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Abstract: A serious natural disaster that poses a threat to people and their living spaces is drought,
which is difficult to notice at first and can quickly spread to wide areas through subtle progression.
Numerous methods are being explored to identify, prevent, and mitigate drought, and distinct metrics
have been developed. In order to contribute to the research on measures to be taken against drought,
the Standard Precipitation Evaporation Index (SPEI), one of the drought indices that has been devel-
oped and accepted in recent years and includes a more comprehensive drought definition, was chosen
in this study. Machine learning and deep learning algorithms, including support vector machine
(SVM), random forest (RF), long short-term memory (LSTM), and Gaussian process regression (GPR),
were used to model the droughts in six regions of Norway: Bodø, Karasjok, Oslo, Tromsø, Trondheim,
and Vadsø. Four distinct model architectures were employed for this goal, and as a novel approach,
the models’ output was enhanced by using discrete wavelet decomposition/transformation (WT). The
model outputs were evaluated using the correlation coefficient (r), Nash–Sutcliffe efficiency (NSE),
and root mean square error (RMSE) as performance evaluation criteria. When the findings were
analyzed, the GPR model (W-GPR), which was acquired after WT, typically produced the best results.
Furthermore, it was discovered that, out of all the recognized models, M04 had the most effective
model structure. Consequently, the most successful outcomes were obtained with W-SVM-M04 for
Bodø and W-GPR-M04 for Karasjok, Oslo, Tromsø, Trondheim, and Vadsø. Furthermore, W-GPR-M04
in the Oslo region had the best results across all regions (r: 0.9983, NSE: 0.9966 and RMSE:0.0539).

Keywords: global change; extreme weather; machine learning; deep learning; risk assessment; SPEI

1. Introduction

Climate change mainly caused by human activities possesses a significant threat to the
environment and economic development. The Intergovernmental Panel on Climate Change
(IPCC) 6th Assessment Report [1] indicates the acceleration of climate change with the
consequences such as rising global temperatures and an increase in extreme rainfall events.
This phenomenon could be explained by the increased moisture capacity of the warmer
atmosphere. While a hotter and wetter future is projected globally, regional differences
must also be considered, as some regions may experience these changes more intensely
than others.

Droughts, characterized by extended periods of below-average precipitation, lead to
profound impacts across various sectors including agriculture, water supply, and ecosys-
tems, causing both direct and indirect effects such as lower crop yield, water scarcity, and
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extreme events such as wildfires [2,3]. In our water-dependent society, the economic and
environmental impacts are among the highest of natural hazards, with the potential for
conflicts over water resources, increasing with the severity of droughts [4–7]. Particularly
in Northern Europe, including Norway, the region is experiencing particularly notable
climatic shifts, with projections indicating more severe droughts and hotter summers due
to climate change [8–10].

Studies using hydrological modeling and climate projections suggest that droughts
will become more frequent, severe, and persistent, particularly affecting the water, energy,
food, and ecosystem sectors within these northern territories [6,11]. Additionally, shifts
in precipitation patterns are expected, with notable decreases in winter and increases in
summer, complicating water management and elevating the likelihood of drought-related
challenges [12]. To sustain vital ecosystem services and ensure social prosperity within
rapidly changing regions, a comprehensive understanding of and ability to predict these
drought events is crucial [13]. This underscores the urgent need for enhanced drought
prediction and management strategies to address water security and to mitigate the adverse
impacts on society and the environment, particularly in the vulnerable northern regions
of Europe.

Machine learning (ML) and deep learning (DL) models are widely recognized as
advanced and powerful tools to utilize for making more accurate and region-specific pre-
dictions using observed climate data and exploring the predictability of climate systems.
These techniques are utilized as predictive tools across various fields globally, supported by
the increased availability of big data (Figure 1). The vast availability of big data in drought
prediction greatly benefited researchers employing ML, contributing toward a sustainable
ecosystem [14–16]. ML techniques such as the adaptive neuro-fuzzy inference system (AN-
FIS), artificial neural networks (ANN), random forest (RF), and support vector machines
(SVM) gained widespread use in prediction models [17]. Machine learning methods excel
at handling large datasets and complex analyses in climate science, effectively modeling in-
tricate relationships in high-dimensional data, including missing values. These capabilities
make them particularly well-suited for tackling complex, data-rich environments [18–20].
As a result, ML models have been successfully employed in environmental and natural haz-
ard research, including tasks such as identifying areas prone to land subsidence, landslides,
and extreme weather events, as well as flood and drought prediction [17,20].
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chines, including the wavelet decomposition (W-ELM) model, are reliable tools for pre-
dicting hydrological drought in the Wadi Mina Basin, Algeria. Moreover, Achite et al. [23] 
highlighted the need for extensive drought prediction studies in Mediterranean regions. 
They implemented a comprehensive suite of ML models and found wavelet-enhanced 
GPR models show significant potential in estimating drought indices effectively, estab-
lishing a foundation for future predictive endeavors in drought-prone areas. Pande et al. 
[24] initially calculated SPI3 and SPI6 to detect droughts in the region, utilizing monthly 
rainfall data from the River Godavari spanning from 1989 to 2019. Subsequently, six 
distinct models were developed to forecast drought in the study area and were examined 
using five different methods. The methods include SVM, bagged trees, boosted trees, 
robust linear regression, and Matern GPR. Ultimately, they concluded that the Matern 
GPR provides more precise results compared to other models in their findings. Latifoğlu 
et al. [25] are also one of the researchers who carried out drought studies utilizing the SPI 
and the standard precipitation evapotranspiration index (SPEI). Analyses were conducted 
employing ANN, SVM, and GPR methods, utilizing meteorological data from two distinct 
stations in the Euphrates basin spanning the years 1965 to 2022 and according to their 
results GPR demonstrated the most effective outcomes. Talebi et al. [26] carried out a 
study focused on predicting future droughts using MLP and RF techniques in Iran. 
Subsequently, these algorithms were integrated with the genetic algorithm (GA). In the 
analysis, they revealed that RF stands out as the superior algorithm compared to MLP. 

Furthermore, among the deep learning models, the utilization of a dynamic recurrent 
neural network (RNN) and the long short-term memory model (LSTM) have been 
combined and applied in various locations with excellent results [27]. RNNs are designed 
to handle sequential data, making them particularly effective for time series analysis, 
which encompasses variables such as drought indices. RNN possess a hidden state that 
retains information from past sequences, enabling them to identify and learn from long-
term patterns in the data. An LSTM network builds on this by incorporating the memory 
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Recent advancements in ML have also been employed in drought prediction. For
instance, Pande et al. [21] tested an improved SVM model and found varying levels of
success with different kernel functions based on the time steps for predicting the standard-
ized precipitation index (SPI) in the upper Godavari River basin. Emphasizing droughts as
severe climatic events, Achite et al. [22] demonstrated that the extreme learning machines,
including the wavelet decomposition (W-ELM) model, are reliable tools for predicting
hydrological drought in the Wadi Mina Basin, Algeria. Moreover, Achite et al. [23] high-
lighted the need for extensive drought prediction studies in Mediterranean regions. They
implemented a comprehensive suite of ML models and found wavelet-enhanced GPR
models show significant potential in estimating drought indices effectively, establishing
a foundation for future predictive endeavors in drought-prone areas. Pande et al. [24]
initially calculated SPI3 and SPI6 to detect droughts in the region, utilizing monthly rainfall
data from the River Godavari spanning from 1989 to 2019. Subsequently, six distinct mod-
els were developed to forecast drought in the study area and were examined using five
different methods. The methods include SVM, bagged trees, boosted trees, robust linear
regression, and Matern GPR. Ultimately, they concluded that the Matern GPR provides
more precise results compared to other models in their findings. Latifoğlu et al. [25] are
also one of the researchers who carried out drought studies utilizing the SPI and the stan-
dard precipitation evapotranspiration index (SPEI). Analyses were conducted employing
ANN, SVM, and GPR methods, utilizing meteorological data from two distinct stations in
the Euphrates basin spanning the years 1965 to 2022 and according to their results GPR
demonstrated the most effective outcomes. Talebi et al. [26] carried out a study focused
on predicting future droughts using MLP and RF techniques in Iran. Subsequently, these
algorithms were integrated with the genetic algorithm (GA). In the analysis, they revealed
that RF stands out as the superior algorithm compared to MLP.

Furthermore, among the deep learning models, the utilization of a dynamic recurrent
neural network (RNN) and the long short-term memory model (LSTM) have been com-
bined and applied in various locations with excellent results [27]. RNNs are designed to
handle sequential data, making them particularly effective for time series analysis, which
encompasses variables such as drought indices. RNN possess a hidden state that retains
information from past sequences, enabling them to identify and learn from long-term
patterns in the data. An LSTM network builds on this by incorporating the memory ca-
pability of an RNN. The main innovation of LSTM is its memory cell (ct), which stores
state information. This cell is controlled by numerous self-parameterized control gates
for access, modification, and clearance. When the input gate is active, the information
from each new input is stored in the cell [28–30]. For problems that require the sequential
order of inputs, the current state-of-the-art network design is the so-called LSTM, first
introduced by Hochreiter and Schmidhuber [31]. The LSTM model addresses the issue
faced by traditional RNNs in learning long-term dependencies, such as the storage effects
observed in hydrological catchments. These effects are crucial in hydrological processes,
particularly in snow-driven catchments [32].

As highlighted by Villegas-Ch and Garcia-Ortiz [33], LSTM has a proven ability to
handle temporal sequences and store information over time, which is critical for under-
standing and predicting long-term climatic phenomena such as droughts. Wu et al. [34]
used LSTM to build statistical models by means of meteorological variables as predictors
and the SPI3. The results indicate that the LSTM models that accurately simulated SPI3 in
the training, validation, and test sets utilizing ERA5 reanalysis data are highly accurate.
Wang et al. [35] used the LSTM algorithm to predict and evaluate drought conditions using
multiple source features, concluding that LSTM in conjunction with multi-source variables
considerably improves the accuracy and reliability of drought prediction. Dikshit et al. [36]
applied this deep learning approach, specifically LSTM, with a global climatological dataset
to understand the predicting skills in terms of SPEI values and analyzed the variation in
terms of drought categories and spatial variation. They concluded that this technique was
more effective for forecasting than typical machine learning approaches. Kratzert et al. [32]
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investigated the feasibility of using LSTM to simulate runoff from meteorological obser-
vations and demonstrated comparable performance to their baseline hydrological model
(SAC-SMA + Snow-17). Phetanan et al. [37] also combined the SWAT and LSTM models to
simulate water flow rates in a tidal river, highlighting the Soil and Water Assessment Tool
(SWAT) with LSTM (SWAT-LSTM) model’s potential for accurate and efficient simulation
of water flow rates in tidal river systems. The promising performance of those LSTM
models lends credence to their utility in researching the predictability of climate systems
and developing predictions using observed climate data. Taylan [38] explored the potential
of LSTM by using SPI for forecasting drought in Türkiye and underlined the efficacy of
LSTM, a deep learning technique, in drought research and verified the excellent outcomes.

Additionally, wavelet transform/decomposition (WT) has proven to be effective in
enhancing the performance of these models. Belayneh et al. [39], for instance, enhanced
SVM and ANN with WT preprocessing and observed that the artificial neural networks
paired with WT (W-ANN) outperformed the support vector machines coupled with WT
(W-SVM) in predicting SPI values in the Awash River Basin, Ethiopia. Deo and Şahin [40]
predicted droughts using ANN for SPEI in Eastern Australia, with data spanning from
1915 to 2012, where the multi-layer perceptron (MLP) model demonstrated superior per-
formance. Particle Swarm Optimization (PSO) and the Response Surface Method (RSM)
are also commonly incorporated into SVM in addition to ANN. Piri et al. [41] recently
conducted a comparative analysis of four machine learning models to investigate the
predictability capabilities in meteorological drought indices and revealed that SVR-RSM
demonstrated superior accuracy and trend detection compared to other models, while
SVR-PSO outperformed ANN and standard SVR. Tuğrul and Hinis [16] conducted a study
on drought forecasting by using various ML algorithms, SVM, ANN, decision tree (DT),
and random forest (RF), in the Apa Dam. WT in their study was also applied to improve
models’ performances with RF and W-SVM showing superior performance. Highlight-
ing agriculture, meteorological, and hydrological droughts as natural hazards, Elbeltagi
et al. [42] investigated potential future droughts with the help of RF, random tree (RT), and
Gaussian process regression (GPR) models for the study area of India. Their results suggest
that the RF was the most effective model for forecasting droughts compared to the others.

This study compares five different methods considering their drought prediction
capabilities, combining machine learning and signal processing techniques, to assess their
effectiveness and suitability for diverse regional contexts in six locations (Oslo, Tromsø,
Vadsø, Trondheim, Bodø, and Karasjok) of Norway. The four methods under investigation
include LSTM: a recurrent neural network adept at capturing long-term dependencies in
sequential data, making it well-suited for forecasting drought index values and capturing
seasonal effects [28,32]. SVM: a robust supervised learning model capable of handling
complex relationships between climate variables, making it suitable for both drought clas-
sification and severity prediction, even with limited data. GPR: it is a model based on
probability theorems, where some of its variables exhibit a multivariate Gaussian distri-
bution [23,43]. RF: it is a supervised machine learning method used in both classification
and regression [44,45]. Additionally, these four methods will be coupled with wavelet
decomposition (WT): a versatile signal processing technique capable of capturing both
high-frequency and low-frequency patterns in climate data, making it suitable for prepro-
cessing data to enhance the performance of various drought forecasting models, including
SVM and LSTM [46].

Upon reviewing the literature, it becomes evident that the methods employed align
closely with those utilized in this study. However, a crucial aspect to consider is the
integration of the utilized methods in this study with the chosen transfer method, wavelet,
and the subsequent comparison of the results. This study employed four distinct algorithms,
utilizing WT to enhance the model outcomes, showcasing the article's originality.

The aim of this study is to comprehensively evaluate and compare the effectiveness
of four advanced machine learning and signal processing techniques, LSTM, SVM, GPR,
and RF, each integrated with WT, for predicting droughts in various regions of Norway.
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The study aims to assess the strengths and weaknesses of each method and determine
their suitability for different drought forecasting contexts in each region, with the ultimate
goal of enhancing the accuracy and reliability of drought predictions, thereby providing
valuable insights for water resource management, agricultural planning, risk assessment,
and ecological conservation efforts in the study area.

2. Methodology

This work presents an analysis of SPEI data collected from six distinct locations of
Norway. The analysis used a range of machine and deep learning methods implemented
within four different model architectures. In this study, the algorithms implemented include
SVM, RF, GPR, and LSTM. Upon completing the analyses, WT was paired to enhance the
performance of the results. The methodological framework in this study is summarized
graphically in Graphical abstract.

2.1. Study Region and Data

The study encompasses six diverse regions across Norway, each characterized by
distinct geographical and climatic conditions that influence their drought forecasting
needs (Figure 2). These regions include Oslo, Tromsø, Vadsø, Trondheim, Bodø, and
Karasjok, spanning from the southern lowlands to the northernmost points of the country.
Norway’s climate is predominantly maritime, strongly influenced by its latitude and
extensive coastline, with the Gulf Stream bringing milder air to its shores. Oslo, the capital,
experiences a humid continental climate, with relatively warm summers and cold winters,
making it critical to evaluate drought impacts on both urban and surrounding agricultural
areas. Moving north to Tromsø and Vadsø, the climate shifts to subarctic, where winters are
longer and harsher, and summers are milder and shorter, shaping the seasonal dynamics
of drought risk. Trondheim and Bodø, with their proximity to the sea, experience a more
temperate oceanic climate, which can lead to varied precipitation patterns and influence
drought frequency and severity. Karasjok, in the far north, lies well within the Arctic Circle
and constitutes an entirely different climate regime, characterized by very cold winters
and brief, mild summers, posing specific challenges for drought forecasting. By examining
these varied regions, the study aims to encapsulate the wide array of climate conditions
present in Norway (Table 1), ensuring that the drought prediction methods evaluated can
be adapted to the diverse environmental circumstances found throughout the country.

Table 1. Data statistics.

Data Location Point Inıtial End Type of Data Min Max Latitude Longitude

Bodø 12-1901 12-2022 SPEI12 −2.8 2.4 67.280324 14.404921
Karasjok 12-1901 12-2022 SPEI12 −2.3 2.5 69.471924 25.510800

Oslo 12-1901 12-2022 SPEI12 −3.2 2.7 59.913779 10.752332
Tromsø 12-1901 12-2022 SPEI12 −2.6 2.6 69.676441 18.975012

Trondheim 12-1901 12-2022 SPEI12 −2.6 2.4 63.430426 10.394946
Vadsø 12-1901 12-2022 SPEI12 −2.2 2.3 70.077335 29.748846

Data could have been collected using remote sensing methods, models, and analyses,
which are often favored in the literature [47]. However, SPEI data were collected directly
from The Global SPEI database, https://spei.csic.es/spei_database (accessed on 1 Septem-
ber 2024), SPEI-base, which offers long-time, robust information about drought conditions
at the global scale, with a 0.5 degrees’ spatial resolution and a monthly time resolution [48].
It has a multi-scale character, providing SPEI timescales ranging from 1 to 48 months. It is
based on monthly precipitation and potential evapotranspiration data from the Climatic
Research Unit of the University of East Anglia, starting in January 1901.

https://spei.csic.es/spei_database
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2.2. Standard Precipitation Evapotranspiration Index (SPEI)

It is important to choose appropriate drought indicators based on the region’s climate
and environmental conditions [49]. For instance, SPI is suitable for regions where drought
is primarily caused by a lack of precipitation, while SPEI performs better in areas where
temperature variations also play a significant role [49–51]. The inclusion of temperature
variability makes SPEI particularly relevant in the context of climate change.

SPEI, a relatively new meteorological drought index, incorporates SPI’s strengths while
also taking into account the temperature variability [51]. The SPEI’s calculation process,
as described by Vicente-Serrano et al. (2010), involves first determining the potential
evapotranspiration (PET) for each month, followed by calculating the monthly water
balance deficit (Di) by subtracting PET from the precipitation value (Pi) [51,52].

Di = Pi − PETi (1)

This process ensures that SPEI can account for both precipitation and temperature
influences [53], making it more suitable for drought monitoring under changing cli-
mate conditions [54]. The inclusion of additional sources such as Hao and Singh [55],
Haro-Monteagudo et al. [56], and Wahla et al. [52] enhances the credibility and depth of
the analysis.

SPEI calculations follow the same basic steps as in the SPI, transforming the log-logistic
distribution to a standard normal distribution. For details of the method, please refer to
Vicente-Serrano et al. [57].

PET values are the most important parameter that distinguishes the SPI method from
the SPEI method. The calculation of the PET value, which is required in addition to the
precipitation for the calculation of Di, can directly affect the results [58]. The SPEI-base
site, where the SPEI values are taken, uses the FAO-56 Penman-Monteith (PM) method,
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which gives the most accurate results for PET calculations. FAO56-PM is presented in Allen
et al. [59] as follows:

ETpm = (0.408∆(Rn − G) + γ(900/(T + 273))U2(es − ea))/(∆ + γ(1 + 0.34U2)) (2)

where ETpm is reference evapotranspiration (mm day−1), ∆ is the slope of the saturation
vapor pressure function (kPa ◦C−1), γ is psychometric constant (kPa ◦C−1), Rn is net
radiation (MJ m−2 day−1), G is soil heat flux density (MJ m−2 day−1), T is mean air
temperature (◦C), U2 is average 24 h wind speed at 2 m height (m s−1), es is saturation
vapor pressure (kPa), and ea is actual vapor pressure (kPa) [60].

In this study, all data were normalized before training the relevant machine learning on
all models. Then the analysis results were evaluated according to the results that obtained
from the test data. After all the processes were completed, the data were restored to their
previous state by applying de-normalization.

D =
k

∑
i=1

Ni − N
Nmax − Nmin

(3)

where D is the normalized value, N represents mean in dataset, Nmax is the maximum
value, and Nmin is the minimum value.

2.3. Long Short-Term Memory Network (LSTM)

In recent years, deep learning has seen significant advances within the realm of
artificial intelligence, notably in areas such as image classification and time series prediction.
The long short-term memory (LSTM) model, an evolution/improvement over the standard
recurrent neural network (RNN), effectively addresses the issue of vanishing gradients
common in traditional RNNs. LSTM achieves this by incorporating mechanisms that allow
it to process information across extended time intervals, as proposed by Hochreiter and
Schmidhuber [31]. The strength of the LSTM lies in its capability to maintain long-term
data sequences through enhanced memory components, such as memory cells and various
gates, making it more efficient for handling prolonged sequences compared to standard
RNNs [61].

The architecture of an LSTM network includes a sequence input (SI) layer, essential for
feeding time series data into the network. This layer connects to the LSTM layer, composed
of units that feature an input gate, a forget gate, a cell with a self-recurrent connection,
and an output gate. These components collectively manage the information by adding or
removing it as necessary, a concept pioneered by Hochreiter and Schmidhuber [31]. To
optimize the LSTM parameters and minimize the loss function, various algorithms such as
stochastic gradient descent (SGD), root mean square propagation (RMSProp), and adaptive
moments (Adam) can be employed. Similar to RNNs, LSTMs compute a mapping from an
input sequence x to an output sequence y by calculating the network unit activations using
the following equations iteratively from t = 1 to t = τ with initial values C0 = 0 and h0 = 0:

it = σ(Wi xt + Ui ht−1 + bi) (4)

ft = σ
(

W f xt + U f ht−1 + b f

)
(5)

ot = σ(Wo xt + Uo ht−1 + bo) (6)

Ct = tanh(Wc xt + Uc ht−1 + bc) (7)

Ct = ft ⊗ Ct−1 + it ⊗ Ct (8)

ht = ot ⊗ tanh(Ct) (9)

where Wi, Wf, and Wo denote the matrix of weights from the input, forget, and output gates
to the input, respectively. In the architecture of LSTM networks, Ui, Uf, and Uo represent
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the weight matrices connecting the input, forget, and output gates to the hidden layer,
respectively. Similarly, bi, bf, and bo are the bias vectors for the input, forget, and output
gates. The σ denotes a logistic sigmoid function used as a non-linear activation function
applied element-wise. The vectors it, ft, ot, and Ct correspond to the input, forget, output
gates, and the cell state at any given time stamp t, all of which are dimensionally equivalent
to the cell output vector, ht. The operation ⊗ symbolizes the element-wise multiplication
between two vectors. For a more comprehensive understanding of LSTM networks and
their mechanisms, references such as Kratzert et al. [32], Zhang et al. [28], Dikshit et al. [36],
and Wang et al. [35] provide in-depth discussions and analyses.

2.4. Support Vector Machine (SVM)

The support vector machine (SVM) was developed in 1992 by Boser et al. [62], and is
extensively employed for classification and regression tasks, markedly enhancing predicted
accuracy in hydrology and other domains based on the statistical learning theory. The sup-
port vector machine (SVM) is a supervised learning technology which distinguishes itself
by providing a singular, optimal solution for a specific dataset, unlike other algorithms that
may yield several answers. This characteristic renders SVM very proficient in mitigating
overfitting by employing a kernel function to establish decision boundaries in nonlinear
scenarios [63].

The support vector machine (SVM) is a classifier that belongs to the kernel approaches
in machine learning. This learning system is employed to classify and predict the data
fitness function, aiming to minimize mistakes in data categorization or the fitness function
itself. In linear data classification, the objective is to identify a line that possesses a more
robust margin [64].

Owing to its adaptability and efficacy, SVM is extensively utilized for both regression
and classification, positioning it as a premier method in machine learning, with a multitude
of successful applications. Its adaptability has been thoroughly examined, with numerous
adjustments producing favorable results [23,65,66].

In the context of regression issues, SVM is designated as support vector regres-
sion (SVR) [67,68]. The principal objective of SVM is to reduce statistical learning mis-
takes, hence enhancing the model’s predictability and robustness [39]. Gunn [69], Vap-
nik [70], and Panahi et al. [71] provide a brief description of the theory behind support
vector regression.

The efficacy of SVM models is contingent upon the selection of kernel function, in-
cluding linear, polynomial, radial basis function (RBF), sigmoid, or Gaussian. This study
selected the Gaussian kernel because of its substantial influence on model performance.
Three critical parameters directly affect the model’s performance with the Gaussian kernel:
the scale parameter (γ), the regularization constant (C), and epsilon (ε), as articulated by
Belayneh et al. [72]. The parameters were automatically tuned in MATLAB to improve the
model’s efficacy.

The mathematical formulation of SVM is presented in Equation (10), defining the
relationship between input and output variables:

f (x) = (w, ϕ(x)) + b (10)

where f (x) denotes a high dimensional feature space, w represents a weight of the output
variable, and b refers to the bias term.

2.5. Gaussian Process Regression (GPR)

Gaussian processes (GPs) offer a powerful and flexible approach to regression and
classification problems, moving beyond the limitations of simple parametric forms. Their
strength lies in their non-parametric nature, allowing them to model complex relationships
within data by defining a distribution over functions rather than just parameters [73].

A key feature of GPs is the wide array of covariance functions available. These
functions determine the degrees and characteristics of the modeled functions, enabling
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researchers to tailor the GP to the specific structure of their data [73,74]. This flexibility
makes GPs particularly well-suited for addressing diverse engineering and modeling
challenges [75].

Gaussian process regression (GPR) leverages this concept by assuming that past
observations contain valuable information about future ones and, unlike the Gaussian
distribution, the Gaussian process is over functions [76]. This data-driven, non-parametric
approach allows GPR to model complex relationships without the need for explicit model
validation to generalize them [76,77].

Several advantages make GPR appealing for various applications, including easy
implementation, adaptable hyperparameter tuning, and the ability to provide probabilistic
predictions, quantifying uncertainty in a statistically sound manner [42,78]. This led to a
surge in interest in GPR from both industry and academia. Notably, specialized kernels
such as the PUK kernel, designed for large datasets, further expanded the applicability of
GPR in fields such as hydrology and climate research [42,78].

2.6. Random Forest

Random forest (RF), developed by Breiman [79], is a machine learning technique
used for both the classification and the regression tasks [45]. By utilizing a single data set,
multiple models are trained, which also increases the prediction accuracy. This consists
of three key steps, such as data subdivision, obtaining decision trees for these subdivi-
sions, and development of the final prediction by averaging the predictions obtained from
trees [45,80]. Random forest has several key advantages, such as high accuracy-low errors
and computational speed as Choi et al. [81] indicated. Moreover, ease of hyper-parameter
tuning during runtime is also an advantage for RF compared to ANN and SVR [45,82]. For
more detail, readers can refer to Breiman [79], Biau and Scornet [83], Yu et al. [84], and
Tyralis et al. [85].

2.7. Discrete Wavelet Transformation

Wavelet transform is typically presented in two versions in the literature: contin-
uous wavelet transform (CWT) and discrete wavelet transform (DWT). Owing to the
computational intricacies associated with the implementation of continuous wavelet trans-
form (CWT), discrete wavelet transform (DWT) is frequently favored [86,87]. The discrete
wavelet transform (DWT) offers an alternative to Fourier transform, decomposing time
series data into sub-signals across different frequency components by employing signal
processing, so that the extraction of specific features is enabled [88,89]. It offers a time-
frequency analysis of a signal by employing a mathematical function to deconstruct it in
the time domain.

The discrete wavelet transform employs a wavelet function, ψt, referred to as the
“mother wavelet”, which differentiates among various frequencies. It functions at several
scales (s0) and is temporally localized (τ0). The calculation of mother wavelet is presented
in Equation (11):

ψm,n(t) =
1

sm
0

ψ

{
t − nτ0sm

0
sm

0

}
(11)

where m and n indicate controlling parameters of scale and time. The most common selec-
tions for the parameters S0 and τ0 are 2 and 1, respectively. Based on Mallat’s theory [90],
the discrete wavelet transform (DWT) can decompose a signal into its inverse DWT, result-
ing in a sequence of approximation and detail signals that are linearly independent. Here,
S0 refers to the step of precision expansion, while τ0 denotes the location parameter for
the DWT applied to a discrete time series xi, where each xi, occurs at a discrete time i. The
inverse DWT, as described by Mallat [90], is expressed in Equation (12), which outlines the
reconstruction process from these independent signals.

x(t) = T +
M

∑
m=1

2M−m−1

∑
t=0

Wm,n2−
m
2 ψ(2−mt − n) (12)
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where Wm,n2−
m
2 ∑N−1

t=0 ψ(2−mt − n)x(t) is the wavelet coefficient for the discrete wavelet at
scale s = 2m and τ = 2m. Five level detailed studies were chosen and employed in WT in
this study since we obtained improved model results. The calculation of the level (L) is
based on the Equation (13):

L = int(N) (13)

where L is the level of the decomposition and N is the number of runs.

2.8. Model Performance Assessment

Model performance was evaluated using three well-known statistical metrics: the
correlation coefficient (R), root mean square error (RMSE), and the Nash–Sutcliffe efficiency
(NSE). These metrics are defined in Equations (14)–(16), respectively.

In Equations (14)–(17), SPIpi = the predicted value, SPIoi = the observed value,
N = the number of data, SPIo = average observed value, and SPIp = average predicted value.

Correlation coefficient (R) can be calculated as in Equation (14) [91]:

R =
∑N

i=1 (SPI pi − SPIp)
(
SPIoi − SPIo

)√
∑N

i=1 (SPI pi − SPIp)2 ∗
√

∑N
i=1

(
SPIoi − SPIo

)2
. (14)

RMSE is calculated in Equation (15) [92]:

RMSE =

√
1
N ∑N

i=0

(
SPIoi − SPIpi

)2. (15)

NSE is calculated in Equation (16) [93]:

NSE = 1 −
[

∑N
i=1

(
SPIoi − SPIpi

)2

∑N
i=1

(
SPIoi − SPIo

)2

]
. (16)

In addition to above metrics, a more robust comparative performance analyses
were also demonstrated by using an RMSE-standard deviation ratio (RSR), as defined in
Equation (17) [94].

RSR =

√
∑N

i=1
(
SPIoi − SPIpi

)2√
∑N

i=1
(
SPIoi − SPIo

)2
(17)

2.9. Model Structure

In this study, the cross-correlation method was used to select the most appropriate
model inputs, as emphasized in the literature [16,63]. In the literature, methods such as
auto-correlation and cross-correlation, are preferred to select model input data. Cross-
correlation engages with prior data more effectively than autocorrelation, highlighting
the data that aligns most closely with the study needs. In other words, autocorrelation
calculations are based on historical data closest to the output data, whereas cross-correlation
involves interactions with all data in the dataset. As given in Figure 3, the most effective
parameter on the output data are the data of time t-1, t-12, respectively. Based on the results
obtained from cross-correlation (Figure 3), Table 2 presents the optimal input configuration
for each of the four models considering the diverse features of the study area.
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Table 2. Structure of models derived by cross-correlations based on SPEI12 values.

Model Inputs Output

M01 t-13 t-12 t-11 t-1 t
M02 t-2 t-13 t-12 t-11 t-1 t
M03 t-3 t-2 t-13 t-12 t-11 t-1 t
M04 t-4 t-3 t-2 t-13 t-12 t-11 t-1 t

3. Results and Discussion

This study employed the SPEI12 index to forecast future droughts as it effectively
captures meteorological drought conditions [95]. Numerous researchers also consistently
utilized SPEI12 for drought monitoring and prediction [16,63,96–99]. Four different models,
for which were determined by cross-correlation of the input data, were analyzed with a
series of machine learning methods and deep learning methods, SVM, RF, LSTM, and GPR,
for the six different regions. Then, the models’ performance was improved by means of
WT. Consequently, the results of the analyses performed with the different models and
algorithms are shown based on stations in Table 3. Table 3 serves the analysis results of all
models using several machine learning techniques, including SVM and RF, as well as deep
learning algorithms such as LSTM and GPR. The models that achieved the best results
within their respective groups are indicated in bold. Additionally, all reviews in Table 3
were assessed individually for each station.

Table 3. Results of the testing data for all models and algorithms (Bolds indicate best performers).

Test
Data Bodø Karasjok Oslo

Model r NSE RMSE r NSE RMSE r NSE RMSE

M01

SVM 0.9408 0.8801 0.2882 SVM 0.9433 0.8850 0.2820 SVM 0.9475 0.8966 0.2952
W-SVM 0.9782 0.9568 0.1731 W-SVM 0.9797 0.9593 0.1677 W-SVM 0.9788 0.9580 0.1883

RF 0.9118 0.8103 0.3625 RF 0.9191 0.8232 0.3497 RF 0.9201 0.8343 0.3738
W-RF 0.8744 0.7283 0.4338 W-RF 0.8234 0.6124 0.5178 W-RF 0.8737 0.7409 0.4674
LSTM 0.8770 0.7337 0.4295 LSTM 0.9382 0.8549 0.3168 LSTM 0.8796 0.7311 0.4762

W-LSTM 0.9836 0.9634 0.1592 W-LSTM 0.9518 0.8661 0.3044 W-LSTM 0.9802 0.9452 0.2150
GPR 0.9387 0.8730 0.2966 GPR 0.9433 0.8831 0.2843 GPR 0.9475 0.8969 0.2948

W-GPR 0.9794 0.9591 0.1684 W-GPR 0.9811 0.9625 0.1610 W-GPR 0.9799 0.9603 0.1830
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Table 3. Cont.

Test
Data Bodø Karasjok Oslo

Model r NSE RMSE r NSE RMSE r NSE RMSE

M02

SVM 0.9409 0.8797 0.2887 SVM 0.9430 0.8847 0.2823 SVM 0.9474 0.8962 0.2959
W-SVM 0.9939 0.9878 0.0921 W-SVM 0.9946 0.9892 0.0866 W-SVM 0.9950 0.9900 0.0919

RF 0.9095 0.8004 0.3719 RF 0.9188 0.8239 0.3490 RF 0.9261 0.8472 0.3590
W-RF 0.8688 0.7285 0.4337 W-RF 0.8246 0.6294 0.5063 W-RF 0.8757 0.7515 0.4577
LSTM 0.9181 0.8234 0.3497 LSTM 0.8869 0.6922 0.4614 LSTM 0.9372 0.8732 0.3271

W-LSTM 0.9913 0.9766 0.1274 W-LSTM 0.9749 0.9491 0.1876 W-LSTM 0.9217 0.8383 0.3693
GPR 0.9405 0.8766 0.2924 GPR 0.9428 0.8822 0.2854 GPR 0.9476 0.8970 0.2947

W-GPR 0.9939 0.9878 0.0918 W-GPR 0.9946 0.9892 0.0866 W-GPR 0.9950 0.9901 0.0916

M03

SVM 0.9408 0.8794 0.2891 SVM 0.9430 0.8845 0.2827 SVM 0.9475 0.8966 0.2953
W-SVM 0.9954 0.9909 0.0795 W-SVM 0.9957 0.9913 0.0777 W-SVM 0.9965 0.9929 0.0773

RF 0.9070 0.7957 0.3762 RF 0.9164 0.8175 0.3553 RF 0.9235 0.8414 0.3657
W-RF 0.8650 0.7247 0.4367 W-RF 0.8290 0.6455 0.4952 W-RF 0.8745 0.7510 0.4583
LSTM 0.8533 0.7168 0.4429 LSTM 0.9336 0.8687 0.3014 LSTM 0.8624 0.6877 0.5132

W-LSTM 0.9723 0.9444 0.1963 W-LSTM 0.9927 0.9854 0.1003 W-LSTM 0.9767 0.9525 0.2002
GPR 0.9404 0.8765 0.2924 GPR 0.9427 0.8819 0.2859 GPR 0.9477 0.8971 0.2945

W-GPR 0.9955 0.9909 0.0794 W-GPR 0.9957 0.9914 0.0769 W-GPR 0.9968 0.9935 0.0740

M04

SVM 0.9408 0.8791 0.2894 SVM 0.9423 0.8832 0.2833 SVM 0.9476 0.8966 0.2953
W-SVM 0.9970 0.9939 0.0648 W-SVM 0.9979 0.9957 0.0542 W-SVM 0.9977 0.9954 0.0624

RF 0.9140 0.8146 0.3584 RF 0.9175 0.8213 0.3506 RF 0.9256 0.8497 0.3560
W-RF 0.8647 0.7241 0.4371 W-RF 0.8329 0.6511 0.4898 W-RF 0.8698 0.7459 0.4629
LSTM 0.9312 0.8644 0.3065 LSTM 0.8936 0.7279 0.4325 LSTM 0.9304 0.8653 0.3370

W-LSTM 0.9623 0.8746 0.2947 W-LSTM 0.9726 0.9437 0.1967 W-LSTM 0.7380 0.5416 0.6217
GPR 0.9405 0.8767 0.2922 GPR 0.9420 0.8801 0.2872 GPR 0.9478 0.8974 0.2941

W-GPR 0.9969 0.9938 0.0657 W-GPR 0.9981 0.9962 0.0509 W-GPR 0.9983 0.9966 0.0539

Test
Data Tromsø Trondheim Vadsø

Model r NSE RMSE r NSE RMSE r NSE RMSE

M01

SVM 0.9461 0.8838 0.2742 SVM 0.9400 0.8808 0.3431 SVM 0.9420 0.8760 0.2509
W-SVM 0.9786 0.9576 0.1655 W-SVM 0.9779 0.9561 0.2081 W-SVM 0.9789 0.9582 0.1457

RF 0.9089 0.7773 0.3796 RF 0.9055 0.7912 0.4541 RF 0.8979 0.7386 0.3642
W-RF 0.8472 0.6631 0.4669 W-RF 0.8618 0.7030 0.5416 W-RF 0.8429 0.5703 0.4670
LSTM 0.9194 0.7554 0.3978 LSTM 0.9350 0.8736 0.3533 LSTM 0.9383 0.8700 0.2568

W-LSTM 0.9710 0.9393 0.1981 W-LSTM 0.9894 0.9789 0.1443 W-LSTM 0.9821 0.9491 0.1607
GPR 0.9456 0.8834 0.2746 GPR 0.9382 0.8783 0.3467 GPR 0.9419 0.8779 0.2490

W-GPR 0.9791 0.9587 0.1635 W-GPR 0.9792 0.9589 0.2016 W-GPR 0.9792 0.9588 0.1447

M02

SVM 0.9458 0.8829 0.2752 SVM 0.9409 0.8829 0.3401 SVM 0.9413 0.8760 0.2509
W-SVM 0.9947 0.9893 0.0833 W-SVM 0.9943 0.9886 0.1060 W-SVM 0.9932 0.9863 0.0835

RF 0.9169 0.8018 0.3581 RF 0.9051 0.7973 0.4474 RF 0.9021 0.7521 0.3547
W-RF 0.8491 0.6705 0.4617 W-RF 0.8705 0.7225 0.5235 W-RF 0.8371 0.6195 0.4395
LSTM 0.9188 0.8421 0.3196 LSTM 0.9383 0.8732 0.3539 LSTM 0.9224 0.8486 0.2772

W-LSTM 0.9799 0.9589 0.1630 W-LSTM 0.9643 0.8996 0.3150 W-LSTM 0.9912 0.9402 0.1742
GPR 0.9460 0.8847 0.2731 GPR 0.9404 0.8828 0.3402 GPR 0.9413 0.8768 0.2501

W-GPR 0.9947 0.9895 0.0825 W-GPR 0.9945 0.9891 0.1039 W-GPR 0.9933 0.9865 0.0828

M03

SVM 0.9457 0.8825 0.2757 SVM 0.9407 0.8826 0.3406 SVM 0.9415 0.8755 0.2514
W-SVM 0.9954 0.9908 0.0772 W-SVM 0.9950 0.9900 0.0993 W-SVM 0.9951 0.9900 0.0713

RF 0.9142 0.7907 0.3680 RF 0.9043 0.7974 0.4473 RF 0.9000 0.7367 0.3656
W-RF 0.8414 0.6471 0.4778 W-RF 0.8718 0.7308 0.5156 W-RF 0.8333 0.6286 0.4342
LSTM 0.9003 0.7159 0.4287 LSTM 0.9356 0.8675 0.3618 LSTM 0.9088 0.8249 0.2981

W-LSTM 0.9099 0.8114 0.3493 W-LSTM 0.9870 0.9730 0.1634 W-LSTM 0.9477 0.8897 0.2366
GPR 0.9457 0.8839 0.2740 GPR 0.9404 0.8828 0.3402 GPR 0.9414 0.8766 0.2502

W-GPR 0.9957 0.9913 0.0749 W-GPR 0.9955 0.9909 0.0946 W-GPR 0.9951 0.9902 0.0705
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Table 3. Cont.

Test
Data Tromsø Trondheim Vadsø

Model r NSE RMSE r NSE RMSE r NSE RMSE

M04

SVM 0.9457 0.8816 0.2768 SVM 0.9402 0.8814 0.3423 SVM 0.9412 0.8785 0.2484
W-SVM 0.9964 0.9927 0.0688 W-SVM 0.9970 0.9940 0.0768 W-SVM 0.9968 0.9937 0.0568

RF 0.9227 0.8185 0.3427 RF 0.9109 0.8201 0.4215 RF 0.9018 0.7529 0.3542
W-RF 0.8437 0.6460 0.4785 W-RF 0.8750 0.7338 0.5128 W-RF 0.8357 0.6336 0.4313
LSTM 0.9425 0.8792 0.2795 LSTM 0.8518 0.7152 0.5303 LSTM 0.9160 0.8219 0.3006

W-LSTM 0.9901 0.9739 0.1299 W-LSTM 0.9779 0.9512 0.2196 W-LSTM 0.9618 0.8940 0.2319
GPR 0.9455 0.8835 0.2745 GPR 0.9400 0.8820 0.3414 GPR 0.9413 0.8763 0.2506

W-GPR 0.9965 0.9929 0.0676 W-GPR 0.9971 0.9942 0.0754 W-GPR 0.9973 0.9946 0.0524

Upon examining Table 3, it is evident that the SVM with WT, namely W-SVM, demon-
strates the highest performance metrics, r: 0.9970, NSE: 0.9939, and RMSE: 0.0648, in M04
for Bodø, achieving superior performance compared to other models and algorithms. An-
other notable finding is derived from the GPR with WT, W-GPR. The performance metrics
of this model are r: 0.9969, NSE: 0.9938, and 0.0657, showcasing the close correlation of
the performance of these two models. This similarity in performance highlights the ability
of two models in drought prediction in this region. Further analysis revealed that WT of
GPR, W-GPR also performs well with the M03 model, with r: 0.9955, NSE: 0.9909, and
RMSE:0.0794, slightly less effective than W-SVM in M04. Given its consistent efficacy in
both M04 and M03, GPR with WT, W-GPR, emerges as a successful algorithm in drought
analysis conducted for Bodø.

Moreover, an important finding can be observed when the model input structures
are examined. There is a 1-month lagged SPEI difference between M04 and M03 and this
lagged value positively affected the model performance. While W-GPR yielded successful
outcomes in M02, its performance is weaker compared to the M03 and M04 models. In the
M01 model, one of the most successful results was obtained with LSTM with WT, namely
W-LSTM, with r: 0.9836, NSE: 0.9634, and RMSE: 0.1592. Despite exhibiting satisfactory
results, it falls behind the top performer models, which are both M04 and M03, in terms of
overall performance. In general, the most successful algorithms for Bodø were obtained
with models coupled with WT.

Significant improvements were identified for most of the models with WT, with
exceptions for the RF model. For instance, the most successful model for Bodø is W-GPR in
M04. The performance metrics of this model prior to WT were r: 0.9405, NSE: 0.8767, and
RMSE: 0.2922, whereas the metrics after WT were r: 0.9970, NSE: 0.9939, and RMSE: 0.0648,
showing an impressive improvement. Due to its accuracy and effectiveness, W-SVM in
M04 should be the preferred model for drought modeling in Bodø. In addition, W-GPR in
M04 can be preferred as an alternative due to its similar performance. The time series of
the two most effective models, W-GPR and W-SVM in M04, for this region were illustrated
in Figure 4. In the analyses performed without WT, the most effective result for this region
was obtained in M01 with SVM.

Considering Figure 4, a striking observation is the strong agreement between observed
and predicted values of the models. Both models appear to follow a single line and capture
all the peak points, which clearly indicates both models were determined to be successful
for drought prediction in this region.
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Figure 4. The most successful two models for Bodø with W-SVM-M04 analysis of SVM with WT in
M04 and W-GPR-M04 analysis of GPR with WT in M04.

Moving on to the Karasjok region, the performance metrics exhibit slightly better
results compared to those obtained in Bodø. Similar to Bodø, the most impressive perfor-
mance results were obtained in M04 by utilizing W-GPR, with r: 0.9981, NSE: 0.9962, and
RMSE: 0.0509. This model is followed by W-SVM in M04 in terms of performance, which
achieved r: 0.9979, NSE: 0.9957, and RMSE: 0.0542, demonstrating a close performance to
W-GPR. Although the performance values of W-GPR and W-SVM are very close to each
other, as in Bodø, W-GPR represent slightly better results compared to W-SVM in this region.
It can be concluded that both W-GPR and W-SVM consistently deliver the most effective
prediction results. M02 further supports the above conclusion, with identical performance
metrics in W-SVM M02 and W-GPR M02, with r: 0.9946, NSE: 0.9892, and RMSE: 0.0866. In
M01 and M03 models, the most effective results were obtained with W-GPR; however, these
performance values were lower than that determined in M04. The findings obtained from
the analyses conducted for Karasjok indicate that the highest performance values were
achieved using W-GPR in M04 and the performance metrics of all algorithms improved
after WT, aside from RF, which showed a decrease. Prior to WT, analyses revealed that the
most desirable results for this region were observed in M01 using SVM, with r: 0.9433, NSE:
0.8850, and RMSE: 0.2820.

Figure 5 visually illustrates the difference in performances between observed and
predicted model drought values achieved by the best two models, W-SVM-M04 and W-
GPR-M04, in time series analysis. Overall, no difference was observed and a remarkable
agreement revealed between observed and predicted values. Both prediction models
provide a good representation of the peak points and demonstrate the ability to accurately
capture the drought in the region.

In the Oslo region, the results obtained from the analyses reveal that W-GPR on the
M04 model achieved the highest performance with r: 0.9983, NSE: 0.9966, and RMSE:
0.0539. Another algorithm that achieved successful results in M04 models is W-SVM, with
r: 0.9977, NSE: 0.9954, and RMSE: 0.0624. The input structure of the M04 model was created
from SPEI data of lagged times t-1, t-2, t-3, t-4, t-11, t-13, and t-12. The M03 model follows
these top performer models in terms of performance with r: 0.9968, NSE: 0.9935, and RMSE:
0.0740 values. The difference in the input structure of the M04 and M03 models is the
inclusion of a 1-month lagged SPEI value. By including this variable into the models, the
performances of the models were enhanced, showing the importance of model accuracy in
prediction. Furthermore, it is noteworthy that W-GPR outperforms other algorithms in all
models (M01, M02, M03, and M04) in the Oslo region. W-SVM lagged behind W-GPR in
terms of performance in all models, M01, M02, M03, and M04. The common point of these
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models is the application of WT to increase model performance. In the analysis, without
WT, the most successful performance value achieved with GPR in M04 with r: 0.9478, NSE:
0.8974, and RMSE: 0.2941. Despite this, GPR performed better than other algorithms, both
with WT and without WT in analyses for this region. Hence, this approach is recommended
for implementation in a drought modeling activity to be carried out in this area. Another
point that should be mentioned here is the adverse effect of WT on the performance of the
RF model. This observation is consistent across all investigated regions, suggesting that
inclusion of WT may not be suitable for enhancing the model performance every time.
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Figure 5. The most successful two models for Karasjok with W-SVM-M04 analysis of SVM with WT
in M04 and W-GPR-M04 analysis of GPR with WT in M04.

The time series of observation values and prediction values of W-GPR-M04 and W-
SVM-M04, which were determined to be the most successful models for Oslo, are shown in
Figure 6. According to this figure, it was determined that both methods were compatible
with the observation values and the peak points were captured successfully by the models.
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Figure 6. The most successful two models for Oslo with W-SVM-M04 analysis of SVM with WT in
M04 and W-GPR-M04 analysis of GPR with WT in M04.

In the Tromsø Region, the W-GPR-M04 model emerged as the most successful al-
gorithm, with remarkable performance metrics, with r: 0.9965, NSE: 0.9929, and RMSE:
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0.0676 values obtained. Similar to the findings in Oslo, W-SVM-M04 also achieved compara-
ble performance metrics with r: 0.9964, NSE: 0.9927, and RMSE: 0.0688. However, ultimately
it cannot surpass the effectiveness of W-GPR-M04. In the M03 model, W-GPR also showed
strong performance with r: 0.9957, NSE: 0.9913, and RMSE: 0.0749. Considering M03, while
the performance of W-SVM ranked higher than other techniques, it lagged behind W-GPR.
The lowest performance values in this class were observed for W-RF, with r: 0.8414, NSE:
0.6471, and NSE: 0.4778. A notable observation in Tromsø is that the performance metrics of
GPR without WT surpassed those of other techniques. Regardless of the application of WT,
GPR can be assumed to be the effective algorithm that can capture the drought patterns in
the region. Thus, for Tromsø, it is advisable to consider both GPR with WT and without
WT. When it comes to M02, the most successful performance is obtained with W-GPR,
achieving r: 0.9947, NSE: 0.9895, and RMSE: 0.0825. While these metrics are comparable to
the performance of M03 and M04, they are comparatively lower, which suggests a slightly
lower performance for W-GPR in M02. In the M01 model, the W-GPR again delivered the
most successful results with r: 0.9791, NSE: 0.9587, and RMSE: 0.1635. Similar to previous
models, the most effective outcomes in this category were achieved with GPR using WT. In
the analysis without WT, SVM showed effective performance compared to other models in
this class. M01, M02, M03, and M04 used as models in Tromsø were designed to include
various data formats. One further outcome in this context is that the input structure of
M04 was generally more successful with WT than other algorithms. In every analysis per-
formed with WT, it has been determined that GPR consistently performed effectively across
all algorithms.

In the analysis conducted for the Tromsø region, W-GPR-M04 and W-SVM-M04 demon-
strated more successful results compared to other models and algorithms. To further
understand the performance and the predictive capabilities of these models, their time
series are visualized in Figure 7.
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Figure 7. The most successful two models for Tromsø with W-SVM-M04 analysis of SVM with WT in
M04 and W-GPR-M04 analysis of GPR with WT in M04.

Figure 7 demonstrates the remarkable agreement between the observed drought values
and the predictions from the two most effective models, namely W-SVM and W-GPR for
M04 model. Both models accurately captured the observed drought patterns, showcasing
their ability to predict drought conditions in Tromsø.

The Trondheim area was analyzed using four distinct models and approaches, both
with and without WT. Based on the findings of this analyses, the most effective model was
identified as the W-GPR in M04, with r: 0.9971, NSE: 0.9942, and RMSE: 0.0754. In M04,
the W-SVM model closely followed this model in terms of performance, with r: 0.9970,
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NSE: 0.9940, and RMSE: 0.0768. While the performance metrics of these two models are
almost identical, the W-GPR model slightly outperforms W-SWM and outperforms other
models, demonstrating its superiority in predicting drought conditions in Trondheim. All
of these presented models were derived using WT. The optimization conducted without WT
yielded the optimal outcome in M04, which was again achieved by GPR. Therefore, GPR
was determined as the best algorithm in the analyses performed both with and without
WT in M04. The best model in M03 was obtained with W-GPR, with r: 0.9955, NSE: 0.9909,
and RMSE: 0.0946, indicating slightly lower accuracy compared to the two models with
WT mentioned earlier. Furthermore, the analyses using W-SVM revealed the second most
effective algorithm in this category with r: 0.9950, NSE: 0.9900, and RMSE: 0.0993. The
W-GPR algorithm achieved the highest performance in M02 with r: 0.9945, NSE: 0.9891,
and RMSE: 0.1039, while the W-LSTM model emerged as the strongest performer in M01,
achieving r: 0.9894, NSE: 0.9789, and RMSE: 0.1443.

The most effective models in simulations conducted without WT are SVM in M02 and
M01. The least successful algorithm for this region is W-RF in M01, with r: 0.8618, NSE:
0.7030, and RMSE: 0.5416. It should also be noted that the performance values of this model
before WT are better than the results obtained after WT. As a result of the analyses carried
out in Trondheim, the two best models obtained among all models are W-GPR-M04 and
W-SVM-M04. The time series of observed values with these models is shown in Figure 8.
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Figure 8. The most successful two models for Trondheim with W-SVM-M04 analysis of SVM with
WT in M04 and W-GPR-M04 analysis of GPR with WT in M04.

While Figure 8 provides visualization of a good fit between both W-SVM-M04 and
W-GPR-M04 and the observed values, it was identified that the W-SVM-M04 model did not
accurately capture the peak values in drought time series. Figure 8 clearly demonstrates
that W-GPR-M04 outperforms the W-SVM-M04 model in identifying the peak values.

The final region examined is Vadsø. This region yielded findings identical to those
observed in other investigated locations. The best performance values for this region were
obtained with W-GPR in M04, achieving r: 0.9973, NSE: 0.9946, and RMSE: 0.0524. This
model is closely followed by W-SVM with r: 0.9968, NSE: 0.9937, and RMSE: 0.0568. While
the performance metrics of these two models differ slightly, W-GPR is often regarded as
the most successful model in this region due to its superior r, NSE, and RMSE values
compared to the others. The most successful algorithm in this class was obtained with the
WT again, yet the SVM model without WT also achieved acceptable performance values
with r: 0.9412, NSE: 0.8785, and RMSE: 0.2484 at M04 in the analyses conducted. M04
emerged as the most successful model for this region, with M03 adhering to this model
regarding predictive capability. Compared to other models, the W-GPR model achieved
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the most optimal performance parameters in M03, with r: 0.9951, NSE: 0.9902, and RMSE:
0.0705. The most effective algorithm, as in most other regions, has been W-GPR in the
Vadsø analysis. In M02 and M01 models, the most successful algorithm detected was also
W-GPR. The assessed performance metrics for W-GPR in M01 are r: 0.9792, NSE: 0.9588,
and RMSE: 0.1447, and in M02, the same metrics are r: 0.9933, RMSE: 0.9865, and RMSE:
0.0828. Additionally, the most successful models for this region were determined by WT. In
the analyses performed without WT, the SVM model was found to be the most successful
model in M04.

Figure 9 illustrates the correlation between the observed values and the predictions of
the two most effective algorithms, W-GPR-M04 and W-SVM-M04, in Vadsø. Similar to the
findings in other regions, Figure 9 visualizes the strong agreement between observations
and the two models’ predictions, indicating that both W-GPR-M04 and W-SVM-M04 effec-
tively capture the drought patterns in Vadsø region, accurately identifying the peak values.
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Figure 9. The most successful two models for Vadsø with W-SVM-M04 analysis of SVM with WT in
M04 and W-GPR-M04 analysis of GPR with WT in M04.

The table displays the statistical evaluation results for all the study regions. In addition
to these tables, several visual comparisons were also made to gain further understanding
of model and algorithms’ performance. One of these comparisons is the 3D scatter diagram
in Figure 10. In this figure, performance of two of the most successful models across
six different stations are illustrated. With this diagram, it is possible to determine the
best model for each region. Moving towards the right and the bottom sides of the 3D
graph, the performance of the models exhibits an improvement, with higher r, NSE, and
RMSE values observed. In the Bodø region, best performance was obtained with W-SVM-
M04, confirming the statistical results. W-GPR-M03 and W-GPR-M02 closely follow this
model in terms of performance. In Karasjok, the W-GPR-M04 model achieved the highest
level of success in in the 3D analyses, whereas the SVM-M02 model generated the lowest
performance among the models. Statistical findings and 3D graphical interpretations in
the Oslo region exhibit a close match. Here, the W-GPR-M04 model accomplished the
highest level of success while the RF-M03 model demonstrated the lowest performance
among the models. According to Figure 10, the most successful performance in the Tromsø,
Trondheim, and Vadsø regions were achieved with W-GPR-M04, in accordance with 3D
scatter analysis. W-GPR-M04 consistently demonstrated the highest level of success in
terms of overall performance across all regions.
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The Taylor diagram is a graphical technique used to compare data by means of their
RMSE, correlation coefficient, and NSE values. As applied in the 3D scatter analyses
strategy, the two most successful models for each area were selected and plotted on the
Taylor diagram. Taylor diagram analyses conducted in the Bodø region revealed that the
W-SVM-M04 model exhibits a superior level of closeness to the observed value compared
to the other models (Figure 11). This high-level agreement indicates the robustness of
W-SVM-M04, among others. While the W-GPR-M04 model was the second most successful
model in this region, Bodø, in Karasjok, Oslo, Tromsø, Trondheim, and the Vadsø regions,
it outperformed W-SVM-M04. According to the Taylor diagram, the most successful
algorithm was W-GPR-M04 across all regions, conforming the findings of 3D scatter and
statistical results except for Bodø. Both statistical and graphical results largely overlap in
this section, stating the consistency of the analyses.

The box normal chart provides another graphical comparison method for model
performance evaluation. Here, the normal distribution, mean, and median values of the
model data are used and compared against observed values. The box normal chart created
using the two most successful models for the study regions are shown in Figure 12. When
Figure 12 is examined, it is evident that the average and median values of the observed
data in the Bodø region mostly overlap with W-SVM-M04. Therefore, among the compared
algorithms, the most successful algorithm for the Bodø region is W-SVM-M04 regarding
the drought patterns. Considering the median, mean, and normal distribution, the W-GPR-
M04 model demonstrated the best results in all regions except Bodø (Figure 12). The box
normal plots also provide a perspective that is consistent with the statistical results, further
supporting the overall conclusion.

The violin diagram is a powerful graphical comparison method, providing compre-
hensive insights into the distribution of model data and the observation. By using violin
diagrams, parameters such as first and third quartile, kernel density, mean value, median
value, standard deviation, and extreme values can be displayed and compared with ob-
served values. As it is a widely used technique in the literature and provides a detailed
model performance view, this study includes large visuals of violin diagrams. As with other
graphical methods, Figure 13 presents the comparison of each model with observations
separately on a regional basis.

Investigating Figure 13 for the Bodø region, several models are similar in shape
compared to the observation values. However, with a closer look at the median, mean,
and extreme values, it was determined that W-SVM-M04 was the most successful model,
demonstrating the best representation of the observation values. The median and mean
values of W-GPR-M04 displayed slightly higher levels than the observation values, making
it the second best-performing model in this region. The results here are consistent with the
statistical findings, confirming the performance of W-SVM-M04 and the accuracy of W-GPR-
M04. An analysis of the violin diagram for Karasjok revealed that the W-GPR-M04 model
exhibited a higher degree of resemblance to the observation values than other models,
particularly in the third quartile, in terms of the median and mean values. W-SVM-M04
also followed behind the W-GPR-M04 in terms of performance. Another notable result
for this region is that SVM-M02 demonstrated the lowest performance among the visually
evaluated models in this region. For the Oslo region, the W-GPR-M04 model showed the
highest similarity to the observed values, presenting the closest alignment in terms of
median, mean, and extreme values. The RF-M03 model had the lowest performance, unlike
the competing algorithms. Finally, analysis of the violin diagrams for Tromsø, Trondheim,
and Vadsø revealed that the W-GPR-M04 model was the most successful, while the RF-M03
model exhibited the lowest performance based on the median, mean, and extreme values.
The insights derived from the violin diagram align with the statistical results derived
previously for the study regions.
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RSR is a statistical and visual approach used to evaluate the performance of algorithms
on a region-by-region basis. Table 4 presents the rating of model performance according
to the RSR value. In this study, the RSR was employed to enrich the visual and statistical
interpretation of the results. Figure 14 illustrates the RSR values for each different region.
One key highlight from the RSR is that W-SVM and W-GPR generally demonstrate very
close performance results. However, it has been determined that W-GPR consistently
outperforms W-SVM in terms of performance across all regions. Another notable finding is
that, when all regions were compared, the lowest RSR was found in Vadsø (W-GPR), while
the most successful result in statistical evaluation suggested the highest success in Oslo
(W-GPR). This result shows that the most successful modeling results were determined
for Vadsø and indicate the importance of considering specific characteristics of the regions
when evaluating drought prediction models.

Water 2024, 16, x FOR PEER REVIEW 26 of 36 
 

 

The violin diagram is a powerful graphical comparison method, providing compre-
hensive insights into the distribution of model data and the observation. By using violin 
diagrams, parameters such as first and third quartile, kernel density, mean value, median 
value, standard deviation, and extreme values can be displayed and compared with ob-
served values. As it is a widely used technique in the literature and provides a detailed 
model performance view, this study includes large visuals of violin diagrams. As with 
other graphical methods, Figure 14 presents the comparison of each model with observa-
tions separately on a regional basis. 

 

 

(a) 

(b) 

Figure 13. Cont.



Water 2024, 16, 3465 24 of 32

Water 2024, 16, x FOR PEER REVIEW 27 of 36 
 

 

 

 

(c) 

(d) 

Figure 13. Cont.



Water 2024, 16, 3465 25 of 32

Water 2024, 16, x FOR PEER REVIEW 28 of 36 
 

 

 

 

Figure 14. The results on a violin diagram based on the study area of (a) Bodø, (b) Karasjok, (c) Oslo, 
(d) Tromsø, (e) Trondheim, and (f) Vadsø with RF-M03 analysis of RF in M03, W-GPR-M04 analysis 
of GPR with WT in M04, etc. 

Investigating Figure 14 for the Bodø region, several models are similar in shape com-
pared to the observation values. However, with a closer look at the median, mean, and 
extreme values, it was determined that W-SVM-M04 was the most successful model, 
demonstrating the best representation of the observation values. The median and mean 
values of W-GPR-M04 displayed slightly higher levels than the observation values, mak-
ing it the second best-performing model in this region. The results here are consistent with 
the statistical findings, confirming the performance of W-SVM-M04 and the accuracy of 
W-GPR-M04. An analysis of the violin diagram for Karasjok revealed that the W-GPR-
M04 model exhibited a higher degree of resemblance to the observation values than other 
models, particularly in the third quartile, in terms of the median and mean values. W-

(e) 

(f) 

Figure 13. The results on a violin diagram based on the study area of (a) Bodø, (b) Karasjok, (c) Oslo,
(d) Tromsø, (e) Trondheim, and (f) Vadsø with RF-M03 analysis of RF in M03, W-GPR-M04 analysis
of GPR with WT in M04, etc.

Table 4. RSR range and the corresponding performance rate.

Performance Rating Unsatisfactory Satisfactory Good Very Good
RSR value RSR ≥ 0.7 0.7 > RSR ≥ 0.6 0.6 > RSR ≥ 0.5 0.5 ≥ RSR
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Figure 14. RSR value for all regions (where each color means Unsatisfactory , Satisfactory , Good ,

Very Good ).

In this study, drought modeling using SVM, RF, LSTM, and GPR methods was inves-
tigated for six different regions in Norway. WT was also incorporated to enhance model
performance. Four distinct model types were employed in drought simulations, with
SPEI12 values lagged at various time intervals as input data. In total, 70% of the input data
were used for learning and 30% for testing, respectively. Several researchers conducted
drought modeling studies using the similar methodologies to this study, with findings that
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generally support ours. For instance, Ghasemi et al. [73] developed drought prediction
models with three different machine learning algorithms, GPR, general regression neural
network (GRNN), and MLP by using SPEI12 in the Iranian region. They reported that
the GPR model achieved the lowest RMSE and the highest R2 values. In this study, the
most successful algorithm was also found to be GPR with WT for drought prediction.
Additionally, in analyses performed without WT, GPR was the most successful algorithm
in some regions, such as Oslo in M04. Another relevant study, by Tuğrul and Hinis [16],
who conducted drought modeling using RF, SVM, decision tree (DT), and ANN for the Apa
Dam region. They utilized different time-steps of SPI and applied WT to enhance model
performance. They stated that SVM with WT was better than other methods and that WT
can negatively impact the performance of the RF algorithm. In this study, the WT of RF
negatively affected the mode result.

Citakoglu and Coşkun [100] conducted a study on drought forecasting using a set of
machine learning algorithms, GPR, ANN, and ANFIS, with meteorological data between
1960 and 2020 in Sakarya. They also employed WT, including variation mode decomposi-
tion (VMD), and empirical mode decomposition (EMD) to improve the model performance.
They concluded that the hybrid GPR model outperformed other methods as in this study.
Another study with similar results is that of Karbasi et al. [101], who investigated drought
in Iran using GPR, MLP, and the cascade neural network (cascade-NN) algorithms and
enhanced the model outcomes using WT. They concluded that W-GPR demonstrated su-
perior performance in comparison with the alternative approaches mentioned in their
study. According to this study, significant outcomes were observed with LSTM prior to
WT in some areas. The LSTM model has proven to be an effective prediction tool for those
locations. Several studies have also shown that LSTM is an effective prediction tool, such
as Wang et al. [35], Taylan [38], and Poornima and Pushpalatha [102].

Considering drought forecasting, there are studies that utilized various techniques, yet
this study differs with several aspects. For instance, Elbeltagi et al. [42] initially computed
the SPI6 and SPI12, incorporating rainfall data from 1990 to 2019 in the Upper Godavari
River basin region. Subsequently, they developed ten distinct models and examined them
pairing GPR, RF, and RT algorithms for drought forecasting. The authors concluded that
RF yields superior outcomes compared to alternative approaches. In contrast to this study,
the best results were obtained by GPR and SVM without WT. This variation underlines
the complexity of drought patterns and the importance of regional characteristics, and the
data employed.

4. Conclusions

This study developed and evaluated drought prediction models for six locations in
Norway by utilizing SPEI data. SVM, LSTM, GPR, and RF, models were implemented,
and the model findings were further enhanced using WT. Inclusive of both statistical and
graphical representations, this study yielded in-depth findings:

Post-WT, SVM and GPR demonstrated comparable outcomes. Nevertheless, GPR
yields the most favorable outcomes.

• While improvements were detected in all algorithms after WT, it led to performance
decrease in RF. In addition, RF exhibited the weakest overall performance among
the others.

• The M04 model structure usually was the most successful across various techniques
and regions. The model structure yielded favorable robustness and suitability for all
analyzed locations.

• For the Oslo region, the GPR method, particularly with the M04 structure with and
without WT, emerged as the optimal choice for the drought modeling research.

• Analyses conducted throughout Norway revealed the greatest performance values for
Oslo compared to other regions, particularly when the W-GPR-M04 model was utilized.
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• For potential drought studies, the W-GPR-M04 model structure is recommended in
Karasjok, Oslo, Tromsø, Trondheim, and Vadsø, while W-SVM-M04 is suggested for
Bodø based on their superior performance with WT.

• Prior to WT implementation, SVM-M01 (Tromsø, Karasjok, and Bodø), GPR-M04
(Oslo), GPR-M02 and GPR-M03 (Trondheim), and GPR-M02 (Vadsø) showed the most
favorable performance, highlighting possible sensitivities to WT.

• Based on the RSR values, Vadsø showed the most successful overall performance.
• Among the graphical outputs, Taylor and violin diagrams consistently provided the

most comprehensive and reliable insights.
• As previously mentioned, WT generally has a positive effect except when used with

RF. The most significant and proportionally best improvement from using WT was
achieved in the Oslo region with the LSTM algorithm.

• Earlier sections have demonstrated that the most effective model input structure is
M04. The conclusion drawn is that increasing the number of parameters influencing
the model correlates with enhanced model performance.

• GPR with WT produced effective outcomes across all locations. Examination of Bodo
showed that SVM with WT is more effective compared to other algorithms. Notably,
Bodo is located in a coastal area. These findings indicate that both GPR with WT and
SVM with WT yield effective results in coastal regions.

• In the analysis of LSTM with WT in the Oslo region, the performance metrics for M04
before applying WT were better than those after applying WT. It was concluded that
this algorithm was not effective in the Oslo region.

The research findings provide valuable insights, particularly in the context of cli-
mate change, in Norway. The outcomes of this study offer enhanced understanding of
water resource management, risks associated with drought, and also guide water-related
institutions and organizations.

Considering Norway’s vulnerability to higher-than-average temperatures as a result
of climate change, several recommendations for future research emerge:

It is thought that this study will help the relevant people in water resources manage-
ment in the region and the decision-making authorities on these issues. If it is carried out
in future projects, risk assessments, or a study on drought prevention, this study should
be used.

1. Exploring the use of alternative drought indices beyond SPEI.
2. Expanding the network of meteorological stations in the region to enhance data

availability and support more comprehensive drought modeling efforts.
3. Incorporating a wider range of model input variables, such as sea level and sea surface

temperature, to capture potential influences on drought dynamics.
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98. Coşkun, Ö.; Citakoglu, H. Prediction of the standardized precipitation index based on the long short-term memory and empirical
mode decomposition-extreme learning machine models: The Case of Sakarya, Türkiye. Phys. Chem. Earth Parts A/B/C 2023,
131, 103418. [CrossRef]
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