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al. 2021). There is no international consensus on how to best 
select individuals for LC screening.

Various LC clinical risk prediction models have been 
developed, validated, and shown performance over selection 
criteria used in NLST, NELSON and USPSTF (Markaki et 
al. 2018 Røe et al. 2019; Tammemägi et al. 2022). Several 
studies have tried to integrate genetic susceptibility markers 
to further improve their performance, but no such model has 
shown to be superior to clinical risk models (Chien et al. 
2020; Hoggart et al. 2012; Hung et al. 2021; Li et al. 2012; 

Introduction

The NLST and NELSON studies showed that computer-
tomography (CT) screening of individuals that smoke can 
reduce lung cancer (LC) mortality by 20–24% (Aberle et al. 
2011; de Koning et al. 2020). Both studies used fixed age 
and smoking history criteria for screening selection. How-
ever, ¾ of people developing LC do not fulfill the NLST 
criteria (Pinsky and Berg 2012). To include more at-risk 
individuals, the US Preventive Strategy Task Force (USP-
STF) introduced wider screening criteria in 2021 (Krist et 
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Marcus et al. 2016; Qian et al. 2016; Raji et al. 2010; Spitz 
et al. 2013; Weissfeld et al. 2015; Young et al. 2009).

In previous work, we developed and validated the HUNT 
Lung Cancer Model (HUNT LCM) to predict the LC risk in 
individuals that ever smoked with a concordance index of 
0.879 and area under the receiver operating characteristic 
curve (AUC) of 0.87 for a 6-year LC diagnosis (Markaki 
et al. 2018). It was shown to have a superior performance 
compared to the NLST (Markaki et al. 2018), NELSON and 
2021 USPSTF criteria (Nguyen et al. 2024).

Genome-wide association studies (GWAS) have identi-
fied specific LC susceptibility regions (McKay et al. 2008, 
2017). However, Single Nucleotide Polymorphisms (SNPs) 
alone are not predictive enough to warrant their use to iden-
tify high-risk individuals (Li et al. 2012; Qian et al. 2016). 
Nevertheless, SNPs carry some predictive information that 
could potentially increase risk prediction (Dai et al. 2019; 
McKay et al. 2017).

In this work, we develop and validate a new polygenic 
model for LC risk prediction integrating selected SNPs with 
the original eight clinical variables of the HUNT LCM. The 
performance of the new model, named HUNT Lung-SNP, 

is compared against the HUNT LCM, as well as the NLST, 
NELSON and 2021 USPSTF criteria.

Methods

Discovery and validation datasets

The discovery cohort was extracted from the HUNT2 study, 
a Norwegian prospective population study, which includes 
data from questionnaires, interviews, clinical measure-
ments, and a serum biobank for all involved individuals. The 
HUNT2 enrolled and examined 65,240 people aged > 20 
years in 1995-97 and followed up until 31.12.2011 (Kroks-
tad et al. 2013). Genotyping information was available for 
56,553 individuals, and these constitute the discovery data-
set (Brumpton et al. 2022). The remaining individuals were 
unsuccessfully genotyped due to low blood sample quality. 
Missing clinical values are present in the data, with the high-
est percentage of missingness being in the variable “Indoor 
smoke exposure in hours” (17.8%, see Table  1). Missing 
clinical values were imputed with the median value for 
numerical variables or the mode for categorical variables.

Table 1  Descriptive statistics for the discovery (HUNT2) and validation cohort (Tromsø)
Discovery cohort (HUNT2) Validation cohort (Tromsø)

Clinical variables N No lung 
cancer
N = 30,589

Lung cancer
N = 160

P-value N No lung 
cancer
N = 2624

Lung cancer
N = 39

P-value

Sex
- Female
- Male

30,749
(100%)

14,688 
(52.0%)
15,901 
(48.0%)

55 (34.4%)
105 (65.6%)

< 0.001 2663 1338 (51.0%)
1286 (49.0%)

17 (43.6%)
22 (56.4%)

0.359

Age
- Mean (SD)
- Range

30,749
(100%)

51.218 
(15.147)
20.2-100.3

66.589 
(9.665)
40.5–89.9

< 0.001 2663 49.862 
(12.268)
25.0–81.0

71.128 
(5.569)
59.0–82.0

< 0.001

Pack-years
- Mean (SD)
- Range

27,724 
(90.2%)

13.431 
(11.378)
0.0-165.0

27.069 
(13.898)
2.4–106.0

< 0.001 2663 13.161 
(12.225)
0.0-120.0

24.242 
(19.390)
3.0–90.0

< 0.001

Daily cough parts of the year
- No
- Yes

30,713 
(99.9%)

24,812 
(81.1%)
5741 (18.8%)

97 (60.6%)
63 (39.4%)

< 0.001 2663 2136 (81.4%)
488 (18.6%)

28 (71.8%)
11 (28.2%)

0.127

Indoor smoke exposure in hours
- Mean (SD)
- Range

25,272 
(82.2%)

2.513 (4.185)
0.0–24.0

3.766 (5.018)
0.0–18.0

0.002 2663 2.744 (4.000)
0.0–24.0

4.256 (5.369)
0.0–24.0

0.020

Quit time in years
- Mean (SD)
- Range

29,754 
(96.8%)

6.957 
(10.541)
0.0–75.0

3.731 (8.378)
0.0–40.0

< 0.001 2663 6.132 (9.927)
0.0–76.0

4.846 (7.799)
0.0–30.0

0.421

Cigarettes daily
- Mean (SD)
- Range

27,976 
(91%)

11.709 
(6.743)
1.0–70.0

12.971 
(7.563)
1.0–60.0

0.028 2663 11.653 
(7.189)
1.0–70.0

12.654 
(7.054)
3.0–40.0

0.388

Body Mass Index (BMI)
- Mean (SD)
- Range

30,589 
(99.5%)

26.257 
(4.029)
14.9–52.8

25.251 
(3.883)
17.1–36.7

0.002 2663 25.668 
(3.747)
15.8–44.4

25.908 
(4.298)
17.6–38.3

0.692

Descriptive statistics for the discovery (HUNT2) and validation cohort (Tromsø). All participants were individuals that ever smoked cigarettes. 
The statistical association of each variable with lung cancer diagnosis within six years (p < 0.05). In the HUNT2 cohort the missing values were 
imputed. In the Tromsø cohort the participants with all variables intact were selected
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The validation dataset comes from a similar population-
based prospective study, the Tromsø Study (see Supplemen-
tary) (Jacobsen et al. 2012). Genotyping information was 
available for 6572 individuals in the Tromsø study.

Genotyping

The DNA from the HUNT2 samples was genotyped using 
one of three different Illumina Human Core Exome arrays 
(see Supplementary). All missing values in the SNPs have 
been imputed. The imputation and quality control of the 
datasets is described in detail in the Supplementary Mate-
rial. The LC associated SNPs were selected manually from 
the HUNT Fast-track catalogue (HUNT Fast Track GWAS 
catalogue) where all SNPs were associated with LC at the 
genome-wide significance threshold in published litera-
ture (p < 5 × 10− 8, Supplementary Table 1) by the time this 
study was conducted in 2018. The Tromsø cohort samples 
were genotyped and imputed using the same methods as 
described for the HUNT2 samples and the same SNPs were 
available in both cohorts.

Definition of the clinical outcome

The national 11-digit personal identification number of each 
participant was linked to the Norwegian Cancer and Death 
Cause Registry. The diagnosis code of the International 
Classification of Diseases (ICD7) 162.1 and (ICD10) C33-
34, was used to identify participants that were subsequently 
diagnosed with LC. Controls with a diagnosis of LC before 
the follow-up period were excluded. Follow up information 
for both the HUNT2 and Tromsø studies was obtained from 
the national Cancer Registry, which is updated each year. 
Clinical outcome was defined as “diagnosis of LC within six 
years” in both cohorts. Participants that develop LC within 
this timespan from inclusion were considered LC cases, all 
others were considered as controls. All cancers were clini-
cally detected and not screen detected, and thus rarely indo-
lent. In the survival analysis, participants that died or left the 
study before the six-year mark were censored. Individuals 
that died after LC diagnosis were considered LC associated 
deaths.

Univariate analysis

The univariate association between LC and each of the 
original eight HUNT LCM clinical variables (sex, age, 
body-mass index (BMI), pack-years, number of cigarettes 
per day, quit time in years, hours of daily indoors smoke 
exposure and history of daily cough in periods through 
the year) was assessed through unpaired t-test (numerical 
variables) or chi-square test (categorical variables). The 

SNP genotypes were transformed into ordinal encodings as 
described in the literature (He et al. 2015) (see Supplemen-
tary). The association between LC and each of the 22 SNPs 
was evaluated through a proportional odds likelihood ratio 
test (Coles 2001).

Multivariable modeling

The model for assessing LC risk was fit using the original 
eight HUNT LCM clinical covariates along with the 22 SNP 
genotype predictors. The SNP genotypes were transformed 
into ordinal encodings as described in the Supplementary. 
The outcome was defined as mentioned above, “diagnosis 
of LC within six years.” To establish the final model, we use 
a shrinkage methodology (Steyerberg et al. 2001), which 
relies on refitting the logistic regression model 100 times, 
each time over resampled data. Through this bootstrapping 
process we estimate to what extent the coefficients of the 
original logistic models should be shrunk. This methodol-
ogy has shown to decrease the probability of overfitting 
(Steyerberg et al. 2001), and is described in more detail in 
the Supplementary Material.

Model validation

The validation of the HUNT Lung-SNP model was per-
formed as shown in Fig. 1.

Sample-level risk scores provided by the HUNT Lung-
SNP were contrasted against the predictions provided by the 
original HUNT LCM (algorithm in Supplementary Appen-
dix page 5 in Markaki et al. (2018)), both on the HUNT2 
and Tromsø cohort. The AUC, integrated discrimination 
improvement index (IDI), detection rate (number of indi-
viduals needed to screen, NNS, to detect/predict one LC 
case) and ranking of risk were used as performance met-
rics. Statistical significance of the differences was assessed 
through non-parametric statistical tests (see Supplemen-
tary) (DeLong et al. 1988; Kang et al. 2015). Calibration, 
agreement between predicted and observed LC cases in the 
cohorts, was evaluated by predictiveness curve (Markaki et 
al. 2018).

To stratify individuals in high- and low-risk categories 
according to the HUNT Lung-SNP and HUNT LCM risk 
scores, a cut-off for each model was derived correspond-
ing to the top 16th percentile of their respective in-sample 
predictions. The cutpoint of top 16th percentile was chosen 
according to recommendations from Royston et al. (Markaki 
et al. 2018; Royston and Altman 2013). The two mod-
els were then compared both on the HUNT2 and Tromsø 
cohort according to sensitivity, specificity, positive predic-
tive value (PPV) and negative predictive value (NPV). The 
statistical significance for differences in these metrics was 
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is assessed using a permutation-based, non-parametric 
approach (see Supplementary).

Finally, the overall survival between the sub-cohorts 
selected by the HUNT Lung-SNP, NELSON and 2021 USP-
STF criteria was investigated. The survival was calculated 
as survival from LC diagnosis in the cases, and from the 
time of inclusion to time of death of the LC high-risk ver-
sus low-risk individuals. Kaplan-Meier curves were used 
to visualize survival functions, while the log-rank test was 
used to evaluate statistical significance in their differences. 
For all analyses p < 0.05 was used as the statistical signifi-
cance level. The R Statistical Software version 4.2.1 (2022-
06-23) was used to perform the analyses.

assessed through a permutation-based test (see Supplemen-
tary). Furthermore, to analyze whether the two models per-
form differently depending on the age of the population, a 
comparison was performed on the subpopulations < 60 and 
≥ 60 years of age on the HUNT2 and Tromsø cohort.

For both models we used the Kolmogorov-Smirnov test 
to contrast participants’ risk ranking versus the cumulative 
number of LC diagnosed.

We further contrasted both the HUNT LCM and HUNT 
Lung-SNP against the NLST, NELSON and 2021 USPSTF 
criteria sets for LC diagnosis within six years. To be able 
to compare risk assessment models, a risk threshold result-
ing in the same number of participants to screen was set. 
Given this threshold, we present several metrics of predic-
tive performance. The statistical significance of differences 

Fig. 1  Model validation. Model validation of the HUNT Lung-SNP 
model against the HUNT Lancer Model (HUNT LCM) and the criteria 
2021 USPSTF, NELSON and NLST on the datasets of HUNT2 and 
Tromsø study. *For a fair comparison, a risk threshold selecting the 
same number to screen as the USPSTF 2021, NELSON and NLST 

criteria as a benchmark was used. AUC, area under the receiver oper-
ating characteristic curve; IDI, integrated discrimination improvement 
index; NPV, negative predictive value; PPV, positive predictive value; 
NNS, number needed to screen to identify one case of lung cancer

 

1 3

389  Page 4 of 12



Journal of Cancer Research and Clinical Oncology (2024) 150:389

HUNT LCM clinical variables (Table  1). Among these a 
total of 2366 was censored. After six years of follow-up, 
160 had been diagnosed with LC. In univariate analysis, all 
of the eight clinical variables and six of the 22 SNPs were 
significantly associated with LC occurrence within six years 
(Table 1, Supplementary Table 1). Most of the included par-
ticipants had all HUNT LCM clinical variables measured at 
enrollment: sex, age, BMI, pack-years, number of cigarettes 
per day, quit time, hours of daily indoors smoke exposure 
and cough in periods through the year (Table 1).

Among the 6572 individuals genotyped in the Tromsø 
study, five never smoked, 1197 lacked smoking informa-
tion, while 2707 lacked one or more of the HUNT LCM 
variables, leading to the inclusion of 2663 individuals who 
ever smoked with complete data. Among these, two were 
censored and 39 were diagnosed with LC within the six-
year follow-up. Three of the eight clinical variables and 
three SNPs were significantly associated with LC in uni-
variate analysis (Table 1, Supplementary Table 2).

22 SNPs model

A logistic regression model based on the 22 SNPs alone 
showed a predictive power with an AUC of 0.625 (95% CI 
0.583–0.666) in the HUNT2 population, discovery dataset 
(Supplementary Table 3).

Contrasting HUNT Lung-SNP and HUNT LCM

In the HUNT2 cohort, the HUNT Lung-SNP outperformed 
the HUNT LCM in terms of ranking HUNT2 participants 
with respect to their risk of developing LC within six-years: 
AUC 0.875 (95% confidence interval (CI) 0.854–0.896) vs. 
0.844 (95% CI 0.820–0.869), p < 0.001. In the validation 
cohort, the HUNT Lung-SNP also performed better than the 
HUNT LCM, albeit not statistically significant, AUC 0.916 
(95% CI 0.880–0.948) vs. 0.876 (95% CI 0.823–0.921), 
p = 0.086 (Table 2). Furthermore, the IDI between the two 
models indicates that the HUNT Lung-SNP significantly 
improve the LC risk stratification compared to the original 
HUNT LCM with an IDI of 0.019 (95% CI 0.015–0.025), 
p < 0.001 and of 0.013 (95% CI 0.008–0.018), p < 0.001 in 
the HUNT2 and Tromsø cohorts, respectively. Calibration 
was adequate for both models with predicted risk close to 
observed risk in both cohorts (Supplementary Fig. 2).

Ranking of individuals according to risk score (potential 
screenees) versus the cumulative number of LC diagnosed 
for the two models, showed that the HUNT Lung-SNP’s 
performance improved significantly compared to the HUNT 
LCM in both the HUNT2 (p < 0.001) and Tromsø cohort 
(p < 0.05) (Fig. 2).

Cost of implementing a SNP analysis

The scenario used in calculating additional cost was to 
apply the HUNT Lung-SNP model on all participants who 
ever smoked in the HUNT cohort. We calculated the cost of 
the SNP-analysis in terms of cost per quality-adjusted life 
year (QALY), to assess whether incorporating genetic vari-
ants in a LC prediction model is cost-effective. This analysis 
was performed using estimates of (a) the current adminis-
trative costs related to blood drawing, (b) the cost of the 
genetic analysis of the 22 SNPs, (c) the average years life 
lost (YLL) per LC case, and (d) the health-related quality of 
life (HRQL) score for LC.

Role of the funding sources

The funding sources had no role in study conception, design, 
data interpretation, writing of the report, or decision to sub-
mit the paper for publication.

Results

SNPs characteristics

Among the 22 SNPs selected, one SNP was associated with 
small-cell LC, four with squamous cell carcinoma, six with 
lung adenocarcinoma and 13 with lung carcinoma (Supple-
mentary Table 1). Furthermore, all 22 SNPs have been found 
significant in one or more major ethnic groups, including 
Latin American, African American, Caucasian, and Asian 
(one, three, 12 and 16 SNPs, respectively) (Supplementary 
Table 1, Supplementary Fig. 1).

Discovery (HUNT2) and validation (Tromsø) cohorts

The discovery cohort comprised 30,749 genotyped indi-
viduals that ever smoked with near complete data on the 

Table 2  HUNT Lung-SNP and HUNT LCM performances in predict-
ing lung cancer within six years

HUNT LCM HUNT 
Lung-SNP

P-value

AUC (95% CI) AUC (95% 
CI)

Discovery (HUNT2),  
N = 30,749

0.844 
(0.820–0.869)

0.875 
(0.854–0.896)

< 0.001

Validation (Tromsø),  
N = 2663

0.876 
(0.823–0.921)

0.916 
(0.880–0.948)

0.086

HUNT Lung-SNP and HUNT LCM performances in predicting lung 
cancer within six years
Evaluations performed on the discovery (HUNT2) and validation 
(Tromsø) cohort, for each evaluation the Receiver Operating Charac-
teristics (ROC) Area Under the Curve (AUC) are reported. CI, con-
fidence interval
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detection rate (NNS of 56 vs. 80, p < 0.001). For the older 
participants (≥ 60 years), the HUNT Lung-SNP achieved 
higher sensitivity (82.11% vs. 69.92%, p < 0.001) but with 
a lower specificity (56.45% vs. 60.75%, p < 0.001) than the 
HUNT LCM, and similar detection rate (NNS of 39 vs. 41, 
p = 0.273) (Supplementary Table 5).

Contrasting the HUNT Lung-SNP and HUNT LCM 
against the NLST, NELSON and USPSTF criteria

In the HUNT2 cohort, when selecting the same number 
of high-risk individuals as the NLST, NELSON and 2021 
USPSTF criteria, the HUNT Lung-SNP outperformed all 
the three criteria in terms of number of detected LC and 
corresponding sensitivities (p < 0.01). Similar results were 
found with the HUNT LCM (Supplementary results, Sup-
plementary Tables 6, 7, and 8).

In terms of NNS to identify one LC case, the HUNT 
Lung-SNP was the most well-performing model in the 
HUNT2 cohort, with NNS of 24 vs. 40 (NLST), 31 vs. 53 
(NELSON) and 39 vs. 51 (USPSTF), p < 0.01 for all com-
parisons. Similar findings were found with HUNT LCM 
(Supplementary Fig. 3A-C).

By applying the top 16th percentile as a cutoff for risk 
stratification the HUNT Lung-SNP identified ≈ 280%, 

When individuals were stratified as having high or 
low risk according to the top 16th or bottom 84th percen-
tile risk score, respectively, the HUNT Lung-SNP model 
showed increased performance across all metrics on both 
cohorts (Supplementary Table 4). In the HUNT2 cohort 
there was a significant gain in sensitivity (73.75% vs. 
64.38%, p = 0.001), PPV (2.40% vs. 2.09%, p = 0.004) and 
NPV (99.84% vs. 99.78%, p < 0.001) while specificity was 
higher, albeit not significant. In the Tromsø cohort, sensitiv-
ity (76.92% vs. 61.54%, p = 0.15) and specificity (88.76% 
vs. 87.92%) differences were numerically even larger, albeit 
not statistically significant. The PPV (6.91% vs. 5.69%, 
p = 0.026) and NPV (99.62% vs. 99.35%, p = 0.041) were 
significantly different in the Tromsø cohort. Furthermore, 
the detection or prediction rate, defined as the number of 
individuals needed to screen (NNS) to detect one LC case 
on average, was significantly lower for the HUNT Lung-
SNP compared to HUNT LCM (Fig. 3), both in the HUNT2 
(NNS of 42 vs. 48, p = 0.003) and Tromsø cohort (NNS of 
11 vs. 14, p = 0.025).

When the HUNT2 cohort was split by age into sub-
populations of < 60 (n = 21,762) and ≥ 60 (n = 8987) years 
of age, the HUNT Lung-SNP achieved the same sensitiv-
ity (45.95% vs. 45.95%, p = 0.625) but a higher specificity 
(95.66% vs. 93.84%, p < 0.001) in the younger popula-
tion (< 60 years) compared to the HUNT LCM, and better 

Fig. 2  Comparison of risk ranking between the HUNT LCM and 
HUNT Lung-SNP model. Comparison of ranking of individuals that 
ever smoked by risk score in the prospective population-based HUNT2 
and Tromsø studies applying the HUNT LCM and HUNT Lung-SNP 
model and their capacity to identify individuals that will develop lung 
cancer within six years. Individuals are ranked from highest to lowest 
risk according to the respective model from left to right (x-axis). The 

cumulative number of diagnosed lung cancer is reported on the y-axis. 
(A) In the HUNT2 population there are n = 30,749 individuals that 
ever smoked and n = 160 lung cancers diagnosed in six years. (B) In 
the Tromsø population there are n = 2663 individuals that ever smoked 
and n = 39 lung cancers diagnosed in six years. Comparison of dis-
tributions by the Kolmogorov-Smirnov test, p < 0.05 for both cohorts
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LCM predicted 6 unique cases, thus 15 surplus LC cases 
were predicted by the SNP model. Based on previous publi-
cations (Brustugun et al. 2014; Burnet et al. 2005), an aver-
age of YLL per LC case is estimated to be 15 years, given 
survival from LC. However, it is unlikely that all LC cases 
will survive from LC. Based on a 5-year relative survival 
rate of 68% on LC stage I (Norway 2023), an average YLL 
per LC case of 10 years was applied. A health-related qual-
ity of life (HRQL) score of 0.75 (Behar Harpaz et al. 2023) 
(meaning that 3/4 of the time saved represents life in full 
health) was applied.

Based on the price estimates, the YLL and the HRQL 
score, the additional cost will be $1,137,713 USD if the 
SNP-analysis is performed on all individuals that ever 
smoked in the HUNT cohort (n = 30,749). By factoring in 
all data, the cost of the SNP-analysis will be $10,113 USD/
QALY.

Discussion

This study shows that the HUNT Lung-SNP performs sig-
nificantly better in ranking individuals by risk and decreases 
the number needed to screen compared to the HUNT LCM, 
NLST, NELSON and USPSTF criteria. To our knowledge, 
the HUNT Lung-SNP is the first risk model where add-
ing genetic information improves LC risk assessment for 

168% and 50% more cases in the HUNT2 individuals that 
ever smoked in six years compared to the NLST, NELSON 
and USPSTF criteria, respectively (Supplementary Fig. 4).

Similar significant results were found in the Tromsø 
cohort for both the HUNT Lung-SNP and HUNT LCM, 
except for the HUNT Lung-SNP under the application of 
NLST criteria, where the increased number of detected LC 
and the corresponding sensitivity, as well as the lower NNS 
did not reach statistical significance compared to the NLST 
criteria (Supplementary results).

Survival analysis

The survival analysis showed non-significant differences in 
median survival from diagnosis of participants that devel-
oped LC within six years predicted by the HUNT Lung-SNP 
compared to the NLST, NELSON and USPSTF criteria 
(Supplementary Fig. 5).

Cost of SNP analysis

The administrative costs related to blood drawing in our 
public hospital is estimated to $14 USD per blood test, while 
the cost of the genetic analysis of the SNP-panel including 
all the 22 SNPs can be estimated to $23 USD per analysis 
(Illumina 2023). Using the top 16th percentile, the HUNT 
Lung-SNP predicted 21 unique cases in six years (Supple-
mentary Tables 9 and Supplementary Fig. 6) and the HUNT 

Fig. 3  Number needed to screen (NNS). NNS to identify one case of lung cancer in the HUNT2 and Tromsø population. NNS computed when the 
threshold is set at the top 16th percentile of risk score. *p < 0.05. **p < 0.01
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HUNT Lung-SNP and HUNT LCM against the NLST, 
NELSON and USPSTF criteria

The HUNT Lung-SNP outperformed the 2021 USPSTF and 
NELSON criteria in both HUNT2 and Tromsø cohort when 
selecting the same number as the two criteria, respectively. 
When selecting the same number as the NLST criteria 
the HUNT Lung-SNP performs significantly better in the 
HUNT2 cohort, but not in the validation cohort (see Supple-
mentary). This could be due to the low number of partici-
pants in the Tromsø cohort combined with the strict criteria 
of the NLST compared to the USPSTF and NELSON, result-
ing in a lower number of individuals selected by the NLST 
(n = 101) in the validation cohort (see Supplementary). The 
HUNT LCM showed similar results in both cohorts, but with 
less numerically detected LC and higher NNS compared to 
HUNT Lung-SNPs, except when selecting the same number 
as the NLST criteria (see Supplementary).

HUNT Lung-SNP model in subgroups

Younger individuals that smoke and individuals with low 
number of pack-years are not eligible for LC screening 
according to current guidelines. It is known that certain 
genetic predispositions have been associated with increased 
risk of early onset (< 51 years) LC independently of heavy 
smoking (Timofeeva et al. 2010). In line with this, Hung et 
al. reported that genetic information contributed to their risk 
model in those with younger age onset (< 51 years), albeit 
the AUC increased only moderately in their study with 
genetic information compared without (Hung et al. 2021). 
Our analysis of the HUNT2 cohort supports this, showing 
a significantly lower number of screenings needed per can-
cer detected (NNS of 56 vs. 80) for the HUNT Lung-SNP 
versus HUNT LCM in the younger participants (< 60 years) 
(Supplementary Table 5). This needs further validation since 
only two cases were below 60 years of age when included in 
the Tromsø cohort. Moreover, most of the patients predicted 
by the HUNT Lung-SNP but missed by the HUNT LCM, 
had very low number of smoking pack-years, as low as two 
pack-years but still reached a high risk score (Supplemen-
tary Table 9). This indicates an important role of incorporat-
ing SNPs for prediction in groups where the clinical risk 
model is not effective.

Discrimination power between the HUNT Lung-SNP 
and HUNT LCM

The numerical AUC differences between the HUNT Lung-
SNP and HUNT LCM are arguably small, and in the vali-
dation cohort they do not reach statistical significance. 
However, this is probably because the AUC is computed as 

high-risk individuals over a validated risk model and over 
several clinical criteria.

HUNT Lung-SNP against HUNT LCM

Risk ranking is essential for defining the performance of a 
risk model. Here we found a significant improvement of risk 
ranking in the polygenic risk model over the clinical model, 
both in the discovery and validation cohort (Fig.  2). This 
translated into a lower NNS, an important metric for evalu-
ating the effectiveness of potential screening. Specifically, 
we computed the average number of screenings to detect 
one LC (NNS) in the ranked list of risk according to each 
model. The NNS is significantly better in the HUNT Lung-
SNP versus HUNT LCM and all the clinical screening cri-
teria tested. This result indicates that the HUNT Lung-SNP 
could have a clinical impact in LC screening and replace the 
HUNT LCM and be an alternative to the clinical criteria in 
screening settings.

Polygenic risk score based on LC associated SNPs seems 
to have an independent risk stratification beyond age and 
smoking history (Dai et al. 2019). However, no LC risk 
model, based only on genetic information, has shown suf-
ficient performance for clinical use, let alone for screening 
purposes (Li et al. 2012; Young et al. 2009). This is con-
sistent with our findings where the 22 SNPs model alone 
had a modest AUC of 0.625 (95% CI 0.583–0.666). Several 
groups have added LC-associated genetic variants identi-
fied in GWAS to LC risk assessment models attempting to 
improve the models, but so far with disappointing results 
(Hung et al. 2021; Li et al. 2012; Qian et al. 2016; Young 
et al. 2009). Most of these studies were without external 
validation, all were case-control studies except for one pro-
spective-based study (Supplementary Table 10). Although 
adding genetic information to risk models has shown lim-
ited impact on a risk model’s risk assessment so far, Hung 
et al. did observed that genetic information could be infor-
mative regarding assessing the individual’s age for reaching 
the low dose CT screening-eligible threshold (Hung et al. 
2021). However, the study from Hung et al. lacked exter-
nal validation, only performed a split-sample validation and 
validation in an external cohort without genetic information 
on each subject (Hung et al. 2021). To our knowledge, the 
present study is the first externally validated, prospective 
cohort study showing that genetic information can signifi-
cantly improve LC risk assessment compared to a validated 
risk model in terms of risk ranking and detection rate.
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screen-detected cancers (Esserman et al. 2014), where about 
9% of screen-detected LC have been estimated to be indolent 
(de Koning et al. 2020). Results from our survival analysis 
supports that the HUNT Lung-SNP do identify individuals 
with high risk of non-indolent LC (Supplementary Fig. 5). 
(5) As far as we know, this is the first study where the SNPs 
in a risk model are associated with all the three main histo-
logical subgroups of LC: adenocarcinoma, squamous cell 
carcinoma and small-cell LC (Supplementary Table 1).

The HUNT Lung-SNP model, besides its predictive 
power, has also some apparent strengths over other models. 
(1) All the clinical variables in the HUNT LCM and SNP 
model are easily retrieved from the individuals’ memory 
and are not dependent on culture-specific or diagnosis-based 
factors as e.g. in PLCOm2012 (education, ethnicity, history of 
COPD or family history of LC) (Røe et al. 2019). How-
ever, we acknowledge that the two variables “symptoms of 
daily cough in periods of the year” and “hours of indoor 
smoke” are not as easily to answer accurately as the rest of 
the clinical variables in the model, and these two are often 
unavailable in databases from other countries. If neither of 
these variables are available, one may use the HUNT LCM 
omitting these two, or our previously published model, the 
“Reduced” HUNT model(Røe et al. 2019). (2) The rela-
tively easy assessment of genetic information with three 
possible genotype combinations (homozygous for the refer-
ence, heterozygous or homozygous for the alternative allele) 
compared to other molecular components such as proteins 
or microRNAs. (3) Only one blood test is needed as SNPs 
do not change throughout life. (4) The SNPs included have 
been found significant in one or more major ethnic groups 
(Supplementary Table 1, Supplementary Fig. 1), which can 
indicate validity in global populations, but could need reca-
libration for certain populations.

There are some limitations to be aware of: (1) Suscepti-
bility polymorphisms identified in GWASs can vary in dif-
ferent ethnic populations. The HUNT Lung-SNP has only 
been externally validated in Scandinavian populations. (2) 
By the time this study was conducted in 2018, only 22 LC 
associated SNPs (p < 5 × 10− 8) were available in the HUNT 
Fast-track catalogue (HUNT Fast Track GWAS catalogue), 
knowledge has evolved, and far more genome-wide signifi-
cant (p < 5 × 10− 8) LC associated SNPs have been identified 
since then (Long et al. 2022). (3) Our dataset is affected by 
class imbalance, with a proportion between the number of 
events and the number of variables (events per variable pro-
portion, EPV) of three, quite below the recommended value 
EPV ≥ 10 (Steyerberg and Vergouwe 2014). The strategy of 
shrinking coefficients through bootstrapping was adopted 
during the training of the HUNT Lung-SNP to mitigate the 
issue of class imbalance while regulating the overestima-
tion on the predictions (see Methods). (4) We recognize a 

averages over all individuals, including a large portion of the 
population with very low LC risk. Furthermore, concerns 
have been raised on AUC ability to capture the incremental 
value of new markers in risk prediction in a clinical mean-
ingful way (Kerr et al. 2011). The IDI has been proposed 
as a complementary to AUC in measuring the discrimina-
tion improvement (Kerr et al. 2011). The IDI between the 
HUNT Lung-SNP and HUNT LCM indicates a significant 
improvement of LC risk stratification by the HUNT Lung-
SNP. Furthermore, when we examined the behavior of the 
models in the high-risk populations (e.g. top 16th percen-
tile risk score), the differences of the models were more 
apparent.

Cost and feasibility

The approximate analysis of cost of SNP testing and cost-
effectiveness was performed and showed that adding genetic 
test in a LC model requires some more resources than the 
clinical model, but still within what is both feasible and cost-
effective. We found that the cost of the SNP-analysis per 
QALY could be $10,113 USD/QALY, which is far below 
the cost per QALY threshold set by many high income coun-
tries, e.g. NICE for England and Wales has set the cost per 
QALY threshold between £20,000 and £30,000 (=$25,000–
38,000 USD) (Office for Health Improvement and Dispari-
ties 2020), the United States has set it at $50,000-100,000 
USD (Ubel et al. 2003), and Norway 275,000-825,000 
NOK (=$25,000–77,000 USD) (Magnussen 2015; Norheim 
et al. 2014; Ottersen et al. 2016). It should be noted that 
we expect that the cost of genetic tests to drop in the future 
(Wetterstrand 2021), becoming even more accessible. We 
emphasize that this is a simple cost-effectiveness calcula-
tion and that a comprehensive analysis using more detailed 
assumptions will be the focus of future research.

Finally, one can envision methods for optimizing the 
selection of patients for SNP analysis, e.g., using the clini-
cal and SNP model successively. We plan to explore these 
approaches in future studies.

Strengths and limitations

There are several strengths to this study: (1) The prospec-
tive study design of both cohorts. (2) The sample size of the 
HUNT2 cohort, the long follow-up time, and high-quality 
clinical data of apparently healthy individuals in a popula-
tion. The validation cohort was smaller, but compared to 
previous reported studies the variables and SNPs matched 
the qualities of the HUNT cohort closely. (3) The SNPs 
were analyzed in high-quality high-throughput platforms at 
centralized University facilities. (4) All cancers were clini-
cally detected, and thus rarely indolent, in contrast to many 
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