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Abstract
Amidst the intensifying extreme rainfall patterns due to climate change, global early warning
systems for mass movements (e.g. landslides, avalanches) need to provide not only the coarsely
aggregated danger reports, but also the necessary fine details to understand its potential
implications on critical infrastructures such as transportation systems. In this study, we introduce a
novel ‘intergraph’ method that enhances the exposure information using a graph-based machine
learning implementation on the hydrological and geological characteristics of mass movements
and the underlying connectivity of settlement-transportation systems. Demonstrating the entire
country of Norway and the 2020 Gjerdrum quick clay incident as a case study, we integrated the
assessment of both direct and indirect exposure information of settlement-transportation systems
and their daily 1 km-by-1 km susceptibility map, which were derived from the 68 934 mass
movement incidents since 1957 and the connectivity information of 4778 settlements and 257 000
km road networks. Our findings achieved 86.25% accuracy, providing a distribution of improved
susceptibility estimates and identifying critical settlements in near-real-time. By interacting the
graphical representations of the shared causal drivers of susceptibility and the settlement-
transportation system connectivity, our study extends our understanding of the exposure of
multiple interacting settlements with a high granularity degree in a unified approach.

1. Introduction

Over the years, amidst the increasing extremes
of rainfall and snow that trigger landslides and
avalanches [1, 2], the United Nations Office for
Disaster Risk Reduction has underscored the global
need for the development of accurate, reliable, and
localized early warning systems to effectively reduce
and mitigate disaster risks [3]. For example, in the
aftermath of the widespread 2020 Gjerdrum quick
clay landslide that displaced over 1600 residents and

killed 10 in Norway [4–6], many Norwegian par-
liament members stressed the need to improve the
quality of risk information to such mass movements
[7]. As Norway has experienced over 84 500 repor-
ted incidents such as avalanches, rockslides, and slip-
page since 1900 [8, 9], the understanding on cas-
cading, compounding, and indirect effects has also
gained importance, along with the direct effects of
mass movements to every community [10].

Current state-of-the-art efforts of the Norwegian
early warning system use a matrix-based approach
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to combine four classes of catchment susceptibil-
ity and daily rainfall intensity to determine warning
levels (low, moderate, high, very high), which can
be very sensitive and dependent on the predefined
categorization [11, 12]. The outputs are determin-
istic with only a single category assigned to the county
or smaller villages, which does not show a disaggreg-
ated distribution of the warning levels along road
networks or within the vicinity of settlements [13],
potentially leading to a poor perception of risk and
costly local mitigation measures.

To address these challenges, sophisticated mod-
els and high-resolution mapping have recently
been introduced at the intersection of graph-based
machine learning and remote sensing as they com-
bine the nonlinearity and graphical information of
various geospatial datasets (e.g. spatial, causal, or
any temporal connections) [14, 15]. To this end,
we introduce the ‘intergraph’, a novel approach that
extends the exposure information by explicitly cap-
turing the underlying connectivity of settlement-
transportation systems and their graphical repres-
entations on the map. It transforms the inform-
ation of the hydrological and geological charac-
teristics of 68 934 mass movements incidents and
the 4778 formal settlements with 257 000 km road
networks into graphical representations (i.e. nodes
connected by edges). Using graph-based machine
learning, it generates a daily 1 km-by-1 km suscept-
ibility map and quantifies the direct and indirect
exposure of all settlements to mass movements in
near-real-time.

2. Related work

Prior studies on susceptibility mapping have under-
scored various modelling challenges such as the
highly conservative estimates [16, 17] and the
spatial correlation [18] due to regional climatic
differences [19, 20]. Early efforts in applying stat-
istical and machine-learning techniques [18, 21–23]
have achieved satisfactory results. However, each of
these methods show significantly different perform-
ance because of their respective inherent uncertain-
ties. Among these several techniques, the ensemble
approach, which could handle different model uncer-
tainties, has gained the highest precision in combin-
ation with decision trees [24], neural networks [25],
logistic regression [26], and logistic model trees [27].
However, these still have limited explainability as they
disregarded spatial correlation and region-specific
attributes.

Recent studies on integrating graphical inform-
ation with machine learning such as graph neural
networks [28–30] have allowed several applications
in disaster management [31], air pollutant estimation
[32], transportation disruption detection [33], and

early warning system [34, 35], as they capture the spa-
tial connectivity and the attribute similarity of every
data point. Despite these potential improvements, no
studies have also been done to systematically integrate
the insights from susceptibility maps with exposure
patterns such as population, settlements, and roads,
thereby limiting the current earlywarning system [13]
at the county-level granularity with predefined large
polygons that excessively aggregate the information
on the map.

In this study, we, therefore, combined the
ensemble approach and graph neural networks to
generate a daily susceptibility map of Norway. We
then used the graphical information of its derived
susceptibility values as attributed characteristics of
the road connectivity and the vicinity of settlement-
transportation systems, thereby evaluating the degree
of exposure of every populated settlement connected
by roads.

3. Methodology

In this section, we present a detailed summary of the
major procedures from the data preparation to the
implementation of our proposed ‘intergraph’ repres-
entation learning, which consists of two main steps:
Supervised Ensemble Graph Neural Network for sus-
ceptibility mapping and Unsupervised Spectral Graph
Clustering for settlement exposure evaluation.

3.1. Data preparation
3.1.1. Labels and features.
We used 68 934 incidents of mass movements (e.g.
rockslide, landslide, avalanche, slippage, mudslide,
flood landslide, and unspecified) reported since 1957
[36]. Their geographical and temporal informa-
tion guided the extraction of relevant hydrological
and geological characteristics. As shown in table 1,
we used two types of publicly available geospa-
tial features: static and date-specific dynamic. See
section S1 in the supplementary material for more
details on handling the large file sizes of these
datasets.

3.1.2. Grid discretization
To facilitate a consistent representation of features for
the susceptibility mapping, we discretized all geospa-
tial features using a 1 km-by-1 km grid, resulting in
a map with a 1195× 1550-array. For the settlement
exposure evaluation to realistically capture the detail
of road networks, we increased the detail of discretiz-
ation from 1 km to 50m (i.e. 20 times finer), resulting
in a higher data storage requirement and longer pro-
cessing time. To resolve this, we employed a county-
level masking to subdivide the large areal extent of
Norway. See section S2 in the supplementarymaterial
for more details on the geographical coverage of each
mask.
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Table 1. Geospatial features.

Type Details

Static steepness [37]
Static susceptibility category [38, 39]
Static shallow subsurface lithology classa [40]
Static land cover classa [41]
Static slope angle classa [42]
Dynamic total rainfallb [43]
Dynamic mean temperatureb [43]
Dynamic snow depthb [44]
Dynamic snow water equivalentb [44]
Dynamic fresh snow water equivalentb [44]
a These are ancillary maps of the European Landslide

Susceptibility Map (ELSUS v2) [38, 39] from the European Soil

Data Centre [45–47].
b These are accessed from the Norwegian Meteorological Institute

[48].

3.1.3. Ensemble and dataset split
Out of the 508 182 grid points that cover the entire
map of Norway, only about 16 000 unique grid
points represent the locations of the past 68 934
incidents. Given the limited computational capacity,
we set 500 as the number of randomly sampled
unique grid points with incident labels, resulting
in 32 subdatasets (i.e. 16 000/500 = 32). Then, for
each unique grid point or location, we randomly
sampled a representative past incident. For every
subdataset of 500 grid points of past incidents, we
included 500 grid points of non-incident that were
sampled at locations without reported or unknown
incidents.

We split each subdataset using 70%, 15%, and
15%, for training, validating, and testing, respectively,
to avoid model overfitting. As a result, we prepared
32 subdatasets wherein each subdataset is comprised
of 1000 unique grid points of equally sampled incid-
ents and non-incidents. In the following sections,
we trained each subdataset using a machine-learning
model called graph convolutional neural network
(GCN) [29], which effectively results in an ensemble
of 32 GCN models.

3.1.4. Formal settlements and road networks
To understand how the susceptibility values may
affect the exposure patterns, we used the available
datasets of urban formal settlements (i.e. a minimum
population of 200 and a maximum inter-house dis-
tance of 50 m) [49] and road networks [50], respect-
ively updated in 2022 and 2020. These are repres-
ented as geospatial vector polygons and polylines,
respectively.

3.2. Intergraph representation learning
As shown in figure 1, the ‘intergraph’ models the
interaction of two graphical representations wherein

the information of the node outputs from the first
method (Supervised Ensemble Graph Neural Network)
is used as an indicator of the strength of the edge
connection between the nodes in the graphical repres-
entation of the secondmethod (Unsupervised Spectral
Graph Clustering).

3.2.1. Supervised ensemble graph neural network
As shown in figure 2, from the pool of 68 934 incid-
ents, we started with identifying the dates of a ran-
domly selected set of incident labels and extracting
their associated date-specific features. With know-
ledge on the location of these labeled points, we also
randomly sampled an equal number of non-incident
points from locations with no reported or unknown
incidents.

The combined random samples of incident and
non-incident points formed a resulting subdataset
Sk, which is further represented using two graph-
ical structures: attribute-aware GA

k (i.e. the similar-
ity of geospatial features using cosine similarity met-
ric); and neighborhood-aware GN

k (i.e. the degree of
proximity using the relative geographical distances).
We combined these two graphical structures into a
single weighted Gk after investigating a range of pos-
sible ratio values. In section S3, we present the supple-
mentary details on this ratio and other optimal para-
meters, as we trained the 32 GCN models multiple
times.

For each subdataset Sk, we trained its corres-
ponding GCN model Mk to optimize its parameters.
In this way, when the GCN model tries to predict
the probability, these incidents have high probability
assigned. The graphical information of Gk provided
the training with an embedded inductive structure
for learning as to how the incremental updates are
propagated with respect to the degree of similarity
and relationship among the selected points in a given
Sk. We trained each GCN model Mk until the val-
idation loss reached a minimum. In section S4, we
present a supplementary mathematical formulation
of this implementation.

To analyze the predictive performance of the
ensemble, we generated the receiver operating char-
acteristic (ROC) curve to observe how true pos-
itive rates (TPR) change with false positive rates
(FPR). A desirable area under the ROC curve
(AUC) should be very close to 1.0, wherein 0.5
indicates random guessing only while (0.7,0.8] is
acceptable, (0.8,0.9] is excellent, and (0.9,1.0] is
outstanding [51].

As each GCN modelMk of the ensemble predicts
the susceptibility on the map, we can aggregate their
estimates and present their differences or variation. In
this way, any percentiles can also be used to specify a
range of reasonable estimates of susceptibility due to
the model uncertainty.

3
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Figure 1. An overview of the ‘intergraph’ implementation that consecutively illustrates the random sampling of points or nodes,
establishing graphical relationships, predicting susceptibility values, constructing the graphical structure between settlements and
roads, assigning the edge weight from the predicted susceptibility values, and clustering the resulting settlement network. The
attribute-aware and neighborhood-aware graphs pertain to the degree of relationships between nodes in terms of the similarity of
geospatial features and the relative geographical distance, respectively.

Figure 2. A schematic flowchart of the supervised ensemble graph neural network.

3.2.2. Unsupervised spectral graph clustering
As shown in figure 3, we used a county-level two-
step graph structuring approach tomodel the connec-
tions between formal settlements and roads. The first
graphical structure treats every pixel or grid point of
formal settlements and road networks on the map as
nodes of a simplicial complex [52, 53]. This means
that a connection exists if two pixels or points are
adjacent to each other by one step in all directions.
This simplicial complex generally describes the topo-
logy of roads and settlements, which has enabled us
to extract other information such as the shortest path
between any two pixels.

Using the length and profile of extracted shortest
paths that could indicate a probable edge between any
two settlements as nodes, we developed the second
graphical structure wherein (1) a random point
within the vicinity of a particular settlement repres-
ents the node; and (2) a characteristic value (e.g. the
maximum susceptibility value along the shortest path
between any two settlements) serving as the relative
weight of their connection.

We then performed an iterative spectral graph
clustering wherein we observed which settlement gets
isolated when we increase the susceptibility cutoff
value from 0 to 1. This involves the removal of an

4
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Figure 3. A schematic flowchart of the unsupervised spectral graph clustering.

edge connection if its assigned characteristic value is
less than or equal to the cutoff value. For every iter-
ation on the modified graphical structure, we imple-
mented K-means clustering using the spectrum (i.e.
eigenvectors) of the unnormalized graph Laplacian
transformation of our derived graphical representa-
tion of settlements [54]. We also used its informa-
tion on eigenvectors that correspond to zero eigen-
values because it indicates the number of connected
sub-components of our original graph representation
[55].

As a result, we extracted the lowest cutoff value
that would cause an isolation of a settlement node.
We defined this value as the indirect (or inter) expos-
ure probability because it signifies the minimum sus-
ceptibility of roads to trigger an isolation among the
connected settlements. We also presented the dir-
ect (or intra) exposure probability that describes the
aggregated susceptibility value of an area to mass
movements within its boundaries. In section S5,
we present a supplementary pseudocode with the
steps in deriving these indirect and direct exposure
probabilities.

4. Results and discussion

4.1. Mapping mass-movement susceptibility
In figure 4, we present the overall performance of
our ensemble for mapping the susceptibility to mass
movements. For all the 15%-testing portions of 32
subdatasets combined together, the resulting ROC
curve achieved an accuracy of 86.25% AUC, effect-
ively assigning higher probability values to areas

Table 2. Feature selection frequency in the ensemble.

Type Details Frequency (↑)

Static steepness 32/32 (all)
Static susceptibility category 32/32 (all)
Static slope angle class 32/32 (all)
Dynamic mean temperature 32/32 (all)
Dynamic total rainfall 29/32
Static land cover class 22/32
Dynamic snow depth 13/32
Dynamic snow water equivalent 12/32
Static shallow subsurface lithology class 11/32
Dynamic fresh snow water equivalent 9/32

that are susceptible to mass movements, as com-
pared to the random-guessing line. This indicates
that the ensemble can accurately predict the absence
and presence of a mass movement incident with
75% and 83% success rates, respectively. These suc-
cess rates were derived from the optimal operat-
ing point of the ROC curve, which is equivalent to
the minimum misclassification costs (i.e. a tradeoff
between TPR and FPR). In section S6, we present a
supplementary discussion on this optimal operating
point.

Considering the individual GCN models of
the ensemble, we summarized the frequency of
every selected feature in table 2 to understand
the degree of relevance of each geospatial fea-
ture layers. All 32 GCN models consistently used
static steepness, static susceptibility category, static
slope angle class, and dynamic mean temperat-
ure. This is closely followed by the dynamic total
rainfall and static land cover class. This confirms

5
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Figure 4. ROC curve of the trained ensemble. As the curve comprises different pairs of points of FPR and TPR, minimizing the
misclassification costs yields 0.48 as the corresponding optimal operating point, which becomes the new relative midpoint for the
resulting susceptibility values on the map.

that the predictive performance of our result-
ing ensemble depends on these well-known phys-
ical triggers and geological characteristics. This
also implies that predictive capability can be fur-
ther improved using the near-real-time inform-
ation on mean temperature and total rainfall,
instead of using the static susceptibility category
alone.

Moreover, we observed that the less frequently
selected features were dynamic snow depth, dynamic
snow water equivalent, static shallow subsurface
lithology class, and dynamic fresh snow water equi-
valent. The relatively weaker contribution of dynamic
snow features may be attributed to its passive charac-
terization of the snow volume and not indicative of
snow movement. This case also highlights the influ-
ence of other feature layers such as the triggering
effects of dynamic total rainfall and static steepness.
The limited number of classes of shallow subsurface
lithology also explains its weaker relevance on the
majority of GCN models. Nevertheless, the resulting
ensemble has shown that the graphical information of
these geospatial layers enabled the encoding of causal
inductive structures with several static and dynamic-
ally changing features.

To demonstrate the effectiveness of the proposed
approach in improving our estimates of susceptib-
ility to mass movements, we considered the 2020
Gjerdrum quick clay landslide as a case study [4], as
shown in figure 5. In that case, figure 5(m) (red circle)
shows that the the current Norwegian early warning
system reported no significant danger for avalanches
[56] and a very low probability for landslides [57] for
themunicipality of Gjerdrum. In contrast, figure 5(k)

(white circle) shows a significantly higher predic-
tion of susceptibility estimates at 58% with a stand-
ard deviation of 25%. This generally agrees with the
occurrence of the said incident and the large rain-
fall patterns (46 mm) in figure 5(a). Considering the
special characteristics of the Gjerdrum event [4], this
result underscores how well the proposed approach
is able to generalize the analysis of the susceptibil-
ity estimation to a wide range of mass movements
events whilst ensuring the robustness of the outcomes
because of their shared causal drivers and offering
high-resolution maps compared to the county-level
presentation of the current system.

Combining the high generalization performance
of the proposed approach together with the intrinsic
flexibility of the data representation provided by the
graph structure allows us to deeply investigate the
direct and indirect effects of mass movements with
a high granularity degree in the succeeding section.
This is important as it presents an opportunity for
early warning systems based on the proposed meth-
odology to extend their current capacity, hence incor-
porating socioeconomic factors with environmental
data analysis in a single data architecture.

4.2. Evaluating settlement exposure
Both direct (intra) and indirect (inter) analyses are
equally important in understanding the total expos-
ure characteristics of a settlement. For instance,
even though a settlement (e.g. danger zones but
well-connected to roads) may have a low min-
imum probability to trigger inter-settlement isola-
tion, it may still have a high intra-settlement expos-
ure probability because it may be situated next to an

6
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Figure 5. The dynamic feature maps for 30 December 2020: (a) total rainfall (mmd−1), (b) mean temperature (Celsius), (c) snow
depth (cmd−1), (d) snow water equivalent (mmd−1), and (e) fresh snow water equivalent (mmd−1). Static feature maps of (f)
steepness (degrees), (g) ELSUS susceptibility (category), (h) slope angle class (category), (i) land cover class (category), and (j)
lithology class (category). The corresponding resulting maps for 30 December 2020, when the Gjerdrum quick clay landslide
incident occurred: (k) average susceptibility map and (l) calculated standard deviation using the estimates of 32 GCN models.
(m) Actual forecast across Norway for mass movement alert with a red circle showing the location of the quick clay incident
(corresponding to the white circle in figure 5(k).

eroding soil mass with imminent danger within its
vicinity.

As an illustrative example following our results
for 30 December 2020, figure 6 shows that the rel-
atively remote village of Leinesfjord has high inter-
settlement exposure probability (69%) but low intra-
settlement exposure probability (21%) whereas the
opposite case occurred for the village of Brattvåg,
which is connected to many neighboring villages.
This evaluation of exposure probability for roads to
trigger inter-settlement isolation uniquely presents a
new perspective by capturing the effect of meaningful
interaction of settlements. See section 7 in the supple-
mentarymaterial for a summary of these two probab-
ilities with population information in the counties of
Oslo and Viken, where the significant rainfall pattern
was mostly observed.

Enabling a computationally efficient large-scale
evaluation of settlement exposure, our county-level

two-step graph structuring approach has also estab-
lished a flexible framework that can incorporate
valuable considerations such as (1) the inter-county
connectivity, which can provide additional inform-
ation on how a settlement may access mitigation
assistance from neighboring settlements from differ-
ent counties; (2) the use of multiple shortest paths,
which can investigate all probable connections for
cooperation between any two settlements; and (3) the
variation of physical vulnerability along each con-
necting road, which can accurately implement a tar-
geted approach in prioritizing critical retrofit meas-
ures for transportation networks. Consequently, this
offers a future advancement and extension of the
current state-of-the-art approach, which would aid
the decision-making process of Norwegian county
governors in charge of coordinating the mitigation
efforts of various municipalities within their respect-
ive county-level jurisdictions.
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Figure 6. A comparison between the villages (yellow polygons) of Leinesfjord (left) and Brattvåg (right).

5. Conclusion and future work

Our proposed novel ‘intergraph’ representation
learning has opened an opportunity to develop solu-
tions for climate change adaptation andmitigation by
understanding the graphical relationships of different
geospatial datasets of susceptibility and exposure pat-
terns of settlement-transportation systems.Our study
has specifically developed a proof of concept that
is computationally efficient for the future advance-
ment of the automated Norwegian and other global
early warning system from mass movements, which
could effectively identify the high-risk settlements as
pertinent and urgent information for policymakers
and regional county governors. For future work, we
recommend extending this study with diverse climate
scenarios to understand the long-term impacts of
mass movements and their cascading effects to the
communities. We also recommend investigating the
usefulness of other near-real-time geospatial inform-
ation derived from satellite imagery and other graph
representation learning techniques.

Data availability statement
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InterGraphNorwayMM).
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