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Abstract. This paper investigates the feasibility of using pre-trained generative
Large Language Models (LLMs) to automate the assignment of ICD-10 codes to
historical causes of death. Due to the complex narratives often found in historical
causes of death, this task has traditionally been manually performed by coding
experts. We evaluate the ability of GPT-3.5, GPT-4, and Llama 2 LLMs to accu-
rately assign ICD-10 codes on the HiCaD dataset that contains causes of death
recorded in the civil death register entries of 19,361 individuals from Ipswich, Kil-
marnock, and the Isle of Skye in the UK between 1861–1901. Our findings show
that GPT-3.5, GPT-4, and Llama 2 assign the correct code for 69%, 83%, and 40%
of causes, respectively. However, we achieve a maximum accuracy of 89% by
standard machine learning techniques. All LLMs performed better for causes of
death that contained terms still in use today, compared to archaic terms. Also, they
performed better for short causes (1–2 words) compared to longer causes. LLMs
therefore do not currently perform well enough for historical ICD-10 code assign-
ment tasks. We suggest further fine-tuning or alternative frameworks to achieve
adequate performance.

Keywords: Large Language Models · Historical Data · Historical Causes of
Death · GPT · Llama ·Machine Learning · ICD · ICD-10 · ICD-10h

1 Introduction

In historical demography, one of the main tasks is converting the existing knowledge
bases of historical registers and microdata into encoded form, so that they can be more
easily utilised for research purposes. Many classification systems have been created
over the years to help standardise the converted data, such as the Historical International
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Standard of Classification of Occupations (HISCO) [1] for occupational information, or
the International Classification of Diseases (ICD) [2] for health information. However, a
shared, defining trait of all these classification systems is that, when applied to historical
data, the encoding requires a tremendous effort in terms of manual work, usually done
by domain experts.

The aim of this paper is therefore to explore the possibility of using Large Language
Models (LLMs) to automate the encoding of historical causes of death into the ICD-
10 system.1 In the WHO’s current ICD-10 classification system, there are over 14,000
unique codes in the base version [4], but several countries have their own, extended
versions of previous revisions of the system. Additionally, there are several codes with a
high degree of overlap, making it challenging to distinguish one disease or injury from
another, for both human experts and automated systems.

LLMs such as GPT (Generative Pre-trained Transformer) and Llama are artificial
intelligencemodels built to both understand andgenerate human-like text. They are based
on the transformer deep learning architecture presented by Vaswani et al. in 2017 [5].
They have multiple uses, in particular within the field of Natural Language Processing
(NLP) [6–8], and have shown great potential for understanding text and for classification
problems [9, 10]. Prompt engineering is a key feature for LLMs. All models require a
prompt,which is the input to themodel provided by a user through text, and by combining
this with a set of instructions as to how the model should behave we can expect model
performance to increase [11]. It is even possible to provide the models with highly
specific examples of desired behaviour and outputs [12].

Anotable drawbackwithLLMs is their propensity to “hallucinate” [13],meaning that
themodels present outputs that are falsehoods. Also, LLMs are black boxes and therefore
lack the needed transparency to explain their responses. Other machine learning (ML)
models can provide a confidence metric for how confident the underlying algorithm is
about a predicted value. This is not possible for an LLM because it does not predict an
answer to the input text. Rather, it generates a response text by continually predicting
which token should be next in the sentence it is constructing [14].

Despite these drawbacks, LLMs have previously been used to generate ICD-10
billing codes2 from modern hospital datasets [15, 16], and given the potential upsides
in terms of time and resources saved through an automated system, we believe that
performing an exploratory study into using LLMs to encode historical causes of death
is worthwhile. We evaluate how current LLMs would perform for the specialised task
of classifying a dataset containing a mixture of historical and currently used terms for a
variety of causes of death.

1 Initially, the primary goal of the studywas to assign ICD-10h codes, a version of ICD-10 created
for use on historical causes. However, due to the unavailability of the ICD-10h system online,
we concentrated on ICD-10. We believe the findings of this study are transferable to ICD-10h
when it is accessible to LLMs [3].

2 Billing codes are standardized codes used in the healthcare industry of some countries to
represent various medical procedures, treatments, and services. These codes serve as a means
of communication between healthcare providers, insurance companies and regulatory bodies,
facilitating the billing and reimbursement process for medical services.
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Up until now the work of assigning ICD codes to historical causes of death has
been a process done manually by domain experts [17–20], but state-of-the-art ICD
classifications for contemporary datasets [21–23] are usually achieved using pre-trained
encoder transformers such as BERT [24] or automated coding systems such as ACME
[25, 26]. Recently, we have seen an increased interest in exploring the capabilities of
LLMs for ICD classification and other health data related tasks. Soroush et al. [15] have
assessed the performance of OpenAI’s GPT-3.5 and GPT-4 when generating ICD billing
codes, but found that the LLM’s tendency to “hallucinate” key details would present too
much of a problem for actual implementation in a healthcare context. Boyle et al. [16]
created a novel tree search approach, guided by the LLM and based on the ICD code
description, and managed to achieve competitive results without doing any task-specific
training.

2 Methods

2.1 LLMs

We employ OpenAI’s default GPT-3.5-turbo and GPT-4 (Generative Pre-trained Trans-
former), as well as Meta’s Llama 2 model, specifically the Llama-2-13b-chat-hf. The
GPT models were accessed through OpenAI’s API, while the Llama 2 model ran on a
local machine. Note that using this API is a paid service [27]. We performed the experi-
ments between November 1st and 8th in 2023.We kept the model parameters at a default
level to get themodels’ base level performance on the task, but we also employed prompt
engineering to explore how this impacts the LLMs’ performance.

2.2 Prompt Engineering

The way a prompt is phrased has a massive impact on the LLM output. The models are
also very susceptible to the tone of the user’s feedback. If a user says that the answer
is incorrect, the model changes its answer. Hence, we found that a set of very clear and
concise instructions on how to behave, in a very neutral tone, works best. The structure
of a prompt can vary significantly depending on the specific task or desired outcome, as
well as the type of LLM.3 Usually, however, there will be a System prompt and a User
prompt. The System prompt defines the base behaviour or sets the context for the model,
it can also include specific instructions. In our example below, most of the prompt is a
System prompt, defined by writing “role: system”. The User prompt follows next and
is where the user interacts with the model by providing a query or input. This part is
defined by writing “role: user”. Our prompt for the GPT models is shown below.

3 The prompt shown in this text follows the format required by OpenAI’s GPT models. Other
types of LLMs may have different structures and syntax.
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{'role’: 'system', 'content': """Assistant is an intelli-
gent chatbot designed to help the user assign clinical 
ICD-10 codes to causes of death.

Instructions:
         - Only answer using standard ICD-10 codes, do 
not use ICD-10-CM billing codes.
         - Only return a single ICD-10 code per injury 
and/or disease found in the given cause of death.
         - Each ICD-10 code should not consist of more 
than 5 characters, the typical format looks like this: 
'X01.0'
         - Your answers should be in the following for-
mat: 'Cause of death: <CAUSE OF DEATH>, ICD-10 code: 
<ICD-10 CODE>'
         - If you are unsure of an answer, do not try to 
guess. Instead, write the following reply: 'Cause of 
death: Unknown, ICD-10 code: Æ99.9'."""}, 
         {'role': 'user', 'content': input_from_user + 
'?'}

In our case, we are supplying the LLMwith a cause of death in the User prompt, and
the instructions for how to respond in the System prompt. This would, ideally, result in
the following type of exchange between the user and the LLM:

Input – tabes mesenterica?
Output - Cause of death: Tabes mesenterica, ICD-10 code: A18.3.

2.3 Historical Causes of Death (HiCAD) Dataset

The dataset used in this project was created by a team at the Cambridge Group for
the History of Population (CAMPOP) at the University of Cambridge. It covers three
areas of the UK, the town of Ipswich in England, and the town of Kilmarnock and the
Isle of Skye, both in Scotland. It spans the period 1861 to 1901 and includes 45,687
individual registered deaths. There are only infant deaths (i.e., a child who died prior to
their first birthday) for Ipswich, while Skye and Kilmarnock also have deaths from other
age groups, hence roughly 1/3 of the total deaths are those of infants. Historic causes of
death are notoriously difficult to code, since there are many blank or illegible entries as
well as archaic terms, vague causes, and symptoms. Although it was a legal requirement
for the cause of death to be certified by a doctor in both England and Scotland at this
time, this did not universally happen, particularly when the deceased had not been treated
by a doctor during their last illness. In such cases, a cause of death suggested by the
informant (usually a relative) might have been recorded instead. Patterns of medical
treatment mean that the deaths of the very young, the very old, and those who died from
accidents or acute conditions were less likely to have been allocated a cause by a doctor.
On the other hand, the ease of identifying particular causes, such as certain infectious
diseases with very characteristic marks like the distinctive rash from smallpox or the



34 B.-R. Pedersen et al.

red, swollen tongue of scarlet fever, means that the reporting of deaths from such causes
may be more reliable, even if the informant was a lay person [28, 29].

This dataset was manually constructed, in batches, by two domain experts over at
least a decade. It has been coded to both the 10th revision of the International Statistical
Classification of Diseases and Related Health Problems (ICD-10) as well as a variant
of the ICD-10 called the ICD-10h, to accommodate causes of death found in historical
populations. The latter was originally developed for the Digitising Scotland project,
based at the University of Edinburgh [30]. Currently it is being expanded for European
comparisons by the SHiP+ network [3].

The ICD-10h version is currently only available offline and therefore not part of any
LLM training set. This makes it unfeasible to directly use current commercial LLMs to
classify causes of death into the ICD-10h system without fine-tuning or embedding the
knowledge into the model. However, since each cause of death in the dataset was given
both a corresponding ICD-10 and ICD-10h code, we can instead use the ICD-10 code
as the target for classification.

From this dataset of 45,687 registered deaths, we constructed a smaller dataset of
cause of death strings by randomly sampling 19,361 individuals. This was done to reduce
the cost of using the GPT models. We will refer to this smaller dataset as the HiCaD
(Historical Causes of Death). The original dataset consisted of 21 variables. In addition
to personal information about the individual (sex, age at death, length of last illness), it
also contained the original cause of death text string from the death registration. This
string could contain multiple diseases suffered and/or injuries sustained by the person,
which were thought to contribute to their death. Each one of these distinct diseases
and/or injuries had been separated out, standardized, and given an ICD-10h code, by
the original domain experts. For the HiCaD dataset however, we only kept the variables
that were necessary for doing predictions through the LLMs and to analyse the results;
the original cause of death text string, the first injury/illness reported as a cause of death
and its corresponding ICD-10/ICD-10h code, and finally the historic category of disease
(e.g., airborne disease, water- and foodborne disease) assigned.

2.4 The Hierarchical Structure of ICD-10 Codes

The ICD-10 coding system represents specific diseases or injuries as an alphanumeric
code, usually up to 4 characters long. The ICD classification system is constructed using
a hierarchy with 5 levels (Table 1). The first level corresponds to a chapter within the
classification system but is not represented as a character in the final code. Levels 2 and 3
serve to narrow down the type or location and are represented by the first 3 characters in
the code, called blocks. Most of the three-character categories are subdivided by means
of a fourth, numeric character after a decimal point, allowing up to 10 subcategories
(0–9); this is the fourth level. The final level is the actual code that is given to the disease
or injury.

Within the ICD-10 and ICD-10h coding systems, there exist variables that categorise
causes of death by type. For the ICD-10 system this is the chapter, and the ICD-10h
equivalent is called Historical category (Histcat). Late twentieth and twenty-first century
data can be accurately classified using the ICD-10 chapters, but chapters aren’t always
appropriate or useful for classifying historic causes of death. This is partly because codes
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Table 1. Example overview of the hierarchical structure of the ICD-10 system

Level Level name Code range Description

1 Chapters I–XXII Each chapter represents a type of disease or
injury

2 Blocks A00–B99 Certain infectious and parasitic types

3 Categories A15–A19 Tuberculosis

4 Subcategories A15.0–A15.9 Respiratory tuberculosis, bacteriologically and
histologically confirmed

5 Code A15.1 Tuberculosis of lung, confirmed with culture
only

were assigned to words or terms which could change meaning over time and partly
because the lack of specificity in historic causes means that many historic causes end
up in the “Signs and Symptoms” Chapter of ICD-10. Histcat offers a more historically
sensitive classification which ensures codes are grouped in ways which reflect 19th
century usage and knowledge.

2.5 Experiments

Correct and Incorrect Classification. In the experiment, we assessed model perfor-
mance on the HiCaD dataset by counting the number of codes that were correctly
assigned, defined in two ways: a full match (exact correspondence with the expert
assigned ICD-10 code) and a partial match (the first three characters of the model’s
output match the expert-assigned code). We accepted partial matches since the fourth
character of ICD-10 codes has only ten possible variations, simplifying manual correc-
tion. Additionally, we performed an error analysis for the causes of death where the
LLMs could not assign a correct ICD-10 code, to determine which types of errors were
more common. We subdivided the errors into four categories: 1) The LLM assigned the
error code ‘Æ99.9’, which we defined as part of the model prompt; 2) The LLM hallu-
cinated a valid ICD-10 code; 3) The LLM hallucinated an invalid ICD-10 code (here,
we define a ‘valid code’ as one found in the WHO’s ICD-10 Version:2019 [31]); 4) The
LLM gave a syntactically incorrect output, making it impossible to extract an ICD-10
code for the cause of death.

ComparisonwithAlternativeMethods. The second experiment aimed to compare the
results of the LLMs with two alternative classification techniques. The first alternative
was using traditionalMachine Learning-basedmodels, RandomForest [32], and Support
Vector Machine (SVM) [33]. To test the models, we created a dataset with two columns:
the causes of death text strings from HiCaD and the corresponding ICD-10 code. The
preprocessing stage included removal of punctuation marks and extra whitespaces as
well as the conversion of all characters into lower case. The sample dataset included
19,360 deaths, which we split into an 80:20 ratio for training and testing. Text feature
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extraction was performed using the term frequency-inverse document frequency (TF-
IDF) method, and we used GridSearchCV to perform a systematic search over a range
of hyperparameters to find the best configuration for our task.

Random Forest is an ensemble learning method that combines multiple decision
trees to enhance predictive accuracy. It minimises overfitting and captures complicated
relationships well as it builds each tree using bootstrapped data and takes random feature
subsets into account.

SVM is a robust algorithm for classification and regression. It seeks the optimal
hyperplane tomaximise themargin between classes in feature space. For this experiment
we used a linear kernel for the SVM, as the kernel’s simplicity not only ensures faster
training times, but also helps in reducing the risk of overfitting. Additionally, it tends to
generalize better when the decision boundary is inherently linear or nearly linear, which
is often the case with text data represented in high-dimensional space.

We used 5-fold cross-validation within GridSearchCV to evaluate the performance
of different hyperparameter configurations for both models. In 5-fold cross-validation,
the data is split into five subsets (folds), and the model is trained on four of them while
being tested on the remaining fold. This process is repeated five times, each time with
a different fold as the test set. The results are averaged to provide a robust estimate of
model performance. This approach helps in ensuring that the model generalizes well to
unseen data.

The second alternative was a basic string similarity comparison method, comparing
the HiCaD dataset with a dictionary of standardised causes of death, originally created
by domain experts.

Temporal Context of the Causes of Death. We expected that LLMs would perform
worse on terms that only exist in historical registers or have a different meaning from the
current understanding of the term. Therefore, our third experiment aimed to compare the
number of correct classifications done by the LLMs for both types of terms. We sorted
our causes of death into what we refer to as “archaic” and “current” causes, using the
manually coded ICD-10h code. If the final character in the ICD-10h code is a 0, it means
that this is a cause of death term that exists in both contemporary and historic registers.
If the ICD-10h code ends in any other digit, then the cause of death term is only found
in historical registers, or the term might be understood differently today.

Complexity of the Input Values. Over 80% of the original cause of death text strings
within the HiCaD dataset consist of 3 words or less, but the remaining 20% cover a range
of 4–41 words. In our fourth experiment, we calculated if the number of words in the
input text had any impact on the models’ ability to correctly assign the cause of death
to an ICD-10 code.

To do this, we grouped the causes of death by word count as short (1–2 words),
medium (3–4 words), and long (5+ words) and measured the error rate for each group.
These cutoffs were chosen as causes with one or two words are likely to represent just
a single cause of death (e.g. “pneumonia”, “scarlet fever”) but causes with more words
are more likely to represent accidents and multiple causes of death (e.g. “pneumonia
following measles”).

To measure the agreement between the three LLM models, that is, the extent to
which all LLMs assigned the same code for each cause of death, the Fleiss Kappa [34]
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score was calculated. This was done per word count category and for overall match/no
match agreement between the models. Values above 0.2 indicate fair agreement, above
0.4 moderate, above 0.6 substantial, above 0.8 almost perfect.

Histcat Classification. Each ICD-10 code can only belong to a single historical cate-
gory (Histcat). In the fifth experiment we calculated if the distribution of ICD-10 codes
within the Histcats in the manually coded HiCaD dataset matched the distribution in
the models’ outputs. This tells us if there were any particular types of Histcats that the
LLMs are worse at classifying than others.

3 Results

3.1 Correct and Incorrect Classification

For theHiCaDdataset, consisting of 19,353 cause of death text strings,GPT-3.5 coded the
causes as a full match in 31% and a partial match in 38%, with no overlap, meaning that
69% of all causes were encoded correctly, and 31% of the causes were given an incorrect
ICD-10 code. GPT-4 achieved 58% for full matches and 25% for partial matches, leading
to 83% of all causes of death being encoded into the correct ICD-10 code, with an error
rate of 17%. Llama 2 coded 9% of all causes as a full match, 31% as a partial match,
and had an error rate of 60%. These results show that GPT-4 outperforms GPT-3.5 in
the accurate classification of ICD-10 codes, and both models show significantly better
performance than Llama 2. These results are summarised in Table 2.

Table 2. An overview of how LLMs encoded the historical causes of death.

Model Full match Partial match Correct (full + partial) Errors

GPT-3.5 31% 38% 69% 31%

GPT-4 58% 25% 83% 17%

Llama 2 9% 31% 40% 60%

When analysing the different errors made by the LLMs, starting with the assignment
of the predefined error code ‘Æ99.9’, GPT-3.5 assigned this code to 19% of its errors,
while GPT-4 did so for 7% of its errors. Llama 2, on the other hand, never used the
error code. As for hallucinations of valid ICD-10 codes, GPT-3.5 reported these in
50% of cases, GPT-4 in 48%, and Llama 2 showed a higher tendency with 61%. For
hallucinations of invalid ICD-10 codes, GPT-3.5 lowest occurrence at 5%, compared
to 9% for GPT-4 and a significantly higher 28% for Llama 2. Finally, for syntactical
errors, GPT-3.5 had 26%, GPT-4 had 36%, and Llama 2 had the lowest at 11%. These
results show that GPT-3.5 was more prone to respond with the error code, whereas more
of GPT-4 and Llama 2’s errors stem from hallucinations or syntax errors. Additionally,
Llama 2 exhibited a higher frequency of hallucinating valid codes compared to the GPT
models, but GPT-4 was more likely to hallucinate invalid codes than GPT-3.5. These
results are shown in Table 3.
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Table 3. A breakdown of the prediction errors made by the LLMs.

Error type GPT-3.5 GPT-4 Llama 2

Error code 19% 7% 0%

Valid code hallucination 50% 48% 61%

Invalid code hallucination 5% 9% 28%

Syntax error 26% 36% 11%

3.2 Comparison with Alternate Solutions

Random Forest achieved an accuracy of 87% and SVM achieved an accuracy of 89%
on a test set of 19,360 cause of death text strings, sampled from the full dataset of over
45,000 rows.

When using string similarity comparison on the HiCaD dataset, consisting of 19,353
rows, the number of correctly coded causes of death were 6%, meaning that 94% of all
causes were assigned an incorrect ICD-10 code.

These results show that both Random Forest and SVM outperform the LLMs, with
the best result obtained by an LLM being 83% correctly assigned ICD-10 codes. It does,
however, also show that LLMs vastly outperforms string similarity comparison (Tables 4
and 5).

Table 4. The results of using alternative methods to assign ICD-10 codes to causes of death.

Method Correctly assigned Incorrectly assigned

Random Forest 87% 13%

SVM 89% 11%

String similarity 6% 94%

Table 5. Summation of the results from LLMs and alternative methods.

Method Correctly assigned Incorrectly assigned

GPT-3.5 69% 31%

GPT-4 83% 17%

Llama 2 40% 60%

Random Forest 87% 13%

SVM 89% 11%

String similarity 6% 94%
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3.3 Temporal Context of the Cause of Death

Within the HiCaD dataset, we found that 9,773 rows consisted of causes of death that
could be categorised as archaic, and 9,580 causes as current. This gives a split of 50.5%
to 49.5%. When defining both a full and partial match as correct, we obtained the
following results: GPT-3.5 correctly assigned ICD-10 codes to 55% of archaic causes
of death with a 45% error rate, and 83% of current causes with a 17% error rate. GPT-4
correctly assigned codes to 75% of archaic causes with 25% errors, and 90% correct
with 10% errors for current causes. Llama 2, however, only managed to correctly assign
codes to 35% of archaic causes with 65% errors, and 45% of current causes with 55%
errors. These results are shown in Table 6.

Table 6. Results for LLM classification of archaic and current causes of death terms.

Model Correct – Archaic Errors – Archaic Correct - Current Errors - Current

GPT-3.5 55% 45% 83% 17%

GPT-4 75% 25% 90% 10%

Llama 2 35% 65% 45% 55%

3.4 Complexity of Input Values

Correct assignment of ICD-10 codes for word categories 1–2, 3–4 and 5+ was 74%,
61% and 62% for GPT-3.5, 85%, 82% and 71% for GPT-4, and 45%, 32% and 34%
for Llama 2, respectively. Showing that GPT-4 performed better than GPT-3.5 and both
outperform Llama 2, this holds for all categories. These results can be seen in Table 7.

When comparing the degree of agreement between the LLMs, i.e. the extent to
which all models produced the same output, Fleiss Kappa was lowest for the medium
(3–4 words) category with 0.19 meaning slight agreement, for short (1–2) words it was
0.27which indicates fair agreement. Agreementwas fair for the long (5+words) category
with 0.31, meaning that the models tended to give the same output most often for the
causes of death that consisted of 5+ words, and the least often for the causes of death that
were 1–2 words long. Overall, the models’ agreement was measured as 0.27, indicating
a fair level of agreement. These results are summarized in Table 8.

Table 7. Correct assignment of ICD-10 codes by word category

Model Word category 1–2 Word category 3–4 Word category 5+

GPT-3.5 74% 61% 62%

GPT-4 85% 82% 71%

Llama 2 45% 32% 34%
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Table 8. Degree of agreement between models (Fleiss Kappa)

Word category Fleiss Kappa value Interpretation

1–2 words 0.27 Fair

3–4 words 0.19 Slight

5+ words 0.31 Fair

Overall 0.27 Fair

3.5 Histcat Classification

Figure 1 shows the causes of death which were classified incorrectly by GPT-4, see
Table 2, and how these are distributed across the Histcat classification scheme. Despite
this figure showing the errors made by the model, it is worth noting that multiple ICD-10
codes can belong to the same Histcat. Therefore, even if the actual ICD-10 code was
wrong, it could still be assigned to the correct Histcat, as represented by the clusters
along the diagonal of the heatmap. The number of causes that were classified into the
correct ICD-10 code, and by extension the correct Histcat, is shown as the percentage
value displayed next to each Histcat on the Y-axis. The remaining row values displayed
on the X-axis are the causes of death that were classified into an incorrect ICD-10 code
as well as an incorrect Histcat. This, all together, means that a desired result in this
experiment would be a high percentage value listed after each Histcat on the Y-axis, and
alternatively a higher value on the diagonal than the other row values.

For example, in theHistcat “Childbirth”, 64%of causeswere assigned a full or partial
match by the LLM, as displayed in parentheses following the Histcat name on the Y-axis.
Of the remaining 36% of causes which were classified incorrectly, 54% were classified
into the correct Histcat but an incorrect ICD-10 code, while 17%were classified into the
Histcat “Perinatal”, 8% were placed within “Ill defined”, etc.

GPT-4 showed strong performance across most categories, except for “Violence”,
where it only classified the cause to the correct ICD-10 code in 37% of cases. Despite
this, it managed to classify those causes into the correct Histcat 89% of the time. The
opposite can be seen in the “Debility” category, where GPT-4managed to find the correct
ICD-10 code in 59% of cases, but 0% of the errors for these codes ended up in the correct
Histcat.
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Fig. 1. A heatmap of wrong classifications made by GPT-4 in regard to Histcat. If the model
classified the cause of death into the wrong ICD-10 code, but the erroneous code still belongs to
the same category, then the errors will cluster on the diagonal. If not, the errors will spread out
along the row.

4 Discussion

4.1 Main Findings

We explored how well out of the box Large Language Models (LLMs) performed on
classifying ICD-10 codes for historical death records from three different areas of the
UK. GPT-4 performed the best in terms of coding accuracy among GDPR-compliant
LLMs, notably surpassing GPT-3.5 and Llama 2, especially for causes of death using
current terms. All models showed superior performance with causes of death given in
only (1 or2 words). While model agreement varied with cause length, showing average
agreement for longer and poor for medium-length causes, overall substantial agreement
was observed. This tendency to make more errors with longer text strings can possibly
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be explained by the chance of increased ambiguity and the presence of multiple possible
interpretations. We know from the dataset that causes of death from various forms of
illness can often only consist of the diseases’ names, whereas for external causes of
death, like accidents, one is more likely to find complex narratives where interpretation
plays a large role in determining the actual cause of death.

Common errors in model classifications were linked to three patterns: abbreviations
in the source data (e.g., “con” for “consumption”), coding into the chapter of “Symptoms,
signs and abnormal clinical and laboratory findings, not elsewhere classified” which is
known to bemore difficult to code, and specific terms like “teething” and “dentition” that
are less common in modern datasets but prevalent in historical infant mortality records.
We also learned in the breakdown of errors in Table 3 that a significant portion of LLM
errors involved hallucinating both valid and invalid ICD-10 codes. This indicates a ten-
dency of LLMs to “guess” plausible answers, which will lead to incorrect classification.
We found that GPT-3.5 hallucinated more valid codes than GPT-4 did. A possible reason
for this behavior could be that GPT-4 has been trained on more data than GPT-3.5, and
as such may have more instances of variant ICD-10 classification systems in its train-
ing data. Our inclusion of a predefined error code (“Æ99.9”) was an attempt to include
an alternative to hallucinations, but our error analysis shows that this error code was
not consistently adopted by all models, with GPT-3.5 using it most and Llama 2 not at
all. This suggests variations in how models handle uncertainty, and that this manner of
error-handling is not sufficient when dealing with LLMs. In the Histcat classification,
the uneven performance we observed may relate to the varying number of codes per
Histcat, as categories such as “Violence” which contain more codes (Violence includes
3,278 unique ICD-10 codes) have a higher likelihood of at least partial classification
success than a category with less codes like “Debility” which has just 3 unique ICD-10
codes.

Our experiments showed that traditional machine learning models such as Random
Forest and SVM outperformed the LLMs in assigning ICD-10 codes. A possible reason
for this can be that traditional ML models are known to handle structured classifica-
tion tasks more effectively than LLMs, which are generally optimized for broader lan-
guage understanding and generation tasks, without the specialized domain knowledge
required for accurately classifying historical causes of death without additional fine-
tuning. Despite this, it is worth noting that these ML models were trained and validated
on our HiCaD dataset, where the causes of death are not evenly distributed among the
ICD-10 codes. As such, there is always a risk of these models becoming overfitted, i.e.
not able to generalize to datasets other than HiCaD. This behavior would be less likely
in an LLM, due to the increased size of their training data. Nevertheless, all models did
surpass the basic string similarity approach using Jaro-Winkler distance.

Based on the experiments, we have learned three main lessons for working with
LLMs on this type of classification task:

• The need for domain-specific tuning. Our findings underscore that generalized LLMs
cannot compete with models that were trained on domain-specific datasets when it
comes to such specialized tasks.

• Importance of error analysis. Detailed breakdowns of error types are crucial for
understanding model weaknesses and guiding improvements.
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• Consideration of input complexity. As our findings showed that all models performed
better on shorter causes of death (1–2 words) compared to longer ones, simplifying
inputswherever possible, or developing strategies to handle complex, narrative inputs,
can enhance model performance.

4.2 Comparison to Related Work

Our findings mostly correlate with those of Soroush et al. [15], in that we have found the
performance of base level LLMmodels to be inadequate for practical use when it comes
to assigning ICD codes to historical causes of death. In our results, most errors did not
contain the error code we defined as part of our model prompt, which we instructed the
models to use if it did not “know” the answer. Instead, the majority of the errors would
fall under the definition of hallucinations, i.e., creating plausible but incorrect statements
[13].

We introduced the concept of full matches and partial matches, and we saw that all
models had a potential for achieving more correct classifications if they had managed to
find the correct subcategory for the cause of death. This could have potentially been done
in a similar manner to what Boyle et al. [16] term “meta-refinement of predicted codes”.
They used a tree-search approach to find all possible, relevant codes for their data, and
then asked GPT-4 to remove false positives. In Sect. 4.3, we discuss the possibility of
prompting the LLMs a second time, to find the correct subcategory based on the first
3 characters of the ICD-10 code that were given as output during the first round of
prompting.

4.3 Future Work

To achieve the best coding rate possible using LLMs on historical causes of death,
one technique to use is fine-tuning, a type of transfer learning [35], where pre-trained
models are further trained on new, labelled data [36]. This would entail downloading a
pre-trained LLM and then fine-tune it on a dataset containing causes of death. Based on
previous studies, we expect that this will yield improved results [37, 38].

As seen in Sect. 3, all models gave partial matches as part of their outputs, indicating
that if the last character had also been correct, these causes would have been a full match.
One possible solution, that can be built upon our current work, is to automate a solution
where each cause of death is passed in to a LLM for a second round of classification, this
time presenting the model with both the cause of death text string, the almost completed
code, as well as a list of possible subgroups that the model is then asked to choose
between; this is an approach similar to Boyle et al.’s “meta-refinement of predicted
codes”.

Another promising solution is Retrieval-Augmented Generation (RAG) [39, 40].
RAG is an AI framework that can improve LLM responses by grounding the model on
external knowledge bases that the users supply. Using RAG, we would be able to use the
ICD-10h master list of terms and codes as a knowledge base, and when prompting an
LLM to classify a cause of death into an ICD-10h code, it would first retrieve information
from the knowledge base before responding. This would increase the probability of
getting a correct response and it would give the users a source for the answer.



44 B.-R. Pedersen et al.

4.4 Limitations

We intended to use LLMs for assigning ICD-10h codes to the causes of death, as it is
tailored for historical terms, but resorted to standard ICD-10 codes due to the ICD-10h’s
unavailability online, potentially affecting the number of full matches. However, ICD-
10h codes have an additional two digits which might have also increased error risks.
Furthermore, the LLMs’ tendency to align with the ICD-10-CM billing system, despite
instructions to avoid it, contributed to the low full match count.

We provided models with original cause of death text strings, which often includes
several diseases and/or injuries that the individual was suffering from at the time of
death, instructing them to return an ICD-10 code for each. Our analysis compared the
first code from the models to the first in our manual dataset, as different causes are not
often easy to distinguish. The LLMs may have focused on the true underlying cause
mentioned later in the text, as prompted, rather than the first listed condition.

Another limitation is that the analysis was done on records of individual deaths, not
on unique strings. This has the advantage of assessing how many deaths were likely to
be correctly coded, but not necessarily how well particular commonly written strings
were coded. Additionally, the dataset was skewed towards infant deaths.

At the time of the experiment, a more powerful version of the Llama 2 model was
trained on 70 billion parameters. However, we could not use this version of the model, as
we did not have a powerful enough computer to run it. Hence, we were restricted to the
13 billion parameter model. This has most likely impacted the performance of Llama 2
reported on in this paper.

5 Conclusion

In this paper, we explored the use of LargeLanguageModels (LLMs) to encode historical
causes of death data.We experimentedwith the current default versions (The experiments
were run in early November 2023) of OpenAI’s GPT-3.5 and GPT-4 models, as well as
Meta’s Llama 2, on a dataset covering the period 1861–1901 gathered from Ipswich,
Kilmarnock, and the Isle of Skye in the UK. We found that no LLM performed this
task satisfactorily, with GPT-4 achieving a correctness-score of 82.6% at the highest,
but it was only able to correctly match the manual coding completely in 57.9% of cases.
We found that all LLMs achieved better results for causes of death where more current
terms are used, than for archaic terms. They also performed better for causes of death
that were composed of shorter text strings. We found that the models made more errors
when given longer text strings, but that these errors had a high degree of agreement
between models, meaning that the models all tended to make the same error.

We compared the performance of the LLMs to both classical machine learningmeth-
ods such as a random forest classifier and SVM, and a string similarity matching algo-
rithm. We found that while the LLMs performed much better than string similarity
matching, they still perform worse than the machine learning methods.

It is important to keep in mind that these results reflect the use of LLMs that were
trained to be chatbots with extensive general knowledge, rather than models that have
been specifically pre-trained or fine-tuned with domain expertise in historical causes
of death or the ICD-10 system. As such, we have chosen to treat these results as a
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baseline that we can use to compare with for future projects where we utilise fine-tuning
or frameworks like Retrieval-Augmented Generation. We would not recommend using
LLMs for similar tasks without these improvements.
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