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ii. Abstract 

 

This thesis investigates the application of machine learning (ML) and traditional financial 

models in portfolio optimization, focusing on the OBX index. The research aims to determine 

whether ML algorithms can outperform traditional models in forecasting returns, estimating 

volatility, and optimizing portfolio weights. 

The study employs advanced ML techniques such as Random Forest, Support Vector 

Machines, Gradient Boosting Machines, and k-Nearest Neighbors alongside traditional 

models, including ARIMA for return prediction and various GARCH frameworks for 

volatility modeling. Performance is evaluated using risk-adjusted metrics such as the Sharpe 

Ratio, Sortino Ratio, and Fama-French-Carhart regressions to assess the alpha generated by 

each model. 

Results reveal that ML-based portfolios significantly outperform the benchmark OBX index 

in both risk and return. Notably, the Random Forest model with a nine-week rolling window 

achieved the highest annualized return of 17.83% and a cumulative total return of 97.71% 

over 200 weeks, while maintaining lower volatility than the benchmark. Traditional models 

also performed well, with the IGARCH-based portfolio showing strong results, although they 

fell short of ML-based approaches. 
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1 Introduction:  

Financial markets have long presented investors with the challenge of balancing risk and 

reward to optimize portfolio performance. This thesis explores the application of machine 

learning (ML) models alongside traditional forecasting methods to determine optimal 

portfolio weights for the OBX index, which comprises the 25 most traded stocks on the 

Norwegian stock market. Specifically, the study aims to evaluate the predictive power of ML 

algorithms such as Random Forest (RF), Support Vector Machines (SVM), K-Nearest 

Neighbors (KNN), and Gradient Boosting Machines (GBM) for both return and volatility 

forecasting. These methods will be compared to traditional models, including ARIMA for 

returns and various GARCH variants for volatility. By integrating these techniques, the study 

adopts a utility-maximizing perspective to analyse how risk reward tradeoffs can be optimized 

in a financial market. 

The concept of “reward-risk timing,” as described by Kirby and Ostdiek (2012), is the 

approach taken in this thesis. This dual focus on forecasting direction and volatility has been 

shown in prior research to generate alpha, making it a promising strategy for portfolio 

management. Pinelis and Ruppert (2022) demonstrated that combining return and volatility 

predictions using machine learning models like Random Forest resulted in better performance 

compared to traditional methods. Their findings suggest that machine learning algorithms not 

only enhance return forecasts but also improve portfolio construction by better capturing the 

complex relationships between financial variables. 

Henrique et al. (2019) provide a comprehensive literature review on machine learning 

applications in financial market prediction, highlighting the substantial body of research 

dedicated to both direction and volatility forecasting. Studies like Gu et al. (2020) have found 

that Random Forest significantly improves the Sharpe ratio when compared to traditional 

buy-and-hold strategies. Additionally, Kim (2003) demonstrated that SVM models 

outperformed traditional approaches such as Backpropagation Neural Networks (BPN) and 

Case-Based Reasoning (CBR) in financial time series prediction. Similarly, Chen et al. (2003) 

identified the strong predictive capabilities of neural networks on the Taiwanese stock market, 

emphasizing the benefits of incorporating next-day probabilities for managing portfolio risk. 
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Collectively, these studies highlight the growing consensus around the utility of machine 

learning in enhancing financial forecasts. 

To optimize portfolio weights, this thesis uses forecasted returns and volatilities generated 

from the ML algorithms and traditional models. Pinelis and Ruppert (2022) showed that 

machine learning models, especially Random Forest, outperform traditional linear models in 

return forecasting. Similarly, Kim and Han (2000) demonstrated the ability of neural 

networks to incorporate big data variables, significantly enhancing prediction accuracy. These 

findings underscore the importance of combining advanced machine learning techniques with 

traditional models to address the multifaceted challenges of financial forecasting. 

Volatility prediction plays a critical role in portfolio risk management. Bollerslev (1986) 

introduced the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, 

building on Engle's (1982) earlier work. Variations such as GJR-GARCH  and IGARCH 

(Nelson, 1990) have been developed to capture specific aspects of market volatility. This 

thesis incorporates GARCH (1,1), GJR-GARCH, and IGARCH models to forecast volatility 

and construct correlation matrices for the portfolio. These models are widely recognized for 

their ability to model and predict volatility, offering distinct advantages depending on the 

requirements of the analysis. Bollerslev et al. (2016) and Zhang et al. (2020) emphasized the 

accuracy of rolling window volatility calculations in financial forecasting. By adopting rolling 

windows of three, six, and nine weeks, this study examines how different time horizons 

influence the performance of both ML and traditional models in volatility predictions. 

The integration of machine learning into financial forecasting has shown potential for 

enhancing portfolio management strategies. Neural networks, as demonstrated by Chen et al. 

(2003), provide valuable insights for risk-averse investors, particularly when probabilities of 

negative outcomes are forecasted. Such techniques allow for more informed investment 

decisions, such as avoiding investment on days, weeks, or months with unfavorable forecasts. 

This thesis investigates whether ML algorithms can replicate or exceed these benefits when 

applied to the OBX index, using financial and macroeconomic variables to predict excess 

returns and volatility. 

The core of this thesis lies in its dual approach to return and volatility forecasting, utilizing 

both traditional and ML models. By comparing these methods across different rolling 
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windows, the study seeks to answer critical questions about the relative strengths of machine 

learning and traditional models in financial forecasting. Additionally, this research explores 

whether machine learning algorithms respond differently to varying time horizons, providing 

new insights into their application in portfolio risk management. The findings of this study 

aim to contribute to the growing body of literature on machine learning in finance, offering 

practical implications for both academic researchers and investment practitioners. 

This study explores the potential for machine learning techniques to generate alpha by 

optimizing stock portfolio weights. 

Can Machine Learning Algorithms Outperform Traditional Models in Portfolio 

Optimization? 

2 Theoretical framework:  

2.1 Theoretical Framework – Introduction 

In this section, the foundational theories and models that are used in creating optimal stock 

portfolios, using machine learning and traditional financial models are presented. Each model 

discussed here plays a role in achieving the objectives of this thesis: to determine the optimal 

weights for stocks in the OBX index and to enhance the portfolio's performance through 

prediction techniques. Theories such as the Minimum Variance Portfolio (MVP) (Markowitz, 

1952), various machine learning methods, and volatility modeling techniques using GARCH 

collectively form the basis for the research. 

The framework begins by exploring approaches to portfolio optimization. Markowitz's 

Minimum Variance Portfolio provides a framework for reducing risk in a diversified 

portfolio. The application of machine learning models such as Random Forest (Breiman, 

2001), Support Vector Machines (SVM) (Vapnik, 1995), and others in predicting financial 

metrics like direction and volatility is examined. These machine learning models enable more 

data-driven decision-making compared to traditional models. 

The use of different volatility prediction models, such as the GARCH models (Bollerslev, 

1986), is also considered, allowing for capturing and modeling changing market conditions 

with greater accuracy. By discussing each model’s strengths, weaknesses, and specific 
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applications, this section aims to build a comprehensive framework that underpins the 

portfolio construction process. 

To ensure clarity, each theoretical model and approach discussed in this section is directly 

linked to the research questions outlined in the introduction. Specifically, the Minimum 

Variance Portfolio is used to address the question of how traditional financial models can 

effectively balance risk and return in portfolio construction. The machine learning models—

including Random Forest, SVM, GBM and KNN are integrated to investigate whether these 

advanced techniques can enhance the prediction of market movements and thereby improve 

the portfolio optimization process compared to traditional models. Further, the GARCH 

models are utilized to answer questions related to capturing volatility in financial markets and 

optimizing risk-adjusted returns through more accurate volatility forecasts. The integration of 

these models aims to test whether combining traditional and machine learning approaches can 

yield superior results in managing risk and enhancing returns. By explicitly linking each 

component of the theoretical framework to specific research questions, this section provides a 

structured basis for understanding the relevance of each model in addressing the overall 

objectives of the thesis. 

The theories and models in this section are forming an approach to portfolio optimization. By 

combining insights from traditional finance, machine learning, and statistical techniques, this 

framework lays the foundation for an empirical exploration of the effectiveness of these 

models in creating optimized, risk-adjusted portfolios. 

2.2 Risk / Return  

A key component in a portfolio is the trade between risk and return. Markowitz (1952) 

explained the trade-off by introducing what is now known as modern portfolio theory (MPT) 

in his paper “portfolio selection”.  The theory is built on the assumption that the rational 

investors task is to maximize utility. This can be done by either minimizing risk for a set level 

of return or maximizing returns for a given level of risk. For a diversified portfolio the 

expected return can be explained by 
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𝐸(𝑟𝑝) =  ∑ 𝑤𝑖

𝑛

𝑖=1

𝐸(𝑟𝑖) 

Equation 1: expected return 

where 𝐸(𝑟𝑝) is the expected portfolio value, 𝑤𝑖 is the weight for the asset 𝐼 in the portfolio. 

The risk of the portfolio can be computed by 

𝜎𝑝
2 =  ∑ ∑(𝑤𝑖 ∗ 𝜎𝑖)  ∗  (𝑤𝑗 ∗ 𝜎𝑗) ∗ 𝑝𝑖,𝑗

𝑛

𝑗=1

𝑛

𝑖 = 1

 

Equation 2: portfolio risk 

 where 𝜎𝑝
2 is the portfolio risk, 𝑤𝑖, 𝑤𝑗 are the weights for assets 𝑖, 𝑗, 𝜎𝑖 , 𝜎𝑗 are the portfolio 

volatility, 𝑝𝑖,𝑗 are the correlation between the assets 𝑖, 𝑗.  

The portfolio variance, also known as risk, equation has a dependency on the variance of the 

individual components. The weights and the correlations of the two assets 𝐼, 𝑗. Since the 

portfolio has a dependency on the correlations of assets 𝐼, 𝑗 the portfolio risk can be reduced 

by including assets with a lower correlation. Markowitz (1952) argued that the rational 

investor should therefore not only be concerned with maximizing returns, but also with 

minimizing risk.  

A key component of Markowitz (1952) theory is the diversification of the portfolio. For 

instance, if the investor only invested in oil stocks, on the same market, in the same period, 

the assumption would be that the stocks probably have a higher correlation. And the portfolio 

is not actively trying to minimize the risk for every unit of return.  

In this thesis, the risk/return framework serves as a foundation for evaluating the effectiveness 

of machine learning models in improving portfolio performance.  

Following this, the application of machine learning models such as Random Forest (Breiman, 

2001), Support Vector Machines (SVM) (Vapnik, 1995), and others in predicting financial 

metrics like direction and volatility is examined. These machine learning models enable more 

dynamic and data-driven decision-making compared to traditional models. 
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2.3  GARCH Models for volatility and correlations   

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, introduced 

by Bollerslev (1986), is a key tool in financial econometrics for modelling and forecasting 

time series volatility. The GARCH model is particularly useful in capturing the time-varying 

nature of volatility, which is a common characteristic of financial returns. In this thesis, 

GARCH models are employed to estimate the volatility and correlations between assets in the 

OBX index, providing necessary insights for optimizing portfolio risk. 

The GARCH model extends the original Autoregressive Conditional Heteroskedasticity 

(ARCH) model proposed by Engle (1982), allowing for a more flexible lag structure in 

modelling volatility. The GARCH (p, q) model is defined the parameters: 𝑝, the order of the 

GARCH terms (past conditional variances), and 𝑞, the order of the ARCH terms (past squared 

observations). The GARCH (1,1) model, commonly used in practice due to its balance of 

simplicity and effectiveness, expressed as:  

𝜎𝑡
2 =  𝛼0  +  𝛼1𝜖𝑡−1

2 +  𝛽1𝜎𝑡−1
2  

Equation 3: GARCH (1,1) 

Where 𝜎𝑡
2 is the conditional variance at time 𝑡, 𝛼0 is a constant, 𝛼1 represents the impact of 

past shocks (ARCH term) and 𝛽1 represents the persistence of volatility, also called the 

GARCH term. This formulation allows the model to capture both short-term shocks and 

longer-term volatility persistence. 

In addition to the standard GARCH model, other variations such as the GJR-GARCH and 

IGARCH models are also utilized in this thesis. The GJR-GARCH model, introduced by 

Glosten, Jagannathan, and Runkle (1993), is designed to account for the asymmetric effect of 

positive and negative shocks on volatility, often referred to as the leverage effect. This is 

particularly important when modeling financial markets, where negative returns tend to have 

a larger impact on future volatility than positive returns of the same magnitude. It can be 

denoted as 

𝜎𝑡+1
2 =  𝑤 +  𝛼𝑟𝑡

2 + 𝛾𝐼(𝑟𝑡 < 0)𝑟𝑡
2 +  𝛽𝜎𝑡

2 

Equation 4: GJR-GARCH 
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 Where it is the same as the regular GARCH, but we add 𝛾𝐼(𝑟𝑡 < 0)𝑟𝑡
2 where 𝛾 is multiplied 

by the squared return 𝑟𝑡
2 when the return 𝑟𝑡 is negative, which is indicated by the indicator 

function 𝐼(𝑟𝑡 < 0). The indicator function = 1 when 𝑟𝑡 is less than 0. This term allows the 

model to capture the asymmetric impact of negative returns on future volatility, which is the 

leverage effect. 

The Integrated GARCH (IGARCH) model, is used to capture the persistence of volatility over 

time. The IGARCH model assumes that the impact of past shocks on current volatility does 

not decay completely, making it suitable for financial time series with highly persistent 

volatility patterns. The IGARCH model is denoted as  

𝜎𝑡+1
2 =  𝑤 +  𝛼𝑟𝑡

2 + (1 − 𝛼)𝜎𝑡
2 

Equation 5: IGARCH 

Where everything is the same except for the (1 − 𝛼). This coefficient is applied to the 

previous period variance, 𝜎𝑡
2. the coefficient adds up to 1, indicating that past variances are 

highly persistent and have a long-lasting impact. 

These GARCH models are estimating the correlation matrix of the assets in the OBX index, 

which in turn is used to construct the covariance matrix for portfolio optimization. By 

accurately modelling volatility and correlations, the GARCH framework provides a more 

robust basis for managing risk and achieving optimal asset allocation in the presence of time-

varying market conditions. 

2.4 Minimum Variance Portfolio: 

The MVP approach seeks to minimize risk by optimizing the weighting of assets, specifically 

by selecting assets with low or negative correlations to ensure effective diversification. This is 

important for the OBX index, where achieving optimal diversification can mitigate systematic 

risk common to this region. 

Markowitz's Minimum Variance Portfolio (MVP) provides a benchmark for reducing risk in a 

diversified portfolio. It provides a clear reference point to evaluate more complex models by 

comparing how different approaches optimize the risk-return trade-off. One of the key 



 

14 

 

reasons MVP is appropriate for this analysis is due to its simplicity and effectiveness in 

markets where data availability is limited. 

The concept of the minimum variance portfolio (MVP) is that the portfolio should consist of a 

combination of stocks that have the lowest possible volatility for a given level of return. The 

portfolio consists of three main parts, the returns, the volatility, and the covariance matrix. In 

the case of this thesis, the parts will consist of predicted values. To find the MVP I will solve 

the optimization problem where the goal is to minimize the portfolio volatility. 

Mathematically it can be illustrated as  

𝑚𝑖𝑛

𝑤
(𝑤𝑇∑𝑤) 

Equation 6: optimization problem 

which is subjected to 𝑤𝑇1 = 1 where 𝑤 is the vector of the portfolio weight for each asset. ∑ 

is the covariance matrix of the asset returns. 1 is the vector of ones. The optimization will be 

solved using quadratic programming where we 

𝑚𝑖𝑛 
1

2
𝑥𝑇𝑄𝑥 +  𝑐𝑇𝑥 

Equation 7: Quadratic programming 

which is subject to 𝐴𝑥 ≤  𝑏, 𝐸𝑥 =  𝑑 and 𝑥 ≥  0. Where 𝑄 =  2∑, 𝑐 is a zero vector. 

𝐴 𝑎𝑛𝑑 𝑏 represents the inequality constraints and 𝐸 𝑎𝑛𝑑 𝑑 represent the equality constraints 

of the weights summing to one.  

2.5 Machine learning in financial markets:  

In 1970 Maikel and FAMA developed the efficient market hypothesis (EMH). According to 

the hypothesis financial markets follow random pathways and are therefore unpredictable 

(Henrique et al, 2019). The search for models that can predict the market is still highly 

researched, and in later years machine learning has become popular in predicting these 

pathways. Machine learning is defined as a subset of artificial intelligence and can be 

described in this context as a set of tools and techniques to analyze historical data, recognize 

patterns in a “training process” and use the process to make predictions about future market 

movements (Xiao et al, 2013).  
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Predicting time series data in financial markets with non-stationarity is a complex task, 

especially with traditional predictive financial models such as moving averages, 

autoregressive models, and discriminating analyses (Zhang et al, 2017). This data is often 

characterized as noisy and non-linear (Kumar and Thenmozhi, 2014). These could be 

variables that are influenced by untraditional but significant macro factors such as the 

political climate, is there political uncertainties, which could be measured by a sentiment 

variable. The investor's psychology could also be significant hence the CNN`s fear and greed 

index which is a psychological measurement of the marked temperament. 

The use of machine learning in financial data analysis dates to the work by Hawley et al. 

(1990). Since then, there has been a significant increase in computing power, which has made 

it possible to use more complex algorithms. These algorithms often require a lot of computing 

resources and have only recently become accessible to the average investor due to 

advancements in technology. The rise in computing power has coincided with an increase in 

the amount and types of financial data available, which has helped to integrate machine 

learning more deeply into financial analysis.  

These advanced algorithms, previously only available to large financial institutions, are now 

accessible to a wider range of investors. Research in this area, such as that by Henrique et al. 

(2019), shows that machine learning can often predict financial outcomes better than 

traditional methods. This suggests a strong potential for these tools to improve investment 

strategies. As machine learning becomes more integrated into financial analysis, it is 

increasingly seen as a valuable tool for making data-driven decisions that can lead to better 

financial outcomes. 

Several different machine learning techniques are available for forecasting purposes, each 

with its unique strengths and weaknesses. These include methods such as random forest, 

support vector machines (SVM), neural networks, k-nearest neighbor (k-NN), and gradient 

boosting machines. 

Each technique operates differently. For example, random forests build multiple decision 

trees and merge them to get a more accurate and stable prediction. Support vector machines 

are effective in high-dimensional spaces and are versatile as they can be configured with 

different kernel functions. Neural networks are particularly powerful for capturing nonlinear 
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relationships in large datasets. K-nearest neighbor make predictions based on the closest data 

points in the feature space, providing intuitive, if computationally expensive, insights. Lastly, 

gradient-boosting machines sequentially build models and focus on correcting the errors in 

previous models to improve accuracy. 

The rationale for employing multiple techniques in a forecasting model is to leverage their 

distinct approaches to better understand and predict the data. By comparing different models, 

analysts can identify the most effective technique for capturing the nuances of both direction 

and volatility in the dataset. This methodical comparison helps in selecting the machine 

learning model that best fits the data, optimizing forecasting accuracy. 

2.5.1 Random Forrest Model:  

The Random Forest model (RF) was developed by Breiman (2001). Random Forest is a 

supervised learning algorithm that can be used for both classification and regression tasks. 

This model operates as an ensemble of decision trees, formally expressed as 

{ℎ(𝑥, 𝜃𝑘), 𝑘 = 1} , 

Equation 8: ensemble of decision trees 

where 𝜃𝑘 are independent identically distributed random vectors. Each tree in the ensemble 

contributes a unit vote towards the most popular class for a given input 𝑥. Breiman (2001) 

describes this voting mechanism as follows:  

RF(𝑥) = mode{ℎ(𝑥, 𝜃1), ℎ(𝑥, 𝜃2), … , ℎ(𝑥, 𝜃𝐾) 

Equation 9:voting mechanism 

where 𝐾 represents the total number of trees in the forest, and 𝜃𝑘 characterizes the random 

parameters that define each tree. The model utilizes an ensemble learning technique, which 

combines the predictions from multiple trees to produce a single prediction. This aggregation 

of diverse tree predictions enhances the model’s ability to generalize, effectively reducing the 

overfitting problem often seen with individual decision trees. The ensemble approach ensures 

that the collective prediction is more stable and accurate than that of any individual tree 

within the forest. The model is illustrated below.  
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Figure 1:Random Forest illustration 

The figure above provides a simplified overview of how the Random Forest (RF) model 

operates. In this model, input data is distributed among various decision trees, each of which 

assesses the importance of the data. Data deemed less critical by the trees are relegated to 

lower levels of the tree structure, thereby having a reduced impact on the final prediction 

outcome. 

the Random Forest model also presents several challenges: Overfitting: Although Random 

Forest generally handles overfitting better than individual decision trees, particularly in cases 

with large amounts of data, it can still overfit if the data is noisy or if the trees are overly 

complex. Interpretability: Due to its complex ensemble structure involving numerous decision 

trees, Random Forest models are often considered as "black boxes." This means that it can be 

challenging to discern how specific features influence the overall predictions, making the 

model less interpretable compared to simpler, more transparent models. Number of Trees: 

The selection of an optimal number of trees in the forest is crucial for achieving the best 

performance. Too few trees might lead to underfitting, while too many can increase 

computational costs without corresponding gains in accuracy. This parameter must be 

carefully tuned, typically through cross-validation or similar techniques to balance between 

performance and computational efficiency. 
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2.5.2 Support Vector Machines:  

Support vector machines (SVM) is a supervised learning algorithm. Created by Vapnik et al 

(1992). According to MathWorks (n.d.), SVM can be used for classification or regression and 

is most successful when using small and complex datasets. Suppose we have a training data 

set and want to find the linear function 𝑓(𝑥) = 𝑥 ,𝛽 + 𝑏, it is necessary to ensure that the 

linear function is as flat as possible therefore we need to find 𝑓(𝑥) with the minimal normal 

value 𝐽(𝛽) =  
1

2
𝛽,𝛽 which is subject to the constraint that the residuals have a smaller or 

equal value than the noise term (MathWorks, n.d.), ∀𝑛= |𝑦𝑛 − (𝑥𝑛′𝛽 + 𝑏)|  ≤ 𝜀 in some 

cases no such function 𝑓(𝑥) exist and the implementation of slack variables 𝜉𝑛𝜉𝑛
∗  would be 

necessary (MathWorks, n.d.). The slack variables allow regression error and still satisfy the 

conditions. Including the slack variables to the objective function: 𝐽(𝛽) =  
1

2
𝛽′𝛽 +

𝐶 ∑ (𝜉𝑛𝜉𝑛
∗)𝑁

𝑛=1 . Which is subject to:  

∀𝑛: 𝑦𝑛 − (𝑥𝑛
′ 𝛽 + 𝑏) ≤ 𝜀 + 𝜉𝑛  

∀𝑛: (𝑥𝑛
′ 𝛽 + 𝑏) − 𝑦𝑛 ≤ 𝜀 + 𝜉𝑛

∗   

∀𝑛: 𝜉𝑛
∗ ≥ 0  

∀𝑛: 𝜉𝑛 ≥ 0  

(MathWorks, n.d.), 

2.5.3 K-Nearest-Neighbour:  

KNN is a non-parametric machine learning method that can be used for both classification 

and regression. For a given input 𝑥 the algorithm identifies the 𝐾 closest points in the training 

data and makes predictions based on these points. The classification task can be described as 

follows, KNN assigns a class to 𝑥 by taking a majority vote among the classes of its 𝐾 nearest 

neighbours. The predicted class 𝑦̂ is given by 𝑦̂ = mode{𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝐾} where 𝑦𝑖𝑗 are the 

labels of the KNN to 𝑥. The classification is illustrated in the figure below where x is 

highlighted in the middle and every other point is K.    
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Figure 2: KNN illustration 

For the regression KNN predicts the output by averaging the values of the KNN:  

𝑦̂ =
1

𝐾
∑ 𝑦𝑖𝑘

𝐾

𝑘=1

 

Equation 10: KNN regression 

where 𝑦𝑖𝑘 are the values of the KNN to 𝑥. When using the KNN it’s important to compute the 

distance 𝑑 between the input 𝑥 and all points 𝑥𝑖 in the training set. The most common 

distance metrics are Euclidean, Manhattan, and Hamming. This thesis will use Euclidean 

which is explained by 

𝑑(𝑥, 𝑥𝑖) = √∑(𝑥𝑗 − 𝑥𝑖𝑗)
2

𝑛

𝑗=1

 

Equation 11:Euclidean 

The advantage of using KNN is that the model is simplistic and effective since it uses low-

dimensional data. The disadvantages are that the performance decreases with an increase in 

the dimensionality of the data that it is sensitive to the scale of data features.  
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2.5.4 Gradient Boosting Machines: 

Gradient boosting machines (GBM) is an ensemble learning method, where the algorithm 

combines the predictions of weak learners to create a stronger more robust model (Masui, T, 

n.d.). GBM creates trees sequentially, where each tree corrects the errors of the previous tree. 

GBM focuses on the weakness in the model, focusing on the data points that were poorly 

created. The objective is to minimize the mean squared error. The objective function for GBM 

is:  

𝐽(θ) =
1

𝑁
∑(𝑦𝑖 − 𝐹(𝑥𝑖))

2
𝑁

𝑖=1

 

Figure 3: GBM objective function 

 The objective function (Masui, T, n.d.) is given by 𝐽(𝜃). N is the number of data points.  𝑦𝑖 is 

the target for the 𝑖 − 𝑡ℎ data point.  𝐹(𝑥𝑖) is the current prediction. The boosting process 

contains of sequentially adding weak learner to the ensemble, where each is correcting the 

errors of the prior one (Masui, T, n.d.). At each iteration, a new weak learner is added to the 

ensemble to minimize the gradient of the objective function with respect to the current 

prediction. For the 𝑚 − 𝑡ℎ iteration the model is made by fitting a weak learner to the 

negative gradient in the loss function. Weak learner: ℎ𝑚(𝑥) = arg min
ℎ

∑ [−
∂𝐽(θ)

∂𝐹(𝑥𝑖)
]

2
𝑁
𝑖=1 . The 

negative gradient term −
𝜕𝐽(𝜃)

𝜕𝐹(𝒙𝒊)
 is the residual of the loss function with respect to the current 

prediction (Masui, T, n.d.). To control the contribution of the weak learner to the overall 

model, the learning rate (𝜂) is introduced. The prediction at each iteration is scaled by the 

learning rate (Masui, T, n.d.):𝐹(𝑥) ← 𝐹(𝑥) + η ⋅ ℎ𝑚(𝑥).  A small learning rate prevents 

overfitting and improves the generalization of the model. In some cases, it is necessary to 

implement regularization to prevent overfitting. Often if the learning rate is too high. Adding 

the regularization term to the objective function: 

𝐽(θ) =
1

𝑁
∑(𝑦𝑖 − 𝐹(𝑥𝑖))

2
𝑁

𝑖=1

+ λ ⋅ Ω(ℎ𝑚) 

Equation 12: GBM objective function with normalization term 
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where Ω(ℎ𝑚) is the regularization term. 𝜆 controls the strength of the regularization (Masui, 

T, n.d.).  

 

2.6 ARIMA 

The Autoregressive integrated moving average (ARIMA) model were introduced by Box and 

Jenkins (1970). The model has become one of the most popular models used in stock 

prediction. The ARIMA model assumes that the future value of stock is a linear combination 

of past values and errors. The model is given by 

𝑦𝑡  = 𝜃0  +  𝜑1𝑦𝑡−1+ . . . + 𝜑𝑝𝑦𝑡−𝑝  +  𝜀𝑡  −  𝜃1𝜀𝑡−1− . . .  − 𝜃𝑞𝜀𝑡−𝑞 

Equation 13: ARIMA model 

 𝑦𝑡 is the actual value, 𝜑𝑖, 𝜃𝑗 are the coefficients, 𝑝, 𝑞 are the integers, respectively the 

autoregressive and the moving average polynomials. The weakness of the ARIMA model, 

compared to ML models is the inability to use nonlinear data, but in some cases are a more 

simplistic model beneficial. It’s also beneficial to use more traditional models as a 

performance comparison.  

2.7 Rolling window Volatility 

Rolling window volatility is a method used to estimate the variability of returns over a 

moving time window, providing insights into how market volatility evolves over time. In this 

approach, a fixed-length time period, or "window," (e.g., 3, 6, or 9 weeks) is moved 

incrementally across the dataset, and volatility is calculated within each window. This 

dynamic technique allows for real-time tracking of volatility patterns, which is crucial for risk 

management and portfolio optimization (Bollerslev, 1986; Zhang et al., 2020). 

By continuously updating volatility estimates, rolling windows capture short-term market 

fluctuations and help identify periods of heightened or reduced risk. This is particularly useful 

in financial markets where volatility is not constant but clusters in time, as noted in the 

GARCH model framework by Bollerslev (1986). For instance, during periods of economic 

uncertainty or market stress, rolling window volatility can reveal sudden spikes in risk, 

enabling investors to adjust their portfolios accordingly. 
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In portfolio management, rolling window volatility is often paired with predictive models to 

refine risk assessments and optimize asset allocation. For example, Zhang et al. (2020) 

emphasized that rolling windows enhance the performance of volatility models by adapting to 

recent market changes, improving their predictive accuracy.  

2.8 Portfolio construction  

The machine learning and ARIMA-GARCH portfolio construction requires multiple steps. 

First, the stock direction is predicted using the classification specification in the different 

algorithms (Random Forest, SVM, KNN, GBM, ARIMA). This is done individually for each 

stock. The second step involves predicting volatility using the regression specification in the 

different algorithms. For the ARIMA model, the volatility is predicted using three different 

GARCH models. Third, the correlation matrices are calculated using these GARCH models. 

Fourth, the covariance matrix is calculated using the predicted volatilities and the correlation 

matrices. 

The machine learning portfolio construction similarly requires multiple steps. First, the stock 

direction is predicted using the classification specification in the different algorithms. Second, 

the volatility is predicted using the regression specification. Third, the correlations are 

calculated from the different GARCH models. Fourth, the covariance matrix is calculated 

from the predicted volatilities and correlations. Finally, the optimal weights are calculated 

using the predicted direction and the predicted covariance matrix. The weights are solved 

using quadratic programming, and these weights are then multiplied by the returns to get the 

weight-adjusted returns of the portfolio. 

For the ARIMA-GARCH models, the return direction is predicted using the ARIMA model, 

and the volatilities are predicted using the different GARCH models. From this point onward, 

every step is the same as in the machine learning portfolios, including correlation matrix 

calculation, covariance matrix construction, and optimization of weights to achieve an 

optimal risk-return balance. 
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2.9 Model evaluation  

2.9.1 Sharp Ratio 

The Sharpe Ratio, introduced by Sharpe (1966), is a key metric for assessing the performance 

of an investment by adjusting for its risk. It is calculated as the difference between the 

portfolio return and the risk-free rate, divided by the portfolio's standard deviation (a measure 

of risk). The formula for the Sharpe Ratio is given by: 

𝑆 =  
𝐸(𝑅𝑝) − 𝑅𝑓

𝜎𝑝
 

Equation 14: Sharp Ratio 

Where S is the Sharpe Ratio 𝐸(𝑅𝑝) represents the expected return of the portfolio. 𝑅𝑓 is the 

risk-free rate, and 𝜎𝑝 is the standard deviation of portfolio returns. The Sharpe Ratio provides 

a standardized way to measure risk-adjusted returns, allowing investors to compare the 

performance of different portfolios or investment strategies. 

The Sharpe Ratio is used to evaluate the portfolios constructed using both machine learning 

models and traditional approaches. By comparing the Sharpe Ratios, it is possible to 

determine which methodology provides a superior balance of return relative to the risk 

undertaken. A higher Sharpe Ratio indicates that a portfolio has achieved higher returns per 

unit of risk, making it a valuable tool for evaluating whether machine learning-based 

portfolios outperform those built using conventional techniques. 

 

2.9.2 Information ratio 

The Information Ratio (IR) is another key performance metric used to evaluate the efficiency 

of an investment strategy relative to a benchmark. Unlike the Sharpe Ratio, which compares 

portfolio returns to the risk-free rate, the Information Ratio evaluates the excess return of a 

portfolio over a benchmark, adjusted for the volatility of that excess return. The formula for 

the Information Ratio is given by: 
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𝐼𝑅 =  
𝑅𝑝 − 𝑅𝑏

𝜎(𝑅𝑝 − 𝑅𝑏)
 

Equation 15: Information Ratio 

 where 𝑅𝑝 is the portfolio return, 𝑅𝑏 is the benchmarke return, and 𝜎(𝑅𝑝 − 𝑅𝑏) is the tracking 

error, which is the standard deviation of the difference between portfolio returns and 

benchmark returns. The Information Ratio is particularly useful for comparing the 

performance of active investment strategies, as it measures both the magnitude of 

outperformance and the consistency of that outperformance. 

In this thesis, the Information Ratio is used to assess the added value of the machine learning-

based portfolios compared to the traditional portfolios and the benchmark index (the OBX 

index). A higher Information Ratio indicates that the portfolio not only achieves higher excess 

returns but does so with consistent risk management. By using the Information Ratio, it is 

possible to determine whether machine learning models provide a sustainable advantage over 

traditional approaches in terms of both performance and risk control. 

2.10 Sortino Ratio  

The Sortino Ratio is a modified version of the Sharpe Ratio, used to evaluate the risk-adjusted 

performance of an investment while only considering downside risk. Unlike the Sharpe Ratio, 

which penalizes both upside and downside volatility, the Sortino Ratio focuses solely on the 

negative deviations from a defined acceptable return (often zero or the risk-free rate). This 

makes it particularly suitable for investors who are more concerned with downside risk than 

overall volatility. The formula for the Sortino Ratio is given by: 

𝑆 =  
𝐸(𝑅𝑝) − 𝑅𝑓

𝜎𝑑
 

Equation 16: Sortino Ratio 

Where 𝑆 represents the Sortino Ratio 𝐸(𝑅𝑝) is the expected return of the portfolio, 𝑅𝑓 is the 

risk-free rate, and 𝜎𝑑 is the standard deviation of the negative asset returns. By focusing on 

downside risk, the Sortino Ratio provides a clearer picture of how effectively each portfolio 

limits losses, making it a valuable measure for risk-averse investors. A higher Sortino Ratio 

indicates that the portfolio delivers returns while minimizing the risk of significant losses. 
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2.11 Fama French Carhart 

Fama and French (1993) expanded on the CAPM model by including size and value factors 

which could explain portfolio returns. Based on the empirical findings of Banz (1981), Basu 

(1983) and Rosenberg et al (1998), Fama and French created the three-factor model, which 

could be explained by: 

𝑅𝑖𝑡  =  α  +  β1𝑅𝑚𝑡  +  β2𝑆𝑀𝐵  + β3𝐻𝑀𝐿  +   ∑ 𝜖 

Equation 17: three-factor model 

 𝑅𝑖𝑡 is the risk premium at time 𝑡. 𝛼 are the returns not explained by the model, 𝑅𝑚𝑡 is the risk 

premium of the market at time 𝑡. 𝛽1. 𝛽2, 𝛽3 are the factor coefficients. SMB (small minus big) 

is the size factor, HML (high minus low) is the book to market factor, and ∑𝜖 is the 

regression error.  

The small minus big factor captures the additional return investors have historically received 

from investing in stocks of smaller companies compared to larger companies. It is calculated 

as the difference in returns between a portfolio of small-cap stocks and a portfolio of large cap 

stocks. SMB is given by. 

𝑆𝑀𝐵 =  
1

3
(𝑆, 𝐻 +  𝑆, 𝑀 +  𝑆, 𝐿)  −  

1

3
 (𝐵, 𝐻 +  𝐵, 𝑀 +  𝐵, 𝐿) 

Equation 18: SMB 

 where 𝑆 is the market value of the small cap stocks in the portfolio, 𝐵 are the companies is 

the portfolio with a large market cap.  𝐻 are the stocks in the portfolio with a high book-to-

market equity ratio, 𝑀 is the stocks with an average book-to-market equity ratio. 𝐿 are the 

socks with low book-to-market equity ratio. The high minus low factor captures the higher 

returns that investors have historically received from investing in stocks with high book-to-

market values, also called value stocks, compared to stocks with low book-to-market values, 

also called growth stocks. HML is given by. 

𝐻𝑀𝐿 =  
1

2
(𝑆, 𝐻 +  𝐵, 𝐻) −  

1

2
(𝑆, 𝐿 + 𝐵, 𝐿) 

Equation 19: HML 
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Fama and French (1993) argue that although their factors don't derive from theoretical 

frameworks such as modern portfolio theory or equilibrium models, they effectively proxy 

common risk factors due to their reflection of economic fundamentals. They observed that 

companies with high book-to-market ratios typically have lower earnings on assets and are 

riskier, thus demanding higher returns—a finding also supported by Rosenberg et al. (1998). 

Conversely, companies with high market-to-book ratios tend to exhibit higher earnings. 

Additionally, larger companies, which are more resilient during economic downturns, showed 

higher earnings in the period analysed by Fama and French.  

Carhart (1997) expands on the Fama and French model by incorporating a factor commonly 

known as the momentum factor. This addition draws on the anomaly identified by Jegadeesh 

and Titman (1993), who demonstrated significantly higher market returns through a trading 

strategy that involved buying stocks with strong recent performance and selling those with 

poor performance. This led to the development of Carhart's four-factor model. 

𝑅𝑖𝑡 =  𝛼 + 𝛽1𝑅𝑚𝑡 +  𝛽2𝑆𝑀𝐵 +  𝛽3𝐻𝑀𝐿 + 𝛽4𝑊𝑀𝐿 + 𝜖𝑖𝑡. 

Equation 20:  Carhart's four-factor model 

The winners-minus-losers (WML) factor employs the method used by Jegadeesh and Titman 

(1993), constructing a portfolio that sells stocks with the lowest returns and buys those with 

the highest over the previous year. Specifically, "losers" are defined as the bottom 30% of the 

return distribution from the prior year, and "winners" as the top 30%. 

The efficacy of different factors on stock returns has been empirically validated, positioning 

them as common market effects. This validation allows the three- or four-factor model to be 

used as analytical tools in evaluating the performance of specific portfolios. By conducting a 

linear regression of a portfolio's returns against the factors included in these models, one can 

discern characteristics of the portfolio. The model's regression coefficients can indicate 

whether a portfolio's returns stem from investments in, for instance, smaller companies, value 

companies, or growth companies. 

Additionally, the regression intercept, also known as alpha, is significant as it represents the 

portion of returns not explained by common market factors, often reflecting the impact of the 

investor's choices. A notable intercept suggests that the investor's strategy has either 
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positively or negatively influenced the portfolio beyond what can be attributed to common 

factors. 

2.12 Potential Pitfalls or Risks of the Theories/Models 

While the models and approaches discussed in this thesis offer powerful tools for portfolio 

optimization, they also come with inherent risks and limitations that must be considered. 

Minimum Variance Portfolio (MVP): The MVP relies on the assumption of normality in 

asset returns, which may not hold in real financial markets where returns often exhibit 

skewness and kurtosis (Cont, 2001). Furthermore, the MVP's effectiveness is contingent on 

accurate estimation of the covariance matrix, which can be challenging in practice due to 

limited data availability or changing market conditions (Ledoit & Wolf, 2004). 

Machine Learning Models: Machine learning models such as Random Forests, SVMs, 

KNN, and Gradient Boosting Machines are prone to overfitting, especially when applied to 

noisy and non-stationary financial data (Zhang et al., 2020). Overfitting can lead to models 

that perform well on historical data but poorly on unseen future data. This risk necessitates 

careful use of regularization techniques, cross-validation, and feature selection to ensure that 

models generalize well (Hastie et al., 2009).  

GARCH Models: GARCH models often used for modeling volatility, but they also have 

limitations. They assume that volatility follows a specific autoregressive pattern, which may 

not always capture sudden market shifts (Poon & Granger, 2003). Parameter estimation for 

GARCH models can be sensitive to the chosen sample period, leading to instability in 

predictions (Bollerslev et al., 1992).  

ARIMA-GARCH Models: The ARIMA component used to predict return direction assumes 

linear relationships in time series data, which may not fully capture the complexities of 

financial markets (Tsay, 2010). Additionally, the reliance on past data for both ARIMA and 

GARCH models means that they can be slow to respond to sudden changes or new 

information, making them less effective during periods of market turbulence. 

By acknowledging these risks and limitations, this thesis aims to provide a balanced view of 

the models used, emphasizing both their potential advantages and the challenges that come 

with their application in real-world financial contexts. 
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3 Methodology:  

3.1 Stock information:  

The stocks selected for this study are those included in the OBX index, which comprises the 

25 most traded securities on the Oslo Stock Exchange. The stock datasets is collected from 

the TITLON database and range from 01.05.2016 – 09.24.2019. The OBX index is a 

benchmark for Norwegian equity markets, representing a diverse set of industries that reflect 

the overall performance of the Norwegian economy.  

The OBX index includes companies across various sectors, such as energy, finance, consumer 

goods, and telecommunications, providing a diversified selection of stocks. Given the high 

representation of energy companies the index also has an inherent sectoral bias. This bias 

towards the energy sector makes risk management a crucial part of the portfolio construction 

process, particularly in relation to market fluctuations driven by energy prices. The 

composition of the OBX is periodically revised to ensure that it reflects the most traded and 

liquid stocks, which adds a dynamic aspect to the index and impacts portfolio strategy 

adjustments over time. 

3.2 Commodities:  

Brent Crude Oil (BZ=F): Brent is one of the major global oil benchmarks, representing the 

pricing of oil extracted from the North Sea. Its price movements are highly correlated with 

global energy market dynamics and have a significant impact on the overall Norwegian 

economy, given the country’s strong connection to oil production. 

Crude Oil (CL=F): Crude oil is a critical component of the global energy supply. The 

inclusion of Crude Oil prices allows for a more comprehensive assessment of the impact of 

energy commodities on portfolio risk and return. 

Natural Gas (NG=F): Natural Gas is another important energy commodity.. Natural Gas is 

included to diversify the energy component of the portfolio. 

Silver (SLV): Silver, often used as both an industrial and precious metal, provides 

diversification beyond energy commodities. It has historically been considered a hedge 

against inflation and a store of value, making it valuable for portfolio risk management. 
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Energy ETF (CHIE): The China Energy ETF provides exposure to the energy sector in one 

of the world’s largest and fastest-growing markets. This ETF is used to add an international 

diversification component to the portfolio’s energy exposure. 

Additionally, exchange rate data is collected for the EUR/USD (EURUSD=X), as exchange 

rate movements can significantly impact commodity prices and, subsequently, portfolio 

performance. By including this data, the analysis can account for currency risk, particularly 

important for investors exposed to multiple currencies. 

The inclusion of these commodities and ETFs aims to enhance the predictability of the 

algorithms. The dataset is constructed using historical data sourced from Yahoo Finance, 

spanning several years, which ensures that the models have sufficient data to train effectively 

across different market environments and cycles. 

3.3 Analysis: 

The analysis conducted in are evaluating the effectiveness of different portfolio construction 

methodologies, including traditional financial and modern approaches using machine learning 

and advanced statistical techniques. The core objective of this analysis is to determine 

whether the use of machine learning models provides significant advantages in enhancing the 

risk-adjusted returns of a portfolio consisting of OBX index stocks. 

The analysis is divided into several phases: 

Data Preprocessing: The first phase involves preprocessing the data collected from various 

sources, including TITLON for stocks, Yahoo Finance for commodities, and other relevant 

indices. This step ensures that the data is cleaned, free of missing values, and normalized 

where necessary to facilitate model training and analysis.  

Model Training and Validation: The second phase is focused on training different machine 

learning models like Random Forest, SVM, GBM and KNN. These models are trained using 

historical data, and hyperparameters are tuned using cross-validation to optimize model 

performance. Each model is evaluated based on its ability to predict key metrics such as 

return direction, volatility, and correlation among assets. Performance metrics like Root Mean 

Squared Error (RMSE) and accuracy are used to assess the quality of predictions. 
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Portfolio Optimization: In the third phase, the predictions from each model are used as 

inputs for portfolio optimization. The optimization process involves calculating the 

covariance matrix of predicted returns and using quadratic programming to determine the 

optimal asset weights that achieve the desired risk-return balance. 

Performance Evaluation: The constructed portfolios are then evaluated using the 

performance metrics, Sharpe Ratio, Information Ratio, and Sortino Ratio. These metrics 

provide insight into the risk-adjusted performance of each portfolio, helping to compare the 

benefits of using machine learning models versus traditional optimization techniques. 

Additionally, the performance of the portfolios is analysed across different market conditions 

to assess robustness. 

Comparative Analysis: This multi-step analysis provides a thorough examination of the 

capabilities and limitations of the various approaches under consideration. By comparing 

traditional and machine learning-based models, this thesis aims to provide a deeper 

understanding of how modern computational techniques can be leveraged to enhance 

financial decision-making and portfolio management. 

3.4 ARCH and GARCH model to create a correlation matrix.  

The GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model plays an 

essential role in this thesis by providing a robust method for modeling the volatility and 

correlation structure between the assets included in the portfolio. A well-defined correlation 

matrix is critical in constructing an optimal portfolio, as it directly affects the calculation of 

the covariance matrix. 

The GARCH model (Bollerslev, 1986) builds on the concept of modeling volatility as an 

autoregressive process, allowing for the persistence of volatility over time. The GARCH (1,1) 

model, which is widely used in practice, incorporates both past residuals and past variances to 

predict future volatility. This ability to account for longer-term trends in volatility makes 

GARCH a preferred model for financial time series, especially when attempting to forecast 

volatility and correlation among multiple assets. 

In this thesis, GARCH models are employed to estimate both individual asset volatilities and 

the correlations between them, providing a comprehensive view of the dynamics at play 
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within the portfolio. By applying GARCH to each asset, a conditional variance series is 

generated, which is subsequently used to construct the correlation matrix. This correlation 

matrix is essential for creating the covariance matrix that forms the basis of the MVP. 

The correlation matrix derived from GARCH is particularly useful in capturing time-varying 

relationships between assets. Unlike static correlations, which assume constant relationships 

over time, GARCH-derived correlations can adapt to changing market conditions, such as 

periods of heightened economic uncertainty or market crashes. This flexibility is crucial for 

managing risk in a diversified portfolio. 

The correlation matrix is constructed using the rolling estimates of variances and covariances 

obtained from the GARCH models. This approach helps in adapting the portfolio to recent 

market conditions, providing a more realistic representation of the current risk structure. By 

accounting for the dynamic nature of asset correlations, the resulting covariance matrix 

ensures that the portfolio optimization process is grounded in a more accurate reflection of 

market risks, thereby contributing to a more resilient and well-diversified portfolio. 

3.5 Model specifications  

The models used in this thesis, including Random Forest, Gradient Boosting Machines, 

Support Vector Machines, and k-Nearest Neighbours, are carefully configured based on 

academic literature and iterative experimentation. Each model's hyperparameters are selected 

to achieve a balance between predictive accuracy and computational efficiency, while also 

avoiding overfitting and underfitting. 

3.5.1 Random Forest Specifications 

The Random Forest model for volatility prediction (regression) was specified as follows: 

Number of Trees (ntree): 500. The number of trees is critical as too few can reduce model 

accuracy, while too many can lead to high computational costs without significant 

improvement (Liaw & Wiener, 2002). Number of Predictors (mtry):4. This value represents 

the number of predictors randomly selected at each split. This helps control model complexity 

and ensures that splits are diverse enough to prevent overfitting (Breiman, 2001). Variable 

Importance (importance): True. This setting specifies that the importance of variables should 

be assessed during training to help understand which features contribute most to the model's 
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predictions (Strobl et al., 2007). Additional Specifications: The model also employed 

bootstrap sampling, out-of-bag (OOB) error estimation for validation, and a fixed random 

seed for reproducibility (Breiman, 2001). 

For classification tasks, the same features were used, with an additional parameter type = 

class to ensure the model managed the task appropriately as a classification problem (Liaw & 

Wiener, 2002). 

3.5.2 Gradient Boosting Machines (GBM) Specifications 

The Gradient Boosting Machines (GBM) were specified as follows: Distribution: Gaussian 

for regression tasks and Bernoulli for classification tasks, to appropriately model the 

distribution of the target variable (Friedman, 2001). Interaction Depth: Set to 2, controlling 

the complexity of the individual trees. This is a conservative value intended to prevent 

overfitting (Hastie, Tibshirani, & Friedman, 2009). Learning Rate (Shrinkage): 0.003. A 

small learning rate helps stabilize the boosting process, gradually improving the model’s fit to 

avoid overfitting (Chen & Guestrin, 2016). Bag Fraction: 0.5, indicating that 50% of the data 

is used for each iteration, which aids in reducing overfitting (Friedman, 2002). Training 

Fraction: Set to 1, ensuring that all data is used for training. Minimum Observations per Node 

(n.minobsinnode): 20, providing a balance between capturing trends and avoiding noise 

(Friedman, 2001). Cross-Validation (CV Folds): Set to 1, used mainly for baseline estimation 

(Hastie et al., 2009). 

3.5.3 Support Vector Machine (SVM) Specifications 

The Support Vector Machines (SVM) were trained using different specifications for 

regression and classification: Regression: The epsilon-regression method was used, which 

helps control the sensitivity of the model to small errors (Smola & Schölkopf, 2004). 

Classification: The C-classification method was used Cortes & Vapnik, (1995). Kernel: 

Radial Basis Function (RBF) was chosen for both models, with a cost parameter of 10 and a 

gamma value of 0.1. These hyperparameters were selected to balance between model 

flexibility and avoidance of overfitting (Hsu, Chang, & Lin, 2010). 

3.5.4 k-Nearest Neighbors (kNN) Specifications 

The k-Nearest Neighbors (kNN) model's hyperparameters were tuned to optimize model 

performance: Number of Neighbours (k): Tuned over a set {5, 7, 9} to find the optimal 
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value. Different values were tested to determine which provided the best trade-off between 

bias and variance (Peterson, 2009). Grid Search for Regression: A grid search was 

performed to identify the best hyperparameters for the regression model (Hastie, Tibshirani, 

& Friedman, 2009), while classification tasks used direct tuning (Bishop, 2006). 

3.5.5 ARIMA-GARCH Model Specifications 

The ARIMA component was used to predict return direction, while the GARCH component 

estimated volatility. These models were specified based on best practices in financial 

econometrics (Engle, 1982) and were tuned iteratively to identify the optimal parameters 

(Bollerslev, 1986; Tsay, 2010). 

3.5.6 General Model Specification Approach 

All model specifications were developed based on a combination of academic literature and 

trial and error. The final settings were selected to ensure model performance while avoiding 

both overfitting and underfitting. Cross-validation was utilized extensively during 

hyperparameter tuning to ensure that each model generalizes well to new data. By balancing 

model complexity with robustness, this thesis aims to produce a well-validated framework for 

predicting stock returns and constructing optimal portfolios. 

3.6 Optimal weights and covariance matrix  

The approach for constructing optimal weights is based on Markowitz’s Mean Variance 

Portfolio. The objective of the portfolio weights is to find the combination that maximizes 

returns while minimizing portfolio risk, measured by volatility. These weights were 

calculated using quadratic programming in R with the following constraints: 

𝜔𝑖 ≥  0, ∀𝑖 =  1, … , 𝑛 

Equation 21: quadratic programming 

This constraint prevents short selling, ensuring that no position has a negative weight, which 

would imply borrowing stocks to sell, an approach not considered suitable for this portfolio. 

Sum-to-One Constraint: The weights of all assets must sum to 1, ensuring that the entire 

portfolio is fully invested. Mathematically, this is expressed as: 
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∑ 𝜔𝑖

𝑛

𝑖=1

= 1 

Equation 22: sum to one constraint 

Conditional Weight Constraint: Based on the probability of a positive return. If the machine 

learning algorithms predict the probability of a positive return for the asset to be 50% or less, 

the weight for that asset is set to zero. This can be represented as: 

𝜔𝑖 =  0 𝑖𝑓 𝑃𝑟𝑜𝑏𝑃𝑜𝑠𝑅𝑒𝑡𝑖  ≤  0.5 

Equation 23: Conditional Weight Constraint 

This constraint ensures that only assets with a positive outlook are included in the portfolio, 

contributing to a more conservative strategy that focuses on minimizing downside risks. 

The objective function being minimized is expressed as: 

𝑚𝑖𝑛

𝑤
𝑤Τ∑𝑤 

Equation 24: objective function 

where 𝑤 is the vector of weights, and 𝛴 is the covariance matrix for that week's returns. The 

covariance matrix is derived from the GARCH models, capturing the time-varying 

correlations and volatilities among the different assets. 

Quadratic programming was used to solve this optimization problem, ensuring that the 

derived weights provide the best possible balance between risk and return according to 

Markowitz’s framework. The implementation in R includes tools such as quadprog to handle 

the optimization problem with multiple constraints effectively. By including specific rules 

against short selling and requiring sum-to-one constraints, the constructed portfolio aims to 

maintain a high level of stability while being fully invested. 

Additionally, by incorporating machine learning predictions into the weight optimization 

process, this approach attempts to blend traditional financial theory with modern 

computational techniques to enhance decision-making. The combination of these 

methodologies ensures that the resulting portfolio not only considers historical risk patterns 
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but also adapts dynamically based on forward-looking predictions provided by machine 

learning models. 

 

4 Results 

4.1 Result introduction  

In this chapter, the results of the portfolio construction and optimization processes are 

presented in detail. This chapter will address how well the models performed in constructing a 

portfolio for the OBX index, aiming to enhance risk-adjusted returns. 

The evaluation includes metrics for both regression and classification models, such as Root 

Mean Square Error (RMSE), Mean Absolute Error (MAE), and various classification metrics 

like accuracy, precision, recall, and F1 score. Additionally, the cumulative returns of 

portfolios over a 200-week period are presented, along with key risk-adjusted performance 

metrics such as Sharpe Ratio, Information Ratio, Tracking Error, and Beta. The chapter 

concludes with a comparative analysis of the 8 best-performing models out of an initial set of 

50, including insights from a Fama-French Carhart factor. 

 

4.2  Regression model evaluation.  

The volatility forecasting and stock direction forecasting is solved using two different 

machine learning specifications, respectively regression and classification. Hence it is 

necessary to use different methods of model evaluation. For the regression models they will 

be evaluated by retrieving the RMSE and MAE. Root mean square error or RMSE is a metric 

which gives the average distance between the predicted values and the actual values. The 

result should be between 1 and 0 where closes to 0 is the preferred result. RMSE is given by: 

RMSE =  √Σ(𝑋𝑖 – 𝑌𝑖)
2 / n 

Equation 25: RMSE 

Where 𝑋𝑖 is the predicted value and 𝑌𝑖 is the observed value. Mean absolute error or MAE 

measures the average absolute difference between the predicted values and the actual values. 
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Unlike RMSE, MAE does not square the errors, which allows for equal weights to every 

error. MAE is useful when the goal is to understand the error without the considerations of 

over- or underestimations. MAE is given by:  

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦̂

𝑁

𝑖=1

| 

Equation 26: MAE 

Where 𝑦𝑖 is the actual value and 𝑦̂ is the predicted value. Below are the results of the RMSE 

and the MAE from the machine learning portfolios.  

Table 1: MAE and RMSE results 

 

To evaluate the portfolios, it is useful to create baseline variables for comparison. Since the 

chosen portfolios have different rolling window volatility estimations, two baseline variables 

of each RW volatility was estimated. Respectively, Naïve and Mean. Naïve uses the last 
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observed value at the prediction for all instances in the dataset. Mean baseline calculates the 

mean volatility from the data and use this as the constant prediction value for every instance 

in the dataset. If the ML models significantly outperform the baselines, the predictions are 

capturing useful patterns in the data. From the table we can see that there are varying 

performances from the ML portfolios, with RandomForest_RW9 being the one with lowest, 

which is the best, RMSE and MAE score. Furthermore, is apparent that the RF and SVM 

portfolios performed more accurately overall than the KNN and GBM portfolios. Although 

it’s worth mentioning that most of the ML portfolios perform well compared to the baselines. 

The GARCH models, which account for the volatility element of the ARIMA portfolios 

perform varying, where the Integrated GARCH performed insufficiently and the GJRGARCH 

performed good compared to the baselines and the ML portfolios.  

4.3 Classification model evaluation 

 

The classification models forecast on a binary variable; hence the results will be binary where 

1 = Positive return forecast and 0 = Negative return forecast. These results are printed in a 

confusion matrix where each prediction can have one of four outcomes, true positive (TP), 

true negative (TN), false positive (FP) and false negative (FN). Where true positive and true 

negative is the preferred results. From the confusion matrix different measurements of model 

performance can be calculated. This thesis will use accuracy, precision, recall and F1-score 

for evaluation.  

Accuracy is measured by 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 where it’s the correct prediction divided by ever 

prediction. Accuracy gives a percentage return which indicates how often the model predicts 

the correct result. Precision is measured by 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 where it’s the correct positive prediction 

divided by every positive prediction. Precision shows how often the model can predict a 

positive return correct. Recall is measured by 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
 where the correct positive prediction is 

divided by every positive day. Recall shows how many positive predictions the model can 

predict. F1-score is measured by 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 and calculates the geometric returns of 

recall and precision. F1-score is an alternative to accuracy.  
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Table 2: Classification evaluation 

The table above shows that the RF portfolios preform best, with an average accuracy of 57%. 

We can also see that the RF model performs best on precision, recall and F1-score. SVM is 

the next best with and average accuracy of 53%, GBM has an average accuracy of 52%, KNN 

has an average accuracy of 46% and ARIMA has an average accuracy of 29%. The ARIMA 

accuracy is low, but that can be explained by the fact that it predicted negative returns for 

every week of the test set for 9 stocks.  

4.4 Cumulative returns analysis  

This section presents the cumulative returns for the portfolios constructed using the MVP 

portfolios over a 200-week period. The cumulative returns analysis serves as a good metric 

for evaluating the long-term growth of an investment and provides insight into how 

effectively each model captures market trends and adjusts to changing conditions. 

4.4.1 Cumulative Return Performance for Selected Models 

To illustrate the effectiveness of each MVP portfolio constructed using different machine 

learning techniques, cumulative return plots are provided for each of the four main machine 

learning models Random Forest, Gradient Boosting Machine, Support Vector Machine, and 

k-Nearest Neighbors individually. These individual plots highlight the performance of the 

MVP portfolios when enhanced by each respective machine learning approach, allowing for a 

more detailed analysis of how each model influenced overall returns. 

In addition to the individual plots, a combined cumulative return plot is provided that includes 

all four models, benchmarked against the OBX index.  
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Figure 4: Cumulative returns for RF 

The graph above illustrates the random forest MVP, as seen in the graph there are a lot of 

different results. The best performing portfolio were using a rolling window of 9 weeks and a 

regular GARCH (1,1) model. The worst performing one were using a rolling window of 9 

weeks and an IGARCH model. As seen in the graph all the portfolios performed good within 

the first 0-50 weeks. The models that performed best were able to avoid significant negative 

shifts. However, they also tended to miss larger positive shifts. 

 

Figure 5: Cumulative returns for SVM 

The graph above illustrates the SVM minimum variance portfolios. The best performing 

portfolio were a rolling window with 9 weeks using a regular GARCH (1,1) model. Its 

apparent that all off the SVM portfolios couldn’t avoid shocks to the negative side.  
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Figure 6: Cumulative return for KNN 

The graph above illustrates the K-NN minimum variance portfolios. The portfolios that 

performed best were using a 3-week rolling window volatility and a GARCH (1,1) and 

IGARCH. Although the returns a relatively low compared to the other models. Seemingly the 

model did well in avoiding negative shocks.  

 

Figure 7: Cumulative returns for gbm 

The GBM MVP portfolios with a rolling window off three weeks had a strong start compared 

to the rest. Seemingly the models did not avoid negative shocks well and had rather large 

periods off losses compared to other models, especially the RF models.  
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Figure 8: Cumulative returns for ARIMA 

The ARIMA portfolios above illustrates a different picture than the ML portfolios. One of the 

ARIMA model using the integrated GARCH model to forecast volatility performed 

surprisingly well in the first 100 weeks before it dropped by almost 50% in the next 75 weeks. 

This could be explained by that the predictions from the ARIMA model were similar for 

every week and therefor it was more exposed to a downshift in one industry, rather than 

diversifying the risk across industries.  

 

Figure 9: best performing portfolios compared to benchmark 

The graph above illustrates the best performing portfolios and compares it to the benchmark 

OBX. The analysis shows that the machine learning-based portfolios—particularly those 

constructed using Random Forest, Gradient Boosting Machines and Support Vector 

Machines—demonstrated more substantial cumulative returns compared to ARIMA and the 
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benchmark. This suggests that the predictive power of machine learning models helped in 

selecting asset weights that adjusted better to market dynamics, thus capturing upward trends 

more effectively. 

5.4.2 Comparative Insights 

Machine Learning vs. Traditional Models: The machine learning models exhibited higher 

cumulative returns, indicating their ability to dynamically adjust portfolio allocations based 

on predicted returns and volatility. These models managed to outperform the benchmark 

during periods of market uncertainty, demonstrating their effectiveness. They also handled 

negative shocks significantly better than the traditional models.  

Risk-Adjusted Growth: While the cumulative returns were generally higher for the machine 

learning models, they also experienced periods of increased volatility. The Gradient Boosting 

Machine model showed both high cumulative returns and high fluctuations, indicating a 

potentially higher risk-reward trade-off compared to other models. KNN was the model with 

the lowest average annual volatility. But again, it also misses the good volatility (positive). 

4.5 Risk adjusted performance metrics.  

This section presents the risk-adjusted performance metrics for the ten MVP portfolios by 

different machine learning techniques, compared against the OBX benchmark. The evaluation 

includes Sharpe Ratio, Information Ratio, Tracking Error, Beta, and Sortino Ratio, which 

provide an overview of how well each portfolio managed risk in relation to their returns over 

the 200-week evaluation period. 

 

Table 3: portfolio evaluation 
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4.5.1 Overview of Metrics and Results 

Total Return: The total returns for the portfolios range from 97.71% (Portfolio 1) to 52.77% 

(Portfolio 5), compared to 49.80% for the OBX benchmark. Portfolio 1 achieved the highest 

total return, significantly outperforming the OBX. 

Annual Return: The annualized return ranged from 17.83% for Portfolio 1 to 10.22% for the 

OBX benchmark. Portfolios 1, 2, and 6 had the highest annual returns, showcasing their 

effectiveness in generating consistent growth over the 200-week period. 

Annual Standard Deviation: The annual standard deviation, indicating portfolio volatility, 

ranged from 11.22% to 13,31% The OBX benchmark had the highest annual standard 

deviation (18.18%), suggesting that the portfolios enhanced by machine learning and ARIMA 

had lower volatility. 

Sharpe Ratio: The Sharpe Ratio for each portfolio was calculated to assess risk-adjusted 

returns. The highest Sharpe Ratio observed among the selected models was 1.2834 (Portfolio 

1), significantly higher than the OBX's Sharpe Ratio of 0.3971. Higher Sharpe Ratios indicate 

better risk-adjusted performance. 

Tracking Error: which measures the deviation of portfolio returns from the benchmark, 

ranged from 0.2082 to 0.2287. Portfolios with higher tracking error, such as Portfolio 6, 

typically deviated more aggressively from the benchmark, which resulted in higher potential 

returns but also increased the risk of underperformance during adverse conditions. 

Information Ratio: which measures the active return relative to the benchmark adjusted for 

tracking error, was highest for Portfolio 1 (0.3557). This indicates that Portfolio 1 not only 

outperformed the benchmark but did so with a relatively consistent approach, thereby 

reflecting successful active management.  

Beta: Beta values for the portfolios ranged from 0.0086 to 1.0000. Portfolio 6 had a slightly 

negative beta (-0.0229), suggesting a minor inverse relationship with the market. This low 

beta behavior suggests that most machine learning-enhanced portfolios had less exposure to 

overall market risk compared to the benchmark, which helped cushion volatility during 

market fluctuations. 
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Sortino Ratio: The Sortino Ratio, which focuses specifically on downside risk, ranged from 

0.4132 to -0.0404. Portfolio 1 again led with a Sortino Ratio of 0.4132, showing its ability to 

generate returns while managing downside risk effectively. On the other hand, Portfolio 5 had 

a negative Sortino Ratio (-0.0404), indicating poor risk-adjusted performance when 

considering only downside volatility. 

4.5.2 Comparative Analysis of Risk-Adjusted Metrics 

A detailed comparison of the risk-adjusted performance metrics reveals several insights: 

Performance Variability: Portfolio 1 stands out as the best performer in terms of both total 

return and risk-adjusted performance (Sharpe and Sortino Ratios). The enhanced ability to 

mitigate downside risk while achieving substantial growth demonstrates the effectiveness of 

machine learning models in adapting to changing market conditions. 

Tracking Error and Active Management: Portfolios with higher tracking errors, such as 

Portfolio 6 (0.2287), displayed more aggressive active management. This often paid off in 

terms of achieving high returns but came at the cost of increased volatility. Portfolio 1, with a 

slightly lower tracking error but higher Sharpe and Information Ratios, achieved a better 

balance between active management and consistent returns. 

Market Sensitivity: The beta values for most portfolios were significantly lower than 1, 

indicating limited sensitivity to market-wide movements. Portfolio 6’s negative beta suggests 

a decoupled or inverse relationship with market trends, which might have contributed to 

stability during market downturns but also reduced its ability to benefit from bull markets. 

Downside Risk Management: The Sortino Ratios varied significantly across the portfolios, 

highlighting differences in downside risk management. Portfolio 1 performed the best in 

terms of controlling downside risk while still generating positive returns. Portfolios with 

negative Sortino Ratios (such as Portfolio 5) underperformed when considering downside 

volatility specifically, indicating areas where model performance could be improved. 

4.6 FAMA FRENCH CARHART four factor model 

This section presents the evaluation of the selected portfolios using the Fama-French Carhart 

factor model. The Fama-French Carhart model extends the traditional Fama-French three-
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factor model by incorporating a momentum factor, providing a comprehensive way to assess 

the sources of portfolio returns. The goal of this evaluation is to determine the extent to which 

systematic factors (market, size, value, and momentum) explain the performance of each of 

the selected portfolios. 

The results are summarized in the following table, which includes the factor loadings for 

market (MKT), size (SMB), value (HML), liquidity (LIQ) and momentum (MOM), along 

with the corresponding alpha values for each portfolio. Alpha represents the portion of 

portfolio return that is not explained by these factors, offering an indication of the skill or 

value added by the specific portfolio construction methodology. A significant positive alpha 

suggests that the portfolio generated excess returns beyond those attributable to standard risk 

factors, which could imply the success of the machine learning-enhanced approach in 

identifying opportunities that traditional factor models may not capture. 

Below, the table provides an overview of the estimated coefficients and their statistical 

significance for the eight best-performing portfolios. Each coefficient provides insights into 

the sensitivity of the portfolio to different systematic risk factors, helping to understand which 

models were most effective at capturing aspects of market performance. 

 

 

Table 4: Fama French Carhart results 

The Fama-French-Carhart analysis provided valuable insights into the sources of portfolio 

returns for the selected portfolios. Three portfolios demonstrated statistically significant 

alpha, indicating that their excess returns could not be fully explained by the market, size 
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(SMB), value (HML), or momentum (MOM) factors. Among these, the portfolio with the 

highest alpha achieved a value of 2.6%, highlighting its capacity to generate returns beyond 

the scope of traditional risk factors. 

The portfolios showed varying sensitivities to the overall market, as indicated by their beta 

coefficients relative to the market factor. While most portfolios had a positive relationship 

with the market, the magnitude of the factor loadings suggests differing levels of market 

exposure. Portfolios with higher market beta tended to perform better during bullish phases 

but were also more vulnerable to market downturns. This highlights the importance of 

balancing market exposure in constructing robust portfolios. 

A significant relationship with the SMB factor was observed in seven out of the eight 

portfolios, indicating a preference for large-cap stocks. This tilt towards larger companies 

suggests that the machine learning models, and the optimization process favoured the stability 

and liquidity associated with large-cap stocks. However, this preference may have limited the 

potential upside from smaller, higher-growth firms. 

All portfolios exhibited a positive but statistically insignificant relationship with the HML 

factor, suggesting a slight preference for value stocks over growth stocks. The lack of 

statistical significance implies that the value-growth dynamics did not strongly influence the 

portfolio returns, potentially because the models prioritized other characteristics, such as 

momentum or volatility. 

The momentum factor varied significantly across portfolios, with some showing strong 

positive loadings and others demonstrating weak or even negative relationships. 

Portfolios with positive momentum relationships likely capitalized on trends in asset prices, 

aligning with the predictive capabilities of machine learning models. However, those with 

weaker momentum relationships may have been constrained by volatility forecasts. 

The significant alpha values in three portfolios underscore the effectiveness of the portfolio 

construction methodology in capturing excess returns not explained by systematic factors. 

This suggests that the models incorporated unique signals or relationships that traditional 

factor models failed to account for. The machine learning portfolios' ability to generate alpha 
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highlights their potential for identifying complex patterns in financial data, which can lead to 

improved investment strategies. 

Portfolios without significant alpha values likely relied more heavily on systematic factors 

such as market trends or size preferences. These results indicate that while machine learning 

models added value, their contributions were sometimes constrained by the overarching 

market environment or data limitations. 

The low 𝑅2values across the board indicate that a large portion of the returns remained 

unexplained by the Fama-French-Carhart model. This limitation suggests that additional 

factors or alternative modelling frameworks might better capture the nuances of portfolio 

returns, such as industry-specific variables or macroeconomic indicators. 

5 Discussion: 

The objective for this thesis was to explore the potential for machine learning techniques to 

generate alpha by optimizing portfolio weights. And to see whether machine learning 

algorithms generate better portfolios than traditional models. The results section highlights 

that the eight selected portfolios outperformed the OBX benchmark in both risk and return 

metrics. The top-performing portfolio utilized the Random Forest model with a rolling 

window of nine weeks, combined with a regular GARCH model. This portfolio achieved an 

annualized return of 17.83% and a risk level of 11.56%, significantly outperforming the 

benchmark, which had an annualized return of 10.22% and a risk level of 18.18%. Over the 

200-week period, the Random Forest portfolio delivered a cumulative return of 97.71%, 

nearly doubling the benchmark’s cumulative return of 49.80%. the highest portfolio 

accumulated a sharp ratio off 1,28 and a Sortino ratio off 0,41, which is broadly considered a 

good result. The fama French Carhart model showed that the to portfolio generated a 

statistically significant alpha off 2,6%. The ARIMA portfolios were varying, but the best 

performing portfolio had a portfolio risk of 12,08%, and an annualized return off 12,27%, 

which also significantly beats the OBX on both risk and return. The Portfolio also had a Sharp 

ratio of 0,76 and a Sortino ratio of 0,07. The sharp ratio is within a decent range but the 

sortino ratio was very low indicating poor risk-adjusted performance when considering only 

downside volatility. Both the best-performing machine learning (ML) portfolio and the top 

traditional portfolio demonstrated statistically significant alpha in the Fama-French-Carhart 
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regression, indicating the presence of excess returns not accounted for by the four-factor 

model. The ML portfolio achieved an alpha of 2.63%, while the traditional portfolio closely 

followed with an alpha of 2.59%. This suggests that both portfolios were able to generate 

returns beyond those explained by market risk, size, value, liquidity and momentum factors. 

These results underscore the strength of the portfolio construction methodologies employed, 

highlighting their ability to exploit inefficiencies and opportunities in the market. The slightly 

higher alpha of the ML portfolio may point to its enhanced capacity to capture complex, non-

linear relationships in the data, providing a marginal edge over the traditional approach. 

Additionally, the statistically significant alpha suggests that both models could offer value to 

investors seeking strategies that outperform standard benchmarks, even when accounting for 

widely recognized risk factors. 

The GARCH models played a important role in constructing the portfolios by accurately 

capturing and forecasting volatility, which is crucial for optimizing portfolio weights. 

However, their performance varied across different configurations. Overall, the regular 

GARCH (1,1) model, combined with a rolling window of nine weeks, delivered the best 

results, particularly for the machine learning-based portfolio. For the traditional portfolio, the 

IGARCH model outperformed the other variants, indicating its strength in modeling 

persistent volatility over time. 

The portfolio with the lowest volatility consistently achieved the best performance, 

emphasizing the importance of precise volatility modeling in portfolio optimization. This 

finding reinforces the effectiveness of the GARCH (1,1) model in balancing risk and return, 

as it provided the most accurate volatility estimates, enabling superior portfolio construction. 

These results highlight how selecting the appropriate volatility modeling framework can 

significantly impact overall portfolio performance. 

The machine learning portfolios exhibited generally low accuracy, precision, and F1 scores, 

which aligns with expectations due to the inherent challenge of fitting a single model to 

stocks from diverse industries. The varying characteristics and dynamics of these industries 

likely contributed to the models’ limited predictive precision across the board. Among the 

machine learning models, Random Forest (RF) demonstrated the best overall performance, 
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followed by Support Vector Machines (SVM), Gradient Boosting Machines (GBM), and 

finally K-Nearest Neighbours (KNN). 

While RF and SVM models had comparable annualized standard deviations, GBM exhibited 

slightly higher STD, indicating greater variability in its predictions. KNN, although achieving 

the lowest STD, struggled to deliver high returns, making it less effective for portfolio 

optimization. As a result, no KNN-based portfolios ranked among the top eight performing 

portfolios. This highlights that while KNN was able to minimize risk to some extent, its 

inability to capture sufficient returns rendered it unsuitable for outperforming the benchmark 

or other models. 

These findings underscore the importance of balancing risk and return when evaluating 

machine learning models for financial applications. While RF and SVM emerged as robust 

options, the performance variations among models suggest that their effectiveness may 

depend on specific portfolio objectives, or the characteristics of the assets being analysed. 

Future research could explore industry-specific model tuning or hybrid approaches to improve 

overall predictive performance and portfolio outcomes. 

5.1 Limitations and Pitfalls 

While this study provides valuable insights into portfolio optimization using machine learning 

and traditional models, several limitations and potential pitfalls must be acknowledged. These 

challenges highlight areas where further refinement or alternative approaches may be needed 

to enhance the reliability and applicability of the findings. 

Models such as GARCH and ARIMA rely on assumptions of stationarity, linearity, and 

normality in financial time series data. However, financial markets often exhibit non-linear 

and non-stationary behaviour, which can limit the predictive accuracy and robustness of these 

models. GARCH models, for instance, may struggle to fully capture volatility in rapidly 

changing market conditions or during periods of extreme turbulence. 

Machine learning models, especially Random Forest and Gradient Boosting Machines, risk 

overfitting to historical data, which can reduce their ability to generalize to new, unseen 

market conditions. 
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Machine learning models often function as "black boxes," making it difficult to interpret the 

underlying drivers of their predictions.  

The study's analysis was conducted over a limited 200-week period, which may not fully 

capture long-term market trends or account for extreme events such as financial crises.  

The choice of input features, including financial and macroeconomic variables, plays a critical 

role in model performance. The omission of potentially influential factors due to data 

unavailability may limit the accuracy and robustness of predictions. 

Feature engineering for machine learning models introduces subjectivity, which could 

inadvertently bias the results. 

The use of rolling windows (three, six, and nine weeks) allows the models to adapt to 

changing market conditions, but it also introduces potential limitations. A short rolling 

window may lead to overly reactive models that fail to capture longer-term trends. Longer 

windows may smooth out short-term volatility, reducing the model’s ability to respond to 

sudden market shifts. 

While the study employs advanced methods like GARCH for covariance estimation, the 

results may still be influenced by outliers or extreme correlations during volatile periods. 

Portfolio optimization assumes that the historical relationships between assets will persist, 

which may not always hold true, particularly in dynamic and unpredictable markets. 

Financial markets are influenced by a wide array of factors, many of which are unpredictable. 

Machine learning models may fail to adapt to sudden market changes, such as geopolitical 

events or rapid technological advancements. 

Machine learning models, especially ensemble methods like Gradient Boosting Machines, are 

computationally intensive and require significant resources for training and optimization. This 

can be a constraint in real-time applications where rapid decision-making is critical. Scaling 

these models to larger datasets or portfolios with more assets may introduce additional 

computational and storage demands. 

 



 

51 

 

6 Conclusion 

This thesis aimed to explore the potential of machine learning (ML) techniques in generating 

alpha by optimizing portfolio weights and to determine whether these approaches can 

outperform traditional financial models. By integrating advanced ML algorithms such as 

Random Forest (RF), Support Vector Machines (SVM), Gradient Boosting Machines (GBM), 

and k-Nearest Neighbours (KNN) with traditional models like ARIMA and GARCH, this 

research provided insights into the effectiveness of these methods in predicting returns, 

estimating volatility, and constructing risk-adjusted portfolios for the OBX index. 

The machine learning-based portfolios consistently outperformed the benchmark OBX index 

in terms of both risk and return. The Random Forest portfolio, in particular, demonstrated 

exceptional performance, achieving an annualized return of 17.83% with a risk level of 

11.56%, significantly better than the benchmark's return of 10.22% and risk of 18.18%. 

Over the 200-week evaluation period, the Random Forest portfolio achieved a cumulative 

return of 97.71%, nearly doubling the benchmark's cumulative return of 49.80%. 

Portfolios enhanced by ML models demonstrated superior Sharpe and Sortino Ratios 

compared to traditional models, reflecting their ability to achieve higher returns per unit of 

risk and better downside risk management. 

The highest-performing portfolio achieved a Sharpe Ratio of 1.28 and a Sortino Ratio of 0.41, 

showcasing the effectiveness of ML in optimizing the risk-return trade-off. 

The Fama-French-Carhart analysis revealed statistically significant alpha values for the top-

performing portfolios, with the highest alpha reaching 2.6%. This indicates that these 

portfolios generated returns beyond those explained by traditional market factors, 

emphasizing the unique value of ML-enhanced strategies. 

Traditional models such as ARIMA and GARCH played a critical role in constructing 

covariance matrices and estimating volatility. While the best-performing ARIMA portfolio 

achieved decent results (12.27% annual return with a risk level of 12.08%), it fell short of 

ML-based portfolios in both returns and risk-adjusted metrics. 



 

52 

 

ML models demonstrated varying levels of accuracy, precision, and F1 scores, reflecting 

challenges in fitting a single model to stocks from diverse industries. KNN, for example, 

struggled to balance low risk with high returns, resulting in its exclusion from the top-

performing portfolios. 

Traditional models like ARIMA were less adaptive to dynamic market conditions, while ML 

methods occasionally exhibited overfitting and sensitivity to parameter tuning. 

The results of this thesis highlight the transformative potential of machine learning in 

portfolio optimization. By leveraging advanced algorithms, investors can achieve superior 

returns and manage risk more effectively, even in volatile and uncertain market environments. 

The ability of ML models to identify complex, non-linear patterns in financial data offers a 

significant edge over traditional methods, especially in capturing alpha and adapting to 

evolving market conditions. 

Despite its contributions, this study faced limitations, including the relatively short 200-week 

evaluation period and the sectoral bias inherent in the OBX index. Additionally, while ML 

models provided robust results, their interpretability remains a challenge, and their reliance on 

historical data may limit their adaptability during unprecedented market disruptions. 

Future studies could address these limitations by: 

• Expanding the dataset to include a broader range of indices, sectors, and economic 

conditions. 

• Exploring the integration of alternative ML techniques, such as deep learning models, 

to enhance predictive accuracy and portfolio performance. 

• Investigating hybrid approaches that combine ML and traditional models to balance 

adaptability, interpretability, and robustness. 

• Applying these methodologies to real-world scenarios, assessing their practical 

feasibility and scalability. 

This research demonstrates that machine learning techniques, when combined with traditional 

financial models, have the potential to be a valuable tool in portfolio management by 
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delivering better performance and uncovering new opportunities for alpha generation. By 

building on these findings, future advancements in financial technology and data analytics 

could further refine and enhance the strategies available to investors, paving the way for more 

efficient and effective financial markets. 
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