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ABSTRACT This article discusses a formalization of aspects of Cyber-Sovereignty (CyS) for information
and communication technology (ICT), linking them to technological trustworthiness and deriving an
associated paradigm for hard- and software design. The upcoming 6G ICT standard is considered a keystone
within modern society’s increasing interconnectedness and automatization, as it provides the necessary
technological infrastructure for applications such as the Metaverse or large-scale digital twinning. Since
emerging technological systems increasingly affect sensitive human goods, hard- and softwaremanufacturers
must consider a new dimension of societal and judicial constraints in the context of technological
trustworthiness. This article aims to establish a formalized theory of specific aspects of CyS, providing
a paradigm for hard- and software engineering in ICT. This paradigm is directly applicable in formal
technology assessment and ensures that the relevant facets of CyS – specifically, the principle of Algorithmic
Transparency (AgT) – are satisfied. The framework follows an axiomatic approach. Particularly, the formal
basis of our theory consists of four fundamental assumptions about the general nature of physical problems
and algorithmic implementations. This formal basis allows for drawing general conclusions on the relation
betweenCyS and technological trustworthiness and entails a formalmeta-thesis onAgT in digital computing.

INDEX TERMS Sovereignty, accountability, transparency, explainability, integrity, computability, hardware
models.

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Masini .

I. INTRODUCTION
The degree of interconnectedness and automatization in
society has grown unprecedentedly throughout the past
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thirty years. Further, the role of technology in everyday
life is currently changing qualitatively. Given the recent
technological progress, the engineering community envisions
machine learning and data science to enable systems that will
revolutionize healthcare, transportation, the labor market, and
the realization of political systems. The upcoming 6G infor-
mation and communication technology (ICT) standard is con-
sidered essential in this context, as it introduces the required
infrastructure for applications such as the Metaverse or
large-scale digital twinning [1]. To a great extent, the
projected 6G services, e.g., low-altitude air-traffic control for
drone systems, will rely on intelligent algorithms, control-
ling both virtual and physical components. As potentially
momentous decisions will increasingly be made by machines
rather than humans, hard- and software manufacturers must
consider a new dimension of societal constraints. The related
discussions on machine ethics, i.e., the questions of how
algorithms should decide in certain situations, has been
present for some time, mostly in the context of trajectory
planning for autonomous driving [2], [3], [4]. Only recently,
[5] highlighted that trustworthiness – an umbrella term for
different relevant aspects of technology assessment – will
soon become critical to ICT in general.

Ever since the introduction of ChatGPT, the potential
risks of the coming generations of ICT have experienced
a significant rise in attention within the public and legal
domain. The emerging paradigms and legal regulations are
often summarized by the term Cyber Sovereignty (CyS). The
arguably most relevant contemporary examples are the G7
Hiroshima Process on Generative Artificial Intelligence [6]
and the European AI Act [7]. As their names suggest,
both specifically concern artificial intelligence rather than
general ICT. This may be partly attributed to the subject’s
novelty and the recent developments in artificial intelligence,
which have prompted a demand for regulatory measures in
the public discourse. Nevertheless, both [6], [7] have direct
relevance for near-future ICT systems, as these will rely on
AI to perform decision-making tasks – including such within
critical infrastructure.

In addition to their focus on AI, existing statements primar-
ily address virtual aspects of ICT. That is, ‘‘soft’’ interactions
between humans and ICT, in which the relevant ICT system
does not control parts of the human’s physical environment.
Regarding near-future communication networks, however,
the case of ‘‘hard’’ interactions, i.e., scenarios where software
directly controls physical agents, has to be addressed. Further,
existing statements tend to express societal requirements
in abstract terms. Regarding trustworthiness, the relevant
standards and regulations must ultimately define formal
technological specifications. While this is already the case
in traditional technology assessment, – for example, both of
an aircraft’s engines must each provide enough thrust such
that the aircraft can stay airborne with just one of them – the
rise of ICT as part of society’s critical infrastructure presents
research and development with the challenge of translating
unprecedented societal constraints into technological ones.

This article aims to establish a formalized theory of
specific aspects of CyS, providing a precise paradigm for
hard- and software engineering in ICT. This paradigm ensures
that the principles of Algorithmic Accountability (AgA),
Algorithmic Transparency (AgT), and Right to Explanation
(RtE) are satisfied. The basis of our framework is presented in
Section III-A. There, we introduce the principles mentioned
above and discuss their relationship in the context of CyS.
The provided discussion distinguishes AgT as decisive in the
engineering context. In Section III-B, we further introduce
the concept of (formalized) physical problems by a scheme of
three axioms, which is necessary in order to derive the pivotal
paradigm. Section III-C discusses the relation between
physical problems and their algorithmic implementations.
The resulting fourth axiom can be considered the core
characterization of AgT in the context of technological
trustworthiness and concludes the axiomatic preliminaries.
In Section IV, we apply the established framework to models
of computing hardware, which entails the main contribution
of our work: The meta thesis on AgT in digital computing
and the resulting paradigm of hard- and software design
in ICT. Finally, we provide prospects on the implications of
our results and an overview of related research in Section V.

II. BACKGROUND AND RELATED WORK
Evidently, the principles of trustworthiness and CyS are
essential for all forms of ICT. However, the relevant literature
primarily considers trustworthiness and CyS in the context
of AI and machine learning. Arguably, this is due to the
following reasons. First, given the significant advances the
science of machine learning has made throughout recent
years, large parts of the engineering community consider AI
a key enabler for near-future ICT technology. Accordingly,
concerning the safety of such technologies, the performance
and behavior of AI occur as a bottleneck. Further, the
potential harm caused by faulty next-generation ICT systems
is unprecedented. Thus, it seems natural to pay special
attention to trustworthiness and CyS in the context of AI.

Second, the approach of AI technologies towards
problem-solving is much in contrast with the one of classical
software: The latter ideally implements a provably correct
method to solve a given task, while the former requires the
machine to find the solution to the given task on its own.
Ensuring that a machine finds (or recognizes whenever it
does not) a correct solution when prompted with a problem
adds another layer of complexity over merely implementing a
particular correct solution. The black-box-like nature ofmany
machine-learning techniques further contributes to this issue.
Ensuring trustworthiness and CyS for AI-based ICT systems
is thus extra challenging as compared to other forms of ICT.

The interactions of contemporary AI-based technologies
with their surroundings are almost entirely of an indirect
nature, influencing human choices rather than acting within
the physical environment. The goal of artificial general
intelligence [8], [9] includes a transition to direct interactions,
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utilizing deep-learning-based sensing and decision-making
for physical agents. Often, the resulting algorithms exhibit
unreliable and non-robust behavior [10], [11], [12], [13], [14],
such as the vulnerability of artificial neural networks to slight
input perturbations. Among others, [11], [15], [16], [18], [19]
have demonstrated how small deviances in an artificial neural
network’s input data can create drastic fluctuations in the
generated outputs, even if the deviances are unnoticeable to
a human observer. Research and development must remedy
this lack of trustworthiness [20], [21], [22], [23], [24]
before AI-based technologies are safe to use in systems that
involve physical agents. Especially, AI-based technologies
must satisfy and provide
• robustness, particularly against changes in environments
or situations, noisy or incomplete data, and adversarial
attacks;

• transparency and interpretability, offering clear justifica-
tions for and explanations of all critical steps in the
decision-making process;

• fairness, ethical compliance, and privacy, avoiding biases
and ensuring the equitable treatment of diverse user groups
and the secure handling of sensitive information;

• safety and security, including protection from potential
threats and preventing unintended harmful outcomes.

Failing to establish trustworthiness in deep learning systems
means it is impossible to provide performance guarantees.
Accordingly, situations may occur where these systems
display unexpected and potentially harmful behavior. This
concern is widely recognized, even outside the scientific
community. Policymakers have proposed guidelines and
regulations for the relevant technological systems, such as
the European AI Act [7] and the G7 Hiroshima Leaders
Communique [6]. The outlined requirements are categorized
according to their severity, depending on the extent to which
the technological systems in question are safety critical.
Specifically, the European AI Act creates a well-defined legal
framework that some policymakers consider a ‘‘blueprint’’
for future regulatory proposals.

Nevertheless, the issue of trustworthiness in deep learning
persists, as the core methodology has stayed the same.
Thus, one may question the satisfiability of the proposed
requirements for deep-learning-based technological systems.
Notably, AI techniques such as expert systems [25] follow
an entirely different approach, which makes them less
susceptible to the vulnerabilities of deep learning systems.
Informally speaking, they aim to provide trustworthiness
benefits ‘‘by design’’, at least to some extent. However,
compared to deep learning systems, this benefit comes at the
cost of performance.

In contrast to classical technology assessment, the problem
of feasibility remains for the proposed requirements.
In particular, societal principles and legal regulations such
as Algorithmic Transparency, Algorithmic Accountability,
and Right to Explanation [7] are of an abstract nature.
It is not evident how these principles mirror on the

implementation level. The present article aims to fill this gap
by framing these principles in the context of computability
theory. Notably, the suggested framework incorporates the
hardware level. Formalizing societal principles and legal
regulations in a technologically applicable manner – that
is, in terms of a mathematical model – is a nontrivial
task. However, ensuring a technological system’s adherence
to such regulations is more comprehensive than their
formalization, as the technological system is itself subject to
mathematical modeling. Thus, it is essential to investigate
whether the hardware in question is ‘‘compatible’’ with
the formalized form of the relevant regulations. Otherwise,
there is no guarantee that the technological system will
satisfy the regulations in practice, even if it does so in
theory. Within the relevant literature, this point of view
is (to the best of the authors’ knowledge) unique to the
present work and [26]. Further, we try to draw some general
conclusions. Particularly, the existence of a trustworthy
algorithmic solution to some engineering problem depends
on the underlying computing model, and varying results
can indeed occur. This phenomenon is crucial, especially
regarding real-world physical processes or, more broadly,
problems modeled and represented within continuous
domains.

The issue of understanding and verifying the behavior
of software systems has been relevant ever since the birth
of computer science itself. However, it has recently gained
newfound attraction following the rise of machine learning
and artificial intelligence. As indicated above, this is arguably
due to the contrasting approaches to problem-solving of
techniques such as deep learning on the one hand and
classical software on the other: The latter ideally implements
a provably correct method to solve a given task, while the
former requires the machine to find the solution to the given
task itself.

In both cases, verifying or even proving the correctness of
a software system is a complex but, to some extent, viable
task. In the simplest case, the verification process consists of
running the software for a suitable list of inputs. The verifier
needs to choose this list so that the desired result for each of
its entries is known and can later be compared to the actual
output. Note that, albeit presumably simple, finding a suitable
list of inputs is highly nontrivial and sometimes impossible.
While typical throughout all areas of software development,
this technique is especially relevant in the field of machine
learning. For recent examples in the context of ICT, see
e.g. [27], [28]. Model checking, on the other hand, seeks to
verify (in the sense of deductive theorem proving) a system’s
model against its formal specification [29]. Note that in
contrast to the above, this form of verification corresponds
to proving the correctness (with regards to the intended
task) of the software system in a mathematical sense; the
underlying mathematical framework is called (modern) type
theory, c.f. e.g. [30]. In more abstract terms, this process aims
to reduce the correct operation of the software to the correct
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operation of compiler and hardware. If the latter is pro-
vided, the software system (provably) behaves as intended.
However, model checking is a highly intricate technique,
which, in many practically relevant cases, is infeasible for
sheer complexity. Further, even if complexity is disregarded,
there exists a fundamental mathematical limitation to model
checking: Gödel’s incompleteness theorems imply that even
if a piece of software is de facto correct (in the sense that for
all possible inputs, the software provides the desired output),
it is not necessarily possible to prove its correctness.

Initially, the rise of deep learning was not accompanied
by novel validation techniques, as validation through basic
testing was deemed sufficient given the achieved perfor-
mance. Nevertheless, alongside the contemporary spread
of AI software usage in everyday life, issues such as
adversarial examples [11] indicating a discrepancy between
intended and actual behavior emerged. In response, software
developers applied attuned learning procedures – such
as adversarial training [31], [32] – aiming to prevent
the undesired behavior or explainability techniques try-
ing to make the software’s (decision) process transparent
to the user [33], [34], [35], [36], [37]. However, these
attempts have only been partially effective and mostly
limited to narrow use cases. Moreover, newfound results
suggest that it is impossible to prevent undesired behavior
in general [38], [39]. Informally speaking, one may expect
that for every attuned learning procedure, there exists a
new set of ‘‘rogue inputs’’ that provoke the software to
act in an unforeseen way. Consequently, the problem of
appropriate benchmarking that ensures ‘good’ operation
in complicated real-world settings persisted, eventually
leading researchers to propose the concept of deep learning
models interpretable by design [40]. Instead of focus-
ing on the transition from benchmarking to real-world
application, the design of these models a priori includes
specific interpretability objectives, which developers can
later refine by integrating insights gained from targeted
tests and explainability techniques [41], [42]. Ethical and
moral aspects form another highly relevant blindspot of
conventional benchmarking. For example, deep learning
systems are prone to biased decision-making and violations
of users’ privacy rights [43], [44], [45]. Research and
development has tackled these challenges symptomatically
through various technical modifications [46], [47]. Never-
theless, the underlying ethical and legal concerns remain
unaddressed [47], [48], [49], [50], [51].
At the latest, when future technological systems employ

machine-learning techniques in a safety-critical context, the
trustworthiness problem must be solved. Like traditional
technology assessment, intelligent software requires reliable
certification standards [52], [53], [54], taking societal and
legal considerations into account. In this sense, the present
paper aims to contribute a ‘trustworthy by design’ framework
that precedes classical and specific deep learning validation
methods.

III. MODEL BUILDING: FROM ABSTRACT PRINCIPLES TO
FORMAL CRITERIA
A. PRINCIPLES OF CYBER SOVEREIGNTY
To the best of the authors’ knowledge, no widely accepted
definitive characterization of CyS exists. The same holds
true for its subordinate principles AgA, AgT, and RtE.
Subsequently, we provide brief conceptual definitions that
serve as a reasonable basis for a formal analysis in the context
of ICT.

From Section I, recall that technological trustworthiness
serves as an umbrella term for different aspects of technology
assessment. For a comprehensive description, we again hint
at [5]. We refer to the aspect of trustworthiness that is relevant
within the scope of this article as integrity. In contrast to
CyS, the notion of (technological) integrity emerged in the
engineering context and has a direct interpretation therein.
One of this article’s pivotal contributions is establishing a
link between CyS and trustworthiness. For didactic reasons,
we will thus define integrity alongside CyS, AgA, AgT, and
RtE and return to the definition in Section III-C.
Cyber Sovereignty (CyS): CyS refers to the ability of

a group of individuals – commonly a nation – to jointly
decide upon and regulate the usage of ICT technologies
within the group without being dependent or influenced by
parties outside the group. This ability encompasses rights
and responsibilities on the individual level, as well as rights
and responsibilities on the level of the group as a whole.
In particular, it encompasses the group’s ability to jointly
decide which ICT solutions are legitimate for a specific
engineering problem.
Algorithmic Accountability (AgA): AgA refers specifically

to the legal regulations of which party, individual, or possibly
system is to be held accountable for harm or losses resulting
from algorithm-based decision-making. The latter especially
applies to decisions that are deemed faulty. Primarily, AgA
is a judicial concern. As a prerequisite, a cyber-sovereign
group is responsible for establishing conclusive regulations
on which algorithm-based decisions are considered faulty in
a specific context.
Algorithmic Transparency (AgT): AgT requires that the

factors determining the result of an algorithm-based decision
be visible to the legislator, the operator, the user, and
other affected individuals. Upon proper formalization, it is
a property directly applicable in the engineering context.
Within a cyber-sovereign group, specific ICT systems may
be legitimate only if the employed algorithms satisfy
transparency.
Right to Explanation (RtE): RtE refers to the right of an

individual affected by an algorithm-based decision to know
the entirety of factors and their case-specific expressions
that lead to the decision. The term refers to the possible
right in legal and the general right in a philosophical
sense. Again, a cyber-sovereign group is responsible for
establishing conclusive regulations on the extent of this right
within their jurisdiction.
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Integrity: In engineering, integrity refers to a state where
a technological system resides within its design-based
margin of operation. For ICT applications that include
decision-making for physical agents, integrity requires that
the relevant algorithm correctly captures the state and
(physical) dynamics of the agent in question. Like AgT,
integrity is a property directly applicable in the engineering
context upon proper formalization.

As indicated, a cyber-sovereign group is responsible
for establishing clear regulations regarding AgA and RtE.
In turn, AgT is a requirement for both AgA and RtE.
Following the definitions above, it is possible to provide
RtE if and only if the relevant algorithm satisfies AgT. The
interplay of AgT and AgA emerges from the observation that
without AgT, it is impossible to differentiate between faulty
and intended algorithm-based decisions. Recall that, as a
prerequisite of AgA, a cyber-sovereign group is responsible
for establishing conclusive regulations on which algorithm-
based decisions are considered faulty in a specific context.
The agreed-upon legal regulations determine the entirety of
visible factors relevant to a specific decision-making task.
On the other hand, the decision-making by an intransparent
algorithm incorporates factors that are invisible to the
legislator per definition. If an intransparent algorithm is
considered legitimate, any resulting decision can be arbi-
trarily attributed to some invisible factor, leaving no means
of verification. Consequently, the operator is either penal-
ized without proof of their delinquency, or the distinction
between faulty and intended decisions is rendered infeasible
altogether.

While the principles of AgA and RtE may have had little
practical relevance in the early days of ICT, their importance
is evident given the current advances in technology and engi-
neering. From Section I, recall that hard human-technology
interactions – that is, interactions in which an intelligent
system controls the physical environment of humans – will be
an essential part of the envisioned 6G services. As indicated in
Section I, autonomous driving is the arguablymost prominent
pertained technology discussed in the literature [2], [3], [4].
The questions of cause and responsibility after (possibly fatal)
accidents involving self-driving cars will have to be answered
from the perspectives of AgT, AgA and RtE. Observe that
the relevant results established in [2], [3], and [4] are directly
related to our framework, which we will further discuss
in Section V.
In order for a group of individuals to maintain CyS, the

group must understand the cause of and responsibility for
algorithm-based decisions in the context of AgA and RtE.
However, not AgA nor RtE directly apply to hard- and soft-
ware design. Instead, they are part of the group’s societal and
judicial discourse. The primary responsibility of engineers
consists of providing systems that operate according to the
relevant formal specifications. In this context, AgT is the rel-
evant principle. As indicated before, it is possible to formalize
AgT to an extent that makes it applicable to algorithms.
When implemented, it ensures the group can exercise AgA

FIGURE 1. Example of a Physical Problem. The flight-control computer of
a drone network receives input data from different sources. Based on a
mathematical model for flight dynamics, it processes the input into
control outputs for the drones’ engines such that the drones attain the
desired flight path.

and RtE. Thus, we will base our framework primarily on the
said formalization of AgT. As part of this framework, we will
characterize the exact relation between AgT and integrity,
c.f. Section III-C.

B. PHYSICAL PROBLEMS: FORMALIZING THE
ANALOG WORLD
Our formalization of AgT is best explained by a didactic
example, as it facilitates defining the relevant terminology
of physical problems. Having highlighted its relevance in
the context of autonomous driving in Sections I and III-A
already, we resort to another instance of trajectory planning
for this purpose. Consider a scenario in which a network of
drones is governed by a joint flight-control computer (from
Section I, recall that low-altitude air traffic control is one
of the envisioned services provided by 6G communication
networks). The flight-control computer receives various
inputs, ranging from attitude and navigational data to possible
steering commands from a human operator. The computer
processes these inputs into control outputs for the drones’
engines, as visualized in Figure 1. For the remainder of
the article, we refer to a scenario of this kind, i.e., one
that encompasses the control of physical components, as a
physical problem.

For now, we consider the flight-control computer a black
box, ignoring any details regarding hard- or software. It is
essential to note that the purpose of the flight-control
computer can be specified in an entirely agnostic manner
to these details. That is, the underlying physical problem
exists as a mathematical model, regardless of the actual
implementation within the computer. In the simplest case,
a set of differential equations models the drones’ flight
dynamics. These differential equations characterize a rela-
tionship between the input of the flight-control computer and
the desired control output for the drones’ engines. In abstract
terms, we summarize the nature of physical problems as
follows.
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Axiom 1: A physical problem is characterized by an input-
output relation that links elements of an input space to
elements of an output space.
Axiom 2: The input space of a physical problem is

characterized by a set of formalized input attributes. Each
element of the input space consists of an individual expression
of these attributes.
Axiom 3: The output space of a physical problem is

characterized by a set of formalized output attributes.
Each element of the output space consists of an individual
expression of these attributes.

In our example, the attitude and navigational data as
well as the steering commands from a human operator
form the input attributes of the physical problem. They are
commonly expressed in terms of a real-valued tuple that
specifies, e.g., points in 3D space, angles of alignment,
etc. Hence, an expression of input attributes consists of
a list of numerical values. Likewise, the control outputs
for the drones’ engines form the physical problem’s output
attributes, specifying voltage levels, for example. Again,
an expression of these attributes consists of a list of
numerical values.

Axioms 1, 2, and 3 apply directly to any engineering
problem characterized by a mathematical model. The desired
behavior of the technical system later implemented in
practice is already entirely specified by the abstract physical
problem. The action of a drone in the face of a collision
with some other object, e.g., a building, a crewed aircraft,
another drone, or a bird, is a result of mathematical
modeling and criteria built thereupon. These criteria are
visible, and any cyber-sovereign group can agree upon them.
However, the subsequent process of hard- and software
design gives rise to another nontrivial facet: Any real-world
hardware platform is necessarily subject to mathematical
modeling itself. In particular, the relevant mathematical
model determines the class of algorithms that the platform
can implement. In Section III-C, we discuss the relationship
between physical problems and algorithmic implementations
thereof in abstract terms, leading to the 4th and last axiom
of our theory. In Section IV, we apply the established
axioms to the mathematical model of Turing machines
and deduce a necessary and sufficient condition for the
existence of transparent algorithmic implementations in
digital computing.

C. THE INVISIBLE LAYER: ALGORITHMIC TRANSPARENCY
AND INTEGRITY
The characteristics of the relevant physical problem comprise
the visible layer of a technological system. The details and
specifications on this level are visible to the outside and
thus provide the basis for AgT. Nevertheless, after fixing
the visible specifications, the abstract physical problem has
to be implemented through an algorithm and a suitable
hardware platform. The details of this implementation form
a technological system’s invisible layer. If AgT is satisfied,

the technological system operates exclusively according to
the visible specifications, in which case the invisible layer is
irrelevant to the user.

On the invisible layer, the algorithmic implementation
must capture the characteristics of the physical problem
through a suitable machine-readable language. As used in
our context, the term ‘‘machine-readable language’’ refers
to the specifications of how expressions of input and output
attributes are represented on the hardware. It is not to be
confused with an actual programming language. Notably,
each expression of input and output attributes must possess
adequate machine-readable descriptions. In order to illustrate
this principle, consider Euler’s number e. In mathematical
terms, e exists as an abstract entity. Since e is an irrational
number, we cannot store all of its digits in the memory of a
(real-world) digital computer. However, we can store a finite
source code that, when executed, accepts a natural number
and returns as many decimal digits of e. The corresponding
code uniquely determines the abstract object e. There exists
an infinite variety of codes that determine e in this sense,
each of which is a machine-readable description of e. The
description details, e.g., the specific programming language
or method we use to approximate e, are irrelevant, provided
the description ultimately determines e in the above sense.
In that case, we call the description a feasible translation of e.

Returning to the general principle of physical problems,
each possible visible-layer expression of input attributes
must possess feasible translations, i.e., corresponding
machine-readable descriptions on the invisible layer. We will
refer to these as input descriptions in the following.
If the expressions of input attributes are real-valued tuples,
an input description might consist of a source code that
determines each of the tuple’s components according to
the abovementioned scheme. Whenever we present the
algorithm on the invisible layer with an input description,
it computes a description of some expression of output
attributes. Analogously, we will refer to these as output
descriptions.

In the context of CyS, relevant characteristics of the
(physical) engineering problem need to be addressed at the
visible layer. That is, all factors that influence the behavior
of the implemented system need to be formalized in terms
of one of the physical problem’s input attributes. Given an
input description of an expression of these attributes, the
computed output description must unambiguously determine
an expression of output attributes such that the physical
problem’s input-output relation is satisfied. Only if this is
the case regardless of which specific input description we
present to the algorithm,we can accept the physical problem’s
algorithmic implementation to be agnostic to any invisible-
layer details. Accordingly, we abstract the principle of AgT
as follows.
Axiom 4: Given a physical problem, we call an algo-

rithmic implementation thereof transparent if it meets the
following conditions:
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FIGURE 2. Layers of Technical-Systems Design. The visible layer (top)
consists of the physical problem itself, while the invisible layer (bottom)
consists of an algorithmic implementation thereof. Each expression of
input and output attributes possesses corresponding machine-readable
descriptions on the invisible layer. The algorithm transforms these
descriptions according to the physical problem’s input-output relation.
Thus, if two points are connected on the visible layer, they must also be
connected via a detour through the invisible layer.

(1) It is possible to translate any expression of input
attributes into a corresponding machine-readable
description.

(2) It is possible to retranslate any expression of output
attributes unambiguously from each of its corresponding
machine-readable descriptions.

(3) Based on the correspondence between visible-layer
expressions and invisible-layer descriptions, the algo-
rithm preserves the physical problem’s input-output
relation. Any feasible translation of an expression of
input attributes is mapped to a feasible translation of the
related expression of output attributes, regardless of the
specific translation the algorithm receives.

Figure 2 visualizes the substance of Axiom 4. Observe
that the question of what machine-readable language is
deemed suitable to represent a physical problem is not
determined a priori, and cannot be formalized in terms of
a mathematical model. In any case, however, AgT requires
that that invisible-layer details must not have an influence
on the expression of output attributes corresponding to
the computed output description. Such details include, the
specific hardware model, the choice of (actual) programming
language, the specific training data for machine-learning
algorithms, and, most notably, the stopping criteria for
iterative algorithms in numerical computing. Often, the latter
are of the form that the computation is halted once the
computed output value stops to change significantly for a
prescribed number of successive iterations. These criteria are
of heuristic nature and, in the context of our framework,
make the computed expression of output attributes depend
on the exact implementation of the numerical algorithm,
down to the level of machine instructions. If AgT is required,
such a stopping criterion is inadmissible. In the context of
trajectory planning for autonomous driving, [3] highlighted
this exact problem, which we will return to for a more
in-depth discussion in Section V.

Finally, we can now identify the relationship between
AgT and integrity. From Section III-A, recall that integrity
refers to a state where a technological system resides
within its design-based margin of operation. Regarding the
automated control of a physical agent, integrity requires the
relevant algorithm to capture the agent’s (physical) dynamics
correctly. Employing the nomenclature established within
this article, the agent’s dynamics and prescribed operation
margin form the relevant physical problem, i.e., the visible-
layer characteristics. The abovementioned requirement refers
to the algorithm preserving the physical problem’s input-
output relation in the sense of Axiom 4. If satisfied, it ensures
that the technological system does not exceed its operation
margin due to uncontrollable variations in the invisible-layer
details. Consequently, while stemming from two different
contexts, AgT and integrity are ultimately paraphrasings
of the same principle. The underlying formal criterion,
as characterized by Axiom 4, provides an intersection of CyS
and technological trustworthiness.

IV. IMPLICATIONS: MODELS OF COMPUTABILITY AND
HARDWARE COMPATIBILITY ASSESSMENT
The principle of AgT characterizes a relationship between the
visible and the invisible layer of a technological system. This
relationship results from mathematical modeling and yields a
formal property of algorithms. As indicated in Section III-B,
the details of the invisible layer are subject to mathematical
modeling themselves. Accordingly, the interplay of two
mathematical models provides the basis of any assessment of
AgT: The physical problem on the one side and the relevant
computing model on the other. In particular, the computing
model determines the class of algorithms the employed
hardware platform can implement. This interplay ultimately
determines whether the conditions of Axiom 4 can or cannot
be satisfied.

Today, digital hardware provides the basis for most ICT
systems. In theoretical computer science, the mathematical
model of Turing machines [55], [56] is arguably the
most well-established mathematical formalization of digital
computing. The widely accepted Church-Turing Thesis
concludes that Turing machines are a definitive model of
digital computers, describing their (theoretical) capabilities
perfectly. In mathematics, the study of the applications of
Turing’s theory to what we defined as physical problems is
called computable analysis. For a comprehensive introduc-
tion, we refer to [57]. In this domain, the requirements of
Axiom 4 are known and referred to as Turing computability.
Accordingly, we obtain a necessary and sufficient condition
for AgT in digital computing.
Thesis 1 (AgT in Digital Computing): A physical prob-

lem exhibits a transparent digital algorithmic implementation
if and only if the relevant input-output relation is a Turing
computable function.
Remark: Regarding Turing-computability, the nomencla-

ture employed in the literature is partially inconsistent.
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FIGURE 3. Paradigm of hard- and software design for ICT under
transparency constraints. The engineer selects a framework of
computability in which the relevant physical problem exhibits a
transparent algorithmic implementation. The manufacturer then chooses
a hardware platform that fits the selected framework of computability.

For example, [57] uses the term effectively determined
operator for Turing-computable operators on Banach spaces.

Aside from Turing machines, the model of Blum-Shub-
Smale (BSS) machines is, albeit rarely mentioned explicitly,
one of the most common heuristic formalizations of digital
computing (in contrast, Turing machines are considered a
precise model according to the Church-Turing thesis) [58].
In a different context, BSS machines have recently gained
interest due to their relation to analog hardware. It has,
for example, been argued that they provide a suitable
formalization of biocomputing [59]. The differences between
both models of computability is present in theoretical
applications relevant to 6G communications.

In general, every mathematical model of computing
hardware induces a class of implementable algorithms. The
authors conjecture that Thesis 1 extends to models other
than the Turing machine upon proper formalization, adding a
novel facet to hard- and software design for ICT in the context
of societal and judicial constraints: Given a physical problem,
specific hardware platforms may be required to achieve AgT.
Whether a particular platform is suitable for this task depends
on the structural properties of the physical problem, leading
to the following design paradigm. Whenever a technological
system needs to satisfy AgT, the design process must
start with a structural mathematical analysis of the relevant
physical problem, incorporating its computability within
different hardware models. This analysis leads to choosing
a hardware model in which the physical problem exhibits
a transparent algorithmic implementation. Subsequently, the
manufacturer must choose the physical hardware so that it
sufficiently meets the characteristics of the selected hardware
model. Figure 3 summarizes the established paradigm.
Following the equivalence we derived in Section III-C, it may
equally be applied to ensure integrity in the context of
technological trustworthiness.

The established paradigm essentially utilizes the degrees
of freedom provided by considering different models of
computing hardware. Given the recent advances in the
science of unconventional computing, we can expect to

encounter various novel types of hardware in the near future
of ICT. In this context, recall that BSS machines may
serve as a suitable formalization of certain types of analog
computing hardware. From a theoretical perspective, several
potential application cases exist in which BSS machines
exhibit supremacy of computing capabilities over Turing
machines. The recent concept study [60] has extensively
discussed this observation in the context of virtual-twinning,
a newly emerging technique in control and systems engi-
neering. Particularly, the study discussed two well-known
engineering problems relevant to the field of ICT: Detecting
unobservability in remote state estimation (RSE) – this
problem is closely related to trajectory planning – detecting
susceptibility to denial-of-service (DoS) attacks in network-
resilience planning. Both physical problems consist of a
mathematical model of wireless communication links and
a go/no-go decision based on particular formal channel-
quality measures. The resulting classification functions are
computable within the theory of BSSmachines but notwithin
the theory of Turing machines [61], [62], [63]. Accordingly,
given any corresponding algorithmic implementation on
digital hardware, there always exists a set of channels for
which the resulting system’s behavior depends on details of
the invisible layer. On the other hand, if Thesis 1 extends to
BSS computability, transparent algorithmic implementations
exist for both physical problems on hardware that fits the
model of BSS machines.

An analogous type of computability supremacy occurs in
the context of inverse problems, which form themathematical
basis for a broad range of applications in, among others,
signal processing and machine learning [64], [65]. Finally,
[66] highlighted that the conclusions on AgT drawn in [26]
might analogously apply to near-future quantum hardware.
The present work provides a generalized framework that
allows for a coherent analysis of all application scenarios
discussed above.

V. CONCLUSION AND PROSPECTS
The limitations of digital computing are evident regarding
the societal and judicial requirements for near-future ICT
systems. Concerning novel types of computing hardware, the
theory established in the present article predicts substantial
benefits. The authors conclude that the research on different
frameworks of computability and different forms of comput-
ing hardware will develop to be significant for engineering in
cyber-sovereign societies.

As indicated all throughout this article, specifications
for trajectory planning under societal constraints – so far,
primarily in the context of autonomous driving – already
forms a major contemporary topic within the relevant
engineering literature. In particular, [2], [4] discussed
different societal and ethical theories and incorporated
them into models for vehicular motion. The results in [2]
were furthermore supported by numerical experiments. The
problem of technical feasibility – that is, the question of
how the decision rules derived from abstract ethical and

VOLUME 12, 2024 197419



Y. N. Böck et al.: Computing-Model and Computing-Hardware Selection for ICT

societal principles are mapped into software – was discussed
explicitly in [4]. However, both [2], [4] established their
results exclusively in terms of real-valued physical problems,
i.e., concerning the relevant technology’s visible layer. Partic-
ularly, the supporting virtual experiments relied on heuristic
numerics.

The ethical concerns emerging from heuristic numerics
were highlighted in [3], indicating the expectable differences
in system behavior per manufacturer, as well as the problem
of how the software should determine if the accuracy
of its trajectory calculation is sufficient to act upon it.
In Section III-C, we have pointed to this issue in the
context of stopping criteria for iterative methods. Often,
these are of the form that the computation halts whenever
the computed output value does not change significantly for
a prescribed number of successive iterations. Expressed in
the terminology of our theory, the computed expression of
output attributes then depends on the exact details of the
invisible layer, down to the level of machine instructions.
The approach presented in this article avoids such issues
entirely.

Finally, the authors conclude that the understanding of
computability frameworks in the context of technology and
sensitive human goods critically needs to be extended. Aside
from the problem of remote state estimation discussed in
Section IV, there exists a variety of other relevant (physical)
engineering problems that have been shown to not be
Borel-Turing computable. While Turing’s theory is widely
accepted as the definitive formalization of digital computing,
equivalent theories do not exist for other types of hardware.
In this regard, the BSS framework makes a promising
starting point for developing a suitable model of several
forms of analog computing. On the other hand, theories for
neuromorphic hardware, for example, feature aspects that
potentially go beyond the capabilities of BSS machines.
In view of the contemporary advances in the manufacturing
of unconventional computing hardware, the exploration of
new computing theories for analog physical problems yields
a promising field of further research. In addition, further
research is necessary to formalize the societal and judicial
constraints for ICT in the context of AI, such that a
complete and comprehensive framework that integrates these
constraints with the computing theory of different hardware
platforms may be developed. A first step toward this goal was
taken in [26].
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