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Abstract
Background Retail involves directly delivering goods and services to end consumers. Natural dis-

asters and epidemics/pandemics have significant potential to disrupt supply chains, leading to

shortages, forecasting errors, price increases, and substantial financial strains on retailers. The

COVID-19 pandemic highlighted the need for retail sectors to prepare for crisis impacts on

sales forecasts by regularly assessing and adjusting sales volumes, consumer behavior, and forecast-

ing models to adapt to changing conditions.

Methods This study explores strategies for adapting sales forecasts and retail approaches in

response to such crises. By employing different machine learning (ML) methods, we analyze con-

sumer behavior changes and sales impacts across various product categories, including bottom

wear, top wear, one piece, accessories, outwear, and shoes during the COVID-19 pandemic.

Results The gradient boosting and CatBoost algorithms excelled in product groups with signifi-

cant sales changes during the pandemic. The Multi-Layer Perceptron (MLP) algorithm performed

well in low-volume categories like accessories and footwear. Meanwhile, MLP, LightGBM, and

XGBoost were effective in medium-volume categories such as outerwear and underwear.

Conclusion The findings highlight the efficacy of these models in adapting sales forecasts to crisis

conditions, offering a practical approach to enhancing retail resilience against future disruptions.

This study offers an effective approach for adapting sales forecasting to shifting consumer beha-

viors during crises.
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Introduction and background

Crisis periods can profoundly affect the retail sector, presenting various business chal-
lenges. It is crucial to analyze pre-crisis and crisis period data together to meet customer
needs better and make forecasting models sensitive to these changes. The COVID-19
pandemic can be considered the most significant crisis in modern times. 2020 was
extremely dynamic for the world economy, with lockdowns, job losses, and supply
chain disruptions being among the main issues caused by the pandemic.2 During this
crisis, COVID-19 also significantly impacted global stock markets.3 Experts struggled
to obtain reliable economic forecasts, reducing prediction performance.4 The retail
sector is one of the most adversely affected by the COVID-19 pandemic, facing chal-
lenges such as store closures and changing consumer demand.5 During COVID-19
restrictions, consumers quickly identified categories like shoes and accessories as “non-
essential” and significantly reduced their spending on such items.6 This situation has led
to issues in inventory management,7 pricing, and marketing activities.8

A crisis can deeply impact the retail industry, as seen during the COVID-19 pandemic,
which caused global disruptions and shifted consumer demand for non-essential items.
To navigate such challenges, it is crucial for retailers to understand pre-crisis conditions
and employ accurate sales forecasting models. Using machine learning algorithms like
Gradient Boosting, CatBoost, and MLP can improve predictions by accounting for
rapid changes in consumer behavior. This study combines pre-crisis and crisis data to
refine forecasting models, helping retailers better prepare for future crises.

The machine learning (ML) algorithms used in this study were selected to predict con-
sumer behavior and sales trends more accurately during crises. Specifically, algorithms
like Gradient Boosting, CatBoost, and Multi-Layer Perceptron (MLP) are known for
high performance across different datasets and problem types. There are several
reasons for selecting these algorithms: Gradient Boosting and CatBoost perform well
on complex and variable datasets. They can capture intricate patterns and accurately
predict product categories with high sales volume and variability. Gradient Boosting
algorithms can easily adapt to the specific needs of applications by learning according
to different loss functions.9 MLP algorithm can solve regression and classification pro-
blems using artificial neural networks (ANN). This algorithm shows high success in
product categories with more straightforward and stable sales patterns. The layered struc-
ture of MLP allows for better processing of different features in the dataset.10 Mitra et al.
(2022) compared five different ML methods (Random Forest (RF), extreme gradient
boosting (XGBoost), gradient boosting, adaptive gradient boosting (AdaBoost), and
ANN algorithms) and a hybrid model for sales forecasting with weekly sales data of a
USA-based retail company.10 It is observed that the hybrid model predicts more accur-
ately than the other models according to various performance metrics. Krishna et al.
(2018) analyzed forecasting a retail store’s sales using different ML techniques.12

They presented Regression Analysis and Boosting techniques comparatively and stated
that boosting algorithms give better results. Cunha et al. (2023) analyzed the effects of
the COVID-19 pandemic on the retail experience of e-commerce customers in the super-
market industry.13 Their study aimed to understand how the pandemic has affected cus-
tomer satisfaction in this sector. Ilieva (2022), in his research on e-commerce customer
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satisfaction, examined how the COVID-19 pandemic has shaped customer behavior in
various retail sectors.14 Similarly, studies examining the contribution of machine learning
techniques to retail sales forecasting during crisis periods have increased. For example,
Sleiman et al. (2022) used machine learning models to forecast sales in the fashion
sector in France during the COVID-19 pandemic and analyzed the effects of the crisis
in detail.15 Likewise, Kim et al. (2023) examined the impacts of the pandemic on different
retail categories in South Korea and compared the performance of traditional time series
models with machine learning methods.16

This study addresses the gap in the literature regarding sales forecasting during crises,
as most existing research focuses on normal conditions. The need for this study arises
from the inadequacy of traditional models in predicting consumer behavior during unex-
pected crises like COVID-19. This research demonstrates how machine learning can offer
more accurate and adaptable forecasts by integrating pre-crisis and crisis data. In doing
so, it fills a critical gap in the literature on crisis management and sales forecasting,
helping retail businesses better prepare for future disruptions.

This study combines pre-crisis and crisis (COVID-19) data, offering more accurate
results than traditional methods. Data from a women’s clothing company with 284
stores and six product categories were used. The primary objective of this study is to
analyze changes in consumer behavior in the retail sector during crisis periods (e.g.
during the COVID-19 pandemic) and to forecast sales using different machine-learning
methods. The study aims to enhance prediction accuracy under crisis conditions by com-
bining pre-pandemic and pandemic data. The research hypotheses include that the accur-
acy of machine learning models will vary across different product groups during crisis
periods and that some algorithms will perform better than others.

The Turkish retail sector was chosen for this study due to its broad and diversified
market structure, store types catering to various income groups, and significant shifts in
consumer behavior during the COVID-19 pandemic. Turkiye is a major player in the
global women’s clothing retail sector in terms of production capacity and export potential.
As of 2021, it held a 3.7% share in apparel and textile exports, making it the 6th largest
exporter in the world.1 These characteristics provide an ideal setting for observing the dif-
ferential impacts of the pandemic on luxury and standard consumption and for analyzing
the performance of machine learning algorithms across various product categories.

Methodology

Used machine learning algorithms

ML algorithms are widely used in forecasting and problem-solving during various crisis
periods. In this study, sales predictions were performed for a company operating in the
retail sector with ML algorithms using data from the pandemic period. Gradient
Boosting, CatBoost, and LightGBM algorithms from boosting methods, CART algo-
rithm from decision tree methods, MLP from ANN methods, and KNN methods were
used to predict sales amounts depending on product groups.

Gradient boosting algorithms are powerful ML techniques that have significantly suc-
ceeded in various applications. These algorithms can be easily adapted to the specific
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needs of applications, e.g. they can be learned according to different loss functions.11

CatBoost is a member of boosting ML algorithms and a powerful tool for classification
and regression tasks. CatBoost is a suitable algorithm for categorical and heterogeneous
data.17 Cat-Boost uses weighted voting to increase the weight of data associated with
minor errors, improving the predicted results’ accuracy.18 LightGBM is a boosting-based
algorithm and aims to improve prediction accuracy by combining weak classifiers.
Compared to standard boosting tree algorithms, LightGBM uses histogram optimization
to segment continuous features, which saves memory and speeds up computation.19 The
CART algorithm is one of the most successful classification and regression analysis algo-
rithms. It is flexible and robust and does not depend on the distribution type because it is
non-parametric.20 MLP is a kind of ANN trained using back-propagation algorithms. It
can be used to solve both regression and classification problems. In an MLP structure,
there are many neurons with different functions. The input layer is the first layer and con-
tains the input variables for processing. Based on the data obtained from the hidden
layers, the output layer calculates the output or requested values.11 Regression problems
are concerned with predicting the outcome of the dependent variable given a set of inde-
pendent variables. KNN predictions are also based on a voting scheme where the winner
is used to label the query.21 The methodology of this study involves analyzing pre-crisis
and crisis period data to make retail sales forecasts through ML algorithms. The study
utilizes data from a retail company operating in Turkiye’s women’s clothing sector,
with 284 stores. The company’s data covers six main product types: top wear, one-piece
wear, outwear, shoes, accessories, and bottom wear.

Data management policy

Data collection. Sales data were collected daily from January 2017 to December 2022,
covering both pre-pandemic (2017-2020) and pandemic (2020-2022) periods. The data
includes sales figures from 284 stores in 47 cities across Turkiye, where approximately
67% of the country’s population resides. The data includes daily sales figures across
six main product categories from 2017 to 2022, covering pre-crisis and crisis periods,
including the COVID-19 pandemic. The authenticity and reliability of the data are
ensured as it represents real-world sales transactions and store performance over an
extended period, providing a solid foundation for the analysis. The company was
chosen for its comprehensive sales data, covering various product categories and pre-
crisis and crisis periods, offering valuable insights into consumer behavior shifts
during the COVID-19 pandemic. While this study primarily focuses on traditional
brick-and-mortar retail, the analysis does not include cross-border e-commerce data.
The exclusion of cross-border e-commerce from the scope of this study is due to the
focus on physical store sales data, which provides a more comprehensive and represen-
tative analysis of consumer behavior in this context. However, the importance of e-com-
merce, especially post-pandemic, is acknowledged, and this limitation is noted. In future
research, cross-border e-commerce data may be considered for a more holistic analysis.
Additionally, three new parameters thought to impact the model were included: GDP per
capita, population size of the target audience in the store region, and storage area in the
stores as three new independent variables. GDP per capita indicates economic prosperity,
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directly influencing consumer purchasing power and, consequently, store sales; stores in
regions with higher GDP per capita typically achieve greater sales. The population size of
the target audience in the store region shapes consumer behavior and store sales by deter-
mining the potential customer base; densely populated areas offer higher customer traffic
and sales potential. The storage area enhances a store’s stocking capacity and product
variety, enabling quick responses to consumer demand and supporting sales.

Data cleaning and preparation. The data pre-processing steps are as follows:
Step 1: Encoding was conducted for categorical variables such as which brand the

store sells and the type of store.
Step 2: GDP per capita in the regions where the stores are located was added to the

data as an input variable.
Step 3: The female population aged 18–45 in the target group of the stores was added

to the model as an input variable.
Step 4: Warehouse areas of the stores were added to the model as an input variable.
Step 5: 25 product groups were grouped under 6 main product groups.
Pre-processing steps addressed missing data analysis and inconsistencies. Once the

data were made suitable for analysis, normalization procedures were conducted.
Following this, three ML algorithms known for their high performance across different
datasets and problem types were selected: Gradient Boosting, CatBoost, and MLP.

Model training and evaluation. The data were divided into training and test sets. The train-
ing set was used to train the models, while the test set evaluated their performance. Each
algorithm was trained separately for different product categories, with cross-validation to
optimize parameters. Model performance was assessed using metrics like R-square,
MAE, RMSE, and MSE, and differences between product categories and store types
were analyzed. The results highlight the most accurate algorithms, offering valuable
insights into changing consumer behavior and helping retailers improve sales forecasts
and strategic decisions during crises.

Performance measurement of models

The difference between classification and regression is the values that the dependent vari-
able can take. In classification, the dependent variable can have only two values, usually
coded as 0 and 1, whereas in regression, it has a continuous value. Although regression
analysis has been used in many ML studies, there has yet to be a consensus on a standard
measure to evaluate the regression results. Many studies use Mean Squared Error (MSE),
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE).22 Table 1 shows the metrics used in performance metrics in
prediction studies.

In this study, MAE, MSE, RMSE, R2, and MAPE metrics were used to evaluate the
performance of the algorithms.

Mean Squared Error (MSE) is a widely used metric in regression analysis representing
the average squared difference between the predicted and actual values. Similarly, Root
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Mean Squared Error (RMSE) is another common metric that measures the differences
between the values predicted by a model (or an estimator) and the values observed).

R2 is the coefficient of determination that can take values in the range (−∞, 1] accord-
ing to the mutual relation between the ground truth and the prediction model. MAE
(Mean Absolute Error) measures the average of the absolute differences between pre-
dicted and actual values, while MAPE (Mean Absolute Percentage Error) expresses
these differences as a percentage, both serving as metrics to evaluate the accuracy of a
predictive model.43

Application

Data collection

This study uses 2017-2022 sales data of a company operating in the retail sector. Monthly
sales data for 25 different products were acquired. The retail company sells three brands

Table 1. Metrics used in prediction studies.

Resources
Predicted/
Forecasted Variable MSE RMSE MAPE MAE R2 AUC ROC

Henzel & Sikora, 202023 Promotion efficiency ✓ ✓ ✓
Yesilyurt, 202124 Daily river flow ✓ ✓ ✓
Park et al., 202325 Wind power outputs ✓ ✓
Shinjae Kim, 202126 Confirmed deaths

(COVID-19)
✓ ✓

Szczepanek, 202227 Daily streamflow ✓
Kang et al., 201928 Social media

popularity
✓ ✓

Shi, 202329 Sales ✓
Ding et al., 202030 Sales ✓
Gür, 202331 Stock price ✓ ✓ ✓ ✓
Chen et al., 202432 Sales ✓ ✓ ✓ ✓
Zhao et al., 202233 Building cooling load ✓
Ye et al., 202334 Photovoltaic power ✓ ✓
Srivastava et. al, 201935 Solar radiation ✓
Bao et al., 202336 Forest height ✓ ✓
Zimmerman et al.,

201637
Influenza ✓ ✓

Abbate et al., 202238 The number of daily
orders

✓

Cordeiro-Costas
et al.,202339

Load ✓ ✓ ✓ ✓

Al-azzawi et al., 202340 Electrical load ✓
Demir &

Citakoglu,202341
Solar radiation ✓ ✓ ✓

Haque et al., 202342 COVID-19 Third
Wave

✓

This Study Pre-post crises sales ✓ ✓ ✓ ✓ ✓
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(I, T, and M). At the same time, the retail company has exclusive (E), high (H), standard
(S), and outlet (O) type stores. Raw data are categorized as follows: Store Name (283
stores) as String; Year (2017-2022) as Integer; Month (monthly based) as Integer;
Product Type (25 different products) as Categorical; Sales Amount (currency) as Float;
Sales Quantity (number of products) as Integer; Indicator (I, T, M) as Categorical;
Store Type (E, S, H, O) as Categorical.

Data analysis

Changes to store types. When the data based on store type is analyzed, the average sales in
(E)-Exclusive type stores pre-pandemic period was 13409.84. In contrast, the average
sales decreased by 23% to 10311.58 during the pandemic. Average sales in
(H)-High-type stores decreased by 21% from 9435.38 to 7414.53 during the pandemic.
The (O)-Outlet store type experienced a smaller decline, with average store sales falling
by 19% from 12357.08 to 9974.471. Average sales in (S)-Standard type stores decreased
by 15% to 6750,784 from 7952,456 before the pandemic. (E)-Exclusive type stores
experienced the highest decline in average sales, while (S)-Standard type stores experi-
enced the lowest drop. These results indicate that people cut down on their luxury
needs more than their standard needs.

Changes according to indicator. The change in indicator-based sales of stores in the pre-
pandemic period and the pandemic period is given in Table 2.

When the change in average sales amounts in Table 2 is analyzed, only the stores
selling I, T, and M brands simultaneously have seen a 31% increase in average sales
amount. The average sales amounts of all other stores decreased. The most significant
decrease was in the stores selling the brand, which was selling the most luxurious in
type M. Type Stores, with indicator type “O” representing outlet sales. Outlet sales
can be one of the three brands. There was a 19% decrease in “O” type sales.

Changes according to products. Pre-pandemic and pandemic average sales by product are
given in Table 3.

Table 3 shows sales decreased by 20% on average during the pandemic. The decrease
in demand for products with above-average decreases shows that there has been a change
in the purchasing behavior of customers during the pandemic period. Other outerwear,

Table 2. Indicator-based average sales (quantity-based) changes.

Indicator Pandemic Pre-Pandemic Change Direction

ITM 15921,29 12093,94 −0,316470 31% increase
IM 12599,81 14502,64 0,131205 13% decrease
T 6524,112 7735,118 0,156560 15% decrease
O 9974,471 12357,08 0,192813 19% decrease
I 8027,959 10024,98 0,199205 19% decrease
M 18806,12 32046,34 0,413159 41% decrease
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boots, and cosmetics showed a significant decrease of over 50%. In addition, beach pro-
ducts were not offered to the market by the company, considering that there would be
no sales.

While knitwear sales only fell by 3%, much lower than the general decrease,
demand remained steady. Sales of sweatshirts and textile accessories (scarves,
shawls, hats, etc.) increased by over 35%, reflecting a shift in customer preferences
during the pandemic as more people worked from home. Products like overalls, slip-
pers, jewelry, and knitwear saw demand decrease below the average, but the decline
was insignificant.

Table 3. Changes according to products.

8 Science Progress 108(1)



Sales prediction by machine learning algorithms. Adebola and Onyekwelu (2019) used ML
methods to detect trends in customer behavior.44 They developed a model with informa-
tion such as invoice number, stock code, product information, sales amount, invoice day,
unit price, customer number, and country of sale as variables. This study used variables
such as product information, product sales amount, and sales amount.

In this part of the study, ML algorithms were used to predict 2023 sales based on
2017-2022 data. Key steps include encoding categorical variables like store type and
brand. Additional independent variables, such as store type, monthly product sales,
GDP per capita, target group population, and warehouse space, were added to the
model. These variables help capture correlations affecting sales. Finally, 25 product
groups were categorized into six main groups for analysis: Accessories (Leather,
Textile and Other Accessories, Jewelry, Cosmetics, and Beachwear Staff), Bottom
wear (Skirts, Jeans, Pants, Shorts), Out wear (Other outwear, Coat, Topcoat), One
Piece (Jacket, Dresses, Jumpsuit), Top wear (Blouse, Basics, Sweatshirt, Knitwear),
and Shoes (Shoes, Boots, Slipper, Sandals).

Several ML algorithms have been used to model crisis/natural disaster periods.
CART,45 MLP,4 XGBooost,46 LightGBM,47 Catboost,48 KNN,49 Gradient Boosting,50

and ML algorithms were used for crisis periods such as COVID-19 pandemic, terrorist
attacks, and earthquakes. In this study, CART, LIGHTGBM, CatBoost, KNN,
Gradient Boost, XGBoost, and MLP algorithms were used as in the above studies.
2023`s sales data were predicted on a product group basis with seven different ML algo-
rithms. 2023`s sales values and the performance measurement metrics calculated accord-
ingly by ML algorithms and error values are presented in Table 4.

When the results in Table 4 are analyzed, the highest R2 value was 94% in the Gradient
Boosting algorithm in the top wear category product group. On the other hand, the MLP
algorithm gave the lowest MAPE value of 0.20 in the shoe product group. CatBoost,
Gradient Boosting, XGBoost, and MLP algorithms gave the lowest RMSE value, 0.04.

In the accessories product group, the MLP algorithm gave the best prediction results
with a MAPE value of 0.20, and the MLP algorithm had the highest R2 value of 0.68. In
the Bottomwear product group, the MLP algorithm with an R2 value of 0.74, XGBoost
with a MAPE value of 0.38, and the MLP algorithm with 0.42 gave the lowest error. In
the Outerwear product category, the MLP algorithm had an R2 value of 0.93, and the
LightGBM algorithm had a MAPE value of 0.11. In the one-piece product category,
the XGBoost algorithm had an R2 value of 0.92, and the CatBoost algorithm had a
MAPE value of 0.33. In the Topwear product category, significant metric values were
obtained by the Gradient Boosting algorithm with an R2 value of 0.94 and the
CatBoost algorithm with a MAPE value of 0.21. In the Shoe product category, the sig-
nificant performance metric values belong to the MLP algorithm with an R2 value of
0.92 and the MLP algorithm with a MAPE value of 0.20.

Product group-based average sales values for pre-pandemic and pandemic periods
were analyzed to evaluate the data better. In Figure 1, product-based average sales
amounts are presented.

Figure 1 shows that shoes and accessories had the lowest sales, while topwear and one-
pieces had the highest. The largest sales difference between the pre-pandemic and
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Table 4. Performance metrics.

MODELS

CART MAE MSE RMSE R2 MAPE

Accessories 0.05 0.005 0.07 0.36 0.26
Bottom wear 0.12 0.028 0.16 0.36 0.44
Out wear 0.07 0.009 0.098 0.79 0.76
One piece 0.04 0.003 0.06 0.88 0.48
Top wear 0.06 0.010 0.10 0.62 0.44
Shoes 0.08 0.012 0.1 0.38 0.38

LIGHTGBM MAE MSE RMSE R2 MAPE

Accessories 0.06 0.007 0.08 0.16 0.34
Bottom wear 0.11 0.022 0.15 0.50 0.91
Out wear 0.10 0.02 0.14 0.59 0.11
One piece 0.04 0.004 0.06 0.84 0.42
Top wear 0.07 0.014 0.11 0.51 0.87
Shoes 0.08 0.009 0.10 0.52 0.40

CATBOOST MAE MSE RMSE R2 MAPE

Accessories 0.04 0.003 0.05 0.62 0.23
Bottom wear 0.08 0.017 0.13 0.61 0.51
Out wear 0.064 0.007 0.08 0.84 0.24
One piece 0.02 0.002 0.04 0.92 0.33
Top wear 0.04 0.003 0.06 0.87 0.48
Shoes 0.06 0.006 0.08 0.65 0.30

KNN MAE MSE RMSE R2 MAPE

Accessories 0.06 0.07 0.08 0.21 0.30
Bottom wear 0.10 0.02 0.16 0.36 0.62
Out wear 0.09 0.015 0.12 0.68 0.25
One piece 0.04 0.005 0.07 0.81 0.95
Top wear 0.06 0.008 0.09 0.72 0.75
Shoes 0.09 0.014 0.12 0.18 0.46

GRADIENT BOOST MAE MSE RMSE R2 MAPE

Accessories 0.05 0.005 0.07 0.42 0.25
Bottom wear 0.10 0.02 0.13 0.60 0.47
Out wear 0.06 0.006 0.006 0.87 0.28
One piece 0.04 0.003 0.05 0.89 0.44
Top wear 0.02 0.002 0.04 0.94 0.44
Shoes 0.06 0.006 0.08 0.64 0.30

(Continued)
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pandemic periods occurred in topwear and one-piece. Gradient Boosting and CatBoost
performed best for product groups with the biggest sales changes, while MLP excelled
in the accessories and shoes category, where sales remained steady. MLP, LightGBM,
and XGBoost performed well for moderate sales changes in outwear and bottomwear.

Comparison of different machine learning algorithms for sales forecasting and their
performances are provided in Appendix 1 and 2, Table A1 and Table A2.

Figure 1. Product-based sales average for pre-pandemic vs pandemic.

Table 4. (continued)

XGBOOST MAE MSE RMSE R2 MAPE

Accessories 0.05 0.005 0.07 0.41 0.28
Bottom wear 0.10 0.02 0.15 0.50 0.38
Out wear 0.06 0.006 0.07 0.87 0.77
One piece 0.03 0.002 0.04 0.92 0.41
Top wear 0.04 0.003 0.05 0.88 0.46
Shoes 0.06 0.07 0.08 0.65 0.33

MLP MAE MSE RMSE R2 MAPE

Accessories 0.03 0.003 0.05 0.68 0.20
Bottom wear 0.07 0.011 0.10 0.74 0.42
Out wear 0.04 0.003 0.055 0.93 0.5
One piece 0.03 0.004 0.06 0.83 0.37
Top wear 0.02 0.002 0.04 0.92 0.21
Shoes 0.02 0.002 0.04 0.92 0.20

The values where each model performed the best according to the five performance metrics are highlighted in

bold.
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Algorithms like Gradient Boosting and XGBoost provide fast and effective results for
large datasets, while MLP, a neural network-based method, excels in learning complex
data relationships and performs well with large datasets. Although LightGBM delivers
fast results on large datasets, it may underperform on smaller ones. CatBoost demon-
strates strong results when working with categorical data, whereas the KNN algorithm,
despite being simple and interpretable, tends to be slow with large datasets and compu-
tationally expensive. The advantages and disadvantages of each algorithm should be con-
sidered based on the characteristics of the application and the dataset being used.

Gradient Boosting, MLP, and CatBoost are the algorithms that generally deliver the
best performance. Particularly, Gradient Boosting and MLP are notable for their high
R2 and low RMSE values in categories with high sales volumes.

Variation by categories: We observe that each algorithm performs better in certain cat-
egories. For example, MLP excels in Shoes and Accessories, while Gradient Boosting
stands out in the Top Wear and One Piece categories.

Weaker algorithms: KNN and LightGBM generally perform less than other algo-
rithms. Although these algorithms might be more effective with larger datasets, their per-
formance is limited for the data used in this study.

In conclusion, for predicting sales across various product categories in your system,
algorithms such as Gradient Boosting, MLP, and CatBoost appear to be the most reason-
able choices. Additionally, the high performance shown by algorithms such as Gradient
Boosting and CatBoost in certain product groups indicates that retailers could strategic-
ally benefit from using these algorithms for inventory management and demand forecast-
ing. This provides an advantage in terms of flexibility and quick response capabilities
during crisis periods.

Discussion and conclusions

In the first year of the COVID-19 pandemic, tens of millions officially contracted
COVID-19. This global pandemic has affected the lives of billions of people and has
been the subject of academic studies in many different fields. Academic studies have
been published on the effects of the pandemic on the retail sector, from stocking products
to using personal shopping and distribution services.51 Firms that do not consider chan-
ging consumer behavior cannot analyze demand trends correctly and fail to respond to
customer needs. Companies that cannot make accurate forecasts will encounter
difficulties.52

This study analyzed product groups affected differently during the pandemic, using
sales data from a major women’s clothing retailer in Turkiye. Overall sales decreased
by 20%, with outerwear, boots, and cosmetics dropping by over 50%. Beach products
were not offered for sale. Knitwear saw a smaller decline of 3%, while textile accessories
and sweatshirts increased by over 30%. Daily use items like overalls, slippers, and acces-
sories had smaller decreases, reflecting a shift towards practical, everyday clothing over
luxury and business attire. Analyzing sales by store type, E-type luxury stores saw a 23%
drop, indicating customers avoided luxury purchases during the pandemic. S-type stores
offering affordable seasonal products had the lowest sales loss. O-type outlet stores
experienced a 19% decrease, while H-type stores, selling more luxurious items, saw a
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21% drop. The most significant decline, 41%, occurred in the M brand, which sells luxury
fabrics like silk and cashmere. ITM stores, selling all three brands, had a 31% loss due to
their indoor locations. Stores selling I and M brands had the least impact, as they catered
to middle-income consumers in outdoor shopping centers. Overall, demand shifted
towards everyday products rather than luxury or handmade items like silk and cashmere.

Sousa et al. (2023) compared three Gradient Boosting algorithms (CatBoost,
LightGBM, and XGBoost) for predicting sales demand for a company in the cosmetics,
perfumes, and toiletries market and made predictions for three different periods (one,
five, and ten periods, ahead).53 XGBoost algorithm performed more consistently in all
prediction periods and achieved the lowest error rate. In our study, Gradient Boost,
Catboost, and LightGBM algorithms were also selected as boosting algorithms. In
general, boosting algorithms performed better in our dataset. MLP algorithm has
shown significant success in the accessories and shoes product category with low sales
volume change. The gradient boosting and CatBoost algorithms provided better results
than others in product groups whose sales volume changes the most. MLP,
LightGBM, and XGBoost algorithms performed better in product groups with medium
sales volumes, such as outwear and boot wear.

This study offers theoretical contributions to understanding consumer behavior
changes and the applicability of sales forecasting models in the retail sector during
crises. Unlike previous literature, which often focuses on normal conditions, this research
combines pre-crisis and crisis data to show how machine learning methods can generate
more accurate forecasts during crises. By analyzing the effects on different product cat-
egories, the study provides deeper insights into consumer behavior shifts and contributes
significantly to crisis management and sales forecasting literature.

This study’s findings indicate that using machine learning algorithms can enhance the
accuracy of retail sales forecasting during crisis periods. Retailers can optimize inventory
management and improve demand forecasting accuracy by using algorithms such as
Gradient Boosting, CatBoost, and MLP, especially during crises. This can aid in
making more effective strategic decisions and responding quickly to customer
demands. Integrating such models into retail management systems can provide flexibility
during fluctuating sales, minimizing revenue losses and increasing customer satisfaction.

Theoretical contributions

The theoretical contributions of this study stand out through the new perspectives it pro-
vides on retail sales forecasting during crisis periods. While the effectiveness of machine
learning methods in sales forecasting during the pandemic aligns with previous studies,
the novelty of this research lies in combining crisis period data with normal period data to
produce more accurate forecasts. Unlike many studies in the literature that focus on fore-
casting methods under normal conditions, this study offers an integrated approach specif-
ically for crisis periods.

Sleiman et al. utilized sales data from a French fashion retailer for 2019–2020 to model the
impact of the pandemic on sales. They focused solely on pandemic data, dividing the pan-
demic period into three phases: the normal period, the lockdown period, and the recovery
period. By implementing their methodology, they conducted short- and mid-term forecasting
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and compared the error rates of their model with traditional forecasting methods.54 However,
using only pandemic data for forecasting can have a limiting effect in terms of capturing data
patterns. Therefore, in this study, a longer period was chosen to include the pandemic period
better to capture the impact of the pandemic within the data. Additionally, this study examines
how different product groups were affected during crisis periods in detail, addressing product-
based impacts often overlooked in the literature. This provides a significant theoretical con-
tribution to crisis management and strategic planning in the retail sector. Kim et al., in their
study, aimed to estimate the impact on the retail sector at the sectoral level by analyzing five
main retail categories, such as fashion and food and beverages. Our study focused on a single
retail sector and aimed to forecast sales within six main product categories, considering the
effects of crisis periods.55 Similar to our study, Krishna et al. examined the impact of the
COVID-19 pandemic on a Brazilian fashion retailer’s sales using data from July 2018 to
August 2022; however, product group-based forecasting was not presented in their study.56

Limitations and future research

This study has some limitations. First, the dataset analyzed belongs to a single women’s
clothing retailer operating in Turkiye, which may limit the generalizability of the findings
to other geographical regions or retail sectors. Second, the study focuses solely on phys-
ical store sales data; online sales data were not included in the analysis. Future studies
could consider examining the impacts of other factors beyond the pandemic, such as pol-
itical instability and supply chain disruptions.
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Appendix 1

Appendix 2

Table A1. Comparison of different machine learning algorithms for sales forecasting.

Algorithm Description Advantages Disadvantages Speed
Data Size
Suitability

Gradient
Boosting

Combines many
weak learners.

Low error rate,
good
generalization

Long training time Medium Medium

XGBoost Optimized version
of gradient
boosting.

Fast, efficient,
strong with
large datasets

Complex
hyperparameter
tuning

Fast Large

LightGBM Uses
histogram-based
learning.

Fast with large
datasets

May underperform
on smaller datasets

Very
Fast

Large

CatBoost Handles categorical
features
effectively.

Strong with
categorical
data

Requires extensive
hyperparameter
tuning

Medium Medium

MLP Learn through
artificial neural
networks.

Capable of
learning
complex data
relationships

Requires large data,
long training times

Slow Large

KNN Classification based
on neighbors.

Simple,
interpretable

Computationally
expensive, slow on
large datasets

Slow Small/
Medium

Table A2. Algorithm performance comparison.

Algorithm

Accessories (R2,

RMSE, MAE)

Bottom Wear (R2,

RMSE, MAE)

Out Wear (R2,

RMSE, MAE)

One Piece (R2,

RMSE, MAE)

Top Wear (R2,

RMSE, MAE)

Shoes (R2,

RMSE, MAE)

Gradient

Boosting

0.42, 0.07, 0.05 0.60, 0.13, 0.10 0.87, 0.06, 0.06 0.89, 0.05, 0.04 0.94, 0.04, 0.02 0.64, 0.08,

0.06

XGBoost 0.41, 0.07, 0.05 0.50, 0.15, 0.10 0.87, 0.07, 0.06 0.92, 0.04, 0.03 0.88, 0.05, 0.04 0.65, 0.08,

0.06

LightGBM 0.16, 0.08, 0.06 0.50, 0.15, 0.11 0.59, 0.14, 0.10 0.84, 0.06, 0.04 0.51, 0.11, 0.07 0.52, 0.10,

0.08

CatBoost 0.62, 0.05, 0.04 0.61, 0.13, 0.08 0.84, 0.08, 0.06 0.92, 0.04, 0.02 0.87, 0.06, 0.04 0.65, 0.08,

0.06

MLP 0.68, 0.05, 0.03 0.74, 0.10, 0.07 0.93, 0.05, 0.04 0.83, 0.06, 0.03 0.92, 0.04, 0.02 0.92, 0.04,

0.02

KNN 0.21, 0.08, 0.06 0.36, 0.16, 0.10 0.68, 0.12, 0.09 0.81, 0.07, 0.04 0.72, 0.09, 0.06 0.18, 0.12,

0.09
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