] that combines the principles of homomorphic encryption with threshold cryp-
tography [25–27]. Threshold homomorphic encryption enables multiple parties to
jointly perform computations on encrypted data without revealing the underlying
plaintext to any individual party. The decryption of the resulting ciphertext requires a
minimum number of parties, known as the threshold, to collaborate. Each party holds
a share of the decryption key, and the data can be decrypted only when a sufficient
number of key shares are combined. This mechanism enhances security by preventing
any single party from accessing the complete decryption key.

Several threshold homomorphic encryption schemes have been introduced in the
literature and are available as open-source libraries [28, 29]. These schemes support
arithmetic operations on both complex numbers and integers using the single-
instruction, multiple-data (SIMD) approach. As a result, multiple data points can
be encrypted within a single ciphertext. This enables homomorphic operations to be
executed simultaneously in a component-wise manner across multiple datasets.

The Brakerski-Gentry-Vaikuntanathan (BGV) [19] and Brakerski/Fan-
Vercauteren (BFV) [20, 30] schemes are based on the hardness of the Ring Learning
with Errors (Ring-LWE) problem, which is a variant of the Learning with Errors
problem tailored for rings. The BGV scheme was introduced to address some of
the computational inefficiencies found in earlier homomorphic encryption systems.
The innovations in managing noise and enabling modulus switching allow it to
perform operations faster and with lower computational overhead compared to the
first-generation FHE schemes. While the BGV scheme is not inherently equipped to
handle unlimited operations due to noise growth, it supports levelled homomorphic
encryption. This means that it can handle any number of operations up to a prede-
fined depth. The depth, related to the number of layers in arithmetic circuits that
can be evaluated, must be defined in advance during the setup of the encryption
parameters. The BFV scheme, a scale-invariant construction, exhibits the same noise
growth characteristics as the BGV scheme. Both schemes are specifically designed to
perform complex arithmetic over integer arithmetic circuits.
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The Ducas-Micciancio (FHEW) [31] and the Chillotti-Gama-Georgieva-Izabachene
(CGGI) [21] schemes are specifically designed to support the encryption of small bit-
width integers and are optimized for Boolean circuit evaluation. In the FHEW scheme,
the authors introduced an efficient bootstrapping technique that significantly reduces
the noise level. In the CGGI scheme, the bootstrapping speed is improved by imple-
menting programmable bootstrapping. This computational operation, performed on a
ciphertext during the bootstrapping phase, also reduces noise in ciphertext processing.

The Cheon-Kim-Kim-Song (CKKS) scheme [32], is another threshold homomor-
phic encryption scheme that facilitates approximate homomorphic computations. One
of the novel features of the CKKS scheme is its use of a rescaling operation. This
operation is crucial for managing the growth of noise in ciphertexts during multiplica-
tive operations. In homomorphic encryption, noise is introduced with each operation
performed, and if it grows too large, it can prevent accurate decryption. The rescal-
ing operation in CKKS helps mitigate this issue by scaling down the ciphertext
and the noise, thereby enabling deeper computation circuits. Like the BGV scheme,
this scheme supports levelled homomorphic encryption. Unlike previously mentioned
homomorphic encryption schemes that were limited to integer arithmetic, CKKS
allows for approximate calculations on encrypted real and complex numbers. This
capability is particularly important for applications involving scientific computations,
statistics, and machine learning algorithms that require handling of non-integer data.

It is also worth mentioning that these schemes fall under the umbrella of lattice-
based cryptography. Currently, there are no known efficient quantum algorithms
capable of solving hard lattice problems, which makes lattice-based methods robust
against both classical and quantum attacks.

3.2 Survival Analysis: Kaplan Meier Estimation
Kaplan-Meier estimation is a widely used non-parametric method for analyzing time-
to-event data, particularly in survival analysis. Originally introduced by Edward L.
Kaplan and Paul Meier in 1958, the Kaplan-Meier estimator provides a way to estimate
the survival function, which represents the probability that a given event (e.g., death,
disease relapse, or equipment failure) occurs after a specified time. The estimator is
especially useful in fields like medical research, engineering, and reliability analysis,
where understanding the duration until an event occurs is critical.

3.2.1 Survival Function and Time-to-Event Analysis

The primary object of interest in Kaplan-Meier estimation is the survival function,
denoted by S(t). The survival function S(t) gives the probability that an individual
or object will survive beyond a certain time t:

S(t) = P (T > t), (1)

where T is the random variable representing the time-to-event. The survival
function S(t) typically decreases over time as the probability of an event occurring
increases. In many cases, the survival curve, which plots S(t) against t, is used to
visualize the probability of surviving over time.

3.2.2 Key Concepts in Kaplan-Meier Estimation

Kaplan-Meier estimation is based on three main concepts:
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• Event Times: The specific times at which events (e.g., deaths) occur in the
dataset. These times define the points at which the survival probability S(t) is
updated.

• At-Risk Population: The number of individuals or units still at risk of experi-
encing the event just before each event time. This count decreases over time as
events occur or individuals are censored.

• Censored Data: Censoring occurs when the exact event time is unknown for
certain individuals, either because they left the study before experiencing the
event or the study ended before the event occurred. Censoring is handled natu-
rally in Kaplan-Meier estimation by adjusting the at-risk population accordingly,
ensuring that individuals who are censored contribute to survival estimates only
for the time they were observed.

3.2.3 Methodology of the Kaplan-Meier Estimator

The Kaplan-Meier estimator calculates the survival function Ŝ(t) by estimating the
probability of survival at each observed event time. Let ti denote the ordered event
times in the dataset, di the number of events occurring at ti, and ni the number of
individuals at risk just before ti. The probability of surviving beyond ti is given by
1 − di

ni
, representing the proportion of at-risk individuals who survive past ti. The

Kaplan-Meier estimator is defined as:

Ŝ(t) =
∏
ti≤t

(
1− di

ni

)
, (2)

where the product is taken over all event times ti up to t.

3.2.4 Interpreting the Kaplan-Meier Curve

The Kaplan-Meier curve is a step function that decreases at each event time ti,
representing the cumulative survival probability. Between event times, the survival
probability remains constant, resulting in a series of horizontal steps. This curve pro-
vides valuable insights into the probability of survival over time, making it possible
to compare survival rates across different groups, treatments, or conditions. Addition-
ally, the Kaplan-Meier estimator can be used to compute median survival times and
generate confidence intervals around survival estimates.

3.3 Applications of Kaplan-Meier Estimation
The Kaplan-Meier estimator is extensively applied in medical research to evaluate the
effectiveness of treatments, analyze patient survival, and compare different treatment
groups. In engineering, Kaplan-Meier estimation is used in reliability testing to assess
the durability of components or systems over time. In these applications, handling
censored data is essential, as individuals or units may not experience the event by the
end of the observation period, and Kaplan-Meier estimation effectively incorporates
this aspect.

Despite its simplicity and non-parametric nature, Kaplan-Meier estimation has
proven to be a powerful tool for survival analysis. However, as data privacy regula-
tions have become more stringent, especially in healthcare, federated implementations
of Kaplan-Meier estimation are increasingly needed. Such implementations enable
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institutions to collaborate on survival analysis without sharing sensitive patient data
directly, motivating the development of secure computation techniques to support
privacy-preserving Kaplan-Meier estimation.

4 Problem Formulation
In a federated environment, multiple institutions {I1, I2, . . . , IK} aim to collabora-
tively estimate a global Kaplan–Meier (KM) survival function Ŝ(t) without directly
sharing their sensitive data (e.g., individual time-to-event records). Each institution
Ik (for k = 1, . . . ,K) maintains a local dataset Dk containing:

• Event times: {t(k)i }, the distinct times at which an event (e.g., death or failure)
occurs in Ik’s dataset.

• Event counts: d
(k)
i , the number of events happening at each local event time

t
(k)
i .

• At-risk counts: n
(k)
i , the number of individuals at risk just before each event

time t
(k)
i .

To form the global KM estimator, we first collect the union of all local event times
into a set of unique times {ti}Mi=1, sorted in ascending order. For each ti, let

di =

K∑
k=1

d
(k)
i , ni =

K∑
k=1

n
(k)
i ,

where d
(k)
i and n

(k)
i default to 0 if ti does not appear in institution Ik’s dataset. The

global Kaplan–Meier survival function then follows the standard definition:

Ŝ(t) =
∏
ti ≤ t

(
1 − di

ni

)
.

This yields the estimated probability that a randomly chosen subject from the
combined population remains event-free up to time t.

The central challenge in this federated setting is computing the aggregated counts
di and ni securely across all institutions without revealing any institution’s underlying
records, thus satisfying privacy regulations and preserving local data autonomy. In the
subsequent sections, we describe how threshold homomorphic encryption enables the
necessary secure aggregation of event and at-risk counts, culminating in a joint survival
estimate that closely matches what would be obtained in a standard, centralized KM
analysis.

4.1 Challenges in Federated Kaplan–Meier Estimation
Although federated Kaplan–Meier analysis avoids centralizing raw patient-level data,
several key obstacles arise when securely computing the global at-risk and event counts:

1. Data Privacy Across Institutions: Simply sharing raw at-risk counts n
(k)
i and

event counts d
(k)
i can lead to privacy breaches, particularly in institutions with

small populations. Regulations such as GDPR and HIPAA mandate stringent
data confidentiality practices, prohibiting patient-level detail exchange.
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2. Secure Aggregation Without Decryption: Traditional systems typically
decrypt data before computation, reintroducing privacy risks. In federated KM
estimation, we must aggregate encrypted counts so that neither the server nor
other participants learn each institution’s local values.

3. Decentralized Key Management: Many federated environments require each
institution to retain control over its own data and cryptographic keys, rather
than relying on a single trusted authority. This motivates threshold or multiparty
encryption schemes, wherein partial decryption shares are combined to recover
the aggregated result without granting any one party full decryption power.

4. Reconstruction Attacks with Overlapping Data: Even when institutions
share only aggregated statistics, an adversarial party can attempt a reconstruction
attack by subtracting its own local counts from the federated totals. Such infer-
ences become especially potent when patient records overlap across multiple sites.
In Section 7.4, we further examine how data overlap and federation size impact
reconstruction accuracy and present empirical evidence of this vulnerability.

To address these challenges, we propose a threshold homomorphic encryption approach
that preserves data privacy during aggregation and mitigates the risks posed by
reconstruction attacks, as detailed in the subsequent sections.

5 Proposed Solution
In this section, we detail a threshold homomorphic encryption (HE) framework
designed to enable privacy-preserving, federated Kaplan-Meier estimation across mul-
tiple institutions. We begin by outlining the core assumptions, notations, and threat
model, followed by a description of the distributed key generation process and, finally,
the federated Kaplan Meier computation steps under the threshold HE scheme.

5.1 Assumptions, Definitions, and Notations

5.1.1 Threat Model Assumptions
The proposed framework is specifically designed to facilitate collaborative analy-
sis and encrypted sensitive data sharing among health care institutions, with only
authorized personnel allowed to add and process data, and initiate and carry out
the federated procedures. Given these circumstances, we anticipate that the inher-
ent boundaries of the Honest-but-Curious threat model will apply. We consider the
following assumptions.
1. Semi-Honest (Honest-but-Curious) Participants: Institutions and the cen-

tral server follow the protocol faithfully (no active data tampering or insertion
of malicious operations), yet they may attempt to glean additional information
from the data or partial decryptions they are legitimately allowed to see.

2. Limited (Sub-Threshold) Collusion: We assume no coalition of institutions
large enough to meet or exceed the threshold T colludes to combine their secret
key shares and decrypt data without authorization. If fewer than T participants
collude, they cannot decrypt the aggregated ciphertexts. Those holding enough
shares to surpass the threshold are presumed to adhere to legitimate protocol
steps rather than colluding maliciously.

3. No Malicious Tampering: While participants may be curious, we assume they
do not intentionally alter data, generate invalid partial decryptions, or otherwise
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disrupt protocol integrity. The system functions in a semi-honest environment,
not a fully malicious one.

4. Stable Federation Membership: The set of institutions taking part in the
analysis remains fixed throughout the key generation and partial decryption
phases. Institutions do not join or leave mid-protocol, avoiding complexities with
dynamic key sharing and membership changes.

Under these assumptions, threshold homomorphic encryption and secure multi-
party protocols prevent any single entity (including the central server) from decrypting
sensitive data. This design thereby safeguards individual-level information, particu-
larly in scenarios where curious participants might attempt to infer hidden details
from aggregated counts or partial decryption results.

5.1.2 Notations and Key definitions

Let:
• K denote the number of participating institutions.
• Ik be the k-th institution (for k = 1, . . . ,K).
• Each institution Ik (also called a local party, client, or data provider) holds its
own local dataset Dk, consisting of:

– {t(k)i }: the event times for each observed event. We treat these as non-
sensitive, meaning they do not require encryption. A global (federated) set of

time points is then formed by aggregating all {t(k)i } in the clear (i.e., unen-
crypted) across participating institutions, consistent with the assumptions of
the FAMHE framework [1].

– d
(k)
i : the number of events at each time t

(k)
i ,

– n
(k)
i : the number of individuals at risk just prior to each event time t

(k)
i .

• T denotes the threshold specifying the minimum number of institutions required
to perform decryption.

• All institutions share a common public key pk for the threshold homomorphic
encryption scheme, while each institution Ik holds a unique decryption key share
skk.

• Only a subset of at least T institutions can collectively decrypt data; fewer than
T key shares are insufficient for decryption.

5.2 Distributed Key Generation Process
To enable threshold-based encryption and decryption, we employ a distributed key
generation process. While there are different possible network topologies (e.g., star-
based vs. ring-based), in this work, we focus on a star-based approach.

• Star-Based Topology:
– A central server (coordinator) manages the key generation steps, instructing
each institution in sequence to update a shared public key.

– After all designated institutions have contributed, the final public key is
distributed to every participant.

• Ring-Based Topology (Not Implemented Here):
– Each institution would be connected to exactly two others in a ring structure,
passing updated keys in a loop.
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– Further discussion of the pros and cons of these topologies is outside the
scope of this paper.

Algorithm 1 Central Server Algorithm for Distributed Key Generation

1: Selects the threshold group of participating institutions
2: Generates a cryptographic context cc containing homomorphic encryption param-

eters
3: Sets public key pk equals None
4: for each institution Ik in the threshold group do
5: Send pk to institution Ik and cc
6: Receive updated public key,
7: pk = updated public key
8: end for
9: Final public key equals pk

10: Send final public key to all participating institutions

Algorithm 2 Local Party Algorithm for Distributed Key Generation

1: Receive current public key from Central Server and cryptographic context cc
2: Generate new public key and secret key share
3: Store secret key share locally
4: Send new public key to Central Server
5: Receive final public key from Central Server and stores it locally

The central server initiates the key generation process by establishing homomorphic
encryption parameters and specifying the sequence in which participating institutions
should generate the common public key and their individual secret key shares. Upon
receiving the homomorphic encryption parameters and the updated public key, each
participating institution employs these elements to generate a new version of the public
key, which is then returned to the server. The final public key obtained through this
process becomes the common public key distributed among all participants and is used
for encryption. This process requires serialization/deserialization of the cryptographic
context objects and keys before exchanging them among participating institutions.

In this work, the scope of the homomorphic operations is limited to additive oper-
ations. However, in some implementations, particularly if multiplicative or inverse
operations are required for weighted aggregations, additional evaluation keys may
be generated.

5.3 Algorithm for Federated Kaplan-Meier Estimation
Once the distributed key generation is complete, each institution (local
party/client/data provider) holds a local secret key share, and a shared public key is
available to all parties.
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5.3.1 Algorithm for Each Local Party (Institution Ik)

Algorithm 3 Local Party Algorithm for Threshold Homomorphic Encryption

1: Public Key Setup: A shared public key pk is generated for the threshold
homomorphic encryption scheme.

2: for each event time t
(k)
i in local dataset Dk do

3: Encrypt the local event count d
(k)
i using pk:

Encrypted(d
(k)
i ) = Encrypt(d

(k)
i , pk)

4: Encrypt the local at-risk count n
(k)
i using pk:

Encrypted(n
(k)
i ) = Encrypt(n

(k)
i , pk)

5: end for
6: Send Encrypted(d

(k)
i ) and Encrypted(n

(k)
i ) for each event time t

(k)
i to the central

server.

Each participating institution encrypts its own event and at-risk counts before sending
them to the central server. By doing so, the raw data never leave the institution in
plaintext form. Using the shared public key pk, each institution transforms its local

counts {d(k)i , n
(k)
i } into ciphertexts. This ensures that even if messages are intercepted

or the central server is compromised, individual patient-level information remains
protected. The local parties thus retain control over their data while still contributing
to the federated Kaplan–Meier computation.
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5.3.2 Algorithm for the Central Server

Algorithm 4 Central Server Algorithm for Threshold Homomorphic Encryption

1: Receive Encrypted Data: For each event time ti, collect encrypted event counts

{Encrypted(d(k)i )} and at-risk counts {Encrypted(n(k)
i )} from all institutions.

2: for each event time ti do
3: Perform homomorphic addition to aggregate encrypted event counts:

AggregatedEncrypted(di) =

K∑
k=1

Encrypted(d
(k)
i )

4: Perform homomorphic addition to aggregate encrypted at-risk counts:

AggregatedEncrypted(ni) =

K∑
k=1

Encrypted(n
(k)
i )

5: end for
6: Distribute aggregated encrypted values AggregatedEncrypted(di) and

AggregatedEncrypted(ni) for each ti to the decryption group (a subset of
institutions satisfying the threshold T ).

The central server acts primarily as a secure aggregator in this threshold homo-
morphic encryption setup. It receives encrypted event and at-risk counts from each
institution and performs the necessary homomorphic additions to obtain aggregate
ciphertexts—without ever learning the underlying plaintext values. Once these aggre-
gated ciphertexts are computed, the server distributes them to the threshold group
for partial decryption, thus coordinating the overall process without having access to
raw patient data at any point. Throughout this aggregation, no weighting is applied,
ensuring that all institutions’ data is treated equally.
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5.3.3 Collaborative Decryption and Kaplan-Meier Computation

Algorithm 5 Collaborative Decryption and Kaplan-Meier Calculation

1: for each event time ti do
2: for each institution Ik in the threshold group do
3: Compute decryption shares for event and at-risk counts:

Share
(k)
di

= DecryptShare(AggregatedEncrypted(di), skk)

Share(k)ni
= DecryptShare(AggregatedEncrypted(ni), skk)

4: Send decryption shares Share
(k)
di

and Share(k)ni
to the decryption coordinator.

5: end for
6: Combine decryption shares from at least T institutions to obtain decrypted

values di and ni:
di = CombineShares({Share(k)di

}k∈T )

ni = CombineShares({Share(k)ni
}k∈T )

7: end for
8: Compute the Kaplan-Meier survival probability:

S(t) =
∏
ti≤t

(
1− di

ni

)

Once decrypted, each aggregated count di and ni can be used to compute the classical
KM estimator. Because only the threshold group can recover these plaintext values,
confidentiality is preserved under the assumption that no unauthorized coalition meets
or exceeds T key shares.

5.4 Theoretical analysis
Theorem 1 (Utility Loss Bound in Federated Homomorphic Encrypted Kaplan-Meier
Estimators for Worst Case Scenario). Let Ŝcentralized(t) and Ŝfederated(t) denote the
Kaplan-Meier survival probabilities estimated at time t in centralized and federated
homomorphic encrypted (HE) settings, respectively. Assume:

1. The event counts d
(k)
i and at-risk counts n

(k)
i from client k are encrypted and

aggregated using CKKS homomorphic encryption.
2. Noise is introduced during two distinct phases:

(a) Aggregation Noise εaggregation: Noise from ciphertext operations, such as
addition and multiplication, which depends on the total number of ciphertexts
contributed by all clients.

(b) Decryption Noise εdecryption: Noise from partial decryption and multiparty
decryption fusion, involving a subset of T ≤ K clients.

3. Each client contributes a dataset of size Dk, resulting in Mk ciphertexts propor-
tional to Dk.
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4. A common ciphertext modulus q is used across all clients.
5. At-risk counts ni > 0 for all ti, as zero would render survival probabilities

undefined.
Under these assumptions, the utility loss ∆S(t) and error growth can be analyzed

as follows:
Utility Loss Bound:

∆S(t) = |Ŝcentralized(t)−Ŝfederated(t)| ≤
∏
ti≤t

(
1− di

ni

)
·
∑
ti≤t

O
(
log(q) ·

∑K
k=1 Mk

)
+O(σ ·

√
T )

ni + εaggregation(ti) + εdecryption(ti)
,

(3)
where Mk ∝ Dk reflects the relationship between dataset size and the number of
ciphertexts.

For large ni, the bound simplifies to:

∆S(t) ≤
∏
ti≤t

(
1− di

ni

)
·
∑
ti≤t

O
(
log(q) ·

∑K
k=1 Mk

)
+O(σ ·

√
T )

ni
. (4)

Proof. 1. Centralized Kaplan-Meier Survival Probability:
• The centralized Kaplan-Meier survival probability is calculated as:

Ŝcentralized(t) =
∏
ti≤t

(
1− di

ni

)
, (5)

where di is the event count, and ni is the at-risk count at time ti.
2. Federated Kaplan-Meier Survival Probability:

• In the federated setup, the survival probability is computed using encrypted

event counts d
(k)
i + εaggregation(ti) + εdecryption(ti) and at-risk counts n

(k)
i +

εaggregation(ti) + εdecryption(ti).
• The federated survival probability is:

Ŝfederated(t) =
∏
ti≤t

(
1− d

(k)
i + εaggregation(ti) + εdecryption(ti)

n
(k)
i + εaggregation(ti) + εdecryption(ti)

)
. (6)

3. Error in Survival Probability:
• The utility loss ∆S(t) is defined as the absolute difference:

∆S(t) = |Ŝcentralized(t)− Ŝfederated(t)|. (7)
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• Expanding both terms:

∆S(t) =

∣∣∣∣∣∣
∏
ti≤t

(
1− di

ni

)
−
∏
ti≤t

(
1− d

(k)
i + εaggregation(ti) + εdecryption(ti)

n
(k)
i + εaggregation(ti) + εdecryption(ti)

)∣∣∣∣∣∣ .
(8)

4. Bounding Noise Growth:
• Aggregation noise reflects the contribution from all clients:

εaggregation(ti) = O

(
log(q) ·

K∑
k=1

Mk

)
, (9)

where Mk ∝ Dk.
• Decryption noise depends on the subset T of clients involved in decryption:

εdecryption(ti) = O(σ ·
√
T ), (10)

where σ is the standard deviation of noise during decryption.
• Total noise combines aggregation and decryption noise:

ε(ti) = O

(
log(q) ·

K∑
k=1

Mk

)
+O(σ ·

√
T ). (11)

5. Final Utility Loss Bound:
• Substituting the noise terms into the cumulative error:

∆S(t) ≤
∏
ti≤t

(
1− di

ni

)
·
∑
ti≤t

O
(
log(q) ·

∑K
k=1 Mk

)
+O(σ ·

√
T )

ni + εaggregation(ti) + εdecryption(ti)
. (12)

• For large ni:

∆S(t) ≤
∏
ti≤t

(
1− di

ni

)
·
∑
ti≤t

O
(
log(q) ·

∑K
k=1 Mk

)
+O(σ ·

√
T )

ni
. (13)

The utility loss bound explicitly accounts for both aggregation and decryption
noise. Proper parameter tuning, including scaling factors, batch sizes, and noise
distributions, is essential to minimizing this loss.
Theorem 2 (Utility Loss Bound for Bounded At-Risk Counts with Noise Terms). If
the at-risk counts ni are bounded below by a constant c > 0, and the noise terms from
aggregation and decryption are included in the denominator, the utility loss bound can
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be expressed as:

∆S(t) ≤ 1

c
·
∑
ti≤t

O
(
log(q) ·

∑K
k=1 Mk

)
+O(σ ·

√
T )

1 +
O(log(q)·

∑K
k=1 Mk)+O(σ·

√
T )

ni

. (14)

For sufficiently large ni, the bound simplifies to:

∆S(t) ≤ 1

c
·
∑
ti≤t

(
O

(
log(q) ·

K∑
k=1

Mk

)
+O(σ ·

√
T )

)
. (15)

Proof. 1. Utility Loss Bound with At-Risk Counts and Noise Terms:
• From the utility loss theorem, the bound is:

∆S(t) ≤
∏
ti≤t

(
1− di

ni

)
·
∑
ti≤t

ε(ti)

ni + εaggregation(ti) + εdecryption(ti)
. (16)

• Substituting the expressions for εaggregation(ti) and εdecryption(ti):

εaggregation(ti) = O

(
log(q) ·

K∑
k=1

Mk

)
, εdecryption(ti) = O(σ ·

√
T ). (17)

• The denominator becomes:

ni + εaggregation(ti) + εdecryption(ti) = ni +O

(
log(q) ·

K∑
k=1

Mk

)
+O(σ ·

√
T ).

(18)
2. Rearranging for Simplicity:

• The denominator inside the summation can be factored as:

1 +
O
(
log(q) ·

∑K
k=1 Mk

)
+O(σ ·

√
T )

ni
.+++ (19)

• Substituting this back into the utility loss bound:

∆S(t) ≤ 1

c
·
∑
ti≤t

O
(
log(q) ·

∑K
k=1 Mk

)
+O(σ ·

√
T )

1 +
O(log(q)·

∑K
k=1 Mk)+O(σ·

√
T )

ni

. (20)

3. Simplification for Large ni:
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• When ni is large compared to the noise terms, the dominant contribution in
the denominator is the constant 1:

1 +
O
(
log(q) ·

∑K
k=1 Mk

)
+O(σ ·

√
T )

ni
≈ 1. (21)

• The summation simplifies to:

∆S(t) ≤ 1

c
·
∑
ti≤t

(
O

(
log(q) ·

K∑
k=1

Mk

)
+O(σ ·

√
T )

)
. (22)

4. Final Simplified Form:
• Substituting the simplified summation, the final utility loss bound becomes:

∆S(t) ≤ 1

c
·
∑
ti≤t

(
O

(
log(q) ·

K∑
k=1

Mk

)
+O(σ ·

√
T )

)
. (23)

Theorem 3 (Convergence of Federated Kaplan-Meier Estimators). Let Ŝcentralized(t)
and Ŝfederated(t) denote the Kaplan-Meier survival probabilities at time t in centralized
and federated homomorphic encrypted (HE) settings, respectively. Assume the noise
introduced by aggregation and decryption, εaggregation and εdecryption, approaches zero.
Then:

lim
εaggregation,εdecryption→0

Ŝfederated(t) = Ŝcentralized(t). (24)

Proof. 1. Centralized Survival Probability:
• The centralized Kaplan-Meier survival probability is given by:

Ŝcentralized(t) =
∏
ti≤t

(
1− di

ni

)
, (25)

where di and ni are the counts of events and at-risk counts at each event
time ti, respectively.

2. Federated Survival Probability with Noise:
• The federated survival probability includes noise terms:

Ŝfederated(t) =
∏
ti≤t

(
1− d

(k)
i + εaggregation(ti) + εdecryption(ti)

n
(k)
i + εaggregation(ti) + εdecryption(ti)

)
, (26)

where k denotes the client index.
3. Convergence as Noise Approaches Zero:
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• As εaggregation(ti), εdecryption(ti) → 0:

d
(k)
i + εaggregation(ti) + εdecryption(ti)

n
(k)
i + εaggregation(ti) + εdecryption(ti)

→ di
ni

. (27)

• Hence:
lim

εaggregation,εdecryption→0
Ŝfederated(t) = Ŝcentralized(t). (28)

Theorem 4 (Scalability of Noise with Client Count). Let ε
(k)
aggregation(ti) and

ε
(k)
decryption(ti) represent the noise introduced during aggregation and decryption for
client k at time ti in a federated Kaplan-Meier setup with K clients and Mk ciphertexts
per client. The total noise growth is given by:

εtotal =

K∑
k=1

O(Mk · log(qk)) +O(σ ·
√
T ),

where qk is the ciphertext modulus for client k, σ is the standard deviation of decryption
noise, and T ≤ N is the subset of clients participating in decryption.

Proof. 1. Aggregation Noise Growth:
• Each client contributes Mk ciphertexts, and the server aggregates these over
K clients.

• Noise from ciphertext addition grows linearly with the number of ciphertexts
per client Mk:

ε
(k)
aggregation(ti) = O(Mk · log(qk)), (29)

where log(qk) accounts for the scaling modulus in CKKS encryption for client
k.

• The total aggregation noise from all clients is:

εaggregation =

K∑
k=1

O(Mk · log(qk)). (30)

2. Decryption Noise Growth:
• Each client contributes independently to the partial decryption process.
• Noise from combining partial decryptions grows with the square root of the
number of clients involved in decryption (T ):

εdecryption = O(σ ·
√
T ), (31)

where σ is the noise standard deviation per client and T ≤ K is the number
of decryption participants.

3. Total Noise Growth:
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• Combining aggregation and decryption noise gives:

εtotal =

K∑
k=1

O(Mk · log(qk)) +O(σ ·
√
T ). (32)

6 Experiments

6.1 Dataset Description
We used two datasets for our experiments: a) the NCCTG Lung Cancer dataset [3] [4],
and b) the Synthetic Breast Cancer dataset [5].

The NCCTG Lung Cancer dataset comprises 228 observations across 10
variables. For our experiments, we focus primarily on two variables:

• time: A numeric variable representing survival time in days, defined as the
number of days from the start of the study to either death or censoring.

• status: An integer variable indicating the censoring status: ‘1’ for censored
observations and ‘2’ for death.

The Synthetic Breast Cancer dataset, released by the Netherlands Comprehensive
Cancer Organisation (IKNL), contains 60,000 synthetically generated observations
across 46 variables. For our analysis, we emphasize two key variables:

• vit stat int: A numeric variable representing survival time in days.
• vit stat: An integer variable indicating the status, where ‘0’ denotes censored
observations and ‘1’ denotes death.

These datasets provide diverse structures and characteristics for evaluating Kaplan-
Meier survival analysis methodologies under different conditions. Both these datasets
are right censored.

6.2 Objectives of the Experiments
The main objectives of our experiments conducted in this study are to evaluate the
performance, accuracy, and practicality of federated Kaplan-Meier survival analy-
sis using multikey CKKS homomorphic encryption. These objectives are designed
to comprehensively assess the proposed method’s capabilities while ensuring privacy
preservation. The key objectives are as follows:

• Visualization of Survival Curves: Generate Kaplan-Meier survival curves
using the federated setup with homomorphic encryption and compare them
visually against those produced by a centralized or non-encrypted federated
method.

• Statistical Comparison of Survival Curves: Conduct log-rank tests to
evaluate whether there are statistically significant differences between the survival
curves generated by the encrypted federated approach and those obtained using
non-encrypted federated method.

• Numerical Accuracy Assessment: Measure the alignment between survival
probabilities from the encrypted federated method and non-encrypted federated
method through numerical metrics such as: a) Mean Absolute Error (MAE) which
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measures average deviation across all time points b) Maximum Absolute Error
(MaxAE) which measures the largest deviation at any time point.

• Reconstruction Attack Analysis: Assess the ability of an adversary to infer
sensitive information, such as the number of individuals at risk and the num-
ber of events (e.g., deaths). This analysis quantifies privacy risks by evaluating
reconstruction accuracy in federated non-encrypted Kaplan-Meier survival curves
across varying data distributions, numbers of providers, and degrees of data
overlap between providers.

• Performance and Scalability Analysis: Assess the computational efficiency
of the encrypted federated survival analysis under various configurations. Test
the scalability by varying the number of data providers and dataset sizes.

6.3 Experimental Setup
We repeated each experiment 10 times to facilitate clearer visualization of the
resulting survival curves, to assess statistical and numerical accuracy between the
federated encrypted and non-encrypted approaches, and to measure the associated
computational overhead.

6.3.1 Single machine setup

All experiments were performed on Macbook Pro with Apple M3 Pro, 36 GB of RAM,
running Sonoma 14.5. All the code were implemented in Python 3.12.2.

6.3.2 Homomorphic encryption parameters

To implemented our solution, we utilized the OpenFHE library [28]. The library is
implemented in C++ and includes Python bindings, simplifying its integration into
data analytics applications. Additionally, the library implements the thresholdization
for BGV, BFV, and CKKS schemes. For these experiments, we use the thresholdization
of the CKKS scheme, which supports computations over real numbers.

Table 1: Common Key Parameters (identical across all clients)

Parameter Value Description
Scheme CKKS The homomorphic encryption scheme.
Security Level HEStd 128 classic Targets 128-bit classical security.
Standard Deviation 3.2 Noise parameter σ for key generation.
Secret Key Distribution UNIFORM TERNARY Secret keys sampled from {−1, 0,+1} uni-

formly.
Multiplicative Depth 3 Maximum number of homomorphic multipli-

cations without bootstrapping.
Key Switching Technique HYBRID Key switching/relinearization method.
Batch Size 16 Number of slots for packing in CKKS.
Scaling Mod Size 50 bits Bit-width of each ciphertext modulus “chunk.”
First Mod Size 60 bits Bit-width of the first prime in the modulus

chain.
Compression Level COMPRESSION LEVEL.COMPACT Affects how evaluation keys are compressed.
Public Key (final) Shared among all clients Result of multiparty key generation; dis-

tributed to each client.

Table 1 captures the homomorphic encryption parameters that are shared among
all clients. These include the type of encryption scheme (CKKS), security level, noise
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distribution parameters, the chosen key-switching technique, and so on. Critically,
after the multiparty key generation process, there is a single, final public key that each
client uses for encryption.

Table 2: Unique Key Parameters (per client)

Parameter Description
Secret Key Share Each client locally generates and retains its own secret key

share. The shares never leave the client; they combine only
logically for multiparty decryption.

Table 2 highlights the parameters that differ on a per-client basis. In particu-
lar, each client retains its own secret key share. These shares never leave the clients;
they are only combined “logically” during the multiparty decryption phase (each
client provides a partial decryption), thereby preserving security while enabling a joint
decryption result.table highlights the parameters that differ on a per-client basis. In
particular, each client retains its own secret key share. These shares never leave the
clients; they are only combined “logically” during the multiparty decryption phase
(each client provides a partial decryption), thereby preserving security while enabling
a joint decryption result.

6.3.3 Data Partitioning

In our experimental setup, each dataset is horizontally partitioned among multiple
clients. We begin by randomly shuffling the entire dataset (using a fixed random seed
for reproducibility) and then splitting the rows into a specified number of subsets—one
subset per client. This approach ensures that each client receives a roughly equal
number of records, but includes all of the original features (i.e., columns) for those
records. Because the shuffle-and-split procedure draws each subset from the same
overall distribution, it approximates an i.i.d. (independent and identically distributed)
partition of the data.

6.3.4 Reconstruction Attack Analysis

In this study, we simulate a federated scenario where multiple healthcare providers
each hold a portion of patient-level time-to-event data. To capture different real-world
possibilities, we split the dataset into subsets with varying levels of overlap:

• No Overlap: Providers have completely distinct patient records, modeling
scenarios where each site covers a fully separate population.

• Small Overlap: A modest fraction of rows (e.g., 10%) is duplicated across each
provider, reflecting occasional patient mobility or partial data sharing between
sites.

• Large Overlap: A substantial fraction of rows (e.g., 50%) is shared among
providers, approximating a highly integrated healthcare network in which mul-
tiple sites see the same patients. By examining these three overlap conditions
(none, small, large), we effectively cover the spectrum of how patient data might
be distributed across federated providers, allowing us to evaluate the impact of
overlap on both survival analysis accuracy and privacy risks (i.e., reconstruction
attacks).
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7 Results

7.1 Visualization of Survival Curves

7.1.1 Centralized Survival Curves

(a) Survival Curve for the lung can-
cer dataset without any federation and
encryption

(b) Survival Curve for the breast can-
cer dataset without any federation and
encryption

Fig. 1: Centralized, Survival Curves for the Lung and Breast Cancer datasets

Figures 1a and 1b present the Kaplan–Meier survival curves for the lung and breast
cancer datasets, respectively, under a centralized (non-federated, non-encrypted) set-
ting. These plots serve as a baseline visualization, illustrating the underlying survival
functions without any data partitioning or encryption processes involved. The survival
curve for the breast cancer data is plotted using synthetic data; therefore, its shape
might be a result of the synthetic data generation process not accurately reflecting
the real data distribution.

7.1.2 Federated and Federated-Encrypted Survival Curves

Figures 2 and 3 present the Kaplan–Meier survival curves for the lung cancer and
breast cancer datasets, respectively, under both federated and federated-encrypted
scenarios at various client counts. Each subfigure compares the survival estimation
obtained when the data is split among multiple clients (federation) against the esti-
mation obtained when the same federated process is combined with encryption. These
visualizations offer a direct comparison, allowing us to observe whether encryption
and distribution of data across multiple clients substantially alter the estimated sur-
vival curves relative to one another. In practice, if the curves remain visually similar
across the federated and federated-encrypted approaches, it suggests that the federated
computation and associated encryption methodologies do not materially change the
underlying survival estimates. Specifically, for both datasets, as the number of clients
increases (5, 10, 20, 50), the shape and position of the survival curves remain consis-
tent between the federated and federated-encrypted implementations. This indicates
that adding more clients to the federated environment does not introduce additional
discrepancies or distortions attributable to encryption. In essence, these figures and
the corresponding observations provide strong evidence that federated survival anal-
ysis, whether encrypted or not, yields results comparable to the centralized scenario.
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(a) Federated, 5 Clients (b) Federated Encrypted, 5 Clients

(c) Federated, 10 Clients (d) Federated Encrypted, 10 Clients

(e) Federated, 20 Clients (f) Federated Encrypted, 20 Clients

(g) Federated, 50 Clients (h) Federated Encrypted, 50 Clients

Fig. 2: Federated and Federated Encrypted Survival Curves for the Lung Cancer
dataset at Varying Client Counts
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(a) Federated, 5 Clients (b) Federated Encrypted, 5 Clients

(c) Federated, 10 Clients (d) Federated Encrypted, 10 Clients

(e) Federated, 20 Clients (f) Federated Encrypted, 20 Clients

(g) Federated, 50 Clients (h) Federated Encrypted, 50 Clients

Fig. 3: Federated and Federated Encrypted Survival Curves for the Breast Cancer
dataset at Varying Client Counts
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7.2 Statistical Comparison of Survival Curves
We have conducted log-rank tests to do statistical comparisons between the federated
encrypted and federated non-encrypted survival curves. The log-rank test is a non-
parametric statistical test commonly used to compare the survival functions of two or
more groups. It assesses whether the observed differences in survival times between
these groups could be due to random variation or if they are statistically significant.

Null Hypothesis

For this analysis, the null hypothesis (H0) is:
H0 : There is no difference in the survival distributions between the

federated-encrypted and the federated non-encrypted groups.
If the test provides sufficient evidence against H0, we would conclude that there

is a statistically significant difference in the survival distributions. If not, we fail to
reject H0 and conclude that any observed differences are likely due to chance.

P-Value

The P-value represents the probability of obtaining the observed results, or more
extreme, assuming the null hypothesis is true. A low P-value (typically less than 0.05)
suggests that the observed differences are unlikely to be due to random chance, thus
providing evidence against H0. Conversely, a high P-value suggests that the observed
differences could easily arise from random variation, providing little reason to reject
H0.

7.2.1 Log Rank Test Results and P-Values for the Lung Cancer
Dataset

Clients Test Statistic Mean Test Statistic CI P-Value Mean P-Value CI
2 0.0057 [0.0005, 0.0109] 9.5406e-01 [9.3017e-01, 9.7795e-01]
5 0.0138 [0.0057, 0.0220] 9.2111e-01 [8.9006e-01, 9.5217e-01]
10 0.0164 [0.0096, 0.0232] 9.0389e-01 [8.8303e-01, 9.2474e-01]
20 0.0183 [0.0077, 0.0289] 9.0897e-01 [8.7375e-01, 9.4420e-01]
30 0.0160 [0.0050, 0.0271] 9.1882e-01 [8.8212e-01, 9.5553e-01]
40 0.0169 [0.0057, 0.0280] 9.1589e-01 [8.7905e-01, 9.5274e-01]
50 0.0056 [-0.0013, 0.0126] 9.6287e-01 [9.3407e-01, 9.9168e-01]

Table 3: Summary of Test Statistics and P-Values for comparing federated
encrypted and federated non-encrypted Kaplan-Meier estimators for the lung can-
cer dataset.

Based on the results available in the Table 3, the following can be interpreted:
• Test Statistics: The test statistics across various client counts (2, 5, 10, 20,
30, 40, 50) are small (ranging roughly from 0.0056 to 0.0183). Such small test
statistics indicate minimal difference between the two survival curves.

• Confidence Intervals for Test Statistics: The confidence intervals (e.g.,
[0.0005, 0.0109] for 2 clients or [0.0077, 0.0289] for 20 clients) are tight and
centered around small values. This narrow range indicates little uncertainty, sug-
gesting that it is unlikely there are large, unobserved differences in the underlying
survival distributions. The negative lower confidence limit (-0.0013) for 50 clients
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is due to the reflection of uncertainty in the estimate rather than an indication of
something inherently incorrect. Confidence intervals for a statistical measure rep-
resent a range of plausible values based on the sample data. If the true effect size
(difference in survival distributions) is very close to zero, the confidence interval
may span both slightly positive and slightly negative values.

• P-Values: The P-values are consistently high (close to or above 0.9), which
strongly suggests that any observed differences in survival are plausible under
the null hypothesis. In statistical terms, these high P-values provide no com-
pelling evidence to reject H0. Instead, they indicate that the observed variations
in survival could easily be explained by random chance.

• Confidence Intervals for P-Values: The P-value confidence intervals are also
tight and remain consistently high. This reinforces the stability of the estimation,
further solidifying the conclusion that there is no statistically significant difference
between the two groups.

7.2.2 Log Rank Test Results and P-Values for the Breast Cancer
Dataset

Clients Test Statistic Mean Test Statistic CI P Value Mean P Value CI
2 0.0004 [0.0001, 0.0006] 9.8768e-01 [9.8198e-01, 9.9338e-01]
5 0.0004 [0.0002, 0.0005] 9.8674e-01 [9.8233e-01, 9.9116e-01]
10 0.0005 [0.0002, 0.0007] 9.8435e-01 [9.8030e-01, 9.8840e-01]
20 0.0005 [0.0002, 0.0007] 9.8444e-01 [9.7950e-01, 9.8937e-01]
30 0.0003 [0.0001, 0.0006] 9.8808e-01 [9.8266e-01, 9.9350e-01]
40 0.0004 [0.0002, 0.0007] 9.8607e-01 [9.8044e-01, 9.9170e-01]
50 0.0004 [0.0002, 0.0007] 9.8599e-01 [9.8101e-01, 9.9096e-01]

Table 4: Summary of Test Statistics and P-Values for comparing federated
encrypted and federated non-encrypted Kaplan–Meier estimators for the breast can-
cer dataset.

Based on the results available in the Table 4, the following is interpreted:
• Test Statistic: The test statistic values are consistently very small (on the
order of 0.0003 to 0.0005). Such small values indicate that there are effectively
no discernible differences in the estimated survival distributions between the
federated-encrypted and federated non-encrypted scenarios.

• Confidence Intervals for the Test Statistic: The confidence intervals for the
test statistic are extremely narrow, and they do not deviate significantly from
zero. This suggests a high degree of certainty that the true difference in the
survival curves is close to zero.

• P-Values: The P-values are consistently close to 1. High P-values imply that
the observed differences, if any, are easily attributable to random variation rather
than a meaningful effect of encryption on the survival analysis. In other words,
there is no statistical evidence to reject the null hypothesis of no difference.

• P-Value Confidence Intervals: The P-value confidence intervals remain tight
and centered near values just under 1, reinforcing the conclusion that no
statistically significant difference exists.
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In summary, no statistically significant differences were observed between the federated
non-encrypted and federated-encrypted survival curves for either dataset.

7.3 Numerical Accuracy Assessments

(a) Numerical accuracy between the fed-
erated encrypted and federated non-
encrypted survival curves for the lung
cancer dataset.

(b) Numerical accuracy between the fed-
erated encrypted and federated non-
encrypted survival curves for the breast
cancer dataset.

Fig. 4: Numerical Accuracy Results for the Lung and Breast Cancer datasets

The interpretations of the numerical accuracy results obtained for both the lung
cancer and breast cancer datasets under federated and federated-encrypted scenarios
are the following:

• Consistency Across Datasets: For both the lung and breast cancer datasets,
the federated-encrypted approach yields survival estimates that remain closely
aligned with those of the federated non-encrypted baseline. Regardless of whether
the dataset consists of real-world (lung) or synthetic data (breast), the core
finding is that encryption does not introduce meaningful distortions into the
estimated survival curves.

• Stability of MAE and RMSE: The Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) remain relatively low and stable as the number of
clients increases. While there may be minor fluctuations or incremental increases
as the federation expands to more clients, these changes are modest. This suggests
that the accuracy of the survival estimates is robust to scaling, with no significant
degradation when more institutions contribute data.

• MaxAE Variability: Although the Maximum Absolute Error (MaxAE) occa-
sionally exhibits peaks at certain client counts, these represent isolated instances
rather than a pervasive issue. Across both datasets, the vast majority of time
points maintain small deviations between encrypted and non-encrypted federated
scenarios, and large outliers are not frequent enough to undermine the overall
accuracy.

• Confidence Intervals and Reliability: The confidence intervals for MAE and
RMSE remain relatively tight for both datasets, reinforcing the reliability of
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the estimates. As the number of clients grows, slight broadening of these inter-
vals occurs, but not to a degree that would indicate substantial uncertainty or
instability.

Across both the lung cancer and breast cancer datasets, the federated-encrypted sur-
vival analysis demonstrates a high degree of numerical accuracy and stability, closely
matching the federated non-encrypted approach. Increases in the number of clients
do not substantially compromise accuracy, and while occasional larger errors occur,
they do not impact the overall integrity of the results. This indicates that employing
encryption within a federated setting is feasible and does not significantly affect the
fidelity of the resulting survival estimates.

7.4 Reconstruction Attack Analysis

7.4.1 Reconstruction Risk Scenario

In a federated survival analysis setting, multiple healthcare providers (e.g., hospitals
or clinics) each hold a portion of patient-level time-to-event data. Rather than pooling
their data directly, the providers collaborate by sending aggregated statistics to a
central server, which computes the overall survival function via the Kaplan–Meier
estimator. Under a non-encrypted approach, each provider transmits their counts of
patients at risk (ni) and the number of observed events (di) at each time point ti.

Federated Computation.

Each data provider computes local Kaplan–Meier statistics for its subset of the data,
yielding time-indexed counts of how many patients remain at risk and how many
events occur at each time point.

Aggregation at the Server.

The server receives these unencrypted local counts from all participating providers.
By summing the individual counts, the server forms federated aggregated statistics,
representing the entire federated dataset.

Attacker’s Knowledge.

Assume one of the providers (the “attacker”) aims to infer sensitive details about
patients at other institutions. This attacker knows:

• Their own local counts, (n
(A)
i , d

(A)
i ).

• The aggregated counts across all providers,
(
n
(Fed)
i , d

(Fed)
i

)
.

Reconstruction Attack.

By subtracting their own known local counts from the federated totals, the attacker
infers the combined contributions of all other providers:

n
(Others)
i = n

(Fed)
i − n

(A)
i , d

(Others)
i = d

(Fed)
i − d

(A)
i .

In scenarios where some patient data overlaps between providers (e.g., multiple sites
containing records on the same individuals), this subtraction-based approach can
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become even more revealing, as the attacker may indirectly learn overlapping patient
information if the aggregated totals reflect shared data points.

Evaluating Reconstruction Success.

To quantify how accurately the attacker recovers the other providers’ data, we compare
the inferred counts, x̂i, with the true counts, xi, across each relevant time point i.
Various metrics can be computed for both at-risk counts (ni) and event counts (di),
including:

• Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

∣∣x̂i − xi

∣∣.
A smaller MAE implies higher risk, as it indicates the attacker’s estimates closely
match real data. Conversely, a large MAE suggests lower risk, reflecting poorer
reconstruction accuracy.

• Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(
x̂i − xi

)2
.

RMSE penalizes large deviations more than MAE, thus indicating whether
outliers in the attacker’s estimates significantly degrade the reconstruction.

• Coefficient of Determination (R2):

R2 = 1−
∑n

i=1(x̂i − xi)
2∑n

i=1(xi − x̄)2
, x̄ = mean of xi.

Values close to 1 signify that the attacker’s inferences capture most of the
variation in the real data, indicating a strong reconstruction.

• 0–1 Accuracy Metric: A normalized metric is used, such as

Accuracy = 1− MAE

Scale
,

where Scale can be the maximum or range of the true values. Higher accuracy
values (closer to 1) represent more precise reconstruction and therefore greater
privacy risk.

In the following figures (Figures 5 and 6), we present six reconstruction met-
rics for two datasets: NCCTG Lung Cancer and Synthetic Breast Cancer. We
compare three overlap scenarios (None Overlap, Small Overlap, and Large Overlap)
across increasing numbers of providers (2 to 50). We consider two key Kaplan–Meier
quantities:

• nat risk: The number of patients at risk.
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• dt: The number of events (e.g., deaths).
For each of these, three metrics are assessed:

• Reconstruction Accuracy (0–1), derived from normalized MAE.
• R2 (Coefficient of Determination), indicating how closely inferred values match
the ground truth.

• RMSE (Root Mean Squared Error), capturing the average magnitude of the
attacker’s errors.

1. Reconstruction Accuracy (0–1)

• Few Providers (2–3). Large overlap yields near-perfect accuracy in both
datasets when only one other site is present. The attacker’s knowledge heavily
overlaps with that single remaining provider, making subtraction-based inference
almost exact.

• More Providers (5–50). Accuracy rapidly falls toward zero for all overlap
settings. As additional sites join, the attacker’s ability to isolate each provider’s
data diminishes, especially under large overlap (where many providers share the
same records, further confusing the attack).

2. Coefficient of Determination (R2)

• In both datasets, R2 frequently becomes negative for provider counts above 5 or
10, indicating reconstruction is worse than a naive “predict the mean” baseline.

• Large overlap can start near zero or slightly positive for very few sites but plunges
into large negative values once the federation grows, reflecting how multiple
shared records confound a simple subtraction approach.

3. Root Mean Squared Error (RMSE)

• Lung Cancer. Under no overlap, RMSE remains comparatively low, implying
the attacker’s estimates are (ironically) more accurate than in large overlap when
many sites are present. Large overlap grows steeply with more providers, showing
the attack’s failure on multi-site shared data.

• Breast Cancer. A similar pattern occurs: large overlap has minimal RMSE for
2 providers but escalates quickly to high values by 50 providers, while no overlap
retains the lowest RMSE across many providers.

+

7.4.2 NCCTG Lung Cancer Dataset Results
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(a) Reconstruction Accuracy (dt) (b) Reconstruction Accuracy (nat risk)

(c) R2 (dt) (d) R2 (nat risk)

(e) RMSE (dt) (f) RMSE (nat risk)

Fig. 5: NCCTG Lung Cancer Dataset: Reconstruction metrics comparing None,
Small, and Large Overlap for dt and nat risk. The x-axis is the number of providers,
and each curve shows how an attacker’s reconstruction quality changes with the fed-
eration size.
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7.4.3 Synthetic Breast Cancer Dataset Results

(a) Reconstruction Accuracy (dt) (b) Reconstruction Accuracy (nat risk)

(c) R2 (dt) (d) R2 (nat risk)

(e) RMSE (dt) (f) RMSE (nat risk)

Fig. 6: Synthetic Breast Cancer Dataset: Reconstruction metrics for None, Small, and
Large Overlap using dt and nat risk.
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Overall Findings

1. Small Federations (2–3 Providers). Large overlap plus only one or two other
sites leads to near-complete reconstruction, representing a severe privacy risk.

2. Larger Federations (5–10+). Accuracy converges near zero, while RMSE
climbs; R2 goes highly negative. The attacker’s simple subtraction strategy breaks
down as more providers contribute data.

3. Overlap Impact. Large overlap is devastating for privacy only when the federa-
tion is small. With many providers, large overlap ironically confuses the attacker
more, driving RMSE upward and reconstruction quality downward.

4. Both Datasets. Despite differences in scale (e.g., the breast cancer dataset’s
larger RMSE), the overall pattern holds: high risk in small, high-overlap settings;
diminished attacker performance in larger federations.

In essence, unencrypted federated survival analysis is most vulnerable when few
providers participate and they share a substantial fraction of the same patients. As
the federation grows and/or overlap decreases, the attack’s efficacy rapidly collapses,
pushing both R2 and accuracy toward negligible values while inflating RMSE.

7.5 Performance and Scalability Analysis

(a) federated non-encrypted vs federated
encrypted, lung cancer dataset

(b) federated non-encrypted vs federated
encrypted, breast cancer dataset

Fig. 7: Comparison of computational times between federated non-encrypted and
federated encrypted Kaplan-Meier estimators across varying numbers of clients.

Figure 7 compares the computational times required for non-encrypted and homo-
morphically encrypted (HE) federated Kaplan–Meier (KM) estimations across varying
numbers of clients (from 2 to 50) for both theNCCTG Lung Cancer and Synthetic
Breast Cancer datasets.

In case of NCCTG Lung Cancer Dataset, for smaller client counts, non-encrypted
computation is extremely fast, taking only about 0.09s at 2 clients and rising to around
0.73s by 50 clients. In contrast, homomorphically encrypted (HE) times range from
roughly 0.74s at 2 clients to nearly 12.0s at 50 clients, lower in absolute terms than
the breast cancer dataset, yet still reflecting a notable overhead when compared to the
non-encrypted baseline. Specifically, the ratio of HE to non-encrypted computation is
about 8.4× at 2 clients and increases steadily, reaching around 16.6× by 50 clients.
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Although this ratio is somewhat less extreme than the 18—19× range observed for the
breast cancer dataset, it clearly remains a substantial cost attributable to encryption.

When it comes to the synthetic breast cancer dataset, in the non-encrypted sce-
nario, computation time increases steadily from approximately 0.8s at 2 clients to
around 13.4s at 50 clients. By contrast, the homomorphically encrypted (HE) version
starts at about 15.5s for 2 clients and reaches nearly 247s (over 4 minutes) by 50 clients.
Consequently, the ratio of HE to non-encrypted times typically hovers around 18–19×,
although at 20 clients there is an outlier spike to approximately 25.7×, potentially
due to resource or key-switching overhead triggered at this scale.
Overall, these results confirm a clear trend: homomorphic encryption adds a significant
overhead to federated KM analysis compared to non-encrypted computation. The
exact slowdown factor depends on both: a) the dataset’s baseline (non-encrypted) cost
(computational time) and b) the number of clients (scale of the federation).

In these experiments, latency estimates caused by the federated approach were
excluded from the evaluation. Including latency would not alter the compara-
tive results between the encrypted and non-encrypted solutions. However, it would
introduce higher delays when compared to a centralized (non-federated) solution.

8 Discussion
Our proposed framework substantially extends existing methods for privacy-preserving
federated Kaplan–Meier analysis [1, 2]. By leveraging CKKS encryption, we enable
precise floating-point operations—facilitating realistic time-to-event modeling—while
limiting the privacy risks that arise in multi-institutional collaborations.

One of the notable contributions is a detailed analysis of reconstruction attacks,
wherein a malicious institution can subtract its local counts from the global aggre-
gated counts to infer other institutions’ data. Prior efforts have often acknowledged
the feasibility of federated approaches but provided only partial insight into how data
overlaps among institutions can amplify privacy threats. In contrast, our work system-
atically examines how different federation sizes and degrees of patient overlap affect
an attacker’s reconstruction accuracy. We find that, in small federations (e.g., 2–3
providers) with large data overlap, an adversary can nearly replicate at-risk and event
counts for other sites, posing a serious confidentiality risk. In particular, when only two
providers are involved, we demonstrate that an attacker can completely reconstruct
the opposing site’s data. Homomorphic encryption proves especially critical under
these conditions, as it effectively neutralizes the subtraction-based inference vector.

When the federation grows beyond 5–10 providers, we observe that the attacker’s
reconstruction accuracy falls sharply, with negative R2 values and increasing RMSE.
In larger federations, overlapping patient records across numerous sites dilute the
effectiveness of simple subtraction attacks, rendering near-complete reconstruction
far less likely. From a practical standpoint, these findings suggest that homomorphic
encryption is indispensable in small-scale federations, particularly if high overlap exists
among participants. As the number of institutions increases, the inherent difficulty
of reconstruction diminishes; however, encryption remains advisable when stringent
privacy requirements or regulations necessitate maximum data protection, regardless
of natural obfuscation due to federation size.
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Although homomorphic encryption incurs additional computational overhead,
commonly up to an order of magnitude beyond non-encrypted baselines. Our empirical
assessments on both the NCCTG Lung Cancer and Synthetic Breast Cancer datasets
confirm its feasibility up to 50 clients. The capability for exact floating-point arith-
metic also ensures that homomorphically computed Kaplan–Meier curves and log-rank
statistics are virtually indistinguishable from centralized or non-encrypted federated
results. This balance of privacy protection and analytic accuracy marks a signifi-
cant step forward over previous frameworks constrained by integer-only homomorphic
schemes [1].

Beyond the empirical evidence, we established a comprehensive theoretical model
capturing both aggregation noise (introduced when ciphertexts from multiple clients
are summed or multiplied) and decryption noise (arising during the threshold decryp-
tion process). Formally, our utility-loss bounds show that the difference between the
encrypted federated estimates and the centralized (unencrypted) estimates remains
small, proportional to the total number of ciphertext operations and the associated
noise parameters. Moreover, we prove that as these noise parameters trend to negligible
levels (e.g., through appropriate choice of ciphertext modulus or batching strategies),
the federated Kaplan–Meier estimator converges to the centralized estimator. These
findings provide strong theoretical reassurance that neither the addition of encryption
layers nor the threshold-based decryption process sacrifices statistical validity in the
long run.

However, despite these advancements, several challenges warrant further research.
First, our experimental settings emphasize i.i.d. partitioning; real-world federations
often involve diverse populations and non-i.i.d. data distributions, necessitating more
sophisticated partition strategies or adaptive encryption parameters. Second, while
homomorphic encryption substantially mitigates privacy risks, it amplifies computa-
tional overhead, which may become prohibitive in extremely large consortia. Future
work could explore more efficient key-switching and partial plaintext tricks or integrate
other privacy mechanisms (e.g., differential privacy [33, 34]) alongside encryption.

Further, there exists a small potential risk of key leakage and that private key
shares could be reconstructed by curious parties after a large number of decryption
rounds. It is therefore crucial to implement robust measures that prevent key leak-
age and maintain the security lifecycle of secret-key shares. One of the most effective
strategies for achieving these objectives is the implementation of key rotation / revo-
cation routines. Next, our current results focus on the standard Kaplan–Meier test;
expanding this framework to left and interval censored datasets and more advanced
survival models (e.g., Cox proportional hazards) is essential for broader clinical appli-
cability. Moreover, real-world deployment requires tackling practical hurdles such as
network latency, institutional governance, and secure key distribution in production
environments. Additionally, beyond the reconstruction attacks analyzed herein, new
variants of inference or side-channel attacks can also be tested to further validate and
harden the proposed framework against evolving threat landscapes.

In the evaluation presented in this work, the parties operate on datasets of equal
size for each iteration of the federated Kaplan–Meier estimation. In practical settings,
this requires either an underlying negotiation protocol, which enables parties to agree
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on the size of the data subset before each iteration, or an implementation of a weighted
aggregation. However, negotiation rounds introduce additional communication over-
head, thereby increasing latency. Furthermore, institutions with more data will need
to retain extra data for subsequent rounds, while those with less data will have to wait
until the required amount is acquired, thereby delaying the overall process. Finally,
they expose more information about the data sources, consequently increasing the
risks of reconstruction attacks. On the other hand, implementing weighted aggre-
gation requires the use of homomorphic computations, which include multiplicative
operations and the application of inverse functions. This approach negatively affects
both the precision of the outcomes as well as the computation time. Further research
is required to define the conditions under which each of these approaches might be
preferable.

9 Conclusion
By combining threshold-based CKKS encryption, explicit reconstruction-attack anal-
ysis, and rigorous theoretical bounds on noise and convergence, this work advances
the state-of-the-art work privacy and scalability of federated survival analysis. The
empirical findings highlights how homomorphic encryption is especially vital in
small, high-overlap federations, while remaining beneficial for larger-scale collabora-
tions seeking robust privacy guarantees. Through continued investigation into more
complex survival models, non-i.i.d. data distributions, and operational integration,
our approach can further advance multi-institutional research without compromising
patient confidentiality.

References
[1] Froelicher, D., Troncoso-Pastoriza, J.R., Raisaro, J.L., Cuendet, M.A., Sousa,

J.S., Cho, H., Berger, B., Fellay, J., Hubaux, J.-P.: Truly privacy-preserving
federated analytics for precision medicine with multiparty homomorphic encryp-
tion. Nature Communications 12(1), 5910 (2021) https://doi.org/10.1038/
s41467-021-25972-y

[2] Geva, R., Gusev, A., Polyakov, Y., Liram, L., Rosolio, O., Alexandru, A.,
Genise, N., Blatt, M., Duchin, Z., Waissengrin, B., et al.: Collaborative privacy-
preserving analysis of oncological data using multiparty homomorphic encryption.
Proceedings of the National Academy of Sciences 120(33), 2304415120 (2023)

[3] Therneau, T., Atkinson, E., Crowson, C.: Lung Cancer Data in the Survival
Package. (2024). Accessed: 2024-12-02. https://rdrr.io/cran/survival/man/lung.
html

[4] Loprinzi, C.L., Laurie, J.A., Wieand, H.S., Krook, J.E., Novotny, P.J., Kugler,
J.W., Bartel, J., Law, M., Bateman, M., Klatt, N.E.: Prospective evaluation of
prognostic variables from patient-completed questionnaires. north central cancer
treatment group. Journal of Clinical Oncology 12(3), 601–607 (1994)

[5] (IKNL), N.C.C.O.: Netherlands Cancer Registry (NCR). https://iknl.nl/en/ncr.
Accessed: 2024-12-12 (2024)

[6] Masciocchi, C., Gottardelli, B., Savino, M., Boldrini, L., Martino, A., Mazzarella,
C., Massaccesi, M., Valentini, V., Damiani, A.: Federated cox proportional haz-
ards model with multicentric privacy-preserving lasso feature selection for survival

37

https://doi.org/10.1038/s41467-021-25972-y
https://doi.org/10.1038/s41467-021-25972-y
https://rdrr.io/cran/survival/man/lung.html
https://rdrr.io/cran/survival/man/lung.html
https://iknl.nl/en/ncr


analysis from the perspective of personalized medicine. In: 2022 IEEE 35th Inter-
national Symposium on Computer-Based Medical Systems (CBMS), pp. 25–31
(2022). https://doi.org/10.1109/CBMS55023.2022.00012

[7] Archetti, A., Ieva, F., Matteucci, M.: Scaling survival analysis in healthcare with
federated survival forests: A comparative study on heart failure and breast cancer
genomics. Future Generation Computer Systems 149, 343–358 (2023) https://
doi.org/10.1016/j.future.2023.07.036

[8] Andreux, M., Manoel, A., Menuet, R., Saillard, C., Simpson, C.: Federated Sur-
vival Analysis with Discrete-Time Cox Models (2020). https://arxiv.org/abs/
2006.08997

[9] Imakura, A., Tsunoda, R., Kagawa, R., Yamagata, K., Sakurai, T.: Dc-cox: Data
collaboration cox proportional hazards model for privacy-preserving survival anal-
ysis on multiple parties. Journal of Biomedical Informatics 137, 104264 (2023)
https://doi.org/10.1016/j.jbi.2022.104264

[10] Pan, Y., Chao, Z., He, W., Jing, Y., Hongjia, L., Liming, W.: Fedshe: pri-
vacy preserving and efficient federated learning with adaptive segmented ckks
homomorphic encryption. Cybersecurity 7(1), 40 (2024) https://doi.org/10.1186/
s42400-024-00232-w

[11] Madi, A., Stan, O., Mayoue, A., Grivet-Sébert, A., Gouy-Pailler, C., Sirdey,
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