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Abstract 

Regime shifts have been reported as ubiquitous features across the world’s oceans. Many regime shift detection methods are available, 
but their performance is rarely evaluated, and the supporting evidence for regime shifts may be thin because of the nature of marine 
ecological time series that are often short, autocorrelated, and uncertain. In the Norwegian Sea, a regime shift has been reported to have 
occurred in the mid-20 0 0s, with simultaneous changes in oceanography, plankton, and fish. Here, we evaluate the evidence for this 
regime shift using four commonly used regime shift detection methods (Strucchange, STARS, EnvCpt, and Chronological Clustering) on 

32 annual time series that describe the main components of the Norwegian Sea ecosystem, from h ydrograph y and primary production 

up to fish population metrics. We quantify the performance of each method by measuring its false-positive rate, i.e. the proportion 

of times the method detects a regime shift that was not present in simulated control time series. Our results show that all methods 
have high to very high false-positive rates. This challenges the evidence for a regime shift in the Norwegian Sea and questions earlier 
reviews of regime shifts across the world’s oceans. 

Keywords: changepoint; surrogate time series; Norwegian Sea; false-positive rates; STARS; EnvCpt; Strucchange; Chronological Clustering 
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Introduction 

Ecosystems are intricate and ever-fluctuating systems, each 

possessing a unique collection of species, habitats, and envi- 
ronmental conditions. The notion of ecosystem state is of- 
ten used to characterise an ecosystem at a given point in 

time, while the idea of ecosystem regime embeds the natu- 
ral variability of an ecosystem (Scheffer and Carpenter 2003 ,
Möllmann et al. 2015 ). Furthermore, ecosystem regimes are 
generally considered as being stationary around an average,
although they can also exhibit cyclical or chaotic patterns 
(Scheffer et al. 2009 ). Transitions between distinct regimes 
have been termed regime shifts . Regime shifts can be defined as 
sudden and abrupt transitions in community structure (Möll- 
mann et al. 2015 ) that affect multiple trophic levels (Lees et al.
2006 ) and result in a rapid reconfiguration of the ecosystem 

that persists over time (Möllmann et al. 2015 ). As such, stating 
the presence of a regime shift requires simultaneous or quasi- 
simultaneous (i.e. a time lag of a year) breakpoints in multiple 
time series of an ecosystem’s key variables, such as net pri- 
mary production and the abundance of keystone species. This 
definition is used here, though definitions vary from study to 

study (de Young et al. 2004 ). Well-documented regime shifts 
include the rapid transition from kelp-dominated to urchin- 
dominated communities in temperate marine benthic ecosys- 
tems (Steneck et al. 2002 , Konar and Estes 2003 ) and the 
shift from coral-dominated to macroalgal-dominated commu- 
nities after heatwaves in tropical marine benthic communities 
(Cheal et al. 2010 ). 

However, beyond this empirical definition and these widely 
agreed-upon examples, there is much confusion and misin- 
© The Author(s) 2024. Published by Oxford University Press on behalf of Interna
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erpretation when it comes to determining the presence of 
 regime shift. There is an ongoing debate regarding the ef-
ective identification of regime shifts from empirical time se- 
ies. Climatological and ecological time series emerge from the 
ombination of numerous small-scale and large-scale fluctu- 
tions (Di Lorenzo and Ohman 2013 ), resulting in complex
ayered patterns. These time series often display more vari-
tion at low rather than at high frequencies, a property de-
cribed as red noise. Rudnick and Davis ( 2003 ) have shown
hat regime shifts are likely to be detected in Gaussian red
oise with stationary statistics. In other words, regime shift 
etection methods may wrongly detect shifts when the tem- 
oral signal is stationary but dominated by low frequencies.
sieh et al. ( 2005 ) reflect the debate on regime shift detection
ethods by summarising that one side argues that apparent 

udden shifts in physical variables, such as the Pacific Decadal
scillation (PDO), represent normal statistical deviations or 

andom events (Rudnick and Davis 2003 ), while the other side
rgues that sudden environmental variations most likely result 
rom nonlinear phenomena and thus constitute regime shifts 
Hare and Mantua 2000 , Scheffer et al. 2001 , de Young et al.
004 ). Both sides seem to agree that true regime shifts are not
andom features of time series but rather unexpected and, to
ome degree, unpredictable nonlinear phenomena (Hsieh et al.
005 ). However, they seem to disagree on what is defined as
nexpected and nonlinear . 
Another common feature of reddened ocean, climate, and 

cological time series is autocorrelation, which refers to the 
ependence of a time series’ values on its earlier observations.
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hen autocorrelation is present, the value of the time series
t a given time is related to its previous values. Thus, auto-
orrelation violates the common assumption of independence
etween observations, altering statistical inference leading to
igher rejection rates of null hypotheses (Pyper and Peterman
998 ). This bias in inference can favour the identification of
egime shifts. Physical, biological, and ecological processes
hat lead to autocorrelation and low-frequency variations
reddened signals) render the identification of regime shifts
articularly difficult in real-world case studies, as they diverge
bservational time series from the idealised examples used
o develop and test regime shift detection methods. This also
eans that, unless these time-series properties’ are adequately

ccounted for in the regime shift detection algorithms, de-
ected shifts may be the result of misdiagnoses (Rudnick and
avis 2003 , Di Lorenzo and Ohman 2013 , Doney and Sailley
013 ). 
The difficulties in defining what constitutes a regime shift

re also reflected in the diversity of detection methods (e.g.
odionov 2005 , Andersen et al. 2009 ). Methods often rely
n somewhat unique definitions of what constitutes a change-
oint or regime shift and these definitions are rarely provided
xplicitly. This makes the comparison between different meth-
ds difficult and means that confirming the presence or ab-
ence of a regime shift in an ecological system depends, to
 large extent, on the methodological choices and associated
nderlying assumptions. Detection methods can be broadly
eparated into two groups: those designed for univariate time
eries and those designed for multivariate time series. In this
tudy, we will refer to the former as changepoint and to the
atter as regime shift detection methods. 

In recent years, regime shifts have been reported in a wide
ange of ecosystems from most regions of the world’s oceans
e.g. Scheffer et al. 2001 , Biggs et al. 2012 , Möllmann et al.
015 ): in the Pacific, most notably studied in the seminal pa-
er by Hare and Mantua ( 2000 ); in the Atlantic, by Beau-
rand et al. ( 2008 ); and in the Mediterranean Sea, by Con-
ersi et al. ( 2010 ) and Damalas et al. ( 2021 ). Beaugrand et al.
 2015 ) have found evidence to suggest quasi-synchronous ma-
ine pelagic regime shifts between ocean basins in the North-
rn Hemisphere. Numerous studies have reported evidence of
egime shifts in the North Sea (Reid et al. 2001 , Beaugrand
004 , Sguotti et al. 2022 ), along the South Norwegian coast
Frigstad et al. 2013 ), and along the Greenland coast (Heide-
ørgensen et al. 2023 ). Only recently has such evidence been
eported for the Norwegian Sea (NoS) ecosystem (Vollset et al.
022 ). The NoS, stretching along the west coast of Norway,
s a highly productive area of great importance to regional
conomies. It is characterised by a relatively low species diver-
ity and simple food webs (Skjoldal et al. 2004 ). The pelagic
sh community is dominated by three species: blue whiting
 Micromesistius poutassou ), mackerel ( Scomber scombrus ),
nd herring ( Clupea harengus ), and the zooplankton commu-
ity is dominated mainly by copepods, krill, and amphipods
Planque et al. 2022 ). Atlantic salmon is also present in the
rea during its marine phase. Recently, Vollset et al. ( 2022 )
onducted an analysis of the temporal patterns of marine
rowth in Atlantic salmon originating from Norwegian rivers,
long with physical and other biological time series. Based on
hese data, they reported a regime shift that occurred in 2005,
sing a method called EnvCpt, from an R package by the same
ame. The identified shift was supported by a sudden reduc-
ion in salmon growth, concurrent with a warming event and
n apparent 50% reduction in zooplankton abundance. Be-
ause regime shift detection can be highly dependent on the
hosen methods and the intrinsic properties of ecological time
eries, it is unclear whether this reported shift reflects a gen-
ine catastrophic change in the dynamics of the NoS ecosys-
em, or whether it is part of the natural variability in climate
nd ecological components within the same regime. One way
o address this question is to assess the performance of change-
oint and regime shift detection methods applied to the NoS
ime series. 

The objective of this study is to assess the evidence of a
egime shift in the NoS. For this purpose, we evaluate the per-
ormance of several methods commonly used to detect regime
hifts and changepoints. For each method, we quantify the rate
f false detection (i.e. when a regime shift or a changepoint
s detected but is not present in the underlying dataset), also
nown as false-positive rate (FPR). A false positive is a type
 error and low FPR is a desirable feature of a detection—
r diagnosis—method. FPRs of 5% or less are commonly ac-
epted and here we consider that there is evidence for a regime
hift in the NoS if one is detected with a method that has an
PR rate below the acceptable threshold. FPR is prioritised
ver the false-negative rate (based on the number of times an
xistent changepoint is missed) due to the prevalence of lit-
rature reporting the presence of regime shifts and thus more
usceptible to false positivity. 

aterials and methods 

he data: the NoS ecosystem time series 

hirty-two time series relating to the NoS ecosystem were
nalysed (see Supplementary Information ). These series are
sed by the ICES Working Group on Integrated Assessments
f the Norwegian Sea (ICES 2023b ). The variables considered
ange from temperature and salinity measurements, primary
roduction, and zooplankton biomass through to fish popu-
ation metrics. Together, they provide a comprehensive depic-
ion of variations in the NoS’s physical and ecological charac-
eristics over time. In this study, we present six time series that
re illustrative of the diversity of the variables available. Addi-
ional series were included for the multivariate method and the
esults of the analyses on all the time series are available in the
upplementary Information . The six selected time series are
he Arctic water (AW) index, the North Atlantic Oscillation
NAO) index, temperature in the northwest of Iceland (Tem-
erature), Net primary productivity (NPP), total zooplankton
iomass, and total herring biomass. 
The AW index is a measure of the volume of water in

0 

4 km 

3 , with a salinity of < 34.9 between the depths of 150
nd 300 m in the Norwegian Basin. The index reflects the
roportion of Arctic versus Atlantic water masses, which af-
ects the abundance and distribution of boreal and Arctic
pecies (ecosystem overview, ICES 2021 ). The NAO index is
n indicator of atmospheric and climatic variability over the
orth Atlantic Ocean. There are several NAO indices avail-

ble and we refer here to the index provided by the University
f East Anglia (Jones et al. 1997 ) and spans from 1907 to
021. The NAO index is known to be connected to a range
f biological processes on land and in the ocean (Ottersen
t al. 2001 ). Sea temperature ( ◦C) is measured at the Lan-
anes sampling station (off the north-east coast of Iceland)
nd calculated as the average temperature between 80 and

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae103#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae103#supplementary-data
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120 m depth, in May or June (variable time of sampling). This 
time series started in 1953, though due to the abundance of 
absent data, here the time series was taken from 1973 on- 
wards. Net primary production, in gC m 

−2 yr 
−1 

, is calculated 

based on weekly estimates of photosynthetic rates derived 

from satellite observations (Behrenfeld and Falkowski 1997 ) 
provided by Oregon State University and started in 2003. The 
total zooplankton biomass time series in the NoS, in DWg m 

−2 

is calculated from plankton net sampling conducted during 
the International ecosystem survey in the Nordic Sea (IESNS,
Rybakov et al. 2014 ) operated annually in May to June (WGI- 
NOR, ICES 2023b ) since 1995. Total herring biomass in mil- 
lions of tonnes is taken from yearly stock assessment estimates 
(ICES 2023a , c ), which have been ongoing since 1907. 

These six time series have different lengths and properties 
and thus, represent a diversity of different cases: the AW index 

and the total herring biomass time series are strongly autocor- 
related and have very little noise. In contrast, the NAO index 

and temperature time series are much noisier and do not ap- 
pear to be strongly autocorrelated. The latter seems to exhibit 
a slight upward trend ( Fig. 1 ). The total primary production 

and total zooplankton biomass time series display interme- 
diate situations and are both relatively short compared to the 
others, with the total primary production time series spanning 
only 19 years. 

Changepoint and regime shift detection methods 

Three commonly used changepoint (Strucchange, STARS, and 

EnvCpt) and one regime shift (Chronological Clustering) de- 
tection methods were selected. The R code and the data 
used for these analyses on the NoS time series are avail- 
able on GitHub at https:// github.com/ hannoo73/ ICES _ JMS- 
RS- detection- methods . 

STARS: a sequential t -test analysis of regime shifts 
STARS is a statistical method that examines discontinuities 
in univariate time series (Rodionov 2004 ). In this approach,
a regime shift index (RSI) is computed and used to evaluate 
whether each data point belongs to a regime distinct to that 
of the previous data points. The method requires the input 
of a cut-off length of regimes, here set to 10. By calculating 
P -values for each changepoint, the algorithm identifies signifi- 
cant shifts ( P -value ≤ 0.05) that reflect meaningful transitions.
The Rshift R package is used here (Room et al. 2023 ). Despite 
criticism of its sensitivity to red noise (Rudnick and Davis 
2003 , Rodionov 2006 ), the method has been widely used 

in ecological research (Lindegren et al. 2010 , Morse 2017 ,
Tomczak et al. 2022 ) and as such selected to be evaluated 

here. 

Strucchange: structural change in linear regression models 
The Strucchange method, from the Strucchange R package 
(Zeileis et al. 2002 ), is a univariate statistical changepoint de- 
tection method. This method allows us to compare the fits 
of both a linear regression model and a piecewise linear re- 
gression model to time series, and tests each time point as 
a potential breakpoint. The best model is selected based on 

out-of-sample prediction performance using the Bayesian in- 
formation criterion (BIC). The changepoint is then associated 

with a confidence level, in the form of a P -value (Damalas et al.
2021 ); only one changepoint can be identified at a time with 

this package. A P -value of 0.05 was used to determine the sig- 
ificance of a changepoint. This method is quite often used
n ecological time series and has been suggested as a refer-
nce method in the review of approaches in identifying regime
hifts by Andersen et al. ( 2009 ). 

nvCpt: detection of structural changes in climate and 

nvironment 
he EnvCpt method ( EnvCpt R package, Killick et al. 2022 )

s based on the comparison of multiple models fitted to the
ame time series. The following eight models were fitted here
 Fig. 2 ): (i) constant mean and variance (Mean); (ii) piecewise
onstant mean and variance (Mean + changepoint); (iii) con- 
tant mean with autocorrelated errors [Mean + AR (1)]; (iv)
iecewise constant mean with autocorrelated errors [Mean + 

R (1) + changepoint]; (v) linear trend (Trend); (vi) piece-
ise linear trend (Trend + changepoint), similar to that of the

trucchange model (see above); (vii) linear trend with auto- 
orrelated errors [Trend + AR (1)]; and (viii) piecewise linear
rend with autocorrelated errors [Trend + AR (1) + change-
oint]. 
This method was originally developed for climate and en- 

ironmental time series and is now widely used in ecology.
his method was used by Vollset et al. ( 2022 ), to affirm the
resence of a regime shift in the NoS, and the methodology
sed by this paper is reproduced here. As with the Struccha-
ge method, BIC scores are generated and used to select the
est fitting model. A difference of three BIC score units be-
ween two models is considered significant here, as in Vollset
t al. ( 2022 ). 

In many cases, the difference in BIC score between the two
est fitting models was < 3 points, meaning that the BIC score
ould not separate the two models performances’, thus giv-
ng an inconclusive result. However, as the question here was
ot to determine which model best fits the data but rather
hether a changepoint model describes the data better than 

 non-changepoint model, a further investigation was done.
ifferent cases of inconclusive results were separated, those 
here the conflict arose between non-changepoint models, be- 

ween changepoint models, and between one non-changepoint 
nd one changepoint model. 

To simplify the presentation of the results, the different pos-
ibilities are grouped together into three different categories 
f results: Changepoint, the significantly best fitting model 
as one with one or more changepoints, to which were added

he inconclusive cases where a conflict occurred only between 

hangepoint models (e.g. between the piecewise linear trend 

nd the piecewise constant mean and variance models); No 

hangepoint, the significantly best fitting model was one with 

o changepoints plus the inconclusive cases where conflicts 
rose between non-changepoint models (e.g. the linear trend 

nd the constant mean and variance models); and Inconclu- 
ive, which refers to the cases where no one model best fits
he surrogate time series and the conflict was between change-
oint and non-changepoint models. An inconclusive result 
oes not mean that there was no changepoint but only that
he time series is equally well (or equally poorly) explained
y a model with a changepoint than a model without. As the
bjective here is to test this method, this uncertainty will be
onsidered here like a potential false positive. Furthermore,
n inconclusive result does not contribute to our ability to
valuate the method and high inconclusive rates could trans- 
ate as a lack of power of the method. 

https://github.com/hannoo73/ICES_JMS-RS-detection-methods
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Figure 1. Time series of the six variables used as examples throughout the manuscript. From top to bottom: the Arctic water index, the NAO index, the 
sea temperature measured at the Langanes station, the total primary production, the total zooplankton biomass, and the total herring biomass time 
series. 
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hronological Clustering: a constrained clustering method 

hronological Clustering (CC) was developed by Legendre
t al. ( 1985 ) to study ecological succession. The method is
erived from standard hierarchical cluster analysis, and is de-
igned for ordered data. By grouping data points into tempo-
ally coherent groups, it allows for the identification of tempo-
al discontinuities in multivariate time series (Legendre et al.
985 ). This method works by combining observations into
lusters based on permutation tests using predefined signifi-
ance and connectedness levels (Legendre et al. 1985 , Damalas
t al. 2021 ). 

CC is considered flexible, as it does not impose a functional
orm between state and driver variables (Perretti et al. 2017 )
ut rather identifies concurrent changes between time series,
hich matches the definition of a regime shift used here. The
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Figure 2. Schema of the eight different models fitted to the time series in the EnvCpt method. In the left column are the models without changepoints 
and in the right column are the models with changepoints. Model (1) is a constant mean and variance model, model (2) is a piecewise constant mean 
and variance model, model (3) is a constant mean with autocorrelated errors model, model (4) is a piecewise constant mean with autocorrelated errors 
model, model (5) is a linear model, model (6) is a piecewise linear model, model (7) is a linear model with autocorrelated errors, and model (8) is a 
piecewise linear model with autocorrelated errors. 
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method was not originally designed for regime shift detection 

but it is commonly used for that purpose (Weijerman et al.
2005 , Andersen et al. 2009 , Heymans and Tomczak 2016 ,
Morse 2017 , Perretti et al. 2017 ). Being a clustering technique,
the method will always identify shifts (or breaks) in the series.
Consequently, it is recommended for use in conjunction with 

other methods (Möllmann and Diekmann 2012 ) and to select 
the optimal number of significant clusters with, e.g. a broken 

stick model approach (MacArthur 1957 , Bennett 1996 ). This 
is done by comparing the variance explained by a random 

splitting of the data and the variance explained by different 
numbers of clusters found by the CC method. If the optimal 
number of clusters is higher than one, then this suggests the 
presence of a regime shift in the multivariate time series. In this 
study, we constructed 6 different types of clustering, based on 

a selection of the 32 available time series, though a maximum 

of 19 series were included in the biggest grouping as some 
time series are redundant. The groupings of time series are,
first, defined based on the type of variables included: physi- 
cal (‘Phy’), ecological (‘Bio’), or combined physical and eco- 
logical time series (‘Combi’). Second, they were based on the 
time-series length: ‘Long’ (1976–2021), ‘Med’ (1995–2021), 
or ‘Short’ (2003–2021). The time series included in each of 
the clustering types are detailed in Table 1 . Clusterings were 
performed on euclidean distance matrices using the chclust 
function from the rioja R package (Juggins 2023 ). The con- 
strained integrated sum of squares agglomeration algorithm 
(‘coniss’ method) was used. p  

O  
ethod testing: the null hypothesis and surrogate 

ime series 

hangepoint and regime shift detection methods aim to an- 
wer the question: ‘Is there one or several changepoints or
egime shifts?’ To which there is a binary response, ‘Yes’ (there
s one or several changepoints or shifts) or ‘No’ (there are
one). This response is provided with a level of confidence,
sually estimates of type I and II errors. The two types of er-
or correspond to false positives and false negatives, respec- 
ively. False negatives occur when the test fails to detect a
hangepoint or regime shift that actually exists in the data.
onversely, false positives (type I errors) occur when the test

rroneously indicates the presence of a changepoint or regime 
hift in a time series when there isn’t one. The true positive
ate refers to the probability of a test correctly detecting a
henomenon. This is also termed sensitivity and is equal to
 − false-negative rate. In contrast, the true negative rate is
he probability of a test correctly identifying the absence of a
henomenon. This is also termed specificity and it is calculated
s 1 − FPR. 

There is a bias in scientific publication towards positive 
esults that can arise from researcher psychological bias,
ncouraged by the competitive publishing environment, or by 
nappropriate use of statistical methods and interpretation of 
esults (Forstmeier et al. 2017 ). Thus, false positives are
ore likely to be reported than false negatives; as such, the

ocus here is to evaluate the specificity of the previously
resented changepoint and regime shift detection methods.
ne approach to assess the specificity of a changepoint or
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Table 1. Summary of the six grouping of variable used to test the Chronological Clustering method. 

Time series PhyLong PhyMed BioMed BioShort CombiMed CombiShort 
Start 1976 1995 1995 2003 1995 2003 
End 2021 2021 2021 2021 2021 2021 

NAO index ∗ x x x x 
Sub-polar gyre index x x x x 
Norwegian-Lofoten gyre index x x x x 
Temperature (Svinoy) x x x x 
Salinity (Svinoy) x x x x 
AW index ∗ x x x x 
Relative heat content x x x x 
Relative freshwater content x x x x 
Temperature (Langanes) ∗ x x x x 
Salinity (Langanes) x x x x 
Total zooplankton biomass ∗ x x x x 
Herring recrutement (age 2) x x x x 
Blue whiting recrutement (age 1) x x x x 
Mackerel recrutement (age 2) x x x x 
Total herring biomass ∗ x x x x 
Total blue whiting biomass x x x x 
Total mackerel biomass x x x x 
Total primary production ∗ x x 
Day of peak primary production x x 

The start and end years for the different groups are stated to indicate the variable lengths of the formed groups. The ∗ correspond to the time series presented 
in Fig. 1 and the Xs indicate the time series included in each grouping.. 
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egime shift method, is to apply them on control time series
hat exhibit properties similar to real-world time series but
re devoid of any changepoints. One such type of simulated
ime series are surrogate time series, which are simulated
ime series that have the same number of observations, same
inear trend, and same autocorrelation as the original data
ICES 2022 ). It is important to note that the conservation of
he original linear trend does not lead to the transference of
hangepoints from the original time series to the surrogates,
s only a simple non-piecewise trend is conserved no matter
he presence of a piecewise trend. In the case of a piecewise
rend in the time series, the methodology employed would
bstract only an average of these two trends. Surrogate time
eries have been used to test the null hypothesis, as in Planque
nd Buffaz ( 2008 ), and are generated with a method called
hase randomisation (Theiler et al. 1992 , Schreiber and
chmitz 2000 ). In addition to this, our approach necessitated
urther data transformation (see section below). By design,
hese surrogates do not contain changepoints and all fluc-
uations can be attributed to the underlying stochasticity,
utoregressive processes, and trend. Surrogates times are
ensitive to the length of the time series, and the use of longer
eries is preferable; however, there is no better alternative that
ould be used to this analysis. We generated 1000 surrogates,
ith the tseries R package (Trapletti et al. 2023 ), for each
bservational time series to evaluate the specificity of change-
oint and regime shift detection methods. The proportion of
urrogate time series for which a positive result of the test is
ound, corresponds to the FPR and can be used to estimate the
ethod’s specificity. A changepoint or regime shift detection
ethod with a high specificity should not detect changepoints
r regime shifts in any of the surrogate time series (FPR = 0,
pecificity = 1). A 5% FPR is used as a reference to evaluate

he acceptability of a method’s specificity. e  

t  

c  

c  
ata transformation: the omnibus normalisation 

echnique 

ormal distribution of the data is a necessary precondition
or generating surrogate time series, and for several regime
hift detection methods, but many of the observational time
eries used in this study were not normally distributed. To
esolve this issue, we used a robust normalisation technique
alled omnibus normalisation (Legendre and Legendre 2012 ).
he principle of the omnibus transformation is to tie the orig-

nal observational dataset to a normally distributed dataset of
he same size, using a ‘random’ number generator. Here, we
se a modified version of the method in which the normally
istributed dataset is formed by a regular sequence of quan-
iles in a normal distribution (see Supplementary Information
or more details). All series were transformed using omnibus
ormalisation before constructing the surrogates and the tests
ere applied on the normalised surrogates. For the application
f the different changepoint and regime shift detection meth-
ds on the original time series, normalised time series were
lso used. 

esults 

pplication of the changepoint and regime shift 
etection methods on the NoS time series 

he results of the different changepoint detection methods
 Table 2 ) show that for five out of the six series presented here,
t least one changepoint was found by one of the three univari-
te methods. Both the STARS and the Strucchange methods
id not identify changepoints for the total primary production
ime series, the shortest time series here. However, it received
n inconclusive result from the EnvCpt method, meaning that
hangepoint and non-changepoint models were found to fit
qually well. Furthermore, for the NAO, herring biomass, and
emperature time series, the STARS method found multiple
hangepoints. In contrast, the EnvCpt method found only in-
onclusive results, except for the herring biomass time series,

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae103#supplementary-data
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Table 2. Summary of the changepoint years encountered on each of the six normalised time series with S TAR S , Str ucchange, and EnvCpt detection 
methods. 

Time series STARS Strucchange EnvCpt 

AW index 2001 2002 2015 
NAO index 1962/1989/1996 – Inconclusive 
Temperature (Langanes) 1984/1988/2003 2002 Inconclusive 
Total primary production – – Inconclusive 
Zooplankton biomass 2004 2004 Inconclusive 
Herring biomass 1924/1929/1943/1951/1959/1967/1988/1997 1960 1976/2006 

‘–’ indicates that no changepoints were found. For the EnvCpt results, ‘Inconclusive’ indicates that the method cannot distinguish between a model with or 
without a changepoint. 

Figure 3. Representation of the different clusters (i.e. regimes) found by the Chronological Clustering method in the six different time-series groupings. 
The different colours indicate the different regimes. 
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where two changepoints were found and the AW index, where 
only one was found. As for the Strucchange method, where the 
number of changepoints identified in a time series is limited to 

one, changepoints were identified in four out of the six series,
the timings of which are similar to those of the STARS method.
Overall, changepoints were most frequently found in the early 
2000s, though the exact timing differs, which would indicate a 
possible regime shift present in the physical time series and felt 
across ecological compartments; however, the results from the 
subsequent specificity testing will give indications about the 
validity of these results. The results of the testing of all 32 NoS 
time series can be found in the Supplementary Information 

(Supplementary Tables S1, S3, and S6) . 
For the multivariate CC approach ( Fig. 3 ), at least 2 signif- 

icantly different clusters and up to 10 different clusters were 
found in the 6 different groupings, which suggests the presence 
of at least 1 regime shift in all groupings. Within the PhyLong,
CombiMed, and PhyMed groupings, a concomitant shift was 
found in 2003, which was not detected with BioMed group- 
ing. Within the BioMed and CombiMed groupings, a con- 
comitant shift in 2014 was detected, which does not appear in 

the PhyLong and PhyMed groupings. For the shorter group- 
ings, BioShort and CombiShort, which span only 19 years, 10 

clusters were found, most of which contain only 1 year, ren- 
dering the results uninterpretable. Here, the optimal number 
of clusters found seems to increase with decreasing time-series 

lengths. 

T  

e  
esting changepoint and regime shift detection 

ethods with surrogate time series 

TARS 
ith the STARS method, changepoints were identified at a

ate exceeding the acceptable threshold of 5% of false posi-
ives within the surrogates simulated for all the 32 NoS time
eries tested ( Supplementary Table S2 ). Among the six exam-
le series ( Fig. 4 ), this rate exceeded 70% in most cases, with
he exception of primary production, in which 23% of the
urrogates presented a changepoint. The STARS method also 

ound, in some cases, a large number of changepoints by sur-
ogate time series. This is the case for the surrogate time series
f total herring biomass where up to 13 changepoints were
ound ( Supplementary Table S2 ). 

trucchange 
ith the Strucchange method, changepoints were also iden- 

ified at a rate exceeding the acceptable threshold of 5% of
alse positives within the surrogates simulated for all the 32
oS time series tested ( Supplementary Table S4 ). Among the

ix example time series ( Fig. 5 ), the lowest rate of false posi-
ives was found for the shortest time series (primary produc-
ion, 35% of FPR) and the highest for the longest series (total
erring biomass, 99% of FPR). 

nvCpt 
he results for EnvCpt are classified here, into the three cat-
gories ( Fig. 6 ): Changepoint, the cases where the signifi-

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae103#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae103#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae103#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae103#supplementary-data
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Figure 4. The STARS method’s specificity: percentage of surrogates, for each of the six surrogate time-series sets, in which at least one changepoint is 
detected (i.e. false positive, in dark blue, left) and percentage of surrogates in which no changepoint is detected (i.e. true negative, in light grey, right). 
The broader the blue bar, the lower the specificity. The orange dotted line depicts the 5% threshold of acceptable false positives. 
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antly best fitting model or models to the surrogate time se-
ies were those with changepoints, indicating a false posi-
ive; No changepoint, the significantly best fitting model or
odels were those with no changepoints; and Inconclusive,
here models with and without changepoint were judged to
t equally well ( �BIC < 3). Among the six example time se-
ies, two (NAO and primary production) presented a rate of
alse positives below the acceptable threshold of 5%, while the
est of the series presented rates between 5 and 25%. How-
ver, the rate of inconclusive results is notably high for NAO
nd primary production (97 and 90%, respectively). Indeed,
he inconclusive category represents the highest rate in all 32
eries, with an average of 81% and a minimum value of 55%.
he results for the other NoS time series are available in the
upplementary Information (Supplementary Tables S5-S7) . 

hronological Clustering 
ith the CC method, an optimum number of clusters is de-

ned. A number of clusters higher than one suggests the pres-
nce of at least one regime shift. As is shown in Fig. 7 , the per-
entage of cases for which the optimal number of clusters was
igher than one was between 10 and 98% of the multivari-
te surrogates time series, respectively for the CombiMed and
he CombiShort time-series groupings. Thus, for all groupings,
PRs are well above the acceptable error rate threshold of 5%,
ith only CombiMed < 20% FPR. However, it is worth noting
hat longer time-series groupings seem to fare better than the
horter time-series groupings, as is evidenced by the two Short
roupings having both > 90% FPRs, though CombiMed and
hyMed have much lower FPRs than PhyLong, despite the
act they have 21 fewer data points in their time series. 

iscussion 

n this study, we have evaluated four commonly used meth-
ds of changepoint and regime shift detection for their speci-
city. For this purpose, we have used a dataset of 32 time se-
ies describing different components of the NoS ecosystem,
hough the results of only 6 are presented here. The perfor-
ance of these methods is evaluated, simulating 1000 surro-

ate time series that serve as a null hypothesis for the absence
f a regime shift or changepoint as they share mean, variance,
nd autocorrelation with the original time series, but do not
ontain changepoints. The four changepoint/regime shift de-
ection methods, STARS, Strucchange, EnvCpt, and CC, were
pplied to the NoS time series and to all surrogate time series.
he probability of detecting a regime shift under the null hy-
othesis (type I error) is interpreted as a measure of the speci-
city of the method (1 − FPR). Our results indicate support
or a regime shift in the NoS in the early 2000s based on the
irect application of these methods on the time series, but all
our methods have FPRs far exceeding the acceptable 5% er-

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae103#supplementary-data
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Figure 5. The Strucchange method’s specificity: percentage of surrogates, for each of the six surrogate time-series sets, in which a changepoint is 
detected (i.e. false positive, in dark blue, left) and percentage of surrogates in which no changepoint is detected (i.e. true negative, in light grey, right). 
The broader the blue bar, the lower the specificity. The orange dotted line depicts the 5% threshold of acceptable false positives. 
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ror rate; for most, even accepting 20% error rates would not 
be sufficient to approve these methods. These low specifici- 
ties mean that erroneous detections of changepoints or regime 
shifts are highly likely. Indeed, in some cases, a method will 
find changepoints 100% of the time. Consequently, it is im- 
possible to draw any firm conclusions regarding the presence 
of a regime shift in the NoS. We cannot definitively confirm 

the presence of a regime shift, nor can we completely dismiss 
the possibility, based on these methods. These findings align 

with the results of the workshop on integrated trend analy- 
sis (ICES 2022 ), which reviewed several time-series analysis 
methods and found that many of these can have high FPRs. 

While none of the tested methods achieve satisfactory FPRs,
at first glance, the EnvCpt approach outperforms the others.
Across all 32 available time series, it exhibits an average FPR 

of 10.8% ( Supplementary Table S5 ), which increases slightly 
to 12.6% for the 6 time series included here. Considering false 
positives as only the cases where changepoint models outper- 
form non-changepoint models, we can say that the EnvCpt 
method is less likely to produce false positives than the other 
three methods analysed here, though on average it still pro- 
duces twice the acceptable amount of false positives. However,
far outnumbering the false positives and the true negatives,
with an average of 81% across the 32 time series available 
( Supplementary Table S5 ), the inconclusive results must nu- 
ance this conclusion. As the predominant result of applying 
he EnvCpt method to all surrogate test sets, the inconclusive
ases must be taken into account and means this method can-
ot reliably detect the presence or absence of regime shifts.
his means that this method is more likely than not to give an
ncertain and unactionable result, answering ‘I don’t know’ to 

he question ‘Is there a changepoint?’. While it is comforting
hat EnvCpt can explicitly handle uncertainty in changepoint 
etection, it does not help answer the question posed. A closer
xamination of the types of models that often enter into con-
ict (i.e. that have overlapping BIC scores) shows that AR (1)
nd changepoint models of both the mean and trend model
ypes are often indistinguishable. Incorporating autocorrela- 
ion into the fitted models is a key strength of the EnvCpt
ethod, but distinguishing between autoregressive processes 

nd actual changepoints remains challenging, an observation 

.e. in line with earlier results (Overland et al. 2006 ). 
In addition, it is plausible that the issue lies in the way the
odels are compared, specifically through the BIC scores. This 
odel selection criterion has been criticised for overpenalis- 

ng complex models compared to simpler ones and being too
ensitive to the sample size, or here the length of the time
eries, and selecting simpler models for longer time series,
hereas overly complex models may be favoured for shorter 

ime series (called overfitting) (Burnham and Anderson 2004 ).
urthermore, BIC scores only compare models among those 
ested; as such, the lowest scoring model may still inade-

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae103#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae103#supplementary-data
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Figure 6. The EnvCpt method’s specificit y: percent age of surrogates, for each of the six surrogate time-series sets, for which a changepoint model is the 
best fitting model, including cases where no one changepoint model among changepoint models could be distinguished (i.e. false positive, in dark blue, 
left) and percentage of surrogates in which no changepoint is detected (i.e. true negative, in light grey, right). The remaining surrogates are those where 
no one model could be selected and the equally best fitting models were both changepoint and non-changepoint models (i.e. inconclusive results, in 
pale blue, middle). The orange dotted line depicts the 5% threshold of acceptable false positives. 
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uately reflect the true patterns of the modelled time series but
s still nonetheless selected (Burnham and Anderson 2004 ).
owever, this approach was chosen to be comparable to that

f Vollset et al. ( 2022 ). Finally, the difficulty in distinguish-
ng between autoregressive processes and actual changepoints
ay reside with the time series themselves, which are, in the

ase of ecological time series, generally too short and too noisy
nd thus may contain too little information to be able to ro-
ustly detect changepoints. 
The performance of the remaining methods, STARS, Struc-

hange, and CC, is notably poor, as evidenced by the presence
f a 100% false-positive error rate for certain combinations of
ethods and sets of surrogate time series. The STARS method,

n particular, exhibits the worst performance with on average
cross the 32 NoS time series, a 75% false-positive error rate.
t is worth noting that the STARS method is widely employed
n ecological research (Daskalov et al. 2007 , Lindegren et al.
010 , Seddon et al. 2014 , Heide-Jørgensen et al. 2023 ), and it
eems quite likely that these high FPRs are present in most of
hese cases. This is also true of the Strucchange and CC meth-
ds, though only when CC is applied in regime shift research.
oisy time series such as the NAO and the temperature time

eries also seem to have high numbers of detected change-
oints, indicating that STARS has difficulties distinguishing
hangepoints from white noise. STARS is also reportedly sen-
itive to red noise and autocorrelated processes, which would
xplain the extraordinary number of changepoints found in
ime series such as the total herring biomass time series. A so-
ution has been suggested to correct for this called ‘prewhiten-
ng’ of time series, which removes red noise (low-frequency
atterns) and thus dampens autocorrelation in the time series
Rodionov 2006 ); however, this process could dramatically
odify the original time series and alter the overall question
osed as the test would no longer look at changes in the time-
eries values, but rather changes in the year-to-year variations
f the time series, i.e. the time series’ derivative. 
Recently, Stirnimann et al. ( 2019 ) tested the STARS
ethod’s performance using Autoregressive Integrated Mov-

ng Average (ARIMA) and normally distributed simulated
ime series. True positive rates were evaluated by quantifying
T ARS’ s detection of artificially included changepoints in the
imulated time series and FPRs were evaluated by quantifying
T ARS’ s detection of changepoints that were not artificially
dded to the series. However, the evaluation did not include
he type of negative controls used here and therefore did not
uantify FPRs in series containing strictly no changepoints.
hus, the results are difficult to compare to ours. They did
evertheless note a better performance of STARS in the nor-
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Figure 7. The Chronological Clustering method’s specificity: percentage of surrogates, for each of the six surrogate time-series sets, in which two or 
more optimal clusters were selected and thus containing at least one regime shift (i.e. false positive, in dark blue, left) and percentage of surrogates in 
which only one cluster was optimal (i.e. true negative, in light grey, right) and, as such, no regime shifts were found. The broader the blue bar, the lower 
the specificity. The orange dotted line depicts the 5% threshold of acceptable false positives. 
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mal compared to the ARIMA time series, despite a prewhiten- 
ing of the ARIMA time series, confirming that autocorrelation 

can disrupt this method. 
While our analyses show that we can neither confirm nor 

deny the presence of a regime shift in the NoS on the basis 
of commonly used regime shift detection methods, this result 
is significant for our understanding of the NoS ecosystem dy- 
namics. Furthermore, we hope to stimulate similar work to 

test the performance of other regime shift detection methods 
for other data series and other marine systems. One can rea- 
sonably expect that a substantial fraction of previously re- 
ported regime shifts, based on the method analysed here, may 
in fact be false positives, though determining the exact pro- 
portion would require dedicated analyses. 

Misleading wording in the field of regime shifts is in line 
with the propensity to overdramatise results. Articles publish- 
ing negative results or simply the absence of positive results 
are virtually nonexistent, and with the necessity to publish 

regularly in the scientific community, the use of ‘persuasive 
communication devices’ is dangerously tempting and thus in- 
escapable in scientific literature (Corneille et al. 2023 ). Regime 
shifts as a scientific area of research are unfortunately rife 
with confusion and inconsistencies of definitions and seem to 

demonstrate most of the problems presented by Corneille et al.
( 2023 ), especially the mischaracterisation of the state of the 
rt, overselling by the use of excessive titles, and overgener-
lisation. The complexity of the topic of regime shifts means
hat this may be done unconsciously. 

A major issue with issuing such statements without explic- 
tly studying and presenting associated uncertainties is that 
hey can be subsequently taken up by others, overlooking the
otential uncertainty (Hellenbrecht et al. 2023 ). 
The next steps of this investigation would be to assess ad-

itional changepoint and regime shift detection methods in 

he hopes of finding a suitably reliable method to apply to the
oS time series. While we used the NoS ecosystem time series

s examples here, the nature of these time series is not dis-
imilar to most ecological time series around the world and
hus could also potentially present equally high FPRs. A fu-
ure investigation into this assumption would be interesting.
dditionally, for this research, we were and had to be rather

pecific in methodology but there are many other approaches 
vailable that also need to be evaluated in a similar manner as
bove, before being applied. 

Here, the focus was on methods’ specificity, or FPR de-
ection. Evaluating false-negative rates, or sensitivity, would 

lso be relevant in cases when regime shift may occur but
ould remain undetected due to a low sensitivity. To accom-
lish this, a clear mathematical definition of a changepoint or
 regime shift would need to be considered, as done by Stirni-
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ann et al. ( 2019 ), who use varying magnitudes of increased
r decreased standard deviation (SD). Being able to assess
oth false-positive and false-negative rates would give a com-
rehensive picture of a method’s overall performance. How-
ver, it is likely that the two will be inversely linked, meaning
he fewer false changepoints detected, the more changepoints
issed, and vice versa. 
Determining false-negative detection rates is arguably more

mportant from a conservation and a resource management
erspective. Using a method with a high FPR and falsely find-
ng a regime shift would logically, in a managed ecosystem,
nly lead to the allocation of funds to a relatively healthy or
table ecosystem and hopefully have no negative effect so long
s the preventive measures themselves do not cause lastly dam-
ge. However, the possibility of missing a regime shift due to
 method with a low sensitivity could have devastating and ir-
eversible effects. This is perhaps a moot point though as it is
igh on impossible to accurately predict regime shifts before
hey happen. 

While we do not deny the existence of abrupt regime shifts,
ur results indicate that the methods commonly used for de-
ecting these abrupt shifts in marine ecological time series are
nreliable. This is in line with the results of Hillebrand et al.
 2020 ), who conclude that regime shifts or more precisely
hreshold transgressions are rarely detectable from empirical
cological observations. 

onclusion 

e have assessed the specificity of four commonly used
hangepoint and regime shift detection methods for marine
cosystems. Our approach is based on the quantification of
alse-positive rates (FPR, the proportion of time a shift is de-
ected when it actually does not exist) of selected time series
or the Norwegian S ecosystem. We found none of the meth-
ds to be fit for purpose. All methods displayed FPRs that are
ar beyond the usually accepted 5% rate. We advise to rigor-
usly evaluate the performance of any regime shift detection
ethod in the context of individual case studies, before draw-

ng robust conclusions. Earlier reviews of regime shifts across
orld’s oceans should also be considered carefully given that

he specificity of the methods used for these reviews has gen-
rally not been assessed. 
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