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This study explores the thermal conductivity and viscosity of water-based nanofluids containing silicon 
dioxide, graphene oxide, titanium dioxide, and their hybrids across various concentrations (0 to 1 
vol%) and temperatures (30 to 60 °C). The nanofluids, characterized using multiple methods, exhibited 
increased viscosity and thermal conductivity compared to water, with hybrid nanofluids showing 
superior performance. Graphene oxide nanofluids displayed the highest thermal conductivity and 
viscosity ratios, with increases of 52% and 177% at 60 °C and 30 °C, respectively, for a concentration 
of 1 vol% compared to base fluid. Similarly, graphene oxide-TiO2 hybrid nanofluids achieved thermal 
conductivity and viscosity ratios exceeding 43% and 144% compared to the base fluid at similar 
conditions. This data highlights the significance of nanofluid concentration in influencing thermal 
conductivity, while temperature was found to have a more pronounced effect on viscosity. To tackle the 
challenge of modeling the thermophysical properties of these hybrid nanofluids, advanced machine 
learning models were applied. The Random Forest (RF) model outperformed others (Gradient Boosting 
and Decision Tree) in both the cases of thermal conductivity and viscosity with greater adaptability to 
handle fresh data during model testing. Further analysis using shapely additive explanations based on 
cooperative game theory revealed that relative to temperature, nanofluid concentration contributes 
more to the predictions of the thermal conductivity ratio model. However, the effect of nanofluid 
concentration was more dominant in the case of viscosity ratio model.
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Nanofluids, composed of nanoparticles dispersed within a base fluid, have gained prominence in thermal system 
research due to their exceptional capability to enhance heat transfer properties, particularly through greater 
thermal conductivity1. These advanced colloidal mixtures have captured the interest of researchers for their 
potential to significantly boost thermal performance, making them suitable for a wider range of industrial thermal 
applications2. The nanoparticles suspended in the fluid matrix play a significant role in improving heat transfer 
efficiency. Moreover, the flexibility to tailor nanofluid properties by adjusting concentration and temperature 
allows for precise customization to meet the demands of specific applications3. This flexibility highlights the 
potential of nanofluids to improve system efficiency and contribute to more sustainable thermal management 
technologies, opening new avenues for innovation in heat transfer systems and energy-saving initiatives4.

Hybrid nanofluids represent a cutting-edge development in thermal management systems, consisting of a 
combination of different nanoparticles suspended in a base fluid. This innovative strategy merges the distinct 
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properties of various nanoparticles, creating a synergistic effect that leads to superior thermal performance 
compared to traditional single-component nanofluids5,6. The primary advantage of hybrid nanofluids lies in 
their ability to capitalize on the complementary attributes of diverse nanoparticles. By strategically selecting 
materials with varying shapes, sizes, and thermal characteristics, researchers can design fluids with enhanced 
heat transfer properties and increased stability. This combination often results in non-linear improvements in 
specific heat capacity, thermal conductivity, and viscosity, outperforming single-component nanofluids7,8.

The adaptability of hybrid nanofluids enables them to be tailored for specific application needs. For 
example, combining metallic and non-metallic nanoparticles can help achieve a balance between high thermal 
conductivity and long-term stability9,10. Likewise, integrating carbon-based nanostructures with ceramic 
particles could produce a nanofluid with superior heat transfer capabilities and improved mechanical strength. 
Optimizing the performance of hybrid nanofluids in thermal management applications requires a thorough 
understanding of their transport phenomena11. This involves a detailed analysis of their rheological properties, 
thermal conductivity, viscosity, convective heat transfer, stability and dispersion, along with the effects of 
Brownian motion and thermophoresis.

By examining these properties and their interactions, researchers can create predictive models for the behavior 
of hybrid nanofluids. This understanding is crucial for designing more efficient cooling systems for electronics, 
enhancing industrial heat exchangers, improving solar thermal collectors, and advancing energy storage 
solutions12–14. Additionally, studying hybrid nanofluids expands our fundamental knowledge of nanoscale fluid 
dynamics and interfacial phenomena. This deeper comprehension not only helps refine current technologies but 
also encourages innovation in areas like nanofluidics, colloidal science, and advanced materials engineering15,16. 
As research continues, hybrid nanofluids are expected to play a key role in overcoming thermal management 
challenges in next-generation technologies, potentially resulting in more energy-efficient and compact cooling 
solutions for various industries. Recently, many researchers have been exploring ternary nanofluids for thermal 
management applications17–19.

When combined, graphene oxide (GO), metal oxides such as silicon dioxide (SiO2), and titanium dioxide 
(TiO2) create an effective solution for advanced heat transfer applications. GO’s outstanding TC and greater 
surface area promote efficient heat conduction and enhance surface contact. TiO2, with its high refractive index 
and excellent thermal stability, effectively scatters and absorbs light, especially in ultraviolet-based systems, 
improving heat transfer efficiency. SiO2, renowned for its superior insulation and chemical resistance, helps 
reduce heat loss and ensures the long-term stability of the system. This synergistic combination provides 
considerable advantages in different domains of applications, including heat exchangers, thermal management 
systems, and insulation materials. By harnessing the distinct properties of these materials, researchers and 
engineers can develop cutting-edge solutions to meet the increasing demand for efficient and sustainable 
thermal management. Table  1 highlights recent investigations on the thermophysical characteristics of GO-
based nanofluids.

This research delves into the thermophysical properties of water-based nanofluids containing GO, SiO2, TiO2, 
and their hybrid combinations (50:50) across various concentrations and temperatures. Unlike previous studies 
focused on individual nanomaterial’s, this investigation uniquely examines hybrid nanofluids, illuminating 
their potential to enhance both thermal conductivity and viscosity. The study employs cutting-edge modeling 
techniques, particularly machine learning algorithms, to accurately predict these intricate properties. Key 
questions addressed include the comparative performance of hybrid nanofluids versus single-component 
alternatives, the precision of advanced machine learning models like extreme gradient boosting and deep neural 
networks in predicting thermophysical characteristics, and the crucial factors influencing nanofluid behavior, as 
revealed through analytical methods such as SHAP. This work bridges a significant research gap by elucidating 

Author Nanofluid Concentration
Temperature 
(oC) Remarks

Mei et al.20 GO/water 0.002 to 0.01 
mass % 25–50 Highest thermal conductivity obtained for a concentration of 0.01% at 50 °C

Selvem et al.21 GO/Ethylene glycol-water 0-0.45 vol% 30 Highest thermal conductivity augmentation of 18% at 0.45 vol%.

Yadav et al.22 GO/Ethylene glycol 0-0.25 mass % 10–50 Thermal conductivity enhancement of 36.72% noticed.

Esfahani and Languri23 GO/water 0.01–0.1 mass % 25–40 Viscosity increment of 60% for 0.1 wt% at 25 oC.

Ranjbarzadeh et al.24 GO-SiO2 0–1 vol% 20–60 Viscosity of the hybrid nanofluid of 345% compared to the base fluid.

Kanti et al.25 GO-Al2O3 (50:50)/water 0–1 vol% 30–60 maximum TC enhancement of GO is 43.9% higher than Al2O3 nanofluid at 
1 vol% at a temperature of 60 °C

Kanti et al.26 GO-CuO (50:50 and 
80:20)/water 0–1 vol% 30–60 Viscosity and thermal conductivity of GO/CuO (50:50) HNF are higher than that 

of GO/CuO (20:80)

Kanti et al.27 GO-MXene (50:50)/water 0–1 vol% 25–60 Addition of MXene to GO NF reduces the thermal conductivity of GO nanofluid.

Selvarajoo et al.28 Al2O3-GO (80:20)/water 0–1 vol% 30–50 Maximum thermal conductivity enhancement of hybrid nanofluid was about 4.3 
and 4.34% greater than Al2O3 and GO mono nanofluid

Huminic et al.29 GO-Si 0.25 wt% 20–50 Viscosity increment due to larger specific surface area of GO sheets.

Colak et al.30 Al2O3,Cu/water 0-0.2 vol% 25–65 Al2O3/water has the highest specific heat capacity compared to Cu nanofluid

Colak et al.31 Cu-Al2O3/water 0-0.2 vol% 20–65 Specific heat capacity of nanofluid improves with increase in temperature.

Table 1.  Thermophysical properties of graphene oxide based nanofluids.
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the superior performance of hybrid nanofluids and leveraging sophisticated machine learning models to gain 
profound insights into the determinants of their thermophysical properties.

As a first step, the study involved synthesizing and characterizing GO, SiO2, and TiO2 nanoparticles, followed 
by the formulation of nanofluids with concentrations ranging from 0 to 1 vol%. The stability of these nanofluids 
was assessed, and their thermal conductivity and viscosity were determined at temperatures ranging from 30 to 
60 °C. Furthermore, machine learning approaches were used to characterize the behavior of nanofluids based on 
thermal conductivity and viscosity data from all tested nanofluids.

Methodology
Synthesis of nanoparticles, characterization, and Nanofluid Preparation
The chemical reagents used in this study were obtained from Merck and employed without additional purification. 
Deionized water had been used consistently throughout the test process. Details on the synthesis of the required 
nanoparticles can be found in the associated paper32. To evaluate the stability of the nanofluids, a Malvern 
Instruments, UK make Nano-ZS apparatus was utilized. The structural and morphological characteristics of the 
nanoparticles were analyzed using X-ray diffraction and field emission scanning electron microscopy. Water-
based mono and hybrid nanofluids in a 50:50 ratio were produced using a two-step method. For information on 
the preparation of the nanofluids, please refer to our published article32.

Thermal conductivity and viscosity
The thermal conductivity of the nanofluids was measured using a KD2 Pro Thermal Properties Analyzer from 
Decagon Devices Inc. This device, featuring a single KS-1 sensor, employs the transient hot-wire method. The 
sensor, which is 60 mm long and 1.3 mm in diameter, is immersed in the test fluid and functions as both a 
heat source and a temperature sensor. The transient hot-wire method minimizes issues with free convection by 
producing a small amount of heat. The instrument has a maximum error margin of ± 5%. Before starting the 
experiments, the KD2 Pro was calibrated with a glycerol standard provided by the manufacturer.

The viscosity of the nanofluids was assessed employing a Brookfield DV-II + Pro viscometer with maximum 
uncertainty of ± 2%. This instrument measures fluid resistance by evaluating the torque exerted by a spindle 
submerged in the fluid. To ensure accurate readings, a controlled water bath was used alongside the viscometer 
to maintain temperature stability and assess the impact of temperature on viscosity. Viscosity measurements 
were taken at temperatures ranging from 30 to 60 °C in 5 °C increments. Each measurement was repeated five 
times for all concentrations and temperatures to ensure consistency and reliability, with a 15-minute interval 
between each measurement. Please refer our published article32 for the validation of both the instruments.

Prognostic analysis with machine learning
Random forest
Random Forest (RF) is an ensemble learning method that operates by constructing multiple decision trees during 
training and outputting either the mode of classification or the mean prediction for regression tasks. Within the 
framework of regression, the model averages the outputs of individual decision trees33–35. Every decision tree 
reduces overfitting and variance by being constructed using a random subset of the data and a random subset of 
the features at every node. The technique randomly chooses samples with replacement—bootstrapping—during 
training to ensure that each tree is trained on another subset. Random feature splitting guarantees that every 
tree is decorrelated, therefore strengthening the whole ensemble model36,37. Computed as the average of all tree 
forecasts, the final prediction simultaneously reduces bias and variation. Especially in datasets where decision 
trees by themselves may show great variance, this approach usually proves strong against overfitting. Because of 
the averaging of several trees, the training error is typically minimal; nonetheless, overfitting on training data 
subsets can cause a modest increase in the test error, but less clearly than in single decision trees38,39.

Gradient boosting regression
Gradient Boosting (GB) Regression builds models sequentially, where each new model corrects the errors of the 
previous one. Usually mean squared error for regression problems, it is a stage-wise additive model adding new 
trees to minimize the loss function. The procedure begins with training an original data-based decision tree, 
then computes residuals or errors from this tree40,41. One then trains a fresh tree to forecast these residuals. This 
tree is included into the model and its forecasts are merged with the past trees to change the general prediction 
of the model. This procedure is repeated for a designated number of times, with every next tree fixing the 
errors of the last one42,43. Gradient descent helps to minimize a differentiable loss function, hence updating the 
model parameters. Though it can be prone to overfitting, especially when too many iterations are carried out, 
gradient boosting is renowned for its great predictive ability. Its iterative character of concentrating on the most 
challenging samples at each stage makes it usually more accurate than decision trees and random forests44,45.

Decision tree
Decision trees (DT) operate by recursively partitioning the data into subsets based on the values of input 
features, creating a tree-like model of decisions. At every node, the method chooses the feature and threshold 
that reduces a given loss function, like mean squared error in regression problems. Until the data is sufficiently 
partitioned or a stopping criterion—like the maximum depth—this method iteratively generates branches in 
the tree. Without feature scaling or data normalizing, decision trees can record intricate relationships among 
characteristics46. Average of the target values in every leaf node generates the last forecast. Since the framework 
of decision trees reflects human decision-making procedures, they are straightforward to understand47,48. They 
do, however, overfit easily, particularly in cases whereby the trees grow deep and capture noise in the training 
data. Pruning helps to minimize the overfitting issue by simplifying the model by eliminating branches with 
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minimal predictive capability. Although decision trees are strong, their single-tree architecture increases their 
sensitivity to high variance relative to ensemble techniques like random forests or gradient boosting49,50.

SHAP-based explainable machine learning
SHapley Additive exPlanations (SHAP) values are a game-theory-based approach to interpreting machine 
learning models by quantifying the contribution of each feature to the model’s output. SHAP values are especially 
helpful in clarifying how thermal conductivity and viscosity of water-based graphene oxide nanofluids are 
influenced by variables like nanoparticle concentration, temperature, and other experimental circumstances51,52. 
By computing the contribution of every characteristic to every individual prediction, SHAP provides insights on 
the internal dynamics of complicated machine learning models, hence explaining their output. Using random 
forest (best performing in this study), the researchers would train machine learning models in this work to 
predict the TC and viscosity employing experimental data. SHAP values for every feature would be computed 
following training so that the researchers may observe how factors such as temperature or concentration of 
nanoparticles affect the expected thermal characteristics53,54. Summary plots help one see SHAP values; each 
point in these graphs represents a prediction and the size of the SHAP values indicates the contribution of a 
feature. This makes it possible to clearly grasp the fundamental physics and data patterns, including whether 
and by what degree raising nanoparticle concentration affects heat conductivity or viscosity. SHAP values’ 
explainability gives the machine learning predictions a fresh layer of transparency, therefore enabling domain 
experts to better understand the outcomes55,56.

Result and discussion
Characterization
Figure 1a to c show field emission SEM images of the nanoparticles (Fig. 2). Analysis of Fig. 3a and b indicates 
that both SiO2 and TiO2 nanoparticles have a spherical shape and tend to aggregate due to Van der Waals forces. 
This spherical form is beneficial because it improves the contact surface area between the nanoparticles and 
the base fluid, hence improving heat transfer efficiency. Additionally, the uniformity of spherical particles helps 
reduce fluid resistance, promoting smoother flow dynamics in nanofluids. In contrast, Fig. 1c illustrates that GO 
nanoparticles have a layered or sheet-like structure. Unlike spherical particles, the sheet-like structure of GO may 
increase the viscosity of the nanofluid, potentially affecting its flow characteristics. However, the high surface 
area of these GO nanosheets can enhance the stability and thermal conductivity of the nanofluid, offsetting 
the potential viscosity increase. Furthermore, the spherical shape of metal oxide nanoparticles helps lower the 
viscosity of the nanofluids in comparison with irregular structures like GO. This makes SiO2 and TiO2 more 
suitable for applications where it is crucial to maintain low viscosity while improving heat transfer. Combining 
these materials can provide a balance between enhanced thermal conductivity and manageable viscosity levels 
in hybrid nanofluid systems.

The nanoparticles were characterized using a Bruker Advance diffractometer with Cu-Kα radiation over a 
2θ range of 10° to 60°, at a 0.02° step size. The crystallite size was calculated using the Scherrer formula. XRD 
analysis of TiO2 (Fig. 3a) shows pure anatase phases, confirming no impurities and a mean nanoparticle size of 
40 nm. In XRD analysis presented in Fig. 3b, GO typically shows a peak around 2θ = 10–15° due to the increased 
interlayer spacing caused by oxygen functional groups. This peak confirms the successful oxidation of graphite 
into GO.

Nanofluid stability
The zeta potential is an important parameter in determining the dispersed nanoparticles stability in nanofluids. 
A zeta potential value exceeding ± 30 mV indicates stable colloidal dispersions.

In this study, the mass ratio of Polyvinyl pyrrolidone (PVP) to GO, and to hybrid nanofluids, was kept constant 
and matched the weight of GO to ensure consistent experimental conditions for accurate comparisons. Stability 
analysis using the Zetasizer (Malvern Instruments, UK) revealed that zeta potential values were consistent both 
immediately after preparation and after 25 days, demonstrating the high stability of the nanofluids shown in 
Fig. 3. These results highlight the effective dispersion of nanoparticles, which is essential for enhancing heat 
transfer and ensuring long-term stability and performance.

Viscosity
Figure 4a–d illustrate how the viscosity of nanofluids varies with concentration and temperature. Viscosity rises 
with increased concentration but decreases as temperature increases. The highest and lowest viscosity ratio (µ 
nf/µ bf) observed for GO nanofluid is 2.77 and 1.38 at 30 and 60 °C for 1 and 0.1 vol%, correspondingly. The 
relationship between temperature and viscosity in nanofluids is governed by a complex interplay of molecular 
dynamics and nanoparticle behavior. As thermal energy increases, it catalyzes more vigorous molecular motion, 
weakening the cohesive forces between fluid molecules. This diminution of intermolecular attraction facilitates 
easier relative movement, manifesting as reduced viscosity and enhanced flow characteristics. Concurrently, 
elevated temperatures amplify the Brownian motion of suspended nanoparticles, causing them to collide more 
frequently with fluid molecules and disrupt local fluid structures. This disruption further attenuates fluid 
viscosity by impeding the formation of transient molecular networks that contribute to flow resistance.

However, the influence of nanoparticles on viscosity is concentration-dependent and non-linear. At higher 
concentrations, nanoparticles exhibit increased propensity for inter-particle interactions, potentially leading 
to the formation of temporary or permanent agglomerates. These larger structures can significantly impede 
fluid flow, counteracting the viscosity-reducing effects of temperature. Moreover, the surface properties 
of nanoparticles, such as charge distribution and functional groups, play a crucial role in determining their 
aggregation behavior and subsequent impact on fluid dynamics.
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The presence of nanoparticles also introduces additional mechanisms that modulate viscosity. For instance, 
the formation of a nanolayer of fluid molecules around each particle can alter local fluid properties, creating 
regions of modified viscosity that influence bulk fluid behavior. Furthermore, the shape anisotropy of certain 
nanoparticles, such as GO flakes, can induce orientation-dependent effects on fluid flow, adding another layer of 
complexity to the viscosity profile of nanofluids at varying temperatures and shear rates.

Figure 4d contrasts at various concentrations and temperatures the viscosity of hybrid and mono nanofluids. 
Whereas SiO2 nanofluids display the lowest viscosity, GO nanofluids have the greatest. The plate-like structure 

Fig. 1.  FESEM images for (a) SiO2 (b) TiO2 and (c) GO.
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and large surface area of GO hinder fluid movement, increasing its viscosity. On the other hand, the smaller 
surface area and the spherical shape of SiO2 facilitate easier fluid flow, resulting in lower viscosity. TiO2 nanofluids 
have higher viscosity than SiO2, likely due to their smaller particle size and higher density. GO-TiO2 nanofluids 
display higher viscosity compared to GO-SiO2, as TiO2’s smaller particles and SiO2’s shape promote smoother 
flow. Hybrid nanofluids, such as GO-SiO2 or GO-TiO2, generally exhibit higher viscosity than mono nanofluids 
due to increased particle interactions, larger particle clusters, and potential synergistic effects between different 

Fig. 2.  XRD for (a) TiO2 and (b) GO nanoparticle.
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nanoparticles, leading to greater flow resistance. While adding GO raises viscosity, mixing it with SiO2 or TiO2, 
which have lower surface areas, reduces the viscosity of GO in hybrid formulations.

Thermal conductivity
Figure 5 (a–c) illustrate the thermal conductivity of both hybrid and mono nanofluids, which increases with 
temperature and concentration. The maximum and minimum thermal conductivity amplification of 1.52 and 
1.09 noticed for GO nanofluid at 60 and 30 °C for 1 and 0.1 vol%, respectively, compared to the water.

The thermal conductivity of nanofluids exhibits a complex relationship with temperature and nanoparticle 
concentration, driven by several interacting mechanisms. As temperature rises, the intensified Brownian motion 
of nanoparticles leads to improved dispersion and reduced agglomeration, creating a more uniform distribution 
of heat-conducting elements throughout the fluid. This enhanced particle mobility facilitates more frequent 
and energetic collisions between nanoparticles and fluid molecules, establishing numerous transient nanoscale 
heat transfer bridges that significantly boost overall thermal conductivity. The augmented thermal energy at 
elevated temperatures also promotes the formation of more robust and extensive percolation networks among 
nanoparticles, particularly in fluids with higher concentrations. These networks serve as preferential pathways 
for rapid heat propagation, markedly enhancing the fluid’s thermal transport capabilities. Furthermore, the 
temperature-induced reduction in fluid viscosity allows for more efficient heat transfer at the nanoparticle-fluid 
interface, as the decreased resistance to molecular motion enables swifter energy exchange.

Increasing nanoparticle concentration introduces additional heat conduction pathways, amplifying the fluid’s 
thermal conductivity. However, this relationship is non-linear and exhibits a critical threshold. Beyond a certain 
concentration, particle crowding can lead to the formation of larger aggregates, which paradoxically may impede 
heat flow by reducing the effective surface area for heat exchange and disrupting the continuity of thermal 
pathways. The synergistic interplay between temperature and concentration effects on thermal conductivity is 
particularly noteworthy. Higher temperatures can mitigate the negative impacts of increased concentration by 
enhancing particle dispersion and preventing excessive agglomeration, thus maintaining optimal heat transfer 
conditions even at elevated particle loadings.

Fig. 3.  Zeta potential values for considered nanofluids.
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It’s crucial to consider the role of nanoparticle material properties in this context. Materials with high 
intrinsic thermal conductivity, such as graphene or carbon nanotubes, can yield disproportionate increases 
in fluid thermal conductivity even at relatively low concentrations. The aspect ratio and surface chemistry of 
nanoparticles also significantly influence their dispersion behavior and interfacial thermal resistance, further 
modulating the temperature and concentration-dependent thermal conductivity enhancements in nanofluids.

Figure 5d compares the TC of hybrid and mono NFs. At 1.0 vol% and 60 °C, the highest thermal conductivity 
ratios for SiO2, TiO2, GO-SiO2, GO-TiO2, and GO nanofluids are 1.17, 1.23, 1.39, 1.43, and 1.52 respectively.

GO demonstrates the most significant TC enhancement owing to its inherent higher TC and layered 
structure, while SiO2, with lower thermal conductivity and surface area, shows the least. Hybrid nanofluids 
generally outperform mono nanofluids (except for GO) due to synergistic effects that combine the properties of 
different nanoparticles to create more efficient heat transfer pathways. Various nanoparticles improve thermal 
conductivity through enhanced phonon transport, better dispersion, and reduced agglomeration. Additives also 
help improve dispersion, which enhances the thermal conductivity of hybrids. GO-TiO2 exhibits higher thermal 
conductivity than GO-SiO2, due to TiO2’s smaller size and higher thermal conductivity. The improvement in 
thermal conductivity for nanofluids depends on particle size, shape, dispersion, and inter-particle interactions, 
which are essential for effective thermal management.

Data pre-analysis
The data gathered in lab-based testin phase was evaluated for correlation among the data columns. The 
correlation matrix offers important new perspectives on the interactions among the variables. Beginning with 
nanoparticle concentration, it shows a quite significant positive association with the viscosity ratio (0.97), 
meaning that the viscosity ratio also grows practically proportionately as the nanoparticle concentration rises 
(Fig. 6a). This makes sense as the inclusion of nanoparticles usually raises the viscosity of the nanofluid. Likewise, 

Fig. 4.  Depiction of dynamic viscosity ration in the case of (a) GO (b) GO-TiO2 (c) GO-SiO2 hybrid NF, (d). 
Comparative depiction of considered nanofluids dynamic viscosity ratio.
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the concentration displays a strong positive association with the thermal conductivity ratio (0.82), implying that 
increasing nanoparticle concentrations enhance the thermal conductivity of the fluid. Conversely, temperature 
(T) has no effect on concentration (0) since in this scenario the concentration of nanoparticles is independent 
of temperature. With the TC ratio (0.54), it does, however, exhibit a modest positive correlation, meaning that 
higher temperatures usually improve the TC of the nanofluids. By contrast, the temperature exhibits a mild 
negative association with the viscosity ratio (-0.13), meaning that rising temperature somewhat lowers viscosity, 
a normal behavior for fluids where viscosity drops with heating.

At last, the viscosity ratio and TC ratio show a quite strong positive connection (0.74), implying that in 
the nanofluid these two characteristics are connected. A rise in one generally follows a rise in the other as the 
nanoparticles raise both viscosity and heat conductivity. Understanding how changing one feature could affect 
the total thermal performance of the nanofluid depends on this interdependence. The scatter plot (pair plot) 
depicted in Fig. 6b visually shows the associations between several dataset variables. Whereas the off-diagonal 
parts display scatter plots, indicating the correlations between pairs of variables, each diagonal element provides 
a histogram for a single variable. This plot supports the results of the correlation matrix shown in Fig.  6a. 
While temperature has a secondary influence on thermal conductivity more than viscosity, the concentration 
of nanoparticles has a very significant effect on both thermal conductivity and viscosity ratios. The image 
demonstrates that concentration drives the behavior of the system mostly; temperature has a relatively moderate 
influence.

Thermal conductivity ratio models
The TC ratio prediction models were developed by employing three modern ML approaches namely Random 
Forest (RF), Gradient Boosting (GB), and Decision Tree (DT). The models were then used for statistic-based 
evaluation and comparison. Table 2 shows the values of mean squared error (MSE), coefficient of determinants 

Fig. 5.  TC in the case of (a) GO (b) GO-TiO2 (c) GO-SiO2 hybrid NF, (d) Thermal conductivity of the 
nanofluids for 1 vol%.
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(R2), and mean absolute percentage error (MAPE) in each case. With a low Train MSE of 0.0001 and Test MSE 
of 0.0002 the RF model (Fig. 7a) exhibits good predictive ability. Train R² of 0.9860 and Test R² of 0.9575 show 
that the model generalizes effectively to unknown data, therefore attesting to great accuracy. Reflecting little 
prediction errors, the MAPE is likewise rather low, with 0.90% for training and 1.04% for testing. With a Train 
MSE of 0.0001 and Train R² of 0.9874 indicating outstanding fit the GB model (Fig. 7b) performs similarly on 
the training set. On the other hand, the Test MSE is somewhat higher at 0.0003 and the Test R² falls to 0.9202, 

Fig. 6.  Correlations (a) Heatmap (b) pair plots developed using open access python libraries (pandas, 
matplotlib.pyplot, numpy).
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therefore indicating less generalization than the Random Forest. With a MAPE for the test set of 1.42%, greater 
than that of Random Forest, this model clearly generates more prediction errors in unseen data. Reflecting a 
quite strong match to the training data, the DT model has a similar Train MSE of 0.0001 and a high Train R² of 
0.9876. With a higher Test MSE of 0.0006 and Test R² of 0.8500, its performance on the test set does, however, 
clearly deteriorates. This suggests that the model suffers with generalizing. Furthermore, supporting that this 
model generates more errors while testing than Random Forest and Gradient Boosting is the test MAPE of 
1.91%. While Decision Tree (Fig. 7c) displays symptoms of overfitting and less dependable predictions on the 

Fig. 7.  Model comparison in case of TC ratio model using (a) RF (b) GB (c) DT.

 

Model Train MSE Test MSE Train R2 Test R2 Train MAPE, % Test MAPE, %

RF 0.0001 0.0002 0.9860 0.9575 0.90 1.04

GB 0.0001 0.0003 0.9874 0.9202 0.82 1.42

DT 0.0001 0.0006 0.9876 0.8500 0.80 1.91

Table 2.  Model evaluations.
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test data, Random Forest offers the best balance between training and test performance followed by Gradient 
Boosting.

VST model prediction
Three contemporary ML techniques RF, GB, and DT were used in development of the VST ratio prediction 
models. After that, statistical-based assessment and comparison made advantage of the models. Table 3 lists in 
each scenario MAPE, R2, and MSE. With their identical Train MSE values and high Train R² values of about 0.97, 
the performance metrics for the VST ratio models reveal consistent outcomes across all three models: Random 
Forest, Gradient Boosting, and Decision Tree during training. This implies that every model may reasonably 
capture the fundamental trends in the training data. The test R² values of the models on the test data expose 
some variations in their generalizing capacity. With Test R² values of 0.9405 and 0.9637 respectively, the Random 
Forest and Gradient Boosting models show equivalent generalization. This suggests great forecasting ability 
despite on unavailability of data. Conversely, the Decision Tree model exhibits a somewhat lower Test R² of 
0.9217, which reflects a decreased capacity to sustain accuracy on the test set, thereby maybe indicating a higher 
vulnerability to overfitting in compared to the ensemble-based models.

These trends are supported by the test data’s Mean Absolute Percentage Error (MAPE). While Gradient 
Boosting and Decision Tree show better error percentages, Random Forest has the lowest Test MAPE, indicating 
more exact predictions. This trend implies that, presumably because they have lower overfitting relative to the 
single-tree Decision Tree model, ensemble models especially Random Forest, handlers the volatility in the data 
better. Finally, all models perform well during training; with Gradient Boosting closely behind, the Random 
Forest model offers the best trade-off between training performance and generalization to test data. Though 
still useful, the Decision Tree model shows more overfitting and poor accuracy in test data predictions (Fig. 8).

eXplainable machine learning using SHapley additive exPlanations analysis
The ML approached employed in last section provided excellent results. However, these are black box methods 
and stakeholders may not how these models predicted or how much was the contribution of each feature 
involved. By pointing out the most important factors influencing TC and VST ratio predictions, explainable 
machine learning can offer understanding of the decision-making process of the model. Understanding feature 
importance and interpreting model outputs helps researchers identify causes of overfitting or errors, therefore 
strengthening model dependability and guiding optimization for maximum performance.

Employing SHAP values, the Fig.  9a offers a thorough examination of the relative significance of two 
predictors—nanoparticle concentration (Conc., Vol.%) and temperature (T, °C) on the output of the model. 
The first plot a bar chart of mean SHAP values showcases how mean SHAP value of nanoparticle concentration 
exceeds that of temperature (0.0452). This implies that, relative to temperature, concentration contributes more 
generally to the predictions of the model. The output shows a more significant influence from the SHAP values 
for concentration, so changes in concentration greatly affect the response of the model.

The bee swarm plot (Fig. 9b) expands on the distribution and range of SHAP values for every predictor. 
With a higher concentration of SHAP values in the positive range, nanoparticle concentration exhibits a wider 
distribution whereby both high and low values can either positively or negatively affect the model result. This 
suggests that generally the expected value rises with increasing concentration. On the other hand, temperature 
shows a smaller range of SHAP values; most of the values are near zero, thereby suggesting it has a more restricted 
influence on the prediction of the model. Though less significantly than concentration, high-temperature values 
nevertheless help the output in some beneficial manner. This implies that, with temperature having a minor but 
still significant impact, concentration dominates in determining the predictions of the model.

In the case of viscosity ration model, the effects of nanoparticle concentration (Conc., Vol.%) and temperature 
is depicted in the Fig.  10a. The bar chart shows that concentration, with a substantially higher mean SHAP 
value (0.3125) than temperature (0.0439), clearly influences the projections of the model. The size of the SHAP 
value of concentration suggests that variations in this variable cause more significant variations in the viscosity 
ratio prediction. With a general trend demonstrating that larger concentrations (shown by the red dots) greatly 
improve the model output, nanoparticle concentration shows a wide range of SHAP values both positive and 
negative in the bee swarm plot (Fig. 10b). On the other hand, the small range of the SHAP values for temperature 
indicates their reduced influence on the model since they cluster at zero. High temperatures still somewhat 
influence the results of the model, but less clearly. Consequently, in this model the concentration of nanoparticles 
still mostly determines the viscosity ratio.

Conclusion
This study explored how temperature and concentration affect the thermal properties of various nanofluids, 
including GO, GO-TiO2, GO-SiO2, TiO2, and SiO2, within a concentration range of 0 to 1 vol% and 
temperatures from 30 to 60 °C. Using extensive experimental data, accurate prediction models were developed 

Model Train MSE Test MSE Train R2 Test R2 Train MAPE, % Test MAPE, %

RF 0.0041 0.0052 0.9701 0.9405 2.78 3.93

GB 0.0040 0.0056 0.9704 0.9366 2.76 4.17

DT 0.0041 0.0069 0.9707 0.9217 2.68 4.54

Table 3.  Model evaluations.
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with RF, GB, and DT techniques. To enhance the interpretability of these complex models the SHAP (Shapley 
Additive Explanations) was utilized. The findings of this study offer valuable insights into the behavior of 
nanofluids, facilitating the creation of more effective predictive models and a deeper understanding of their 
thermal performance. The key conclusions are:

	1.	� GO nanofluids showed the highest thermal conductivity enhancement among all tested fluids, achieving 
a maximum thermal conductivity ratio of 1.52 at 1 vol% and 60 °C. This enhancement is due to GO’s high 
thermal conductivity, surface area, and layered structure, which improve heat transfer efficiency.

	2.	� Hybrid nanofluids, especially GO-TiO2, exhibited better thermal conductivity enhancement compared to 
mono nanofluids (except GO). At 1 vol% and 60 °C, GO-TiO2 achieved a TC ratio of 1.43, outperforming 
GO-SiO2 (1.39), TiO2 (1.23), and SiO2 (1.17). This improvement is attributed to synergistic effects and better 
nanoparticle dispersion.

	3.	� The viscosity of hybrid nanofluids increases with nanoparticle concentration. Viscosity ratio for GO-TiO2 
nanofluid at 1 vol% reached 2.45 at 30 °C, compared to 1.40 at 0.1 vol%. This increase is due to increased 
particle interactions and larger agglomerates that hinder fluid flow.

Fig. 8.  Model comparison in case of VST ratio model using (a) RF (b) GB (c) DT.
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	4.	� For GO-SiO2 nanofluid at 1 vol%, the viscosity ratio dropped from 2.30 at 30 °C to 2.07 at 60 °C. Higher tem-
peratures enhance molecular motion, allowing the fluid to flow more freely and reducing internal resistance.

	5.	� The Random Forest (RF) model outperformed others (Gradient Boosting and Decision Tree) in both the cas-
es of thermal conductivity and viscosity with greater adaptability to handle fresh data during model testing.

	6.	� Further analysis using shapely additive explanations based on cooperative game theory revealed that relative 
to temperature, nanofluid concentration contributes more to the predictions of the thermal conductivity 
ratio model. However, the effect of nanofluid concentration was more dominant in the case of viscosity ratio 
model.

Data availability
The data is available within the manuscript.
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