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Abstract
The Peetre K-functional is a key object in the development of the real method of
interpolation. In this paper we point out a less known relation to wavelet theory
and its applications to approximation theory and engineering applications. As a new
basis for further development of these studies we present some known properties in
the form appropriate for further applications and then derive new information and
prove some new results concerning the K-functional and its close relation to (almost)
quasi-monotone functions, various indices and interpolation theory. In particular, we
extend and unify some known function parameter generalizations of the standard real
interpolation spaces (A0, A1)θ,q .
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1 Introduction

One motivation for this investigation was the PhD thesis [9], where, in particular, a
not so known relation between wavelet coefficients and the Peetre K-functional was
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pointed out and applied. The idea is now to go on with this research of interest for
applications in engineering sciences.As the starting point in this paperwepresent some
known properties in the form appropriate for further applications. Thenwe prove some
new results concerning the close relation between (almost) quasi-monotone functions,
various indices and interpolation theory, which is one of the main novelties in this
paper.

The Peetre K-functional is defined as follows: For a ∈ A0 + A1 and 0 < t < ∞
we define

K = K (t) = K (t, a; A0, A1) := inf
a=a0+a1

a0∈A0,a1∈A1

(‖a0‖A0 + t‖a1‖A1

)
, (1.1)

where (A0, A1) is a compatible quasi-Banach couple (i.e. A0 and A1 are both
embedded in a common Hausdorff topological vector space).

Directly from the definition (1.1) we obtain the following first interesting properties
of the Peetre K-functional:

For each fixed t, the Peetre K-functional is an equivalent quasi-norm on the

space A0 + A1. (1.2)

As a function of t, the K-functional is a concave function. (1.3)

K (t) is a non-decreasing function. (1.4)
K (t)

t
is a non-increasing function. (1.5)

Later on in this paper we will point out some useful consequences of (1.3), (1.4)
and (1.5). Moreover, our theoretical investigations will, in particular, imply several
other new properties of the K-functional.

In Sect. 2 we discuss the important class of quasi-monotone functions, where the
properties (1.4) and (1.5) are natural special cases. We also present some new facts
for quasi-monotone functions and consider generalizations of functions based on the
so-called almost monotonicity, which are important for our further developments in
this paper. The main results in this section are Theorems 2.1 and 2.8.

In the light of the ideas of quasi-monotonicity exposed in Sect. 2, in Sect. 3 we
consider a variety of indices related to quasi-monotone functions and sometimes gen-
eralize some known facts for them. As special cases we point out these indices for
the Peetre K-functional. The main focus in this section is to investigate the close rela-
tion between quasi-monotone-type functions and various indices. The main results are
given in Theorems 3.5, 3.10 and 3.18.

The most well-known application of the Peetre K-functional is that it can be used
to define the real interpolation spaces (A0, A1)θ,q , 0 < θ < 1, q > 0. See e.g.
the book [3] (by Jaak Peetre’s former students J. Bergh and J. Löfström). There are
some generalizations of these interpolation spaces, e.g. interpolation with a parameter
function by L. E. Persson (see [29]). Here the basic idea was that since the Peetre
K-functional is quasi-monotone it is natural to replace the weight function tθ in the
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definition by another quasi-monotone function ϕ(t), which controls the growth of the
weight corresponding to the condition 0 < θ < 1.

In Sect. 4we suggest a generalization of the parametermethod.One reason for this is
that then it is easier to see that this method is more general than another generalization
namely "the slowly varying method" for the case 0 < θ < 1. Main result is our
introduction of newgeneralized real interpolationmethod [GP]which does not exclude
the endpoint cases θ = 0 and θ = 1. For these cases we have not yet contributed with
some our own results but refer to the new paper [13]. Our new result for the case
0 < θ < 1 is presented in Theorem 4.10, and also Proposition 4.12 illustrates how
this idea can be used.

In the first part of Sect. 5 we briefly expose our present knowledge of the connection
between the Peetre K-functional, interpolation theory and wavelets. We hope that the
investigations in this papermay be useful to deepen the understanding and applicability
of that connection.

Finally, the second part of Sect. 5 is reserved for some final remarks and results, e.g.
connections between indices used in some other interpolation methods (Proposition
5.7) and new properties of the K-functional (Example 5.2, Remark 5.4 and Example
5.5).

The authors thank the referees for carefully reading the paper.

2 Basic properties of quasi-monotone functions

We say that a non-negative function on R+ = (0,∞) is quasi-monotone if ϕ(x)x−a

is non-decreasing or non-increasing for some a ∈ R.
Let a0 and a1 be real numbers, such that a0 ≤ a1. The class Q[a0, a1] is defined as

consisting of all quasi-monotone functions such that ϕ(t)t−a0 is non-decreasing and
ϕ(t)t−a1 is non-increasing.

Observe that if ϕ ∈ Q[a0, a1], then ϕ(t0) = 0 for some t0, implies ϕ(t) ≡ 0 on
R+.

Note that

Q[a0, a1] ⊆ Q[b0, b1]

whenever −∞ < b0 ≤ a0 ≤ a1 ≤ b1 < ∞.

We define the class Q(a0, a1) by the condition that for a function ϕ there exists
0 < ε < a1−a0

2 such that ϕ ∈ Q[a0 + ε, a1 − ε], i.e.

Q(a0, a1) =
⋃

0<ε<
a1−a0

2

Q[a0 + ε, a1 − ε].

We also permit hybrid cases Q[a0, b0), Q(a0, b0], Q(a0,−], Q[−,−) etc.
where e.g. ϕ ∈ Q[a0,−) means that ϕ(t)t−a0 is non-decreasing and ϕ(t)t−b is
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non-increasing for some b > a0, i.e.

Q[a0,−) =
⋃

b>a0

Q[a0, b].

The following theorem shows that, though functions in the classes Q[a0, a1] are
defined only by means of two monotonicity conditions, they automatically possess a
variety of useful properties, in particular, they have certain smoothness properties.

Theorem 2.1 Let ϕ ∈ Q[a0, a1], −∞ < a0 ≤ a1 < +∞. Then

(a) ϕ(t) = ta0ϕ0(ta1−a0), where ϕ0 ∈ Q[0, 1];
(b) ϕ(tα) ∈ Q[a0α, α1α], α > 0,

ϕ(tα) ∈ Q[a1α, α0α], α < 0;
(c) the function ϕ is quasi-additive in the following sense:

ϕ(t1 + t2) ≤ c1[ϕ(t1) + ϕ(t2)], t1, t2 ∈ R+ if a1 ≥ 0; (2.1)

and

ϕ(t1 + t2) ≥ c0[ϕ(t1) + ϕ(t2)], t1, t2 ∈ R+ if a0 ≥ 0, (2.2)

where c1 = max{1, 2a1−1} and c0 = min{1, 2a0−1};
(d) if a0 ≥ 1, then the function ϕ is quasi-convex in the following sense:

ϕ(λt + (1 − λ)s) ≤ 2a1−1 [λϕ(t) + (1 − λ)ϕ(s)] , (2.3)

s, t ∈ R+ and λ ∈ (0, 1),
if 0 ≤ a0 ≤ a1 ≤ 1, then ϕ is quasi-concave in the following sense:

ϕ(λt + (1 − λ)s) ≥ 2a0−1 [λϕ(t) + (1 − λ)ϕ(s)] , (2.4)

s, t ∈ R+ and λ ∈ (0, 1).
(e) ϕ is Lipschtzian on any subinterval [δ, N ] of R+ :

|ϕ(t) − ϕ(s)| ≤ C |t − s|, t, s ∈ [δ, N ], (2.5)

where C = C(δ, N ), 0 < δ < N < ∞;
(f) if a0 > 0, then

|ϕ(t) − ϕ(s)| ≤ C |t − s|a0 , (2.6)

for all t, s ∈ [0, N ], 0 < N < ∞ and C = C(ϕ).

(g) if ϕ(t) 	= 0, then the inverse ϕ−1(t) exists and ϕ−1(t) ∈ [a−1
1 , a−1

0 ], whenever
a0 > 0.
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Proof The proof of the properties (a) and (b) are straightforward.
To prove the property (c), we use the elementary inequality (t1 + t2)a1 ≤ c1(t

a1
1 +

ta12 ) and get

ϕ(t1 + t2) ≤ c1

[
ϕ(t1 + t2)

(t1 + t2)a1
ta11 + ϕ(t1 + t2)

(t1 + t2)a1
ta12

]
≤ c1 [ϕ(t1) + ϕ(t2)] ,

so (2.1) is proved. Similarly, the inequality (2.2), can be proved with the use of the
inequality (t1 + t2)a0 ≥ c0(t

a0
1 + ta02 ).

To prove the property (d) we use the property (c) and obtain

ϕ(λt + (1 − λ)s) ≤ 2a1−1 [ϕ(λt) + ϕ((1 − λ)s)] .

Since ϕ(t)
ta0 is non-decreasing, we get ϕ(λt) ≤ λa0ϕ(t) ≤ λϕ(t) and ϕ((1 − λ)t) ≤

(1 − λ)a0ϕ(s) ≤ (1 − λ)ϕ(s), which proves (2.3). The inequlity (2.4) can be proved
in a similar way.

To prove the properties (e) and ( f ) we use the following estimates:

(ta1 − sa1)
ϕ(s)

sa1
≤ ϕ(t) − ϕ(s) ≤ (ta0 − sa0)

ϕ(s)

sa0
, 0 < t < s, (2.7)

and

(ta0 − sa0)
ϕ(s)

sa0
≤ ϕ(t) − ϕ(s) ≤ (ta1 − sa1)

ϕ(s)

sa1
, 0 < s < t . (2.8)

To prove (2.7) by the definition of the class Q[a0, a1], we have ϕ(t) ≤ ta0
sa0 ϕ(s) and

ϕ(t) ≥ ta1
sa1 ϕ(s). Hence

ϕ(t) − ϕ(s) ≤ (ta0 − sa0)
ϕ(s)

sa0
and ϕ(t) − ϕ(s) ≥ (ta1 − sa1)

ϕ(s)

sa1
,

from which (2.7) follows. Similarly, (2.8) can be proved.
In particular, for a0 = 0 and a1 = 1 from (2.7) and (2.8) we have

|ϕ(t) − ϕ(s)| ≤ |t − s|ϕ(s)

s
.

Hence, (2.5) follows for the case a0 = 0 and a1 = 1.The general case for (2.5) follows
from the formula ϕ(t) = ta0ϕ0(ta1−a0), where ϕ0 ∈ Q[0, 1].

Let now a0 > 0. To prove (2.6), suppose for definiteness that t ≤ s. From the
estimate (2.7) we get

|ϕ(t) − ϕ(s)| ≤ sa1 − ta1

sa1
ϕ(s), t, s ∈ R+.
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We have sa1−ta1
sa1 ≤ C (s−t)a1

sa1 = c(1 − t
s )

a1 ≤ c(1 − t
s )

a0 . Hence

|ϕ(t) − ϕ(s)| ≤ |t − s|a0 ϕ(s)

sa0
≤ c(s − t)a0

for all s, t ∈ [0, N ], with c = c(N ) in general.
For the property (g) it is easy to derive from the property (a) that ϕ is strictly

increasing and the range of ϕ over R+ is R+. From the property (e) we also see that
ϕ is continuous. Consequently, this implies the existence of the inverse function. The
proof of the rest in the property (g) is straightforward. 
�
Remark 2.2 The properties (a) − (g) of Theorem 2.1 hold also for functions in the
classes Q(a0, a1) or any of the hybrid cases under appropriate reformulations of these
properties.

Example 2.3 Let K = K (t) be the Peetre K-functional (for any quasi-Banach couple
(A0, A1). Then, the function ta0K (ta1−a0) ∈ Q[a0, a1], a0, a1 ∈ R, a0 ≤ a1. More-
over, in view of Theorem 2.1 this function has a number of properties which are not
explicitly pointed out in literature, e.g. it is quasi-additive and Lipschitzian on any
subinterval [δ, N ] on R+ etc.

In view of Remark 2.2, by means of the properties (a) and (b) of Theorem 2.1
the following information about the involution function ϕ∗(t) = tϕ

( 1
t

)
, important in

interpolation theory, is derived.

Example 2.4 ϕ ∈ Q(0, 1) if and only if ϕ∗ ∈ Q(0, 1).

For our discussions about indices and interpolation spaces in our next sections it is
important to extend the definition of quasi-monotone functions. This extension uses
the notion of almost monotonicity which traces back to S. Bernstein (see [4] and c.f.
also [5]).

We say that a non-negative function ω on R+ = (0,∞) is almost increasing, if
ω(t) ≤ c0ω(s), t < s and almost decreasing, ifω(s) ≤ c1ω(t), t < s, for some a ∈ R

and c0, c1 ≥ 1.
We say that a non-negative function on R+ is almost quasi-monotone if ϕ(x)x−a

is almost increasing or almost decreasing for some a ∈ R.

Next, we say that the non-negative functions ϕ(t) and ψ(t) on R+ are equivalent
(written ϕ(t) ≈ ψ(t)) if there are positive constants c0 ≤ 1 and c1 ≥ 1 such that
c0ψ(t) ≤ ϕ(t) ≤ c1ψ(t) for all t ∈ R+.

In the lemma below we use the following non-decreasing majorant

ϕ∗(t) = sup
0<s≤t

ϕ(s)

and the non-increasing minorant

ϕ∗(t) = inf
0<s≤t

ϕ(s)

of a non-negative function ϕ.
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Lemma 2.5 For each almost increasing or almost decreasing function ϕ(t) there exist
non-decreasing and non-increasing functions ϕ0(t) and ϕ1(t), respectively, such that
ϕ(t) ≈ ϕ0(t) ≈ ϕ1(t), and one may take ϕ0 = ϕ∗(t) and ϕ1 = ϕ∗(t).

Proof It is easy to see that

ϕ(t) ≤ ϕ∗(t) ≤ cϕ(t)

when ϕ is almost increasing and

1

c
ϕ(t) ≤ ϕ∗(t) ≤ ϕ(t)

when ϕ is almost decreasing, where c > 1. This completes the proof. 
�
Next we extend the definition of the class Q[a0, a1] to the more general class

Q∗[a0, a1] by just replacing the conditions that the functions ϕ(t)t−a0 and ϕ(t)t−a1

are non-decreasing and non-increasing by that they are almost non-decreasing and
almost non-increasing, respectively.

Similar generalizations can be done to define the related classes Q∗(a0, a1),
Q∗(a0, a1], Q∗(−, a1) etc.

Example 2.6 Let α ∈ R, β ∈ R+. Denote l̃n e
t =

{
ln e

t , 0 < t ≤ 1,

1, t > 1.

The function ω(t) = tα l̃n e
t belongs to Q∗[a0, a1] whenever a0 < α and a1 ≥ α,

but it does not belong to any class Q[a0, a1] with such values of a0 and a1.

Next we state the following result we need later on.

Proposition 2.7 Let ψ ∈ Q∗[a0, a1]. Then there exists a constant c = c(ψ) > 0 such
that

1

c
min(sa0 , sa1)ψ(t) ≤ ψ(st) ≤ cmax(sa0 , sa1)ψ(t) for s > 0 and t > 0 (2.9)

Proof The condition ψ(t) ∈ Q∗[a0, a1] implies that

ψ(st)(st)−a0 ≤ cψ(t)t−a0 for 0 < s ≤ 1 (2.10)

cψ(st)(st)−a0 ≥ ψ(t)t−a0 for s ≥ 1 (2.11)

ψ(st)(st)−a1 ≤ cψ(t)t−a1 for s ≥ 1 (2.12)

cψ(st)(st)−a1 ≥ ψ(t)t−a1 for 0 < s ≤ 1 (2.13)

The right hand side inequality in (2.9) follows by just combining (2.10) with (2.12)
and the left hand side inequality in (2.9) is a similar consequence of (2.11) and (2.13),
which completes the proof. 
�

Our final result in this section reads:
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Theorem 2.8 For every function ω ∈ Q∗[a0, a1] there exist functions ϕ0(t) ≈
ω(t) and ϕ1(t) ≈ ω(t), such that ϕ0(t)t−a0 is non-decreasing and ϕ1(t)t−a1 is
non-increasing. One can write explicit expressions for the functions ϕ0 and ϕ1 :

ϕ0(t) = ta0
(

ω(t)

ta0

)∗
= ta0 sup

0<s<t

ω(s)

sa0
(2.14)

and

ϕ1(t) = ta1
(

ω(t)

ta1

)

∗
= ta1 inf

0<s<t

ω(s)

sa1
. (2.15)

Proof By Lemma 2.5, there exists a non-decreasing function ψ0(t) such that
ω(t)t−a0 ≈ ψ0(t) = (t−a0ω(t)

)∗
. Re-denote ψ0(t) = ϕ0(t)t−a0 , so that

ω(t) ≈ ϕ0(t) and ϕ0(t)t
−a0 is non − decreasing.

Similarly, by Lemma 2.5 there exists a non-increasing functionψ1(t) = (t−a1ω(t)
)
∗ ,

such that ψ1(t) ≈ (t−a1ω(t)
)
. Re-denote ψ1(t) = ϕ1(t)t−a1, so that

ω(t) ≈ ϕ1(t) and ϕ1(t)t
−a1 is non − increasing.

This completes the proof. 
�

3 Almost quasi-monotone functions vis-a-vis various index
conditions

Let ψ(t) be a quasi-monotone function. In the paper [16] the following “index
function” was introduced:

ᾱψ (t) := sup
s>0

ψ(st)

ψ(s)
. (3.1)

Moreover, the important classP+− was defined as consisting of all functions ψ(t) in
Q[0, 1] such that

ᾱψ (t) = o(max(1, t)) as t → 0+ or t → ∞. (3.2)

In this paper we complement the definition (3.1) by introducing the following
related index function

β̄ψ (t) := inf
s>0

ψ(st)

ψ(s)
. (3.3)

The reason for this is that then we have the following useful result.
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Theorem 3.1 Let ψ(t) be a quasi-monotone function. If ψ ∈ Q[a0, a1], then

min(ta0 , ta1) ≤ β̄ψ (t) ≤ ᾱψ (t) ≤ max(ta0 , ta1), t > 0. (3.4)

where ᾱψ (t) and β̄ψ (t) are defined by (3.1) and (3.3), respectively.

Proof The condition ψ ∈ Q[a0, a1] means, in particular, that

ψ(st)

ψ(s)
≤ ta0 for 0 < t ≤ 1, (3.5)

ψ(st)

ψ(s)
≥ ta0 for t ≥ 1, (3.6)

ψ(st)

ψ(s)
≤ ta1 for t ≥ 1 (3.7)

and

ψ(st)

ψ(s)
≥ ta1 for 0 < t ≤ 1. (3.8)

By combining (3.5) with (3.7), we obtain the right hand side inequality in (3.4). The
left hand side inequality in (3.4) follows similarly from (3.6) and (3.8). The proof is
complete. 
�
Corollary 3.2 If ψ(t) ∈ Q(0, 1), then ψ(t) ∈ P+−.

Proof Let ψ(t) ∈ Q(0, 1). Apply the right hand side inequality in (3.4), we get
ᾱψ (t) ≤ max(tε, t−1+ε) for some ε > 0, so that (3.2) is satisfied. 
�
Example 3.3 Let K = K (t) be the Peetre K-functional (for any quasi-Banach couple).
Since K (t) ∈ Q[0, 1], we have that, for all t > 0,

min(1, t) ≤ β̄K (t) ≤ ᾱK (t) ≤ max(1, t).

For the case when the quasi-monotone functionψ(t) is differentiable, the following
indices were first introduced in [18] (see also [15]):

βψ = inf
t>0

tψ ′(t)
ψ(t)

, αψ = sup
t>0

tψ ′(t)
ψ(t)

.

Note that quasi-monotone functions are differentiable almost everywhere in view of
the property (e) of Theorem 2.1. Indices of such a type but in the form

lim inf
t→∞

tψ ′(t)
ψ(t)

and lim sup
t→∞

tψ ′(t)
ψ(t)

were earlier introduced in [38] in the study of interpolation in Orlicz spaces.
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Remark 3.4 The indices βψ and αψ were used in [15] to define the class Bψ (also
related to real interpolation) defined as all continuously differentiable functions ψ =
ψ(t) such that 0 < βψ ≤ αψ < 1.

Theorem 3.5 Let ψ(t) be a continuously differentiable function. Then the following
conditions are equivalent:

(a) ψ(t) ∈ Q[a0, a1].
(b) a0 ≤ βψ ≤ αψ ≤ a1.

Proof Assume that (a) holds. Let f (t) := ψ(t)t−a0 be non-decreasing. Then we have
that, for all t > 0,

f ′(t) = ψ(t)(−a0)t
−a0−1 + ψ ′(t)t−a0

= t−a0−1ψ(t)

(
tψ ′(t)
ψ(t)

− a0

)
≥ 0 for all t > 0,

which implies that βψ ≥ a0. Similarly, we find that if f (t) := ψ(t)t−a1 is non-
increasing,

f ′(t) = t−a1−1ψ(t)

(
tψ ′(t)
ψ(t)

− a1

)
≤ 0 for all t > 0,

so that αψ ≤ a1. Hence we have proved that (a) ⇒ (b).
Assume now that (b) holds i.e. that βψ ≥ a0 and αψ ≤ a1. Then, for all t , with

f (t) = ψ(t)t−a0 we find that

f ′(t) = t−a0−1ψ(t)

(
tψ ′(t)
ψ(t)

− a0

)
≥ t−a0−1ψ(t)

(
βψ − a0

) ≥ 0 for all t > 0,

i.e. ψ(t)t−a0 is non-decreasing. Similarly with f (t) = ψ(t)t−a1 we have that

f ′(t) = t−a1−1ψ(t)

(
tψ ′(t)
ψ(t)

− a1

)
≤ t−a1−1ψ(t)

(
βψ − a1

) ≤ 0 for all t > 0,

i.e. ψ(t)t−a1 is non-increasing. Hence also the implication (b) ⇒ (a) is proved so the
proof is complete. 
�

From Theorem 3.5 the following example can be derived.

Example 3.6 Let ψ(t) be continuously differentiable. Then ψ ∈ Bψ if and only if
ψ ∈ Q(0, 1).

Example 3.7 Let K = K (t) be the Peetre K-functional (for any quasi-Banach couple).
Since K (t) ∈ Q[0, 1] we have that

0 ≤ βK ≤ αK ≤ 1.
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Next we introduce the indices m(ψ) and M(ψ). We shall consider functions ψ

positive onR+. More precisely, since we do not suppose here that the functions ψ are
continuous, we assume that

0 < inf
δ<t<N

ψ(t) ≤ sup
δ<t<N

ψ(t) < ∞ (3.9)

for all 0 < δ < N < ∞. The indices m(ψ) and M(ψ) of functions ψ, satisfying the
assumption (3.9), are defined as follows:

m(ψ) := lim
t→0

ln

(
lim sup
s→0

ψ(st)
ψ(s)

)

ln t
= sup

0<t<1

ln

(
lim sup
s→0

ψ(st)
ψ(s)

)

ln t
(3.10)

and

M(ψ) := lim
t→∞

ln

(
lim sup
s→0

ψ(st)
ψ(s)

)

ln t
= inf

t>1

ln

(
lim sup
s→0

ψ(st)
ψ(s)

)

ln t
. (3.11)

The coincidence of the two expressions in (3.10) as well as in (3.11) follows from
the fact that the function�(t) = lim sups→0

ψ(st)
ψ(s) or�(t) = lim sups→∞

ψ(st)
ψ(s) is sub-

multiplicative, i.e. �(t1, t2) ≤ �(t1)�(t2), and it is known that sup0<t<1
ln�(t)
ln t =

limt→0
ln�(t)
ln t and inf t>1

ln�(t)
ln t = limt→∞ ln�(t)

ln t for sub-multiplicative functions,
see [23] or [20].

These indices were defined in [23] in the study of Young functions defining Orlicz
spaces. They were independently defined in [33] in a more general setting of weight
functions (see also [34]) and used to obtain numerical characteristics for description
of the so-called Bary-Stechkin classes, which goes back to the paper [2]. An overview
of various properties of these indices may be found in [36, Section 6]. We use this
opportunity to note a typo there: supx>1 in the formula (6.2) in [36] should be replaced
by inf x>1 .

Remark 3.8 Given a function ψ, in order to calculate its indices m(ψ) and M(ψ) it
is sufficient to know the values of ψ only near the origin, in view of the presence
lim sups→0 in (3.10) and (3.11). In other words, these indices remain unchanged if we
arbitrary change the values of ψ(t) for t > δ.

By �↑ (�↓, respectively) we denote the class of functions ψ : R+ → R+, sat-
isfying the condition (3.9) for which there exists a number ξ = ξ(ψ) such that the
function

ψ(t)

tξ
is almost increasing (almost decreasing, respectively), (3.12)
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so that

�↑⋂�↓ =
⋃

−∞<a0≤a1<∞
Q∗[a0, a1].

Evidently, if ψ ∈ �↑ (�↓, resp.), then ψ(t)
ta ∈ �↑ (�↓, resp.), a ∈ R.

In the sequel we use the abbreviations a.i. and a.d. for almost increasing and almost
decreasing, respectively.

In the following lemma we consider equivalence of functions in �↑⋂�↓ to
continuous functions.

Lemma 3.9 Let ψ(t)
tξ

be a.i. and ψ(t)
tη be a.d., −∞ < ξ < η < ∞. Then, for every

ν < ξ, the function ψν(t) := ψ(t)
tν is equivalent to a continuous function ψ̃ν with

ψ̃ν(0) = 0.

Proof We show that ψ̃ν(t) may be taken as ψ̃ν(t) =
t∫

0

ψ(s)
sν+1 ds. To this end, we obtain

ψ̃ν(t) =
t∫

0

ψ(s)

sν+1 ds =
t∫

0

ψ(s)

sξ
sξ−ν−1ds ≤ C

ψ(t)

tξ

t∫

0

sξ−ν−1ds = C

ξ − ν

ψ(t)

tν
.

On the other hand,

ψν(t) = (η − ν)
ψ(t)

tη

t∫

0

sη−ν−1ds ≤ (η − ν)C

t∫

0

ψ(s)

sν+1 ds = (η − ν)Cψ̃ν(t),

which completes the proof. 
�
In [33], it was shown that, given a function ψ, its indices mψ and Mψ are sharp

upper and lower bounds of the exponents ξ admissible for (3.12), i.e.

m(ϕ) = sup

{
ξ ∈ R : ψ(t)

tξ
is almost increasing

}

= sup
{
ξ ∈ R : ψ(st) ≤ csξψ(t), 0 < s < 1

}
(3.13)

and

M(ϕ) = inf

{
η ∈ R : ψ(t)

tη
is almost increasing

}

= inf
{
η ∈ R : ψ(st) ≤ csηψ(t), s > 1

}
, (3.14)

under some a priori assumptions on the function ψ. Under weaker assumptions
it was proved in [19, Theorem 3.6], (see also [36, Theorem 6.2]). We formulate the
corresponding result later under improved assumptions (see Corollary 3.18).
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In the following theorem we provide a simple proof for the bounds ξ ≤ m(ψ) and
η ≥ M(ψ) not touching the issue of sharpness, just to show that for this fact we need
no assumption on the function ψ.

Theorem 3.10 If ψ(t)
tξ

is a.i. for some ξ ∈ R, then ξ ≤ m(ψ).

If ψ(t)
tξ

is a.d. for some η ∈ R, then η ≤ M(ψ).

Proof We rewrite the formula (3.10), via the changes of variables t = 1
τ
and s = στ,

in the form

m(ψ) = sup
τ>1

ln

(
lim inf
σ→0

ψ(στ)
ψ(σ)

)

ln τ
,

so that

m(ψ) ≥
ln

(
lim inf
σ→0

ψ(στ)
ψ(σ)

)

ln τ

for all τ > 1. Since ψ(σ)

σ ξ is a.i., we have ψ(στ)
ψ(σ)

≥ cτ ξ . Hence,

ln

(
lim inf
σ→0

ψ(στ)
ψ(σ)

)

ln τ
≥ ξ + ln c

ln τ

and then m(ψ) ≥ ξ + ln c
ln τ

. Passing to the limit as τ → ∞, we obtain m(ψ) ≥ ξ.

The second statement of the theorem is similarly obtained from (3.11), in this case
no change of variables is needed. The proof is complete. 
�
Corollary 3.11 Every function ψ ∈ �↑⋂�↓ has finite indices m(ψ) and M(ψ).

Corollary 3.12 Let ψ ∈ Q∗[a0, a1]. Then a0 ≤ m(ψ) ≤ M(ψ) ≤ a1.

Example 3.13 Let K = K (t) denote the Peetre functional (for any quasi-Banach
couple). Then

0 ≤ m(K ) ≤ M(K ) ≤ 1.

As mentioned, in terms of the indices m(ψ) and M(ψ) in [33] and [34], there were
given numerical characteristics for the description of the Bary-Stechkin class. This
class, denoted by�,was introduced in [2] in the study of the smoothness of conjugate
functions, or in other words, boundedness of the singular operator along a unit circle.

More generally than before, now we consider functions on (0, �), 0 < � ≤ ∞. In
the case � < ∞ we interpret the condition (3.9) taking δ, N ∈ (0, �).
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We say that a function ψ belongs to the class � if

∫ s

0

ψ(t)

t
dt ≤ Cψ(s) and

∫ �

s

ψ(t)

t2
dt ≤ C

ψ(s)

s
, (3.15)

where C = C(ψ) > 0 does not depend on s. The inequalities in (3.15) are known as
Zygmund conditions.

The Bari-Stechkin class� and the corresponding Zygmund conditions were gener-
alized, in relation with various applications, in [19] and [35]. Following these papers
we define the Zygmund classes Zβ and Zγ by the conditions

∫ s

0

ψ(t)

t1+β
dt ≤ C

ψ(s)

sβ
and

∫ �

s

ψ(t)

t1+γ
dt ≤ C

ψ(s)

sγ
, (3.16)

respectively, and define

�β
γ = Z

β
⋂

Zγ ,

so that � = �0
1.

The following propositions, proved in [19, Theorems 3.1 and 3.2] (see also [34,
Theorem 7.9] for the case β = γ = 0), contain a characterization of the classes Zβ

and Zγ under some à priory assumption on the functions ψ, namely, there is assumed
that ψ ∈ W , where the class W is defined by the conditions: 1) (3.9) holds, 2) ψ is
continuous near the origin and ψ(0) = 0, 3) ψ is a.i.

Remark 3.14 Lemma 3.9 states, in other words, that if ψ ∈ Q∗[ξ, η], then for every
ν < ξ the function ψ(t)

tν is equivalent to a function in W .

The following propositions provide certain characterization of the classes Zβ in
terms of indices.

Proposition 3.15 Let ψ ∈ W and β ∈ R. The following statements are equivalent:

(1) ψ ∈ Z
β,

(2) ψ(t)
tβ+δ is a.i. for some δ > 0,

(3) m(ψ) > β.

If one of the conditions 1), 2) or 3) holds, then 2) holds with any δ ∈ (0,m(ψ) − β)

Proposition 3.16 Let ψ ∈ W and γ ∈ R. The following statements are equivalent:

(1) ψ ∈ Zγ ,

(2) ψ(t)
tγ−δ is a.d. for some δ > 0,

(3) M(ψ) < γ.

If one of the conditions 1), 2) or 3) holds, then 2) holds with any δ ∈ (0, M(ψ) − γ )
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Remark 3.17 Theorems 3.1 and 3.2 in [19] were formulated for β ≥ 0 and γ > 0
because this is the most interesting case. As for the case of β < 0 and γ ≤ 0, the
validity of these theorems in this case follows from the validity for positive values of
β and γ, since ψ ∈ W ⇒ t−βψ(t) ∈ W and ψ ∈ W ⇒ t−γ ψ(t) ∈ W when β < 0
and γ ≤ 0.

Our next result concerns the sharpness of the bounds in (3.13) and (3.14).

Theorem 3.18 The formulas (3.13) and (3.14) hold true for every function ψ ∈
�↑⋂�↓.

Moreover, if ψ ∈ �↑⋂�↓, then

ψ ∈ Z
β ⇐⇒ m(ψ) > β (3.17)

and

ψ ∈ Zγ ⇐⇒ M(ψ) < γ. (3.18)

Proof By assumption there exist numbers ξ and η such that ψ(t)
tξ

is a.i. and ψ(t)
tη is a.d.

Then ψ(t)
tξ−ε is equivalent to a function in W , see Remark 3.14. So we may consider

the function ϕ(t) := ψ(t)
tξ−ε itself as belonging to W , since the statements (1), (2) and

(3) of Proposition 3.15 are invariant with respect to replacement of the function ψ

by any equivalent one. We then apply Proposition 3.15 with β = 0 to the function ϕ

and observe that the condition 2) from Proposition 3.15 for this function means that
ϕ(t)
tδ

= ψ(t)
tξ

is a.i. under the choice δ = ε. Then, by Proposition 3.15, the function ϕ(t)
tδ

is a.i. for every δ < m(ϕ), i.e. ψ(t)
tξ+δ−ε is a.i. for ξ + δ − ε < m(ψ), which proves the

validity of the formula (3.13).
As regards the statement (3.17), to derive it from Proposition 3.15 avoiding the

assumption ψ ∈ W , we use the property ψ ∈ Z
β ⇐⇒ taψ(t) ∈ Z

β+a for any a and
note that the function taψ(t) is equivalent to a function in W for sufficiently big a,

according to the arguments used above.
In a similar way, one can justify the validity of the formula (3.14) by means of

Proposition 3.16 and obtain the equivalence (3.18). 
�

Corollary 3.19 Let ψ ∈ �↑⋂�↓. Then ψ ∈ �
β
γ ,−∞ < β < γ < ∞, if and only if

β < m(ψ) ≤ M(ψ) < γ.

Corollary 3.20 Let ψ ∈ �↑⋂�↓. Then, for every ε > 0,

c1

(
t

s

)M(ψ)+ε

≤ ψ(t)

ψ(s)
≤ c2

(
t

s

)m(ψ)−ε

, 0 < t < s < �, (3.19)

where c1 and c2 may depend on ε, but do not depend on t and s.
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Proof By Theorem 3.18, the function ψ(t)
tm(ψ)−ε is a.i. and ψ(t)

t M(ψ)+ε is a.d., which yields
(3.19). 
�

From Corollaries 3.19 and 3.20 we have the following examples.

Example 3.21 If ψ(t) ∈ Q(0, 1), then ψ(t) ∈ � and, for all ε ∈ (0, 1
2 ), there exist

positive constants C1 = C1(ψ, ε) and C2 = C2(ψ, ε) such that

C1t
1−ε ≤ ψ(t) ≤ C2t

ε, t < 1 and C1t
ε ≤ ψ(t) ≤ C2t

1−ε, t > 1. (3.20)

Example 3.22 Since the Peetre K-functional K = K (t) belongs to the class Q[0, 1]
and thus to the wider class Q∗[0, 1], it has the following property:

0 ≤ m(K ) ≤ M(K ) ≤ 1.

We hope that the studies in this section may be useful for investigation of, for
instance, optimality problems in various function spaces. For the optimality problems
in Orlicz spaces we refer to the recent paper [24].

4 Some generalizations of the real interpolation spaces via the Peetre
K-functional

Let (A0, A1) be a quasi-Banach couple and let a ∈ A0+A1.We consider the following
scale of equivalent quasi-norms on (A0, A1), namely the Peetre K-functional:

K (t) = K (t, a) = K (t, a; A0, A1) = inf
a=a0+a1

(‖a0‖A0 + t‖a1‖A1).

The classical real interpolation space (A0, A1)θ,q , 0 < θ < 1, 0 < q ≤ ∞ consists
of all a ∈ A0 + A1 such that

‖a‖θ,q;K :=
(∫ ∞

0

(
K (t, a)

tθ

)q dt

t

) 1
q

< ∞, (4.1)

with the usual supremum interpretation of the integral for q = ∞. See e.g. the book
[3] by Jaak Peetre’s students J. Bergh and J. Löfström.

There are some popular generalizations, where we mention the following ones:

[P]The real interpolation space with a parameter function, see [29]. Here the function

tθ is replaced by a “parameter function” ϕ(t) ∈ Q(0, 1) to obtain the real parameter
function spaces (A0, A1)ϕ,q with the formula (4.1) replaced by

‖a‖ϕ,q :=
(∫ ∞

0

(
K (t, a)

ϕ(t)

)q dt

t

) 1
q

< ∞. (4.2)
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We say that a Lebesgue measurable function b(t) : [1,∞) → R+ is a slowly
varying function if for any ε > 0 the function tεb(t) is equivalent to a non-decreasing
function and t−εb(t) is equivalent to a non-increasing function. Moreover, we define

γb(t) = b
(
max(t, t−1)

)
, t > 0. (4.3)

[S] The real interpolation method with a slowly varying function, see e.g. [14]. Here

the function tθ is replaced by the function tθ
γb(t)

, where γb(t) is defined by (4.3), to
define the real interpolation spaces (A0, A1)θ,q,b with the formula

‖a‖(A0,A1)θ,q,b =
(∫ ∞

0

(
t−θ γb(t)K (t, a)

)q dt

t

) 1
q

< ∞. (4.4)

Remark 4.1 In this method also the endpoint cases θ = 0 and θ = 1 are included so
it is only assumed that 0 ≤ θ ≤ 1. We are not sure who first introduced these spaces
but at least in the recent paper [17] the authors referred to the paper [14]. For the end
point cases θ = 0 and θ = 1 we especially refer to the recent paper [13].

Our aim is to compare these generalized methods. First we suggest the following
modification of the generalization [P]:

[P∗] Here the function tθ is replaced by a function ϕ̄(t)which is equivalent to a function
ϕ(t) ∈ Q(0, 1) to obtain the real parameter spaces (A0, A1)ϕ̄(t),q with (4.1) replaced
by (4.2) but now with ϕ replaced by ϕ̄.

Remark 4.2 In the paper [29] it was proved that several of the most important
results in the classical real interpolation theory can be generalized to the case with
interpolation with a parameter function, e.g. the interpolation theorem, the equiva-
lence theorem (with the corresponding real interpolation space with the J-functional
sup
(‖a0‖A0 , t‖a1‖A1

)
involved), the duality theorem, the reiteration theorem, Holm-

stedt’s formula, Wolff’s theorem, etc. From the arguments, used in [29], combined
with investigations in Sects. 2 and 3, we conclude that all this holds also in the case of
the generalized real interpolation parameter function space (A0, A1)ϕ̄,q .

Remark 4.3 For simplicity we have avoided the case q = ∞ in the descriptions.
However, in this case all the generalized real interpolation spaces [P], [S] and [P*] can
be also defined, handled and applied by just replacing the integrals with the standard
supremum interpretations of the integrals when q = ∞.

The most important fact is:

Remark 4.4 For the case 0 < θ < 1 the method [P*] is, of course, more general than
the method [S] since the function t−θ γb(t) is required to be equivalent to a function
ϕ(t) ∈ Q(−ε + θ, ε + θ), with 0 < ε < min(θ, 1 − θ).

Example 4.5 In the case [S] we must have functions equivalent to functions varying
slowly not far from tθ , 0 < θ < 1, e.g. ϕ(t) = tθ s(t) with s(t) = 1 + log t , s(t) =
(ε + log t)α

(
log(ε + log t)

)β , (α, β ∈ R) and s(t) = exp
(√

log t
)
. See [17, Example
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2.2]. Contrary in the case [P*] (and [P]) we can use functions ϕ̄ (and ϕ) which can
have much more general freedom of variation e.g. that, for some positive constants
C0 and C1 and each ε, 0 < ε < 1

2 ,

C1t
ε ≤ ϕ(t) ≤ C2t

1−ε.

This is obvious but see also our Example 3.21.

Remark 4.6 We conjecture that in many of the papers where the [S]-method have
been used for the case 0 < θ < 1 more general results could have been obtained
by instead using the [P] or [P*] method. (See e.g. [17]). One reason for this is that

the used discretization (e.g. in dyadic blocks
∑2k+1

2k ) works perfectly since both the
K-functional and the weights are quasi-monotone functions with good control both
up and down. Indeed, this was one motivation to develop this type of generalization in
[29]. It is also worth to be mentioned that this author(L.E.Persson) studied and used
quasi-monotone functions already in PhD thesis [32] from 1974.

Remark 4.7 Instead of replacing the condition "ϕ ∈ Q(0, 1)" in the [P]-method by the
condition "ϕ̄ ∈ Q(0, 1)" in the [P*]-method we could have replaced by the condition
"ϕ ∈ Q∗(0, 1)" and the outcome should have been more or less equivalent.

Next we propose a further generalization of the classical real interpolation method
for the endpoint cases this is just the [S] method, see [13, 14], which contains and
unifies all methods described above (e.g. [P], [P*] and [S]). We call it the generalized
parameter function method.

[GP] Let b(t) be a slowly varying function and γb(t) defined by (4.3). Moreover, let
ϕ(t) ∈ Q∗(0, 1). We define the generalized parameter function ψ = ψθ(t), 0 ≤ θ ≤
1, as follows:

ψθ(t) =

⎧
⎪⎨

⎪⎩

ϕ(t), 0 < θ < 1,
1

γb(t)
, θ = 0,

t
γb(t)

, θ = 1.

The real interpolation space with the generalized parameter function ψθ(t) is defined
as all a ∈ A0 + A1 satisfying

‖a‖ψθ ,q :=
(∫ ∞

0

(
K (t, a)

ψθ (t)

)q dt

t

) 1
q

< ∞, 0 < q ≤ ∞, 0 ≤ θ ≤ 1,

(with the usual supremum interpretation of the integral when q = ∞).

Remark 4.8 From the discussions and motivations above it is clear that at least for
the case 0 < θ < 1 all classical real interpolation results mentioned in Remark 4.2
hold also in this more general case. If some of the classical function spaces involving
parameters are generalized by replacing the corresponding parameter with the param-
eter function we think that [GP] method may be useful. This suggestion is inspired
and supported by the recent paper [17]. See also the book [8] and Remark 5.9.
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Remark 4.9 For the endpoint cases θ = 0 and θ = 1, concerning the reiteration we
refer to the paper [13]. However, for the case 0 < θ < 1 (like in the classical case)
a powerful technique to prove reiteration theorems is to use Holmstedt-type formulas
and Hardy-type inequalities.

Next we state such a new result for the current case [GP].

Theorem 4.10 Let A = (A0, A1) be a quasi-Banach couple. Let ωθ,0 and ωθ,1, 0 <

θ < 1, be generalized parameter functions as defined in [GP] and τθ (t) = ωθ,1
ωθ,0

. If
the inverse of τθ (t) exists, then the following Holmstedt-type formula holds:

K (t, f , Aωθ,0,q0 , Aωθ,1,q1)

≈
⎛

⎜
⎝

τ−1
0 (t)∫

0

(
K (s, f , A

ωθ,0(s)

)q0
ds

s

⎞

⎟
⎠

1/q0

+ t

⎛

⎜⎜
⎝

∞∫

τ−1
0 (t)

(
K (s, f , A

ωθ,1(s)

)q1
ds

s

⎞

⎟⎟
⎠

1/q1

,

where 0 < q0, q1 < ∞.

Proof The proof consists of step-by-step following the proof of P. Nilsson [26, pp.310-
311], for the classical case ωθ,i (t) = tθi , i = 0, 1, so we omit the details. See also
[29, p.210]. 
�
Remark 4.11 According to our investigations in Sect. 3, it is possible to instead of
using parameter functions (or generalized parameter functions) in real interpolation
theory, we could have formulated the results in terms of indices. We do not go on
further in this direction but just do the following reformulation of the duality theorem
in [29, Theorem 2.4].

Proposition 4.12 Let A = (A0, A1) be a Banach couple such that�A is dense in both
A0 and A1 and let ψ satisfy the following condition 0 < m(ψ) ≤ M(ψ) < 1. Then,
for 1 ≤ q < ∞,

(A0, A1)
′
ψ,q = (A′

0), A
′
1)ψ1,q1,

where ψ1(t) = 1/ψ( 1t ) and
1
q + 1

q ′ = 1.
(As usual, (A′

i ) denotes the dual space of Ai , i = 0, 1.)

Proof Use Corollary 3.12 and follow the classical proof in [3, p.54] step-by-step. See
also [29, p.205]. 
�
Remark 4.13 Nowadays there also are known more general real interpolation spaces
defined by the Peetre K-functional. For example, we have the more general K-
interpolation space A� = (A0, A1)� consisting of those f ∈ A0 + A1 for which
the quasi-norm

‖ f ‖A�
= ‖K (t, f )‖�
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is finite, see [6]. Here � is a quasi-norm space of Lebesgue measurable functions
defined on (0,∞) with monotone quasi-norm. However, the applications of this most
general theory are not yet fully developed, so it is of interest to prove such results
separately.

Our final remark is related to Theorem 4.10.

Remark 4.14 In the classical situation Holmstedt’s formula can be used to prove the
reiteration theorem. This is true also in the first parameter method [P] (see [29], pp.
208-212) and, thus, as motivated in this paper, for our more general real interpolation
method [GP] for the case 0 < θ < 1. Recently in [1] a Holmstedt-type formula
was proved also for the general case described in Remark 4.13. However, in this case
it is less obvious how this Holmstedt-type formula implies come corresponding re-
iteration theorem in this generality. It is also worth to mention that the proof in [1]
is surprisingly simple and that a crucial ingredient is that (in our terminology) the
K-functional K (t, f ) ∈ Q[0, 1] (see (1.4) and (1.5) ).

5 Final considerations

5.1 On the relations to wavelets

In this subsection we shortly describe such relations both from an engineering and a
mathematical point of view. Concerning the first aspect we refer to the PhD thesis [9],
which was the starting point and motivation for this paper. In both aspects the standard
Besov spaces Bs

pq , 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R are central. There are some
different, but of course equivalent, definitions of these spaces, see e.g. the books [3,
27, 40] and the paper [39].

First we give a short description from [10]. The wavelet expansion of f (x) is

f (x) =
∑

k∈Z
α j0kφ j0k(x) +

∞∑

j= j0

∑

k∈Z
β jkψ jk(x),

where j0 ∈ Z, φ j0k and ψ jk, j = j0, j0 + 1, . . . form an orthonormal basis of L2(R).
Convergence of the wavelet series is described using the quasi-norm topology of the
Besov spaces Bs

pq , 0 < p ≤ ∞, 0 < q ≤ ∞. All algebraic polynomials P with
deg P ≤ [r ] and φ ∈ Br∞∞ are contained in the linear span of φ(. − k), k ∈ Z, for
r > 0. Moreover, φ j0k, ψ jk form a Riesz basis for all Bs

pq , 0 < p ≤ ∞, 0 < q ≤ ∞,

max
(
0, 1

p−1

)
< s < r . See e.g. [37].

According to [10], for penalized wavelet estimation, let A1 = Bs
pq , A0 = Bσ

πu , for

a fixed value of t , then the estimated function f̃ (x) is expected to be in Bs
pq , and the

loss functional is the quasi-norm in Bσ
πu . For the Hilbert case π = u = p = q = 2,

σ = 0, the estimator
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f̃ (x) =
∑

k∈Z
α̃ j0kφ j0k(x) +

j1∑

j= j0

∑

k∈Z
β̃ jkψ jk(x)

is linear in the data for any fixed t in the K-functional. As we have noted before this
is just an equivalent norm on the sum space A0 + A1.

Furthermore, according to [10, Lemma 1], for fixed s > 0 and t > 0, the quality of
fit can be measured by the K-functional K2(t, f̂ , B0

2,2, B
s
2,2). Then the K-functional

is attained with coefficients α̃ j0k = α̂ j0k , β̃ = β̂ jk

1+t222 js
, j = j0, . . . , j1, where α̂ j0k

and β̂ jk are empirical wavelet coefficients, and in this case the resulting estimator is
level-dependent and of non-threshold shrinkage type. This fact is of great interest for
some engineering applications (see [9]), but also for more theoretical developments
e.g. those presented in this paper.

The more theoretical interest is when we try to overcome exact descriptions of the
real interpolation spaces

A =
(
Bs0
p0,q0 , B

s1
p1,q1

)

θ,q

for all involved parameters. In some cases we fall inside the Besov scale of spaces e.g.
in the so-called diagonal case (s∗ = (1− θ)s0 + s1, 1

p∗ = 1−θ
p0

+ θ
p1
, 1
q∗ = 1−θ

q0
+ θ

q1
)

we have that

A = Bs∗
p∗q∗ .

But in some other cases this is a more difficult problem and as far as we know not all
cases are fully solved.

It seems that this problem was first observed by J.Peetre in his monograph [27].
After that several developments were given, for instance, in [11, 12], see also the books
[39, 40]. As a recent result, we mention that in the paper [22] there was proved an

exact description of the spaces
(
Bs
p0,q , B

s
p1,q

)

θ,r
by using so-called Meyer wavelets.

Moreover, for the case r = q this description falls inside the scale of Besov-Lorentz
spaces. This is a typical result since many such new results are using the fact that one
way to describe Besov type spaces is via suitable wavelet theory.

Hence we can claim that the relation between wavelets, Besov spaces and the K-
functional / real interpolation is important both from theoretical and engineering points
of view.

5.2 Concluding remarks and results

In all of this subsection we assume that as before K = K (t) = K (t, a; A0, A1)

denotes the Peetre K-functional for any quasi-Banach couple (A0, A1).

Remark 5.1 The fact that K (t) is concave, i.e.−K (t) is convex implies automatically a
lot of interesting properties and applications. See e.g. the book [25] and the references
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therein. In particular, it is known that the concept of convexity implies most of the
classical inequalities see e.g. [30] and [21]. Just as one simple example, we think has
not been pointed out in the interpolation literature before, is the following consequence
of the reversed Hardy-Knopp inequality:

Example 5.2 Let f (t) be a measurable function on R+. Then, by Jensen’s reversed
inequality we have that

K

(
1

x

∫ x

0
f (t)dt

)
≥ 1

x

∫ x

0
K
(
f (t)

)
dt

so that, by Fubini’s theorem,

∫ ∞

0

1

xθ
K

(
1

x

∫ x

0
f (t)dt

)
dx

x
≥
∫ ∞

0

1

x2+θ

∫ x

0
K ( f (t))dtdx

=
∫ ∞

0
K ( f (t))

∫ ∞

t

1

x2+θ
dxdt

= 1

1 + θ

∫ ∞

0

(K f (t))

tθ
dt

t
,

i.e. that

(1 + θ)

∥∥
∥∥
1

x

∫ x

0
f (t)dt

∥∥
∥∥

θ,1
≥ ‖ f (x)‖θ,1 .

Remark 5.3 Note that the arithmetic mean operator H : H f (t) := 1
t

∫ t
0 f (x)dx is the

so-called Hardy operator which is fundamental in the theory of Hardy-type inequali-
ties, see the book [21] and [31] for some results related to this paper. Hence, Example
5.2 shows a not so pronounced relation between Hardy operators and K-functional /
Interpolation theory.

Remark 5.4 In Sect. 3 of this paper we have pointed out several both old and new
conditions concerning the quasi-monotone class Q[a0, a1] and index conditions. Since
K (t) ∈ Q[0, 1], many of these conditions is inherited by K (t). Next, we sum up some
of these conditions which has not been explicitly pointed out in the interpolation
literature before.

Example 5.5 Letψ(t) be a quasi-monotone function. Let β̄ψ (t) and ᾱψ (t) be the index
functions defined in Sect. 3. Moreover, let βψ , αψ , m(ψ), M(ψ), α∗(ψ) and β∗(ψ)

be the indices defined in the same Section. Then, in particular,

min(1, t) ≤ β̄K (t) ≤ ᾱK (t) ≤ max(1, t),

0 ≤ βK ≤ αK ≤ 1,

0 ≤ mK ≤ MK ≤ 1,

0 ≤ α∗(K ) ≤ β∗(K ) ≤ 1.
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Remark 5.6 Another consequence of our investigations in Sect. 3 is the close con-
nection between the parameter classes Q(0, 1) and various index conditions. For
example in the generalization [P] everything holds if the condition “ϕ(t) ∈ Q(0, 1)”
is replaced by the index condition “0 < βψ ≤ αψ < 1”. See also Remark 4.11 and
also Proposition 4.12.

Finally, we sum up and complement the close relations between the parameter
functions classes Q(0, 1), P+− and Bψ , all related to interpolation theory defined in
Sect. 3.

Proposition 5.7 Let ψ(t) be a continuously differentiable quasi-monotone function.
Then

(a) Bψ ⊂ Q(0, 1) ⊂ P+−

(b) If ϕ(t) ∈ P+−, then there exists a function ψ(t) ∈ Bψ such that

ϕ(t) ≈ ψ(t)

Proof The inclusions in (a) follows by just combining Corollary 3.2, Remark 3.4 and
Theorem 3.5. The proof of (b) is implicitly done in [15], so we owe this argument to J.
Gustavsson, see also [29, p.208]. The key is that the equivalent function ψ is defined
by the formula

ψ(s) =
∫ ∞

0
min

(
1,

s

t

)
ϕ(t)

dt

t
.

Indeed by making some calculations (see [15, p.293]) we find that ψ(t) ∈ Bψ . 
�
Remark 5.8 In particular, Proposition 5.7 gives new possibilities to replace the condi-
tion ϕ(t) ∈ Q(0, 1) in [P] and [P*] by further index or index function conditions. See
also Remark 4.11.

Remark 5.9 In connection to interpolation with a parameter function (see [29] and
our generalization [GP] in Sect. 3 of this paper) it is natural to do a similar parameter
function generalization of the usual parameter in the definition of the involved inter-
polation spaces. For some developments in this direction in the Hardy-Sobolev case
we refer to the book [8] by F. Cobos and D. Fernandez.

Remark 5.10 Concerning the difficulties in real interpolation in off-diagonal cases
when the spaces are fairly close to each other we refer to the paper [28] by L.E.
Persson.

Remark 5.11 As described in this paper and all books we refer to, in the standard real
interpolation theory we interpolate between two Banach spaces A0 and A1. However,
there also are less known studies of real interpolation theory concerning real interpola-
tion between finite or infinite many Banach spaces, even so-called families of Banach
spaces. For such studies we refer to the paper [7].
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