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Abstract

The availability of In-Silco blood glucose simulators that accurately depict all
aspects of Diabetes Mellitus patient’s daily life is crucial for the development
of safe and effective new treatment technologies. Current state of the art
simulators focus on modeling a meal’s effect on the glucose-insulin system
solely based on the quantity of carbohydrates consumed. However not only the
quantity of carbohydrates consumed effects the glycemic response, but also
the quality of these consumed carbohydrates.

Regular exercise is an important factor in the treatment of diabetes as it
yields many benefits for the patient’s health. However, states of hypoglycemia
are common during physical activities which may cause patients to avoid
exercising.

This thesis proposes an extension to the currant state of the art blood glucose
simulator that introduces food’s glycemic index and its effect on the glucose-
insulin system. This extension is then used to develop food recommendation
systems for type-1 diabetes patients, to recommend the optimal food to keep
the blood glucose concentrations in the normoglycemic range during exercise
sessions. And a experiment is conducted to determine how knowing food’s
glycemic index affects these systems.

The simulations of the proposed extension is shown to correctly capture the
effect a food’s glycemic index has on the postprandial blood glucose response
as described in literature. And the result of the experiment depict a positive
impact of using glycemic index knowledge in food recommendation systems
that grows as the length and intensity of the exercise sessions increases.
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Introduction

The availability of In-Silco Blood Glucose (BG) simulators that accurately depict
all aspects of Type-1 Diabetes Mellitus (T1DM) patient’s daily life is crucial for
the development of safe and effective new diabetes treatment technologies like
artificial pancreas systems, food recommendation systems, and other mobile
health systems [1]. Current state of the art BG simulators focus on modeling
a meal’s effect on the glucose-insulin system solely based on the quantity
of carbohydrates in the meal. However, not only the quantity of consumed
carbohydrates effects the following glycemic response, but also the quality of
these consumed carbohydrates. Consumption of a meal rich in high Glycemic
Index (GI) carbohydrates will generally produce a quicker spike in postprandial
BG concentration with higher amplitude than a meal containing the same
amount of low GI carbohydrates.

This thesis proposes an extension to the UVA/Padova BG simulator that imple-
ments the effect a food’s GI has on the glucose-insulin system and looks at
how this extension can be used in the development of food recommendation
systems. Describing meals in terms of both carbohydrates and GI allows for a
more nuanced and realistic postprandial BG simulations, better suited to depict
the BG dynamics of patients daily life.

One area of interest for an extension like this is the development of food
recommendation systems. Mobile health systems like these usually require
immense amounts of data, and collecting enough in-vivo data to train these
systems is often challenging, expensive, impractical and time-consuming. In-
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Silco simulations are therefor a good alternative for data collecting.

Regular exercise is an important factor in the treatment of diabetes as it yields
many benefits for the patient’s health and is associated with lowering the BG
concentrations [2]. However, many patients experience states of hypoglycemia
during exercises due to this lowering effect. As hypoglycemic unawareness is
common in patients with diabetes, these states might go undetected and lead
to more severe consequences [3]. This may be unpleasant for patients and
might cause them to develop restraints toward physical activities due to fear
of hypoglycemia.

A food recommendation system is supposed to recommend the optimal food
to keep the patient’s BG concentrations in the normoglycemic range and avoid
states of hypoglycemia. The availability of an effective food recommendation
system might be able ease this restraint towards physical activity by decreasing
the risk of experiencing hypoglycemia under exercise and allowing for healthier
exercise sessions.

1.1 Related work

To the knowledge of the author, prior studies/work on integrating GI to BG
simulators do not exist. Noguchi et al. (2016) [4] utilized a technique where a
food’s G1 is depicted by scaling the carbohydrate amount of the simulated foods.
However, this will not depict the full BG response associated with different GI
foods as the simulated response will only be scaled and not changed in length
or shape.

Prior work exists, however, on food recommendation systems and how these
can be utilized for scenarios of physical activity in T1DM patients. The following
paragraphs will depict two of the studies that inspired the food recommendation
system developed in this thesis.

Ngo et al. (2019) [2] developed food recommendation systems from in-silco
T1DM patient data of the Hovorka simulation model [5], with the goal of con-
trolling the virtual patient’s BG concentration during short and long scenarios
of physical activities. Foods for the short scenarios where recommended by a
Feed Forward Neural Network (FFNN) trained to predict the optimal amount
of carbohydrates to consume before the sessions while for the longer session,
a Reinforcement Learning (RL) agent was trained to recommend the optimal
amount of carbohydrates to consume at fixed intervals through the scenarios,
thereby proving that machine learning could be used to develop patient-specific
food recommendations systems for exercise scenarios [2].
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In a later study; Ngo et al. (2020) [6] combined the FFNN based food recom-
mendation system earlier developed with a Bayesian FFNN to accurately depict
the BG response as well as the risk of hyperglycemia and hypoglycemia of each
recommendation. These systems where trained on the in-silco data from the
UVA/Padova simulator using Bretons Physical Activity (PA) extension[7; 1].
The results of the study depicted a safer and effective management of the BG
concentrations both during and post exercise scenarios [6].

1.2 Outline

This thesis is comprised of four parts. Part I, will introduce the necessary
background needed for the thesis. This includes theory on topics such as
Diabetes Mellitus, Glycemic Index, state of the art Blood Glucose simulators
and artificial Neural Network. Chapter 2 present both Type-1 Diabetes Mellitus
(T1iDM) and Type-2 Diabetes Mellitus (T2DM), and how these diseases effect
the glucose-insulin dynamics as well as some state of the art diabetes treatment
strategies. Chapter 3 present the Glycemic Index, what it represents, how it
is defined and how it can be calculated. In chapter ??, we presents state
of the art BG simulation models like the UVA/Padova model [7] as well as
existing extensions to the model, adding the effect physical activities has on
the glucose-insulin system. This chapter will also include a detailed depiction of
the digestion and oral glucose absorption in the model which will be important
to the proposed GI extension. The final chapter of part I, will present the
fundamentals of Feed Forward Neural Networks.

Part II presents our proposed GI extension. This includes the methodology,
result and discussion of the proposed extension. The methodology of the
extension is presented in chapter 6, describing how GI and its effect on the
glucose-insulin system were implemented into the simulation model. Chapter
7 presents the modeling results and illustrates postprandial BG simulations of
the extended simulation model. A detailed discussion of the extensions results
and methodology will follow in chapter 8.

Part III will present how the proposed extension of part II, can be used to
develop food recommendation systems. This part will follow a structure similar
to that of part II, including both methodology, results and discussions. The
methodology of the food recommendation systems is presented in chapter 9.
Here, both the architecture and data of the systems will be described. Chapter
10 present the experiment conducted to determine the impact knowing food
GI has on food recommendation systems. The results of this experiment will
be presented in chapter 11, and discussed in chapter 12.
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The final part, part IV, will recapitulate the results and finding of the the-
sis.



Part |

Background






Diabetes Mellitus

Diabetes Mellitus is a chronic metabolic disease characterized by increased
Blood Glucose (BG) levels [8]. It is caused by the body either producing to
little insulin or being unable to effectively use the insulin it produces [9].
Insulin is the body’s main defense against rising BG levels, allowing glucose
to be absorbed into the cells. Diabetes Mellitus patients have a deficiency in
the systems related to the production or utilization of insulin that leads to
chronically high BG levels. Repeated exposure to states of high BG levels may
cause long term damage to organs such as the brain, heart, kidneys, and more,
and may even lead to complete organ failure [10].

Diabetes Mellitus can present itself in three different forms: Type-1 Diabetes
Mellitus (T1DM), an autoimmune disease where the body’s immune system
attacks the islet beta cells in the pancreas responsible for insulin production[11],
causing the pancreas to produce little to no insulin [12]; Type-2 Diabetes
Mellitus (T2DM), a common disease which occurs when the body develops
resistance to insulin or when the pancreas produces less insulin than needed
[11; 9]; and Gestational Diabetes, a form of diabetes that only occurs during
pregnancy causing increased BG levels for both the mother and the baby [13].
While genetics plays a role in all three types of diabetes, the insulin resistance
that causes T2DM has been shown to be related to excessive body fat, and is
most common among adults over the age of 45 [11]. Gestational Diabetes is
sometimes shown to be related to the hormonal changes undergone due to
pregnancy, decreasing the body’s ability to utilize insulin effectively [13].
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2.1 Glucose-Insulin Dynamics

To ensure normal body function it is crucial to keep BG levels in the nor-
moglycemic range of [70,180]mg/dL at all times [9; 14; 6]. Both too high
BG levels, hyperglycemia, and too low BG levels, hypoglycemia, can be harm-
ful to the human body. The hyperglycemic states, defined by BG values over
180mg/dL, are a chronic condition of diabetes that can cause harm to a wide
range of organs and essential systems in the human body, which may lead to
organ failure. The hypoglycemic states on the other hand, defined by BG values
less then 70mg/dL, is an acute condition of diabetes which causes symptoms
ranging from increased heart rate to mental confusion and unconsciousness,
and can cause brain damage if often repeated [2].

In the human body, two hormones are responsible for regulating the BG levels,
insulin, the hormone responsible for reducing BG levels, and glucagon, the
hormone responsible for increasing the BG levels. Insulin effects the BG by
stimulating the cells to absorb glucose from the plasma, thereby lowering BG
values. Glucagon on the other hand stimulates the liver to release stored glucose
into the plasma, thereby increasing BG values. Both insulin and glucagon are
only produced in the pancreas. Glucagon is secreted by the alpha cells found
in the islet tissue of the pancreas, and insulin is secreted by the beta cells also
found in the islet tissue of the pancreas. The production of these hormones
is regulated by the amount of glucose circulating the plasma [15]. If there is
too much glucose circulating the plasma, the pancreas will increase insulin
secretion and inhibit glucagon secretion. Conversely, if there is too little glucose
circulating the plasma, the pancreas will increase glucagon secretion and reduce
insulin secretion to the basal level [16]. This balance of opposing insulin and
glucagon actions is known as "Glucose homeostasis" [9].

2.1.1 The effect of Meals and Physical Activity

Several factors may effect the glucose homeostasis, ranging from metabolic
disorders such as diabetes to simple things like meals and exercise. The primary
way glucose is introduced to the human body is through carbohydrate rich
meals. During digestion, carbohydrates (comprised of more complex sugars)
are broken down to monosaccharides (simple sugars). These monosaccharides
are then absorbed into the plasma resulting in rising BG levels [17]. In contrast,
exercise through physical activity is thought to have an lowering effect on
the BG concentration by increasing the uptake of glucose by muscle cells
[18; 2].
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2.2 State-of-the-art Diabetes treatment

Although there is no current cure for diabetes, treatment strategies to lessen
the effect of the disease have been around for quite some time now. These
strategies revolve around controlling the patients’ BG to avoid hyperglycemia,
usually through a combination of strict diet, regular exercise and external
insulin infusions. Both diet and exercises are shown to be important factors in
the treatment of diabetes. However, the most important factor is still considered
to be insulin infusions, especially for T1IDM [19]. The body of a T1DM patient
does not produce enough insulin to successfully control the BG concentration
by it self, and is therefor dependent on insulin infusions form external sources
to do so.

Insulin therapy is the treatment of diabetes through the use of external insulin
infusions. For the therapy to be successful, multiple measurements of the
patient’s BG levels must be conducted throughout the day, the amount of
carbohydrates consumed by the patient needs to be counted, and insulin
doses must be administrated respectively to these measurements and accounts

[9].

The treatment of diabetes is considered to be a labor intensive tasks as it is a
continuous process and needs to be done every day to reduce the risk of further
complications. Because of this, treatment strategies rely heavily on the patient
ability to self-treat. BG measuring, CHO counting and administrating insulin
injections are only some of the required tasks T1DM patients need to do on a
daily basis. To aid the treatment, a patient’s specific treatment plan is usually
designed with the help of a physician. However, the patients themselves are
still responsible for following this plan [9].

The dependence on self-treatment is a downside of diabetes treatment, not only
because of the amount of work needed to be done by each patient, but more
because patients, as all human beings, are prone to making errors. An error
in the BG measurements or the CHO counting can result in the administrated
insulin dose being too small or too large. If the injected insulin dose is too
small then the risk of hyperglycemia increases, and similarly, if the injected
dose is too large, the risk of hypoglycemia increases. Errors like this can be
counteracted if the mistake is detected in a reasonably time frame by either
administrating a correction dose of insulin or consuming food rich in fast
acting carbohydrates, but if the mistake goes undetected it can potentially
cause harm. Mistakes that result in too much insulin being administrated are
especially dangerous as insulin overdoses can lead to sever hypoglycemia and
may be fatal [20]. Additionally, many diabetic patients develop insensitivities
to symptoms of early stage hypoglycemia, making it harder for them to de-
tect the hypoglycemic state. And some might not experience any symptoms
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at all before approaching dangerously low BG levels. This phenomenon is
called hypoglycemic unawareness and contributes to the increased risk of severe
hypoglycemia in T1DM patients [3; 2].

2.2.1 The Basal-bolus insulin regime

One of the traditionally common treatment strategies in insulin therapy is the
Basal-bolus insulin regime. This strategies revolves around using a combination
of long acting basal insulin infusions and short acting bolus insulin infusions
to mimic normal insulin production [21]. The long acting basal insulin is used
to combat rising BG in states of fasting, mimicking the effect of the basal/base
rate of insulin secreted by a healthy pancreas at all time. The short acting
bolus insulin is used to combat rising BG levels caused by the consumption of
food, thereby mimicking the increase in insulin secretion seen at meal times in
healthy pancreas. Doses of basal insulin are commonly taken once or twice a
day, while bolus insulin doses are taken in advance of meals to account for the
time it takes for the dose to start having an effect. The size of the bolus dose
depends on the meal, the more carbohydrates there are in the following meal,
the bigger the basal dose needs to be to counteract it.

2.2.2 Continuous Glucose Monitor

Treatment strategies such as the basal-bolus insulin regime are dependent on
regular measurements of the patients BG levels to work successfully. These
measurements are traditionally done by piercing a patients fingertip to produce
a blood sample to measure the glucose concentration of. The need for piercing
ones fingertip is often seen as an unpleasant experience by diabetes patients,
and may lead to patients developing restraints towards preforming BG measure-
ments. Recent technological advancements have produced alternative ways to
preform these measurements, allowing for a more comfortable experience for
the patients. One of these advancements are the Continuous Glucose Monitor
(cGM). The cGM is a small sensor installed under the patient’s skin monitoring
the subcutaneous glucose consecration of the interstitial fluid [22]. The cGM
does not measure the BG directly but rather trough a proxy measurement, caus-
ing a delay between the actual BG concentration the CGM measurement [23].
The cGM sensor measures the subcutaneous glucose concentration at a regular
time interval, every minute to every three minutes depending on the specific
device used. In addition to the delay associated with these measurements so
may they also be effected by electrical noise form the device itself.
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2.2.3 Insulin Pump

In addition to the cGM, another technological milestone in the field of diabetes
treatment is the introduction of the Insulin Pump. The insulin pump is a device
that helps automate the insulin delivery process for the patient. It consist of
a small tube connecting the insulin absorbing fatty tissues of the pancreas to
an external pump that regulates the flow of insulin [22]. The pump allows
the patient to specify the amount of insulin to be injected and takes care of
the delivery process itself. This is, in most cases, a better alternative than the
traditional method of delivering insulin through needle injections. Nowadays,
most T1DM patients have the option to install a ¢cGM and an insulin pump,
and it is shown that such technologies improve the life quality of the patients

[24].

2.3 Artificial Pancreas System

By combining the cGM and the insulin pump, and connecting them to a
control algorithm, it is possible to construct a fully automated closed loop
control system for diabetes treatment. The CGM measures the BG and feeds
the data into the control algorithm, which in turn specifies how to adjust the
flow of insulin to the Insulin pump based on these measurements [22]. System
like these are called Artificial pancreas systems, and aim to artificially mimic the
responsibilities of the pancreas in a healthy body. A simple illustration of the
system can be found in figure 2.1. A closed loop system like this would ideally
be able to calculate and deliver the optimal amount of insulin to keep the users
BG levels in the hypoglycemic range range at all times, solely based on the
CGM measurements, and regardless of the specific situation and lifestyle of the
patient [9; 25].

New treatment approaches like artificial pancreas systems and other similar
systems are in the forefront of modern diabetes research, and studies done on
these topics have shown promising results, reporting both safety and effective-
ness in improving glycemic control [9]. Extensions of the system has also been
suggested, expanding it to a more general mobile health system that can give
recommendations on a wider range of aspects related to the users health, like
optimal food intake, physical exercise etc. based on health data collected by
wearable devices like sports watches [9; 26].

The control algorithm functions as the main actor in an artificial pancreas
system, deciding how much insulin to give the user at any given time, and
therefore, how this algorithm is developed determines how safe and effective
the system is. Over the years, several algorithm types have been used for this,
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» Glucose measurement

Insulin delivery (pump) » (sensor)

| -

Figure 2.1: Illustration of an artificial pancreas system [27].

Control algorithm

like model predictive controllers, proportional-integral-derivative controllers,
and recently machine leaning based control methods like reinforcement learn-
ing have gained wide popularity in this field. One of the previously popular
controllers used is the basal-bolus controller, a control algorithm based on the
basal-bolus insulin regime that aims to recreate the effects by following this
treatment regime.



The Glycemic Index

As previously mentioned, the main way glucose is introduced to the body is
through carbohydrate rich meals. However, not only the quantity of carbohy-
drates in a meal effects the following glycemic response, but also the quality
of the carbohydrates consumed. The rate at which carbohydrates are digested
and absorbed into the bloodstream depends on the type and complexity of
the carbohydrates. Bigger and more complex carbohydrates take longer to be
digested and absorbed than smaller, less complex carbohydrates. To capture
this effect, the Glycemic Index (GI) was introduced in 1981 by David J. Jenkins
et al. [28]. The GI works as an estimation of how quick the carbohydrates of
a certain type of food are broken down under digestion and how fast they
are absorbed into the bloodstream [29; 30], determining the rate at which
carbohydrates effects the BG concentration [31].

Foods with high G1 will be quickly broken down and absorbed into the blood-
stream relative to low GI foods, resulting in an quick spike in BG concentration
followed by a characteristic crash (BG concentration levels lower than fasting
levels), before slowly stabilizing. In contrast low GI foods take longer to be
broken down under digestion and are absorbed more slowly into the blood-
stream than high GI foods, thereby resulting in a slower and more stretched
out increase in BG levels as seen in figure 3.1. Now, other factors like protein,
fiber and fat contain will also effect the foods GI.

The Glycemic Index is defined as the incremental area under the postprandial
BG curve after eating 50g carbohydrates of a test food vs eating 5og carbohy-
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Figure 3.1: Typical postprandial BG curves of foods with high vs low GI [32].

drates of a control food (pure glucose or white bread). Both scenarios, control
and test, needs to be carried out by the same subject as BG response is highly in-
dividual and may vary drastically form person to person. A 10-12 hour period of
fasting is recommended before the scenarios to ensure the same prerequisites.
When calculating the incremental area under the curve only BG values form
the first two hours after consumption are considered, and only values above
fasting BG [33]. The final GI is given by 3.1 and represented as an number
between o and 100, where values less then 55 are considered low and values
above 70 are considered high [34].

GI = AUC(BGtest) .
AUC(BGControl)

100 (3.1)

To ensure a more general solution the test scenarios should repeated at least
three times per subject and food, and the results should be average over a
large population of subjects to get the final GI value [33]. Glycemic Index is
not commonly listed among the nutritional contents on food labels like the
amount of calories and such, but can be easily found online. Studies like [35]
have been done reporting the GI of over 1500 different foods products.

If a food has a GI of 100 then it’s equivalent to eating glucose, and if the food
has a GI of o then the food will have no effect on the postprandial BG response.
Now, when it comes to the effect a food has on the BG response, then the
Glycemic Index is still only half the equation, as the quantity of carbohydrates
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consumed still matter. Eating a small portion of a food with high GI will often
result in less response on the postprandial BG than eating a large portion of a
food with low GI. In other words, both the type of food and the portion size
effects the BG response. To try to capture the full picture of the consumed
foods effect on the BG response, the Glycemic Load (GL), an extension of the
Glycemic Index concept was introduced, taking the amount of carbohydrates
consumed into consideration. The Glycemic Load (GL) of a food is defined by
equation 3.1, where CHO is the amount of carbohydrate (in grams) per serving
[35].

GL = CHO Gl (3.2)
B 100 3






In-Silco Blood Glucose
Simulation

Around the end of the century, the pursuit of developing In-Silco blood glucose
simulators escalated in hopes of furthering our knowledge of the glucose-insulin
system, and work as a safe alternative for experimental treatment trials. The
availability of realistic In-silco BG simulators is quite useful when performing
early trials for new technologies such as testing new glucose sensors, insulin
infusion algorithms, and control algorithms for artificial pancreas systems [36],
allowing trials that otherwise may have been structurally difficult to preform,
inconvenient or potentially dangerous for the participants, to be preformed on
an desired in-silco population. However, In-vivo clinical trials are still required
for final validations [9].

Three main simulation models have gained international recognition over the
years. The first among these was the Bergman’s minimal model [37], a simplis-
tic model comprised by a two separate compartmental-subsystems of linear
differential equations. The first compartment describes the dynamics of plasma
glucose uptake in response insulin concentrations, and the second describ-
ing the dynamics of pancreatic insulin secretion in response to the plasma
glucose concentrations [9; 38]. The second of the main simulation models
is the Hovorak model [5]. This model is comprised by five compartmental
subsystems describing "subcutaneous insulin absorption, interstitial glucose
kinetics, insulin actions, glucose kinetics and glucose absorption form the gas-

7
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trointestinal tract" [9]. The third main simulation model, and only simulator
to be approved by the The United States Food and Drug Administration (FDA)
is the UVA/Padova model [7], described in detail in section 4.1.

4.1 UVA/Padova Simualtor

The UVA/Padova Type-1 diabetes simulator is a combined effort between
researchers from the University of Virginia (US) and the university of Padova
(Italy). It is the only BG simulator to date to be approved by the FDA for usage
in pre-clinical trials, leading to the simulators wide popularity in the field of
diabetes research. A virtual population of 100 children, 100 adolescent and
100 adult subjects is included in the simulator, and new virtual subjects can
be produced by sampling a joint parameter distribution. The simulator also
includes implementation of some well known cGM’s and insulin pumps, and
incorporates the delay and inherent noise associated with these, making for a
more realistic simulation [22; 9].

The UVA/Padova’s simulation model splits the glucose-insulin system into
10 compartmental subsystems describing; glucose kinetics, insulin kinetics,
glucose rate of appearance, endogenous glucose production, glucose utilization,
renal excretion, glucagon kinetics and secretion, subcutaneous insulin kinetics,
subcutaneous glucose kinetics and subcutaneous glucagon kinetics [7]. The
first 7 subsystems describe the internal part of the glucose-insulin system,
while the last three describe the external parts, i.e. the subcutaneous glucose,
insulin and glucagon kinetics effecting the CGM measurements and the insulin
infusion [9].

The type-1 diabetes simulator was first introduced in 2008 and later improved
upon in 2013. The 2008 version was based on an earlier simulator by the
same group, called the Meal Simulation Model of the Glucose-Insulin System, a
simulation model of the glucose-insulin system in healthy and type-2 diabetes
subjects [36]. The meal simulation model of the glucose-insulin system follows
the same simulation model as the UVA/Padova Type-1 diabetes simulator, the
only exception being the replacement of the subcutaneous insulin kinetics
subsystem, describing the dynamics of insulin rate of appearance form external
sources, with a subsystem describing insulin secretion from the pancreatic
beta-cells [39].

An open source version of the UVA/Padova simulator implemented in python,
exists in the form of Xie’s simglucose [40]. This version only includes a virtual
population of 10 children, 10 adolescent and 10 adults subjects, but does include
3 different cGM’s and two insulin pumps, alongside a pre-implemented PID and
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basal-bolus controller. simglucose allows the user to specify the carbohydrate
intake of the subject through a pre-planned set of meals, and the amount of basal
and bolus insulin to injected by the insulin pump under the simulation. The
duration of the simulation may also be specified. The initial BG concentration
at the start of the scenario may be specified if desired but is by default sett to be
randomized around the specific subjects fasting BG concentration. The CGM’s
included are all implemented with an inherent random noise to resemble real
world scenarios, however by specifying the seed of this randomness, the user
can redo the same simulation with the same noise. simglucose is compatible
with Gymnasium [41] making it ideal for research utilizing reinforcement
learning and similar approaches [22].

4.2 Extensions

In-silco blood glucose simulators have come a long way over the years, allowing
for more realistic simulations than ever before. However, some crucial aspects of
a patients everyday life are still not accounted for in state of the art simulators
like the UVA/Padova simulator. The effect of a foods GI and the effect of
physical activity through exercise are among the aspects unaccounted and
therefor thought to be the next steps for improving BG simulations. Extensions
have been made to add the effect of physical activity to both the Hovorak and
the UVA/Padova model [18; 1; 42] gaining broad recognition in the field. Two
of these will be described in detail in the following sections. However, to the
knowledge of the author, no extensions have been made to add the effect foods
glycemic index to any of the previously mentioned BG simulators. One notable
simulation model that includes the effect of the glycemic index is the Type-1
Diabetes Direct Simulator (T1DDS) [43], a simple BG simulator designed to be
used in virtual therapy of type-1 diabetes patients. Additionally Noguchi et al.
(2016), defined the food inputs to their simulator and artificial pancreas system
in terms of standard food and portion sizes [4].

4.2.1 Physical Activity Extensions

The physical activity extensions aim to model the effect exercise has on the
human glucose-insulin system, and incorporate it to already existing simu-
lation models, using the Heart Rate (HR) to describe the intensity of the
exercise. Physical activity causes increased glucose absorption by the muscle
cells and has been associated with prolonged increased insulin sensitivity and
insulin-dependent glucose uptake [1]. The effect of physical activity can be
modeled and added to the UVA/Padova model simply through changes to
the glucose utilization subsystem. The original form of this subsystem is de-
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scribed mathematical by equations 4.1 - 4.3. This subsystem is divided into
two compartments, the insulin-dependent glucose utilization, U;4, and the
insulin-independent glucose utilization, U;; [36].

U(t) = Uii(t) + Ua(2) (4.1)

Uii(t) = Fens (4.2)
_ VmO + me ' X(t) : Gt(t)

Uia(t) = Koo £ Gr (D) (4.3)

The parameter F,,s describes the glucose uptake by the brain and erythrocytes,
while the parameter V,,o and K,,o are the Michaelis—-Menten parameters of
glucose utilization at zero insulin action. V;,, is the disposal rate of insulin
sensitivity. X represents the amount of insulin in the interstitial fluid, and G,
represents the glucose mass in plasma and slowly equilibrating tissues[1].

Breton’'s Physical Activity Model

An extension to account for the effect of physical activity was first proposed for
the Hovorak model by Marc D. Breton in 2008 [18]. A collaboration between
Breton, Man & Cobelli later saw this physical activity model extended to the
UVA/Padova model. The UVA/Padova version of Breton’s PA model changes the
insulin-dependent utilization of equation 4.3 to that of equation 4.4 [1].

Vo (1+f-Y(#)) + Vix A+ - Z(1)) - (X(8) +1p) = Vix - Iy
Kmo [1=y-Z(t) - W(2) - (X(2) +Ip)] + G (1)

Uia(t) = - Gy(t)

(4.4)

Here, X (1), Y(t) and Z(t) are given by equations 4.5-4.7, respectively. Note
that a dot over a variable refers to its derivative. W (t) is given by equation
4.9. f, a, y are model parameters of Breton’s PA extension and I}, is the basal
plasma insulin concentration [1].

X(t) = —pay - X(t) + pov [1(t) — I X(0)=0 (4.5)
Y(1) = —ﬁ [Y(t) — AHR(1)] Y(0)=0 (46
2y=-z)- [TED L L vy z=0 @)

T; Tex
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Breton model parmeters

Parameters: Values: Dimension
o 3x107% 1

B 0.01 bpm~!

% 1x1077 1

a 0.1 1

Tur 5 min

Tin 1 min

Tex 600 min

n 4 1

Table 4.1: Model parameters of the Breton physical activity model [42].

Where the parameter po; is the rate constant of insulin action on peripheral
glucose utilization, and I(t) is the currant plasma insulin concentration. Tyg,
T;n and T, are further model parameters. AHR(t) stands for the change in
heart rate and is defined as current heart rate, HR(t) minus the base (resisting)
heart rate, HR,, [1].

f(Y) = M (4.8)
]' + (a-IgRb)n
| AHR(1) -dt fort <t
w(t) = {O otherwise (4.9)

Finally, the parameters a and n are also model parameters of Breton’s PA model,
and can be found in table 4.1.

Jaloli's Physical Activity Model

A new PA extension was released by Jaloli et. al in 2023 [42]. Jaloli’s model
features an PA model inspired by Breton’s extension to the UVA/Paova model,
with some slight adjustments based on newer development in the field. In
contrast to Breton’s model, Jaloli’s model is evaluated by showing that the
in-silco simulations are able to successfully recreate postprandial BG data seen
in in-vivo subjects [42]. One key difference to the Breton model is that the
Jaloli model assumes steady HR during exercise sessions, meaning that the
intensity of the sessions are described by a step function with a magnitude
equal to the average HR during the session. The Jaloli model also utilizes a
patient specific f parameter, allowing for a better grasp the individual response
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Jaloli model parmeters
Parameter: Value: Unit:

A 1.2 1

Bmedi 6 bpm™!
median 0.044 P

€ 0.1 1

Th 10 min

Ty 180 min

K 0.1151 min

Table 4.2: Model parameters of the Jaloli physical activity model [42].

to physical activity of subjects. Jaloli’s PA model changes the insulin-dependent
utilization of equation 4.3 to that of equation 4.10 [42]:

Vino (1+ - h(1)) + Vinx (1 +4-6(1)) - X(2)
Kimo (1 =€ Z(1) - w(t)) + G, (1)

Uia(t) = - Gy (1), (4.10)

where X (t) is still given by equation 4.5 while h(t) and 6(t) are given by
equation 4.11 and 4.12, respectively, and 5, A and € are the new model parame-
ters.

h(t) = L [h(t) — AHR(t)] h(0) =0 (4.11)
Th

6(t) = —0(1) - [qo(t) + l] +o(t) 0(0)=0 (412

n

Here, ¢(t) is given by equation 4.13 and w(t) by equation 4.14. The parameters
T3, Tin and k are additional model parameters of the Jaloli PA model, and can
be found in table 4.2 alongside the median f reported in [42].

(1) = 21RO (413
PN = T Y AHR®) 413
0 prior to exercise
w(t) = { AHR(t) during exercise (4.14)

AHR(tenq) e *!  after exercise
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4.2.2 Digestion and Oral Glucose Absorption

One other important subsystem of the UVA/Padova simulation model, that
will be needed when modeling the effect of foods glycemic index on the
glucose-insulin system, is the Glucose rate of appearance subsystem. This
subsystem models oral glucose absorption, describing the path of the carbohy-
drates through the human digestion system, from the time they are consumed
until they are absorbed into the blood stream. The model breaks the diges-
tion of carbohydrates down into three compartments, two for the stomach,
describing both the solid and the triturated phase, and one for the intestine

[44; 36; 71.

Immediately after ingestion, the carbohydrates, D, get introduced to the solid
stomach compartment. From there, the carbohydrates are slowly ground down
to monosaccharides while being introduced to the triturated stomach compart-
ment. The rate at which they are ground down/introduced to the triturated
compartment depends on patient specific rate of grinding parameter kg;. The
broken down carbohydrates (monosaccharides) are then passed on to the
intestine, before being absorbed into the blood stream. The rate of gastric
emptying, Kemp:, determines how fast these broken down carbohydrates are
passed to the intestine. Only once the carbohydrates have made there way to
the intestine does the absorption process start. The rate at which the glucose is
introduced to the plasma is determined by four factors, the amount of monosac-
charides (glucose) in the intestine, Qg,, the patient specific rate of intestinal
absorption ks, the patient’s body weight BW and a constant f representing
the fraction of intestinal glucose that actually ends up in plasma, usually set
to 0.9 meaning that 10% of the glucose in the intestine ends up somewhere
else than the plasma. This process in mathematically described in equation

4.15-4.19 [44; 7; 1].

Osto(t) = Osto1(t) + Osto2(t) Qst0(0) =0 (4.15)
Osto1(t) = —kgri * Qsto1(t) + D(2) Qs101(0) =0 (4.16)
Osto2(t) = —kempt (Qsto(1)) * Osroa(t) + kgri - Osto1(t)  Qst02(0) =0 (4.17)
qut(t) = —Kabs * Qgut (t) + Kempt (Qsto(t)) * Osro2(t)  Qgue(0) =0 (4.18)

: ka s ° ut
Ra(t) = ! bBng ®) Ra(0) =0 (4.19)

Here, D is the amount of carbohydrates ingested. Now, as described above,
during the digestion process, these carbohydrates are broken down to monosac-
charides and absorbed as glucose into the blood stream. However, to keep a
common language with the UVA/Padova model when describing the parame-
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ters of the subsystem, both carbohydrates and monosaccharides will be referred
to as "glucose". Continuing the description, Qg1 is the amount of glucose in
the solid phase of the stomach, while Qg;02 is the amount of glucose in the
triturated phase of the stomach, Qy, is the total amount of glucose in the
stomach, and Qy,; is the amount of glucose in the intestine. ky; is the rate of
grinding, k., is the intestinal absorption rate, and Ra is the glucose rate of
appearance in plasma.

The rate of gastric emptying parameter ke, is non-linearly dependent on Qs;,.
If the amount of glucose in the stomach is equal to the currant carbohydrate
intake then, the rate of gastric emptying is at it’s maximum k,,,,. However, as
the glucose (carbohydrates) gradually make there way from the stomach to the
intestine,- will the rate of gastric emptying decrees until it hits its minimum
at kpin. Before kemp, again rises up to kpqy as the amount of glucose in the
stomach goes towards zero, making Qs;, equal to D again, as long as no new
carbohydrates are ingested. Mathematically k., is represented by equation
4.20, where b and c are patient specific parameter describing the rate at which
kemp: decreases and increases [44]. A graphic representation of the gastric
emptying dynamics is shown in figure 4.1.

kempt(Qsto(t)) =
kmax - kmin
Kimin + —22% MmN (tanh(
2

5
9. D(t) ] (1 _ b) [Qsto(t) -b- D(t)])

~ tanh( [Qsto(t) = ¢ D(B)]) +2)  (4.20)

5
2-D(t)-c

Finally for the purpose of ensuring that the models was uniquely identifiable it
was assumed that kyr; = kpmax [44].
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Figure 4.1: Plot of the gastric emptying rate ke, as a function of Qg [44].






Artificial Neural Networks

Artificial Neural Networks are computational models that excel at learning
intricate patterns in data [45]. This ability to learn patterns allows NNs to
be used for a wide range of tasks like preforming predictions, classifications,
data generations, decision support, etc. Making NNs an integral part in the
development of modern Artificial Intelligence (AI) systems. There exists several
types of NNs, each with their unique architecture and design, and with different
aspects they excel at. However, in this section we will only look at the standard
Feed Forward Neural Network (FFNN).

The FFNN is the predecessor of all NNs, and thereby often considered the sim-
plest among them. Its design is inspired by the complex network of neurons in
the human brain, and consists of layers of interconnecting nodes, as illustrated
in figure 5.1. Each connection in the network is associated with a unique weight
and each node in the network is associated with a unique bias. Together, these
weights and biases determine the strength of the signal that passes through the
nodes. Learning these weights and biases allows the system to learn intricate
patterns that can be used to preform certain tasks [46].

Training a NN involves repeatedly sending data through the network to obtain
an estimate of its error, called the loss, and updating the weights and biases in
regards to this loss. The process this is done through is called backpropagation. It
calculates the gradients of the loss based on the individual weights and biases,
and updates them accordingly by using gradient decent, gradually moving
towards the global minimum loss [46].

27
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Input Hidden Output
layer layer layer

Input 1

Input 2
» Output

Input 3

Input 4

Figure 5.1: Diagram of a three layer Feed Forward Neural Network with five nodes
per layer, four inputs, and one output [47].

The nodes are the building blocks of the network, and consist of a single per-
ceptron each, which is why FFNN often are known as Multi Layered Perceptrons.
These perceptrons preform a linear mapping of their respective input based
on weights and biases associated with the nodes and the connections going
into the nodes. In addition an activation function is commonly used to squeeze
the mapping output into a desired range and add some non-linearity to it. By
combining all of this, can we define the output of node k in layer 1 of a arbitrary
FFNN by equation 5.1, where ylgl) is the output of the node, x,El) is the inputs,
,(Cl)w and b](cl) are the weights and biases and N/~1) is the amount of nodes in
the layer prior to [ [46].

NU-D

1 1 1 1
yl(c) :f(b,(c) + Z WIEI) x]il)) (5.1)

By combining multiple perceptrons, all learning a linear mapping, the network
can, as a whole, learn a non-linear mapping. Adding an activation function
introduces more non-linearity to the network (as long as it itself is not linear)
helping it learn these non-linear mappings quicker. The amount of layers and
the number of nodes to use per is up to the designer. More layers and more
nodes, lead to bigger and more complex networks. These bigger networks are
capable of learning more complex patterns than smaller networks, but they also
include more parameters that need to be learned, thereby requiring a longer
training with more data to train on than a smaller network would need. In
theory, a one layer network would be capable of learning any mapping arbitrary
well, regardless of its complexity given enough data and enough training time.
However, utilizing more layers will reduce the amount of data and training
needed to achieve the same results [46].
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Methodology

To incorporate the effect of foods Glycemic Index into the UVA/Padova model,
modifications were made to the glucose rate of absorption subsystem. Specifically,
the rate of grinding and rate of intestinal absorption parameters were adjusted
to better comply with literature. Literature states that GI affects the rate
carbohydrates are broken down during digestion and the rate at which these
broken down carbohydrates subsequently are absorbed into the bloodstream
[29; 30] (see chapter 3 for further explanation). These physiological processes
are already represented in the glucose rate of absorption subsystem through
equations 4.16 - 4.19, where the rate of grinding k,,; and the rate of intestinal
absorption kg control the speed of the processes. Thus, by adjusting k,,; and
k.ps based on foods GI, it is possible to model the effects described in the
literature into the simulator. To determine how to appropriately modify these
parameters, assessments of the two boundary cases were conducted, looking
at what would happen when GI equals o and 100.

The effect food has on the BG response is highly individual, and may vary
drastically from patient to patient. Some patients may spend longer time
digesting foods then others, some may be more affected by the carbohydrates
they consume, and others may be less affected and depending on the severity
of the disease, some patients may better respond to increased BG values. All
these parameters and more will affect a patients BG response. It is therefor
important to consider these individualities when modeling how to adjust the
rate parameters for different GIs. A modeling scheme where the original
values of ky,; and kgps, simply are scaled based on the GI was therefore chosen.

31
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These parameters are patient specific and are hence individual to each patient.
Modeling foods with different Gis by simply scaling these parameters allows
the patient specific response to be extended to foods with other GIs.

Xie’s simglucose [40], the open source version of the UVA/Padova simulator,
was used to implement and model the proposed GI extension. The code of the
extension can be found in the A.1, along with a summery of the modifications
done.

6.1 Boundary Assessment

For the upper boundary, we look at what happens when the GI reaches 100.
The Glycemic Index is defined as the incremental area under the postprandial
BG curve compared to a fixed control food and is given by equation 3.1. Thus,
if a food has a GI equal 100, then that means that the glycemic response gained
from consuming said food is identical to the response gained from consuming
the control food. Commonly, either white bread or pure glucose is used as the
control food, in our case we assume that pure glucose was used. Additionally,
we assume that the parameters of the UVA/Padova model was modeled on data
from glucose tolerance tests. Meaning that k,,; and ks, in their original form,
were modeled on data from in-vivo patients consuming pure glucose which we
already have determined to have a GI of 100, and therefore these parameters
should stay unchanged in this case.

For the lower boundary, things get a bit more challenging. Here, we look at
what happens when GI reaches o. A Glycemic Index equal to zero means
that the food consumed has no effect on the BG response. Therefor, when
consuming zero GI foods, the rate of glucose appearance Ra should stay at
zero. Ra, described by equation 4.19, is only equal to zero if either the amount
of broken down CHO in the intestine Qg is zero or if the rate of intestinal
absorption ks is zero. Now, foods that have a GI of zero usually do not
contain any carbohydrates, or if so, only contain negligible amounts. These
types of foods would not introduce any carbohydrates to the system, as no
carbohydrates were consumed, and therefor Qg,; and Ra will stay at zero.
However, consumption of a carbohydrate rich food with GI equal to zero
should still result in no glucose appearing in the plasma. The only way to
force Qg to stay at zero for carbohydrate rich meals is by scaling the rate of
grinding, kg, to zero, thereby ensuring that the consumed carbohydrates are
not broken down into absorbable monosaccharides. In conclusion, when the
GI reaches zero, either one of the the rate parameters, ky,; or ks, controlling
the flow of carbohydrates through the system, need to be scaled to zero.
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6.2 Handling Meals with different Glycemic
Indexes

A standard day is usually comprised of multiple meals which generally differ
from another. The same type of food eaten at breakfast may not be present
at dinner. So to accurately depict a day in the life of a patient, the proposed
extension has to be able to handle scenarios with multiple meals of varying
GI.

Let us consider an example scenario where two meals are consumed. The first
meal, Meal A, consists of 40g CHOs with a GI of 30. The second meal, Meal
B, consists of only 20g CHOs but with a GI of 75. Meal A is bigger and has a
lower GI than Meal B. It will therefore take longer for Meal A’s carbohydrates
to be digested and absorbed into the bloodstream than it will for Meal B’s
carbohydrates. To model the different digestion and subsection absorption
rates, the rate parameters ky; and kg, controlling the flow of carbohydrates
through the system need to be scaled according to the meal’s GI.

When the first meal is consumed, the rate parameters need to be scaled ac-
cording to Meal A’s GI to comply for the rate its carbohydrates flow through
the system. When the second meal is consumed, the rate parameters need to
be scaled again to comply for the rate Meal B’s carbohydrate flow through the
system if Meal A is fully digested and absorbed by the time Meal B is consumed.
The rate parameters can, in this case, be safely rescaled according to Meal B’s
GI1. However, if some carbohydrates from Meal A is still in the system by the
time Meal B is consumed, an issue occurs. Because once the carbohydrates are
introduced to the system, there is no way of classifying which carbohydrates
belong to which meal. This is an issue since the carbohydrates belonging to
the different meals should be digested and absorbed at different rates.

Due to this issue, meals with different GIs need to be handled separately. The
digestion and subsequent absorption of Meal A and Meal B’s carbohydrates,
need to be calculated separately from each other to accurately depict the
different rates these meals affect patients’ BG.

To account for this, the glucose rate of appearance subsystem was expanded. The
calculations of the subsystems were split into multiple channels, one channels
for each GI considered. This allows foods with different GIs to be calculated
independently of each other, accurately depicting the different rates this food
would flow through the system. This does however require the previously con-
tinuous GI-space to be discretized based on the amount of chosen channels.
The more channels chosen, the better the coverage of the GI-space becomes.
However, more channels also makes the subsystem more computational ex-
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pensive, as each channel adds three additional differential equations and a
rate of appearance calculation. Equation 6.1 to 6.4 summarize the calculations
done per channel. These are identical to equation 4.16 to 4.19 of the original
subsystem, the only difference being that the equations now are conditioned
on a specific GI to keep each channel distinct.

Qstol(ts GI) == gri(GI) ) Qstol(ta GI) + D(L GI) Qstol(o) GI) =0
(6.1)

QstoZ(t, GI) = _kempt(Qsto(t)) ’ QstoZ(t, GI) + kgri(GI) ' Qstol(t, GI) Qstoz(o, GI) =0
(6.2)

qut(t, GI) = _kabs(GI) ' qut(t, GI) + kempt(Qsto(t)) : Qstoz(t’ GI) qut(o, GI) =0
(6.3)

Ra(t,GI) = f kaps(GI) - qut(ta GI) Ra(0,GI) =0

BwW

(6.4)

Each channel of the expanded glucose rate of appearance subsystem, only models
the digestive and subsequent absorption processes of foods with a GI specific
to that channel. To summarize the whole subsystem and to model the full oral
glucose absorption process, all channels need to be summed together, thereby
making equation 6.5 to 6.9, the final output of the system. Here C is chosen to
depict the discrete GI-space. It is important to note that the gastric emptying
rate, k.mp: used within the channels should not be calculated individually per
channel, but rather across all channels as it is non-linearly dependent on the
total amount of carbohydrates in the stomach.
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Qsto(t) = Qstol(t) + QstoZ(t) = Z Qstol(ts GI) + Qstoz(t, GI) Qsto(o) =0

GIeC

(6.5)

Qstol(t) = Z Qstol(t, GI) Qs101(0) =0
GIeC

(6.6)

QstoZ(t) = Z Qstoz(ta GI) Qst02(0) =0
GIeC

(6.7)

Qgur(t) = > Qgur (£, GI) Qgut(0) =0
GIeC

(6.8)

Ra(t) = Z Ra(t, GI) Ra(0) =0

GleC
(6.9)

It was chosen to use a total of 101 channels for the extended glucose rate of
appearance subsystem. One channel for each whole number the GI can take,
thereby defining the interval C as follows:

C=10,1,23,...,100]. (6.10)

Though the GI does not technically need to be whole number, it is usually
represented as such in listings.

The total amount of differential equations in the glucose rate of appearance
subsystem will then increase to 102 X 3, as the three equations summarizing
the flow across all channels also have to be represented as differential equations
in the system.

6.3 The Lower Boundary Issue

We previously stated that in cases where zero-GI foods are consumed, either
kgri or kaps should be scaled to zero to ensure that the no glucose appears in the
plasma. The issue is that scaling any of these rate parameters to zero will result
in the carbohydrates associated with the zero GI food getting stuck somewhere
in the system. If ky,; is scaled to zero, the carbohydrates will get stuck in
the solid stomach compartment, unable to move further and therefor always
effecting Qs;01. Conversely, if kg is scaled to zero, the carbohydrates will get
stuck at the intestinal compartment, unable to move and always effecting Q-
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This issue arises due to the way the simulator is modeled. The UVA/Padova
model only considers the path digestible carbohydrates take up until they
are absorbed by the intestine. Bowel movements or gastric emptying of non-
digestible carbohydrates are not included in the model.

Scaling either of the rate parameters to zero is therefor problematic. However,
we will see that carbohydrates stuck in the intestinal compartment will not
affect future simulations, and will therefor be less problematic than carbo-
hydrates stuck in the solid stomach compartment as these will affect future
simulations.

This is due to how meals with different Gis are handled in the proposed
extension. Since foods with different GIs are modeled separately in different
channels, the carbohydrates will get stuck due to consumption of zero GI meals,
specifically, they are stuck the channel responsible for these types of meals,
in other words, the zero GI channel. The stuck carbohydrates will cause the
amount of carbohydrates in its channel compartment to be permanently in-
creased. Meaning that if carbohydrates get stuck in the channels solid stomach
compartment due to scaling ky,; to zero, Qss01(t, GI = 0) will be increased per-
manently. And similarly, if carbohydrates get stuck in the channel’s intestinal
compartment due to scaling ks to zero, Qg (t, GI = 0) will be permanently
increased.

A permanent increase to either Qg;01(t, GI = 0) or Qg (t,GI = 0) will not
affect the calculations of the zero GI channel. Within each channel, Qg1 (t, GI)
only appears together with k,,;(GI), and Qg (t, GI) only appears together with
kaps(GI). Since ky;(GI = 0) is set to zero in cases where Qqs01(t, GI = 0) is
increased, and k.5 (GI = 0) is set to zero in cases Qyy; (¢, GI = 0) is increased,
the channel specific rate parameters will make the increased carbohydrate
amounts of the channel’s compartments insignificant.

Each channel of the extended glucose rate of appearance subsystem models the
flow of carbohydrates separately from each other, so an incorrect value in one
channel may not necessarily cause issues for the other channels. The issue of
carbohydrates getting stuck is specific to zero GI meals, as these are the only
cases were the rate parameters are scaled to zero. This means that only the zero
GI channel will experience permanent increases to its compartment’s carbohy-
drate content. Other, non-zero GI channels will not experience this. However,
increasing the amount of carbohydrates in a specific channel’s compartment
will also increase the total amount of carbohydrates in that compartment across
all channels. So modeling lower boundary cases by scaling k,; to zero will not
only cause Qs;01(t, GI = 0) to be permanently increased by the carbohydrates
of the zero GI meals, but also Qs;01(t). Similarly, modeling lower boundary
cases by scaling kg to zero will also lead to a permanent increase of Qg (t)
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caused by the carbohydrates of zero GI meals.

The only part of the digestive and subsequent absorption process that is not
modeled individually per channel is the gastric emptying rate, k. This
parameter is dependent on the total amount of carbohydrates in the stom-
ach, Qszo(t) = Qsto1(t) + Osto2(t). In other words, it is dependent on the
total amount of carbohydrates in both the solid and triturated stomach com-
partments across all channels. Carbohydrates stuck in the zero GI channels
solid stomach compartment, will permanently increase the total amount of
carbohydrates in the stomach and will therefor introduce errors to the gastric
emptying rate calculations as the amount of carbohydrates currently in the
stomach, Qs (), no longer can be equal to the amount of carbohydrates cur-
rently consumed D(t). Since all channels depend on the same gastric emptying
rate, this error will affect the flow of carbohydrates in all channels for all future
non-zero GI meals. Therefor, k,,; can not be scaled to zero to model lower
boundary cases.

Carbohydrates stuck in the intestine compartment will not affect the gastric
emptying rate, as they do not count towards the total amount carbohydrates
in the stomach. Additionally, no part of the simulation model actually depends
on Qg (), the total amount of carbohydrates in the intestinal compartment
across all channels as the rate of glucose appearance, Ra, is calculated individ-
ually within each channel, only using the individual channels Qg (t, GI) and
kaps (GI) parameters. Therefore, k,,s may safely be scaled to zero to model
lower boundary cases, without affecting the flow of carbohydrates for future
meals since the only parameter permanently affected by the carbohydrates
stuck in the intestinal compartment is a dead parameter that is not used for
anything in the model.

It is also worth noting that these lower boundary cases can not simply be
ignored. As cases where zero GI foods are consumed, are not identical to cases
where no foods are consumed, even though both cause the same Ra. In cases
where zero GI foods are consumed, carbohydrates enter the stomach, thereby
effecting the gastric emptying rate, while cases where no foods are consumed
will not effect the gastric emptying rate.

6.4 Modeling Technique and Evaluation Metric

We have now looked at how the rate parameters, kgr; and kqps, should be
scaled at the boundary cases of the GI-interval. We have defined that both kg;
and k,ps should keep their original value to model the upper boundary cases
where the consumed meals GI equals 100. We have also seen that k,;s needs
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to be scaled to zero, and not k,,;, to model the lower boundary cases where
the consumed meal’s GI equals 0. In this section, we will define the method
used for modeling how the rate parameters should be scaled in cases between
the two boundaries.

Before starting, it is important to define the value ky,; takes at the lower
boundary. We have previously defined that k,,; should not be scaled to zero
in these cases, as that would cause dependency errors in the system. However,
it should also not stay at its original value, as the digestion of zero GI foods
should take longer than the digestion of pure glucose. Because of this, the
assumption made to kg; in the UVA/Padova model was expanded upon (see
section 4.2.2), changing it from kg, = kmax, t0 kgri € [Kmin, kmax] and thereby
choosing the patient specific minimum gastric emptying rate, ki, as the lower
boundary value of kgy;.

The literature states that food with higher Gis, should be digested faster and
absorbed quicker than foods with lower GIs. This means that the functions
kgri(GI) and kups(GI) describing the new value of the rate parameters should
be strictly increasing on the interval GI € [0, 100]. The ranges of the new
parameter values will thus be defined as:

kgri(GI) € [kmin> kmax] kaps(GI) € [0, kaps]. (6.11)

A simple scaling technique was then used to model the rate parameter functions
in their respective ranges. The functions were chosen to fulfill the conditions
mentioned above as well as the following boundary conditions:

kgri(GI = 0) = kmin kgri(GI = 100) = kmax (6.12)
kaps(GI =0) =0 kabs(GI = 100) = kgps. (6.13)

The rate parameter functions are written as follows:

GI \Agri

kgri(GI) = (ﬁ) . (kmax - kmln) + kmins Agri >0 (6.14)
GI Aabs

kaps(GI) = (ﬁ) " Kabss Aabs > 0. (6.15)

Agri and Agp are positive scalars defining the shape of the functions. These are
the parameters used to fit the extended simulation model to GI data and will
therefor need to be optimized.

The glycemic index is calculated from the postprandial BG curve, using equation
3.1. It compares how the BG response gained from consuming 50g of a specific
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food relates to the response gained from consuming the same amount of pure
glucose. Thus, for the simulator to accurately model the effect a food’s GI has
on the glucose-insulin system, so should the GI calculated from the simulated
BG response fit the GI of the simulated meal. If the simulated meal has a GI
of 35, the GI calculated for the simulated BG response should also be 35. In
other words, the closer the recalculated GI is to the GI of the meal originally
simulated, the better is the fit of the simulator. Since we wish to make the
model accurately depict foods with all the different GIs represented in C, we
must find the pair of Ay; and A4y, that produces the best cumulative fit for all
the different GI.

The method used to evaluate the fit of the simulator for a single set of Ay;
and Agpss involved simulating single meal simulations for each of the unique
GI in C, and then recalculating the index based on the simulated BG data.
The simulated meals were consumed 12 hours after simulation start, and
included 50g of carbohydrates. This was done to ensure a common ground to
compare the meals with an steady initial fasting BG level, thereby recreating the
conditions for GI calculations described in chapter 3. The GI of the meals was
recalculated using equation 3.1 and the simulated postprandial BG curves. Only
values bigger than the fasting BG and in the first two hours after consumption
were considered when calculating the area under the curves. Meals where the
GI equaled 100 were used as a control and the different unique GI meals were
used as test. The same set of Ag; and A5 was used under each simulation. A
mean squared error loss was used to describe cumulative error of the fit. The
specific loss function used is described in equation 6.16 where GI is the meals
actual glycemic index and GI is the recalculated glycemic index.

MSE= Y [GI-GI]® (6.16)
GIeC

A simple grid search technique was used to find the optimal set of Ay; and
Aabs- Both parameters were initially set to 1.0 and then slowly increased one
by one until the optimal value was found.

6.4.1 Modeling Subjects

The Glycemic Index is not a measurement meant to be used specifically for
diabetes patients, but rather for the whole human population. The calculation
technique described by the United Nations Food and Agriculture Organization
[33] is not suited to be used for diabetic patients as it only considers the BG
response for the first two hours after consumption. Patients with diabetes are
not able to produce sufficient amounts of insulin to control their BG concen-
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trations and will therefor experience an increased and prolonged BG response
compared to non-diabetic patients. A time frame of two hours will only cover a
small fraction of this prolonged response, and will therefor be a bad depiction
of the overall effect food has on the glucose-insulin system.

Because of the reasons mentioned above, it was decided to not use the in-silco
T1DM patients included in simglucose to perform the modeling, but rather
in-silco non-diabetic patients. These in-silco non-diabetic patients would first
need to be added to the simulator for them to be used in the modeling of the
extended glucose rate of appearance subsystem. Additionally, to adjust for the
different physiology of these healthy non-diabetic subjects, so the subcutaneous
insulin kinetics subsystem, describing insulin rate of appearance dynamics from
external sources, was replaced with the subsystem describing insulin secretion
from the pancreatic beta-cells included in the Meal Simulation Model of the
Glucose-Insulin System [36; 39].

The only model parameters of a non-diabetic patient available to the author
at the time of writing were the ones given for the Normal patient in Table 1
of Man et al. (2007) [36]. These are the average model parameters of the 204
healthy subjects included in the Meal Simulation Model of the Glucose-Insulin
System [36]. Not all model parameters required by simglucose are given in Man
et al. (2007) [36], so the parameters missing needed to be calculated. This was
done by using the basel state equations listed in [7; 1; 36; 39].

Simulated data from the added non-diabetic patient was then used to model
the extended glucose rate of appearance subsystem, finding the Ay,; and A4y, that
optimizes the fit the proposed extensions simulated data. The subcutaneous
insulin kinetics subsystem was only replaced during the modeling phase. It was
replaced back after the modeling was finished to allow the simulation of T1IDM
patients.



Results

In this chapter, we will present the results for the proposed GI extension,
building on the methodology outlined in chapter 6. We will first present
the result of the GI molding before looking at simulations of this modeled
extension. The modeling was performed using the technique and evaluation
criteria described in section 6.4 on simulated data from the added non-diabetic
subject described in section 6.4.1. The results are briefly explained as they are
presented and will be discussed in more detail in chapter 8.

7.1 Modeling Results

The values of A4,; and A,4ps found to optimize the cumulative fit of the simulated
meals GI and their following BG responses are as follows:

Agri = 4.0, Aabs = 1.2. (7.1

This causes the rate parameter functions describing the different rates carbo-
hydrates of different GIs are digested and absorbed, to be as follows:

GI \40
kgri(GI) = (m) : (kmax - kmin) + Knin (7.2)
GI \12
kabs(GI) = (ﬁ) “ Kaps- (7-3)

This will result in the rate of absorption increasing almost linearly as the the
food’s GI increases, while the rate of grinding will increase slower in the lower
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part of the GI spectrum and faster in the higher parts of the spectrum. Meaning
that low and medium GI foods will have a rate of grinding close to k,;,, while
high GI foods will have a rate of grinding close to ky,qy-

Figure 7.1 summarizes the total fit of the modeling results for all GI values in the
interval C by plotting the GI of the simulated meals against their recalculated
value based on the simulated BG response. The diagonal blue line shows the
optimal result where each recalculated GI value equals the GI of the simulated
meal. The orange line shows our modeling results. The original GIs of the
simulated meals are shown along the x-axis, and the recalculated values, GI s
are shown along the y-axis. The mean squared error of this fit was 1.380,
meaning that the GI depicted by the simulated BG response is on average only
V1.380 values different than the one actually simulated. We can see that our
solution slightly diverges from the optimal one in three main regions, the first
around GI = 20, the second around GI = 55 and the third around GI = 85.
In the first and the last region, the GIs depicted in the BG response will be
slightly higher than the ones of the consumed meal, and in the middle region
the depicted GI will be slightly lower than those of the consumed meals. The
simulated BG responses accurately depict the GI in the boundary cases as well
as in the two spots our found solution crosses the diagonal. The values of kg;;
and k., at the boundary cases are coded into the rate parameter functions
and are therefor accurately fitted.

It is important to remember that the results illustrated in figure 7.1 only show
the fit of cases used in the actual modeling process, meaning that all meals
were simulated on the non-diabetic patient and had a carbohydrate content of
50 grams. Due to the issues discussed in section 6.4.1 regarding GI calculations
from BG responses of patients with diabetes, it is not possible to evaluate the
fit for data simulated from T1DM patients.

7.2 Simulation Results

Figure 7.2 and 7.3 showcase postprandial BG simulations of the modeled GI
extension for both the non-diabetic patient and a arbitrarily chosen TiDM
patient. The illustrated postprandial BG curves are simulated from single meal
simulations with varying GIs where each meal contained 50g carbohydrates.
The color of the curves represent the GI value of the simulated meal. The
blue curves show the postprandial BG from zero GI meals and are in both
cases simulated as a straight horizontal line along the fasting BG value of the
respective patient. The orange curves show the postprandial BG of meals with a
GI equal to 25. The green curves show the response from meals with a GI equal
to 50. The red curves for meals with a GI equal to 75, and the purple curves
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Figure 7.1: Modeling results of the GI extension. The GI of the simulated meals
modeled are plotted against their recalculated values GI. The diagonal
blue line depict the optimal result where each recalculated value equals
the GI of the simulated meal, And the orange line depicted our modeling
results.

for meals with a GI equal to 100. For the T1DM simulation scenarios, a patient
specific basal dose included in the Basal Bolus controller of Xie’s simglucos [40]
was administered to the patient to ensure steady fasting BG levels. No bolus
doses were administered in the simulation scenarios.

It is evident from the figures that the GI extension is able to capture the de-
scribed effect foods’ GI has on the BG response in the literature. The postpran-
dial BG simulations of high GI meals depicts a quick spike of large magnitude
followed a drastic decrease in the BG concentrations, while the simulations
of low GI meals depicts a slower, steadier and longer lasting increase of the
patient’s BG concentration with less amplitude than that of high GI meals. Both
these observations comply with what is described in the literature.

The simulated postprandial BG curves of the non-diabetic patient also depict
the characteristic crash seen in the BG concentration after consuming high
GI foods, resulting in the BG concentration dropping lower than the fasting
levels. This crash is caused by glucose homeostasis, the body’s natural response
towards changing BG levels. The body responds to the rapid increase in BG
concentration by increasing the amount of insulin secreted by the pancreatic
p-cells. High GI foods are quickly digested and absorbed, causing the body
to secrete more insulin then needed to stabilize the BG concentration, which
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Figure 7.2: Postprandial BG simulations of meals containing 50g carbohydrates with
GI equal to; 0, 25, 50, 75 and 100, for the non-diabetic patient.

in turn causes the characteristic crash. The body will then respond to these
decreasing BG concentrations by increasing the amount of glucagon secreted
by the pancreatic a-cells. These opposing insulin and glucagon actions are
what is causing the stabilizing effect seen in the simulated BG responses of
the non-diabetic patient. Patients with T1DM are not able to produce enough
insulin to successfully respond to these increasing BG concentrations. We will
therefor only see these effects in the postprandial BG curves of the non-diabetic
patient, and not the T1DM patient.

The simulated BG responses of the T1IDM patient, depicted in figure 7.2, are
longer and of higher magnitude than those of the non-diabetic subject shown
in figure 7.2. This is also as expected as the lack of insulin production will
cause T1DM patients to be more affected by the consumed carbohydrates and
makes them unable to lower these increased BG concentrations in a normal
time frame.

The depicted increase to the BG concentration caused by the consumption of
non-zero GI meals is on average three times higher for the T1DM patient than
for the non-diabetic patient. It also takes the T1DM patient considerably longer
to get the BG concentrations back to their fasting levels than the non-diabetic
patient. For the non-diabetic patient, the BG concentrations are all stabilized
within 12 hours after consuming the meals. However, the BG concentrations
return to the fasting levels for the first time as early as 2.5 and 3.0 hours for
the high GI meals (GI = 100 & GI = 75). For the T1DM patient on the other
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Figure 7.3: Postprandial BG simulations of meals containing 50g carbohydrates with
GI equal to; 0, 25, 50, 75 and 100, for the T1DM patient: adult#o002.

hand, it takes 20 to 24 hours for the BG concentration to get back to fasting
levels for the majority of the meals and more than 24 hours for the meal with
GI equal to 25. These simulated values will vary from patient to patient as they
depend on the patient specific parameters.

The dip seen in the increase of all postprandial BG curves in 7.3 is caused by
the gastric emptying process. As the stomach fills up with carbohydrates, the
gastric emptying rate decreases causing a dip in the rate glucose appears in
the plasma as the amount of carbohydrates in the stomach gradually decreases.
Thus, the gastric emptying rate increases again, causing more carbohydrates
to flow into the intestines to be absorbed.






Discussion

In this section we will discuss the methodology and results of the proposed GI
extension presented in this thesis.

8.1 Glycemic Index’s Effect on the
Glucose-Insulin System

Glycemic Index is an end to end measurement that quantifies the effect different
types of food have on the BG response. Only postprandial BG values are
considered when calculating a food’s GI. Even though these values give an
indication to the rates foods are digested and subsequently absorbed, they do
not specifically measure this. The GI therefor only works as an estimate of
these rates but does not depict the full effect food has on the specific processes
of the glucose-insulin system. The UVA/Padova model simulates a patient’s BG
by modeling these processes. The simulator splits the glucose-insulin system
into 10 compartmental subsystem and models the effect external sources like
insulin and meals carbohydrate content have on the system. So to add GI to
the simulator, we had to model how it affected the different subsystems. In the
methodology of section 6, we propose that only the glucose rate of appearance
subsystem needs to be modified to add this effect. This subsystem is responsible
for the digestion and absorption of carbohydrates and by changing the rates
of these processes, we may depict the anticipated BG response of different GI
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foods. How the GI affected the digestion and absorption of carbohydrates was
the main focus in our extension. Any possible effect it may have on other parts
of the system was only briefly considered. Further research should therefor be
done on the topic to investigate alternative effects foods’ GI may have on the
system.

8.2 Modeling of the Lower Boundary

In the assessment of the lower boundary in section 6.1, we state that no glucose
should enter the bloodstream due to the consumption of zero GI foods and
that therefor either the rate of grinding, k4, or the rate of adsorption, ks,
should be scaled to zero to model these cases, thereby ensuring that the glucose
rate of appearance, Ra, stays at zero. However, due to the issue explained in
section 6.3, we were forced to model these cases by scaling ks to zero and
not kg,;. This was done out of necessity as scaling k,,; to zero would have
caused permanent errors to the gastric emptying rate, which would affect all
other meals simulated in the same scenario. It was therefore chosen to set
kgri equal to the minimum gastric emptying rate Kp;,, for the lower boundary
cases, expanding on the assumption made the original model.

However, if we consider what type of food actually has a GI equal to zero, it
would theoretically make more sense for the rate of grinding to be zero in
these cases than for the rate of absorption. Foods commonly labeled as zero
GI foods usually contain no carbohydrates, like meats and fats, and if they
do so, they only contain negligible amounts. These foods would not introduce
any carbohydrates to the system, and therefore no glucose would end up
in the plasma due to them. Though as previously mentioned, consuming a
carbohydrate rich meal with GI equal to zero should also result in now glucose
appearing in the plasma. But what would such a food be? And does such
food even exist? This is a bit unclear, as no foods containing a significant
amount of carbohydrates are listed to have a GI of zero in the international
GI tables [35]. However, it is not unreasonable to think that foods containing
mainly carbohydrates that are not digestible for the human body, like cellulose,
would qualify as zero GI foods. The human body would not be able to break
down these carbohydrates to absorbable monosaccharides, and therefor no
glucose would appear in the plasma due to them. Following this logic, it would
theoretically make more sense that kg; would be zero in these cases as it
represent the rate at which these carbohydrates are broken down, and since
the body can not break these carbohydrates down, the rate of grinding wold
theoretically be zero. These are all still speculations, and more research needs
to be done on the topic to figure out what these zero GI foods represent and
if it is needed to cover them in the model. But if this is the case, would we
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recommend adding gastric emptying of non-digestible carbohydrates and bowl
movements into the model to make the final model more theoretically accurate
and thereby allowing k,,; to be zero.

8.3 The Glucose Tolerance Test Assumption

When molding the proposed extension, we assumed that the parameters of the
UVA/Padova simulator were modeled on glucose tolerance test data and that
kgri and kgps should therefore keep their original value at the upper boundary.
The glucose tolerance test is a common experiment where a patient consumes
a specific amount of glucose while their BG concentrations are monitored. The
test is used to check how the body handles glucose and is often used to diagnose
diabetes in the early stages [48]. Due to the simplicity of this test and amount
of available data from them, data from them are often used in the modeling of
in-silco treatment strategies. Another popular data to use in the development
of in-silco treatment strategies is mixed meal data. This data is similar to the
glucose tolerance test data, but depict how a mixed meal affects the patients
BG concentrations instead of pure glucose, thereby giving a better depiction
of patients everyday life. The data used to model the UVA/Padova simulator
was not available to the author at the time of writing. And to the knowledge
of the author, it is never stated in the publicly available literature what was
used. It was therefor assumed that glucose tolerance test data was used, as it
aligned better with our intended goal. However, this assumption is not correct
for the non-diabetic patient added from Man et al. (2007) [36], as this one is
modeled on mixed meal data. The original value of k,,; and kg, will therefore
depict the mixed meals GI and not the GI of pure glucose (GI = 100). So to
accurately model this patient, we should have used the mixed meals GI as the
upper reference point instead of GI = 100. However, as the GI of the mixed
meal is not known so was this not possible.

Now, since the non-diabetic patient is used to model the scaling of the rate
parameter function for all of our patients, the significance of this incorrect
assumption will be of importance. Due to the high glucose content of the mixed
meals used, 1 + 0.02 g per kg body weight [36], the GI of the mixed meal will
be high, causing the incorrect assumption to have less significance.

Man et al. (2006) [44] conducted tests on oral glucose absorption models,
looking at how these models fitted mixed meal and glucose tolerance test data.
One of the models presented in the paper was the glucose rate of appearance
subsystem used in the UVA/Padova simulator. This was also the model that best
fitted both sets of data. Their results depict that the parameters modeled on
mixed meal data slightly varies from those modeled on glucose tolerance test
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data. ki, and ks were smaller for the mixed meal model than for the glucose
tolerance test model. However, k4 which kg, is assumed to be equal to, was
found to not be significantly different in the two models. These results support
our methodology as mixed meal have lower GI then pure glucose and therefor
would have a lower absorption rate. Additionally, due to the inclusion of other
nutrients such proteins and fats in the mixed meal, this would slow down
the gastric emptying rate [44]. When applying these results to our situation,
we see the incorrect assumption mainly affects the rate of absorption, as it
theoretically should have been slightly higher than what is depicted in our
results.

Even though the proposed extension might not be 100% correct, it depicts the
desired effect the GI has on the BG response. This can be admired, and we
hope our model can work as a proof of concept and a baseline for future GI
extensions.

8.4 The Effects of Other Nutrients on the System

As demonstrated by last section, there is more than just the carbohydrates that
affect a meal’s BG response. Other nutrients, such as proteins and fats, will also
affect the digestion of carbohydrates. Proteins and fats do not directly cause
glucose to appear in the plasma, but both slow down the rate of appearance
of glucose from other sources, such as carbohydrates. Both, protein and fats
are digested in the stomach and therefore affect the gastric emptying rate as
depicted in Man et al. (2006) [44]. Though the GI originally was presented
as a measurement depicting how different types of carbohydrates affect the
BG response, it is commonly calculated per food/meal. And as a food or a
meal usually includes more than just carbohydrates, its GI will also include
the effects of other nutrients present in the food or meal. It is therefore not
necessarily needed to extend the simulator further to include the effect of
proteins and fats as these are already modeled into the meals GI.

8.5 Optimization Technique

A grid search was used to perform the modeling of the extension. This technique
is in no way the most effective optimization technique as it is time consuming
and relies on trial and error. Though the results of the modeling depict a
good fit, this may be more due to the luck of searching in the right area
than due the performance of technique. A more sophisticated approach to the
optimization would therefor be recommended, and would most likely result in



8.6 / MODELING SUBJECTS 51

a better fit. However, as we are not able to differentiate through the simulator,
standard machine learning optimizations techniques cannot be used for the
modeling. One could do a similar approach to what was done to for the food
recommendation systems by training a network to map pairs of Ag; and Agps’s
to the MSE loss of the fit. However, to train such a network would require
data from a grid search in the first place. Modeling it this way would therefor
be inefficient as we would only need to use the trained network once to find
the optimal value of Ay; and Agps. Though the trained network could have
predicted values not included in the grid search, one could instead use the
time needed to train the network to extend the search.

8.6 Modeling Subjects

Ideally, a bigger population of in-silco non-diabetic patients would have been
used to perform the modeling of the GI extension. The BG response caused by
consuming a specific food is highly individual and may vary drastically from
patient to patient. Using data from a larger population would therefore ensured
that a more general solution was found, better suited to model how a foods’ GI
effects the BG over a broad population. However, only one in-silco non-diabetic
patient was available to the author at the time of writing, and thus only data
from this patient was used. The proposed extension will therefor be biased
towards the individual specifics of this non-diabetic patient. Additionally, a
broader population of modeling subjects would have made the extension less
vulnerable to errors of specific subjects, like the incorrect assumption made for
the non-diabetic subject used.

As explained in section 6.4.1, data from T1DM subjects cannot be used for the
modeling as these subjects will have an increased and prolonged BG response
that can not be captured in the two hour time constraint of the GI calculation.
It should be noted that the Basal Bolus controller included in Xie’s simglucose
[40] cannot be used to bypass this issue. This controller only considered the
amount of carbohydrates in a meal when calculating the bolus dose and not
the GI of these carbohydrates. It will therefor distribute the same bolus dose
for meals with the same carbohydrate content, regardless of the meals GI.
However, high and low GI foods cause different responses in the BG and will
therefor need different amount and types of insulin to successfully control. As
this is not included in the Basal Bolus controller, it cannot be used to mitigate
the differences of T1IDM subjects BG responses.

It was considered during the development whether the two hour time con-
straint could be dropped and rather the whole BG response of foods could
be considered when calculating the GI. This would have allowed us to use
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data from T1DM subjects for the modeling, and thereby not be so reliant on
non-diabetic subjects. However, this was not possible. Our proposed extension
only slows down the rate at which glucose appears in the plasma. The total
amount of glucose appearing in the plasma is not changed for non-zero GI
meals. Therefor, given enough time, "all" carbohydrates of a non-zero GI meal
will end up as glucose in the plasma. Technically, due to f, the fraction of intesti-
nal absorption that actually appears in plasma, only 90% of the carbohydrates
will end up as glucose in the plasma. But this will be the same for all subjects.
Considering the area under the curve for the whole BG response will therefore
cause the recalculated GI to equal 100 for all non-zero GI meals.

8.7 Time Needed to Stabilize the Blood Glucose

The simulated postprandial BG curves illustrated in section 7.2 all depict an
longer recovery time than expected, i.e. the time it takes the BG to go back to
fasting levels after a meal. The literature usually depicts the BG concentrations
of a standard non-diabetic person to be stable and back at fasting levels within
two to four hours, as illustrated in figure 3.1. However, the response simulated
for the non-diabetic showcased in 7.2 depicts a much longer recovery time. This
may be due to the individual specifics of the patient as BG response is known to
vary from person to person. However, the longer recovery time seen can also be
explained by the incorrect assumption used for the non-diabetic patient. The
parameters of this patient were modeled from mixed meal data and not glucose
tolerance test data as assumed. The k,;s and k,,;,, parameters of this patient
will therefor be lower than they are assumed to be, causing longer digestion
and absorption times, and herby longer effects on the BG concentrations. Since
this non-diabetic patient was used to model the scaling for all other patients,
these extended effects will be transmitted to the T1DM patients as well.
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Methodology

To show how the proposed GI extension can be used in the development of new
diabetes treatment technologies, we will use data simulated from the extended
simulator to train a food recommendation system for T1IDM patients. The goal
of the systems will be to recommend the optimal food to eat before exercise
sessions in order to keep the BG concentrations in the normoglycemic range
and avoid states of hypoglycemia. The food will be recommended in terms of
amount of carbohydrates and GI. allowing the systems to choose the food with
the response best suited to control a certain exercise session.

To introduce the effect exercise has on the glucose-insulin systems, Jaloli’s
Physical Activity model was added to our extended simulator. This was done
by changing the insulin dependent utilization, U;4(t) of the glucose utilization
subsystem to that of equation 4.10. As no patient specific f parameter is given
for the in-silco patients used, so was the median value represented in table 4.2
used instead.

9.1 Training Strategy

Similarly to meals, the BG response from exercise will be individual to each
patient. To account for this, the systems must be trained on data depicting the
unique response of the user. However, these systems require a lot of data to
train. To collect enough data to train the systems, each user would need to
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conduct several thousand exercise sessions, all with different intensities, lengths
and pre-exercise meals. This is impractical as it would take years to collect
all the necessary data. Additionally, for the system to perform at its optimum,
it will need training samples representing all parts of the exercise spectrum,
both healthy and unhealthy scenarios. Collecting this data may therefor be
uncomfortable and potentially harmful to the user’s health.

To work around this issue, we propose a strategy where large amounts of in-
silco data are used to pre-train the systems and only small amounts of in-vivo
data are used to specialize the systems to the individual users. This makes the
system more user friendly as considerably less data is needed from each user.
The in-silco data used to pre-train the systems will be simulated from our GI
and PA extended simulator. The pre-trained systems need to be generalized in
a way that makes them applicable to a broad spectrum of patients. This was
done by pre-training the system on data from a large population of virtual
patients.

Since no in-vivo data was available to the author at the time of writing, in-
silco data from three virtual patients were used instead. These three patients
were assumed to be our "real world subjects", and therefor no data from these
patients were used to pre-train the systems.

0.2 Model Architecture

The food recommendation systems developed in this thesis are made from a
FFNN trained to map the specific exercise scenarios to a score depicting their
following BG responses. Each scenario is represented by a total of six features,
describing the patient, the exercise session and the pre-exercise meal. Age and
body weight are used to describe the characteristics of each patient. Carbohy-
drate content and GI are used to describe the meal and exercise length and
intensity are used to describe exercise sessions. A score is used to depict the
BG response of each scenario, summarizing the BG levels experienced through-
out the scenario. This score is inspired by the reward used in reinforcement
learning models.

A reward function is used to calculate the reward of each CGM measure-
ment and the final score is set to the average reward gained in the scenario.
The objective of the reward function is to depict how healthy the individual
CGM measurements are, giving higher reward for measurements in the nor-
moglycemic range and lower for those outside. As the goal of the systems
is to control a patient’s BG concentrations and avoid states of hypoglycemia,
the asymmetric reward function depicted in Ngo et al. (2020) [6] was chosen.
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Figure 9.1: Training method for the food recommendation systems

This reward function penalizes hypoglycemic measurements more than hyper-
glycemic ones, thereby aligning perfectly with our intended goal. Equation 9.1
describes this reward function, where BG represent the BG measurements of

the CGM.

r(BG) =

10
exp (U137 BG) —19.157
1

—75 BG + 3

-5

if BG < 54

if 54 < BG < 72

if 72 < BG < 108 (9.1)
if 108 < BG < 180

if BG > 180

The FFNNs are trained to predict this score based on the features of the
scenario. The MSE loss depicted in equation 9.2 is used to evaluate the networks,
measuring how the predicted score compares to the actual score of the scenarios.
Figure 9.1 illustrates the whole training process where the predicted scores are
depicted with a hat and the actual scores without.

1
NData

Lossysg =

Z [sco/Te - score]2 (9.2)



58 CHAPTER 9 / METHODOLOGY

The FFNNs used in the food recommendation systems were made up by three
fully connected hidden layers with dimensions 32, 64, 16, respectively, going
from the input to the output. The input layer has a dimension equal to the
number of features used, and the networks have only one output, the predicted
score. Each node in the hidden layers uses a ReLU activation function to
introduce additional non-linearity to the model.

Once the networks were trained, they were used to find the optimal food to eat
before a specific exercise session. This was done by finding the combination of
carbohydrate amount and GI that resulted in the highest predicted score. The
optimal food can thereby be obtained as follows:

CHO", GI" = argmax f(CHO, GI | Length, Intensity, Age, BW),  (9.3)
CHO,GI

where CHO™ and GI* represent the features of the optimal food and f(...)
represent the mapping learned by the FFNN. To perform this argmax process,
different combinations of CHO and GI are mapped to their predicted score
Score, while keeping the features representing the exercise and patient un-
changed. The combination resulting in the highest score is then chosen as the
optimal food for that exercise scenario.

0.3 Features and Data

The features used in the food recommendation system were chosen as they
are easily obtainable by patients performing the exercise scenarios. This was
done to make the system more user friendly and allow it to be trained on both
in-silco and in-vivo data. By switching out the simulated BG measurement with
the actual CGM measurements of a patient exercising, the same setup depicted
in figure 9.1 can be used for in-vivo data.

The patient specific features Age and BW were added to help the pre-trained
system specialize to the specific characteristics of the user. To represent the
intensity of the exercise, the average percentage of the maximum HR was used.
This was done to depict realistic average heart rates for the subjects and to
make the feature space independent of the subjects age and body weight. The
intensity of the exercise will then be given by equation 9.4:

HR

Intensity = , (9.4)

Rmax

where HR is the average HR of the exercise session and HR,,,, is the subjects
maximum heart rate.
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Name ID Age BW [kg]
adult#oo1 1 61 102.32
adult#oo2 2 65 111.10
adult#oo3 3 27 81.63
adult#o04 42 66 63.00

adult#oos5 5 52 94.07
adult#006 6 26 66.10
adult#ooy7 7 35 91.23
adult#008 8 48 102.79
adult#o09 o9 68 74.60

adult#o10 10 68 73.86
adult#o11 51 24 76.37
adult#o12 152 27 102.62
adult#013 53 70 74.61
adult#o14 54 62 57.32
adult#015 55 40 59.06
adult#016 56 77 68.71
adult#017 57 23 97.32
adult#018 58 47 68.28
adult#019 59 44 64.00
adult#020 60 66 66.63

Table 9.1: Virtual patient population.

9.4 Data Production

The data used to train the food recommendation systems was produced through
repeated simulations of the extended simulator. The virtual patient population
was extended beyond that of the 10 adult TIDM patients included in Xie’s
simglucose [40] by adding the 10 adult T1DM patients listed in the US patent
for the 2008 version of the UVA/Padova simulator [49]. Similarly to the case
of adding the non-diabetic patient, not all parameters required by simglucose
were included in the patent. The missing parameters were calculated using
the basal states equation listed in [7; 1; 36; 50]. The new virtual patient
population is described in table 9.1 where adult#o11 to adult#020 are the
added patients.

This new virtual patient population was split into three sub populations with
similar average body weight and age. The split was done based on the intended
use-cases, training, test and validation (see table 9.2 to 9.3). Data from the
fourteen patients in the training population was used to pre-train the food
recommendation systems. Data from the three patients included in the test
population was used to test the food recommendation systems under pre-
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Name ID Age BW [kg]
adult#o02 2 65 111.10
adult#oo4 42 66 63.00
adult#006 6 26 66.10
adult#oo7 7 35 01.23
adult#008 8 48 102.79
adult#oo9 9 68 74.60
adult#o10 10 68 73.86
adult#o12 52 27 102.62
adult#013 53 70 74.61
adult#o14 54 62 57.32
adult#015 55 40 59.06
adult#016 56 77 68.71
adult#o017 57 23 97.32
adult#o019 59 44 64.00

Table 9.2: Training population.

Name ID Age BW [kg]
adult#oo5 5 52 94.07
adult#o11 51 24 76.37
adult#020 60 66 66.63

Table 9.3: Test population.

training. The three patients of the valuation population were used as our three
"real life" subjects.

To produce the training and test data sets used for to pre-train the model, a
total of 2048 simulations were conducted for each patient in the training and
test population. This results in a training set of 2048 X 14 data points and a
test set of 2048 X 3 data points. Only 105 simulations were conducted for each
the patients in the validation population, resulting in three training data sets of
105 data points each. No test data was used for the validation subjects.

Simulations were conducted for each patient on a variety of different exercise

Name ID Age BW [kg]
adult#oo1 1 61 102.32
adult#o0o3 3 27 81.63
adult#018 58 47 68.28

Table 9.4: Validation population.
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sessions and pre-exercise meals. The data sets were produced by recording
the different features used in the simulated scenarios together with the score
of each scenario. The Age and BW feature was determined by the specific
virtual patient used, while the other features were sampled randomly from the
following ranges:

CHO € [0.0, 75.0] g, GI € [0, 100], (9.5)
Length € [15.0, 120.0] min, Intensity € [0.5, 0.85]. (9.6)

To ensure coverage from all parts of the feature space while keeping the
data sets relatively small, each feature range was split into smaller sub-ranges.
Different combinations of these sub-ranges were used for each simulation. The
exact features used for each simulation were then sampled uniformly from
their respective sub-ranges. This technique was used for all the virtual patients,
ensuring an unbiased dataset with similar coverage for all patients.

All simulated scenarios were made up by a exercise session and a pre-exercise
meal. The exercise session starts 30 minutes after the start of the simulation
and lasts for 15 to 120 minutes. The patients start consuming the pre-exercise
meal 15 minutes before the exercise at a rate of 5g CHO per minute. Each
patient is administrated a patient specific basal dose during the simulation
to ensure steady fasting BG levels. No bolus doses were administrated. The
Basal-Bolus controller included in Xie’s simglucose is used to calculate these
doses. All patients are assumed to have a resting HR of 72 bpm to comply with
the average resting HR of our age groups [51], and the patients maximum HRsS
were assumed to follow the commonly used Age-Predicted Maximum Heart
Rate (APMHR) formula:

HRpax = 220 bpm — Age, (9.7)

introduced by Fox et al. (1971) [52]. The patient specific f parameter is set to its
median value of 0.0446 for all patients. All scenarios are simulated until 8 hours
after the end of the exercise to ensure a good depiction of the post exercise
BG response. All simulations of a patient were done with the same simulation
seed. However, different seeds were used for each individual patient.






/10

Experiment: The Impact of
Knowing Foods Glycemic
Index

A small experiment was conducted to determine the impact knowing a food’s
GI has on food recommendation systems under the premises of the proposed
extension. Two sets of three food recommendation systems were trained, two
for each our "real" patients included in table 9.4. The first set was trained
using GI as one of the input features to the FFNN, and the second without
this feature, thereby only describing the pre-exercise meals in terms of their
carbohydrate amounts. Both sets of food recommendation systems otherwise
had the exact same architecture as described in section 9.2 and were trained
on the same set of simulated data with the same training setup.

10.1 Evaluation Metrics

To evaluate the recommendations of the systems, the exercise scenarios will be
re-simulated with their recommended pre-exercise meals. CGM data from the
re-simulated scenarios will then be used to calculate score and TIR metrics for
each recommendation. The same setup and patient-specific simulation seed as
used when producing the original data will be used to re-simulate the optimal
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meal scenarios. The score metric is calculated the same way as for the original
simulated data, using the same reward function. Equation 10.1 summarizes
this metric, where r(...) is the reward function, CGM; are the different cGM
measurements of the scenario, and T is the total number of measurements in
the scenario.

o r(CGMy)
T

Score = (10.1)

The second metric used is the Time In Range (TIR). This metric depicts the
portion of time the CGM measurements were in the normoglycemic range
during the scenario as summarized by equation 10.2.

CGM, € [70, 180] mg/dl
TIR = FCOM: € [7T 1 mg/ (10.2)
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Results

In this section, we will build on the proposed methodology of section 9 and
depict the results of the food recommendation systems. Section 11.2 will present
the result of the systems trained with the knowledge of the foods GI, hereby
referred to as the GI models, and section 11.3 will present the results of the
systems trained without this knowledge, hereby referred as the non-GI models.
The final section of this chapter will look at some examples of how these models
controls the patients BG during a exercise scenario.

11.1 Training Process

The food recommendation systems presented in this chapter were all trained
using the architecture and training strategy described in section 9. The systems
were pre-trained on the data simulated from the 14 virtual patient included in
table 9.2 for a total of 28672 training samples. A test set of 6174 data samples
simulated from the test population was used during the pre-training process,
along with a dropout rate of 0.1. This was done to make the pre-trained system
more generalized to non-seen patients, and avoid overfitting the training data.
The systems were pre-trained for 1000 epochs using an Adam optimizer with
a learning rate of 10~* and a weight decay (L2 term) of 10~2 on small batches
with 10 samples per batch.

Two pre-trained systems were made, one for the GI models ghich use the GI of
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the pre-exercise meals as a feature, and one for the non-GI models which do not
use the GI as feature. Once the systems were pre-trained, specialized versions
of them were trained for each of the patients in table 9.4. The specialized
systems were trained on 105 data samples simulated from their respective
patients. No test data or dropout rate was used during this training process as
we want the system to be specific to each patient. Each specialized version was
trained for 1000 epochs, using the same optimizer and hyper-parameters as
the pre-trained systems.

Once the patient specific systems were trained, they were used to recommend
the optimal pre-exercise meal for the patients. This was done through equation
9.3 where only meals with features in the following intervale were consid-
ered:

CHO € [0,1,2,3,4,...,100] GI € [0,1,2,3,4,...100]. (11.1)

11.2 With Glycemic index

In this section, we present the recommendations made by the patient specific
food recommendation systems trained with the knowledge of a food’s GI. Table
11.1 depicts some of the pre-exercise meals recommended by the GI models for
each of our validation patients. The recommendations depicted are made for
exercise session with lengths between 30 to 120 minutes and intensities of 0.55
to 0.85. The table at the top shows the meals recommended for adult#o01, the
one in the middle shows the meals recommended for adult#003, and the one
at bottom shows the meals recommended for adult#018. The recommended
meals are depicted in terms of both carbohydrate amounts and GI.

We can see that both the carbohydrate amounts and the GI of the meals recom-
mended for each patient steadily increases with the length and intensities of the
exercise sessions. This makes sense as longer and more intense exercises would
cause more drastic effects on the BG concentration than shorter less intense
exercises. Additionally, it is worth noting that the recommended meals for
adult#018 are on average smaller than those for the other two patients.

Table 11.2 shows the score and TIR metrics for each of the recommendations
made by the patient-specific GI models in table 11.1.
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adult#o01 30.0 60.;. ngts [mlrgll).o 120.0
GI Model CHO| GI [CHO| GI |CHO| GI |CHO| GI
0.55 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Intensity | 0.65 | 0.0 0.0 6.0 38.0 8.0 41.0 18.0 | 43.0
[%HRy.x] | 0.75 | 0.0 | 0.0 7.0 38.0 | 36.0 | 100.0 | 54.0 | 100.0
0.85 | 0.0 0.0 9.0 38.0 | 48.0 | 100.0 | 60.0 | 100.0
adult#oo03 Length [min]
GI Model 30.0 60.0 90.0 120.0
CHO | GI | CHO GI CHO GI CHO GI
0.55 | 0.0 0.0 0.0 0.0 5.0 4.0 21.0 | 100.0
Intensity | 0.65 | 0.0 0.0 4.0 32.0 26.0 | 100.0 | 24.0 | 100.0
[%HRpax] | 0.75 | 0.0 0.0 | 26.0 | 96.0 | 35.0 | 100.0 | 45.0 | 100.0
0.85 1.0 37.0 | 29.0 | 100.0 | 36.0 | 100.0 | 46.0 | 100.0
adult#018 30.0 60.;‘ et [mui).o 120.0
GI Model CHO| GI |[CHO| GI |CHO| GI |CHO| GI
0.55 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Intensity | 0.65 | 0.0 0.0 0.0 0.0 1.0 | 100.0 | 0.0 0.0
[%HR2x] | 0.75 | 0.0 0.0 0.0 0.0 15.0 | 100.0 | 31.0 | 85.0
0.85 | 0.0 0.0 11.0 | 100.0 | 26.0 | 100.0 | 39.0 | 100.0

Table 11.1: The GI models optimal pre-exercise meal recommendations for exercise
sessions of length 30 min, 60 min, 90 min and 120 minutes, with intensities
55%, 65%, 75% and 85% of maximum HR. The top table shows the
recommendation results for adult#oo1, the middle table shows the results
for adult#o003 and the bottom table shows the results for adult#018.
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adult#o01 Length [min]

30.0 60.0 90.0 120.0

GI Model Score | TIR | Score | TIR | Score | TIR | Score | TIR

0.55 | 0.640 | 1.000 | 0.679 | 1.000 | 0.706 | 1.000 | 0.734 | 1.000

Intensity | 0.65 | 0.690 | 1.000 | 0.699 | 1.000 | 0.687 | 1.000 | 0.660 | 1.000

[%HRax] | 0.75 | 0.724 | 1.000 | 0.665 | 1.000 | 0.556 | 1.000 | 0.513 | 1.000

0.85 | 0.701 | 1.000 | 0.256 | 0.942 | 0.473 | 0.990 | 0.400 | 0.976

Length [min]

adult#oo03

GI Model 30.0 60.0 90.0 120.0

Score | TIR | Score | TIR | Score | TIR | Score | TIR

0.55 | 0.605 | 1.000 | 0.692 | 1.000 | 0.606 | 1.000 | 0.532 | 1.000

Intensity | 0.65 | 0.693 | 1.000 | 0.602 | 1.000 | 0.473 | 1.000 | 0.301 | 0.957

[%HRpax] | 0.75 | 0.691 | 1.000 | 0.449 | 1.000 | 0.192 | 0.955 | -0.189 | 0.915

0.85 | 0.583 | 0.994 | 0.044 | 0.937 | -0.622 | 0.876 | -0.992 | 0.844

adult#018 Length [min]

GI Model 30.0 60.0 90.0 120.0

Score | TIR | Score | TIR | Score | TIR | Score | TIR

0.55 | 0.516 | 1.000 | 0.601 | 1.000 | 0.671 | 1.000 | 0.725 | 1.000

Intensity | 0.65 | 0.587 | 1.000 | 0.719 | 1.000 | 0.733 | 1.000 | 0.656 | 1.000

[%HR2x] | 0.75 | 0.666 | 1.000 | 0.715 | 1.000 | 0.668 | 1.000 | 0.608 | 1.000

0.85 | 0.721 | 1.000 | 0.657 | 1.000 | 0.306 | 0.945 | 0.299 | 0.948

Table 11.2: Evaluation criteria results, score and TIR, of the GI models optimal pre-
exercise meal recommendations for exercise sessions with length 30 min,
60 min, 90 min and 120 minutes, with intensities 55%, 65%, 75% and 85%
of maximum HR. The top table shows the criteria results for adult#oo1,
the middle table shows the results for adult#003, and the bottom table
shows the result for adult#018.
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11.3 Without Glycemic index

In this section, we present the recommendations made by the patient-specific
food recommendation systems trained without the knowledge of a food’s GI.
Table 11.3 shows the pre-exercise meals recommended by the non-GI models
for each of the validation patients on the same set of exercise scenarios as
the recommendations depicted for the GI models. The recommendations for
adult#o01 are shown at the top, the ones for the adult#o003 are shown in the
middle, and the ones for adult#018 are shown at the bottom. The pre-exercise
meals are only recommended in terms of their carbohydrate content as GI is
not included in these models.

Though these systems were trained without knowing the pre-exercise meal’s GI,
we can see that they were able to learn the connection between the amount of
carbohydrates in a meal and the effect it has on the patients’ BG concentrations.
Similarly to the GI models, the carbohydrate amount recommended by the
non-GI increases as the length and intensities of the exercise sessions increases.
We can however see some inconsistencies in the recommendations, as the
non-GI model for adult#003 recommends to eat less for the 120 min than for
the 60 and 90 min sessions with medium high intensities.

Table 11.4 shows the score and TIR metrics for the recommended pre-exercise
meals of the non-GI models. As these models only recommend the carbohydrate
content, and have no knowledge of the meals GI, each recommended meal
was assigned a random GI when re-simulated. This was done to represent the
uncertainty surrounding the GI of pre-exercise meals consumed by patients
following these recommendations. This uncertainty will affect the evaluation
metrics of these systems.

11.4 Comparison

This section will compare the recommendations made by the GI models and
non-GI models. The average score and TIR metrics of the recommendations
made for each patient are depicted in table 11.5 as well as the average metrics
across all patients. Only the exercise scenarios included in table 11.1 and 11.3
are considered towards the average metrics.

The average metrics for the GI models are consistently higher or equal to
those for the non-GI models. This does indicate that knowing a meals GI has
a positive impact on food recommendation systems under the premise of our
proposed extension. Though the average metrics for the non-GI model are
lower than the ones for the GI models, they still depict a good result with an
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Length [min]
30.0 | 60.0 | 90.0 | 120.0
CHO | CHO | CHO | CHO
0.55 | 0.0 0.0 0.0 9.0
Intensity | 0.65 | 0.0 0.0 5.0 25.0
[%HRmax] | 0.75 | 0.0 8.0 36.0 | 43.0
0.85 | 0.0 26.0 | 40.0 | 66.0

adult#oo01
Non-GI Model

Length [min]
30.0 | 60.0 | 90.0 | 120.0
CHO | CHO | CHO | CHO
0.55 | 0.0 0.0 0.0 16.0
Intensity | 0.65 | 0.0 3.0 25.0 | 18.0
[%HRpax] | 0.75 | 0.0 26.0 | 25.0 | 18.0
0.85 9.0 27.0 25.0 24.0

adult#o0o03
Non-GI Model

Length [min]
30.0 | 60.0 | 90.0 | 120.0
CHO | CHO | CHO | CHO
0.55 | 0.0 0.0 0.0 0.0
Intensity | 0.65 | 0.0 0.0 19.0 | 23.0
[%HR2x] | 0.75 | 0.0 4.0 23.0 28.0
0.85 | 0.0 12.0 | 32.0 | 43.0

adult#018
Non-GI Model

Table 11.3: The non-GI models optimal pre-exercise meal recommendations for ex-
ercise sessions of length 30 min, 60 min, 90 min and 120 minutes, with
intensities 55%, 65%, 75% and 85% of maximum HR. The top table shows
the recommendation results for adult#o001, the middle table shows the re-
sults for adult#003 and the bottom table shows the results for adult#018.
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adult#oo1 30.0 60 ;‘ eneet [mmlo o 120.0
Non-GI Model : : - -
on-GI Mode Score | TIR | Score | TIR | Score | TIR | Score | TIR
0.55 | 0.640 | 1.000 | 0.679 | 1.000 | 0.706 | 1.000 | 0.689 | 1.000
Intensity | 0.65 | 0.690 | 1.000 | 0.723 | 1.000 | 0.698 | 1.000 | 0.625 | 1.000
[%HRpax] | 0.75 | 0.724 | 1.000 | 0.658 | 1.000 | 0.547 | 1.000 | 0.163 | 0.915
0.85 | 0.701 | 1.000 | 0.570 | 1.000 | 0.028 | 0.915 | -0.648 | 0.858
L h [mi
adult#oo3 30.0 60.0 = [mmlo o 120.0
Non-GI Model Score | TIR | Score | TIR | Score | TIR | Score | TIR
0.55 | 0.605 | 1.000 | 0.692 | 1.000 | 0.627 | 1.000 | 0.504 | 1.000
Intensity | 0.65 | 0.693 | 1.000 | 0.605 | 1.000 | 0.442 | 1.000 | 0.139 | 0.929
[%HRpax] | 0.75 | 0.691 | 1.000 | 0.227 | 0.948 | -0.518 | 0.876 | -1.148 | 0.806
0.85 | 0.577 | 0.989 | -0.248 | 0.911 | -1.244 | 0.816 | -1.449 | 0.787
adult#018 30.0 60 ;‘ enech [mmlo o 120.0
Non-GI Model Score | TIR | Score | TIR | Score | TIR | Score | TIR
0.55 | 0.516 | 1.000 | 0.601 | 1.000 | 0.671 | 1.000 | 0.725 | 1.000
Intensity | 0.65 | 0.587 | 1.000 | 0.719 | 1.000 | 0.578 | 1.000 | 0.632 | 1.000
[%HR %] | 0.75 | 0.666 | 1.000 | 0.705 | 1.000 | 0.612 | 1.000 | 0.605 | 1.000
0.85 | 0.721 | 1.000 | 0.641 | 1.000 | 0.144 | 0.935 | 0.327 | 0.953
Table 11.4: Evaluation criteria results, score and TIR, of the non-GI models optimal pre-
exercise meal recommendations for exercise sessions with length 30 min,
60 min, 90 min and 120 minutes, with intensities 55%, 65%, 75% and 85%
of maximum HR. The top table shows the criteria results for adult#oo1,
the middle table shows the results for adult#o003, and the bottom table
shows the result for adult#018.
Comparison adult#oo01 adult#oo03 adult#018 Total
P Score | TIR | Score | TIR | Score | TIR | Score | TIR
GI Model 0.611 | 0.994 | 0.201 | 0.967 | 0.616 | 0.993 | 0.506 | 0.985
Non-GI Model | 0.512 | 0.981 | 0.075 | 0.941 | 0.501 | 0.993 | 0.392 | 0.972

Table 11.5: The average score and TIR of the GI modles and non-GI models optimal
pre-exercise meal recommendations, for adult#oo1, adult#o003, adult#018
and overall.
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Figure 11.1: The trend of the difference in average score (blue line) and average
TIR (orange line) metrics, of the GI and non-GI models, as the average
intensity and length of the exercise sessions increases. The top x-axis
shows the average intensities of the exercise sessions, and the bottom
shows the average length. The difference in average Score is depicted by
the y-axis on the left, and the average difference in TIR is depicted on
the right.

average TIR score of over 90% for all patients. A trend can be seen between the
length and intensity of an exercise scenario and the difference in the score and
TIR metrics between the models. Longer and more intense exercise scenarios
reflect lower metrics than the shorter and less intense scenarios. This is the
case for both set of models. However, this trend is steeper for the non-GI models
than for the GI models. Figure 11.1 illustrates this by depicting the difference
between the average metrics of the models (GI model — non-GI model) as the
average intensity and length of the considers exercise sessions increases.

11.4.1 Recommendations of Different Optimality

In addition to returning the pre-exercise meal the systems consider optimal
for a specific exercise session, the systems are capable of returning the meals
they consider non-optimal as well. This can be of interest when judging if the
systems has learned the desired aspects of the task.

In this section, we will look at three of the scenarios depicted in the tables
above, one for each of our validation patients, and compare the optimal, sub-
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Exercise Scenarios | adult#oo1 | adult#oo03 | adult#018
Length [min] 90.0 60.0 120.0
Intensity [%0HRqx] 0.75 0.85 0.65

Table 11.6: The exercise scenarios examined for each patient.

adult#oo01 | adult#oo3 | adult#o018

GE-Model  -eH6GI [ CHO | GI | CHO | GI
100% Optimal 36 100 29 100 0 o)
50% Optimal 13 16 54 26 50 44

0% Optimal 100 | 60 | 100 | 17 | 100 | 100

Table 11.7: The GI models 100% optimal, 50% optimal and 0% optimal pre-exercise
meal recommendations for each of the patient specific exercise scenarios
examined.

optimal and non-optimal recommended meals of the different models. The
optimal meals of the scenarios will be the ones depicted in tables 11.1 and
11.3. The suboptimal meals will be the ones the systems consider to be 50%
optimal for the considered scenario. And the non-optimal meals will be the
ones considered to be 0% optimal, in other words, the worst pre-exercise meal
to eat in the considered exercise scenarios. Only features in the ranges depicted
in equation 11.1 are considered when determining the optimal, sub-optimal and
non-optimal meals. So even though a meal containing more then 100 grams
carbohydrates may be worse, these will not be considered by the systems.

The lengths and intensities of the three exercise scenarios examined are sum-
marized in table 11.6. Tables 11.7 and 11.8 show the optimal, sub-optimal and
non-optimal pre-exercise meals recommended by the models for each scenarios.
Figure 11.2 to 11.4 depict the re-simulated BG curves each of these scenarios.
The same re-simulation process as used to produce the evaluation metrics was
also used here, using the same simulation seed and randomly assigned GI per
exercise scenario.

adult#oo01 | adult#o0o03 | adult#018
Non-GI-Model CHO CHO CHO
100% Optimal 36 27 23
50% Optimal 3 50 50
0% Optimal 100 100 70

Table 11.8: The non-GI models 100% optimal, 50% optimal and 0% optimal pre-
exercise meal recommendations for each of the patient specific exercise
scenarios examined.
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Table 11.7 and 11.8 show a similar trend in the carbohydrate content of the
recommended meals. It becomes evident from the BG curves illustrated in
figures 11.2 to 11.4 that both systems have managed to learned the essence of
the task. Following the optimal recommendations is in each scenario shown to
best control the patients BG concentrations. This is the case for both models’
recommendations. The only possible exception would be for the first scenario
where following the non-GI model’s optimal meal recommendation seems to
cause an increase in the BG concentrations towards the end of the scenario.
This may be due to the random GI of the meal and depending on the duration
of the increase, following the sub-optimal recommendation could be a healthier
choice here.
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Figure 11.2: The BG curves for exercise scenario; intensity 75%, length 90.0 min for

adult#oo01, following the 100% optimal (green curve), 50% optimal (blue
curve) and 0% optimal recommendations from the GI model (upper
plot) and the Non-GI model (lower plot). The solid curves shows the
subcutaneous glucose values while the dotted curves shows the CGM
values. The timing of the exercise session is marked in beige, and the
consumption time of the pre-exercise meal is depicted by vertical dashed
line. The limits of the TIR interval are marked by the horizontal yellow
lines, and the different shades of gray represent the associated rewards,
the darker the shade the worse reward.



76

300

250

BG measurements [mg/dl]
-
&
3

CHAPTER 11 / RESULTS

adult#003 Gl_model Exercise scenario: Intensity 0.85%, length 60.0min
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Figure 11.3: The BG curves for exercise scenario; intensity 85%, length 60.0 min for

adult#o003, following the 100% optimal (green curve), 50% optimal (blue
curve) and 0% optimal recommendations from the GI model (upper
plot) and the Non-GI model (lower plot). The solid curves shows the
subcutaneous glucose values while the dotted curves shows the cGM
values. The timing of the exercise session is marked in beige, and the
consumption time of the pre-exercise meal is depicted by vertical dashed
line. The limits of the TIR interval are marked by the horizontal yellow
lines, and the different shades of gray represent the associated rewards,
the darker the shade the worse reward.
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Figure 11.4: The BG curves for exercise scenario; intensity 65%, length 120.0 min

for adult#018, following the 100% optimal (green curve), 50% optimal
(blue curve) and 0% optimal recommendations from the GI model (upper
plot) and the Non-GI model (lower plot). The solid curves shows the
subcutaneous glucose values while the dotted curves shows the cGMm
values. The timing of the exercise session is marked in beige, and the
consumption time of the pre-exercise meal is depicted by vertical dashed
line. The limits of the TIR interval are marked by the horizontal yellow
lines, and the different shades of gray represent the associated rewards,
the darker the shade the worse reward.
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Discussion

In this section we will discuss the methodology and results for the food recom-
mendation models trained in this thesis.

12.1 Practicality of the Systems

The features and training strategy used for the food recommendation systems
proposed in this thesis were chosen to make the systems easily practical to train
and use in real world scenarios. The data required to train the systems can be
collected by the users perform exercise scenarios while monitoring their BG
concentrations and average HR of the session. TIDM patients equipped with a
CGM sensor will have easy access to their BG measurements during the scenario
and a modern fitness watch may be used to measure the average HR as well
as the length of an exercise session. The features of the pre-exercise meal can
be found in the food’s listed nutritional content, or looked up in international
tables [35]. Including the patients age and body weight as features enables the
systems to adapt to dynamic changes in the patients state, and thereby allowing
them to be used for a longer duration before needing to be re-trained.

The systems trained in this thesis were trained on data from 105 simulated
training scenarios per patient. Though this is nowhere close to the amount
of data used to pre-train the model, but it is still a large amount. A standard
patient training twice a week would have to use a whole year to collect enough

/9
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data to train these models. Ideally, the amount of data needed to specialize
these systems to a specific patient would be lowered to allow the systems to be
used in a quicker time frame. Additionally, to make the systems more robust to
exercise scenarios not included in the training data, some of the user collected
data should be used to test the systems under training. Pre-training the systems
on a bigger virtual patient population could help lower the amount of data
needed to specialize them by making the pre-trained systems more generalized
to the different characteristics of each user. The virtual patient population was
expanded from 10 to 20 T1DM patient for this reason as well as to make the
resulting population less biased towards older and heavier patients as 6 out of
10 patients included in Xie’s simglucose [40] are over the age of 50, and 5 out
of 10 weigh above 90 kg. No other virtual patients than those depicted in table
9.1 were available to the author at the time of writing.

12.2 The Chosen Architecture

The food recommendation models proposed in this thesis use a FFNN to
learn the mapping from a set of features describing the exercise scenarios to
a score summarizing the BG levels of the scenarios. This learned mapping
is then used to find the pre-exercise meal resulting in the highest predicted
score. It is however possible to use the simulator directly to find these optimal
pre-exercise meals by using the actual score of the simulations instead of the
networks predicted score. However, this would be significantly slower as each
meal scenario can take up to one minute or more to simulate while a forward
pass through the trained networks will only take a couple of seconds at max. As
101x 101 different meals are tested per scenario, it would be considerably more
time consuming and impractical to the user to use the simulator directly than
to use the trained networks. Additionally, to be able to use the simulator, the
patients must first get a virtual representation made of themselves. Performing
the trials needed to model the parameters of the simulator would be more
expensive and require more data from each patient than to train the food
recommendation systems.

12.3 Length and Intensity’s effect on the
Recommendations

The exercise sessions were described in terms of length and intensity as these
are the two main factors determining the effect exercise has on the BG con-
centrations. Exercising at higher intensity will cause the BG concentrations to
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decrease faster than lower intensities and the length of the session determines
the duration of the decrease. One would assume that high GI food would
therefore be a good choice for short and intense exercises as these foods cause
a quick, short-lived response in the BG concentrations, thereby counteracting
the effect of the exercise. Following the same logic, one would also assume that
lower GI food would be more ideal for long exercise sessions of less intensity
as these would counteract the effect of the long exercise.

It is therefor interesting that few low GI meals where recommended in the
longer sessions considered, as these would technically have a longer lasting
effect suited for these scenarios. However, when considering the extended
response of these meals depicted in figure 7.3, it becomes evident that a 120
session is too short of a time frame to effectively utilize this effect. A meal with a
low G1 would likely keep affecting a patient’s BG levels long after the end of the
exercise session considered and may therefore cause states of hyperglycemia.
This is also the reason why high GI meals are recommended so often by the
systems as these foods would have a shorter effect on the BG concentrations
and are more suited to the short lengths considered.

12.4 The Reward Functions effect on the
Recommendations

The BG levels corresponding to the maximum reward for the reward function
used is 108 mg/dL. This is significantly lower than the fasting BG levels of
our validation patients which are around 150 mg/dL. This will cause the food
recommendation systems to favor scenarios where the BG levels are slightly
lowered from the fasting levels as these will result in a higher score. This can
be seen in figure 11.4, where the optimal curve of the GI model are shown to
diverge more from the fasting levels than the sub-optimal curve. This can also
be seen in the number of exercise scenarios where the systems recommend no
meal to be eaten as small decreases to the BG concentrations are considered to
be more optimal than staying at the fasting levels. However, this bias towards
scenarios that slightly decreases the patients BG concentration is not a bad
thing. As T1DM have chronically high BG levels, both fasting and non-fasting,
lowering them to the optimal value of around 108 mg/dL would only improve
a patient’s health.
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12.5 Age and Body Weight's effect on the
Recommendations

A connection was found between the age and Bw of a patient and the food
required to control their BG concentrations during exercise sessions. The less
body weight a patient has, the less food they need to keep the BG concentrations
stable during the exercise. This is represented in the original glucose rate of
appearance subsystem as the rate of appearance, Ra, is scaled by a factor
of ﬁ\,, thereby causing patients with less BW to be more affected by their
consumed carbohydrates and will therefor need less food than patients of
higher Bw.

Additionally, older patients usually have a lower maximum HR than younger
patients. This is assumed to be the case for our patients as we follow the
APMHR depicted in equation 9.7 to calculate our patients maximum HR. This
means that a young and an old patient exercising at the same intensity would
have different average HRs during the session. In particular, the young patient
would have a higher average HR than the old patient. The change in HR,
AHR = HR — HRy,, would also be different for the two patients as we assume
all patients have the same resting HR of HR, = 72bpm. The PA extensions
models the effect exercise has on the glucose-insulin systems solely based on
this change in HR, thus causing the young patient to be more affected by the
exercise than the old patient.

So, the older a patient is and the less BW they have, the less food is required
to control their BG concentration during the exercise scenarios, while younger
and heavier patients will require more food to control their BG concentrations
during the exercise. This can be seen in the pre-exercise meals recommended
for adult#018 as these are on average smaller then the ones recommended for
two other validation patients.

The assumptions for the resting and maximum HR were made as no patient-
specific HRy, or HR,,,, values were included for the virtual patients used. In
real world cases, should these values ideally be implemented by the users, if
viable, to better depict there individual response to exercise.

12.6 Experiment and exercise scenarios

The experiment conducted depicts similar results for both food recommen-
dation systems trained with and without the knowledge of foods GI. The
evaluation metrics of the GI models are on average higher for the considered
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exercise scenarios than those for the non-GI models, but not by a big margin.
This would indicate that the impact of knowing a food’s GI is smaller than
previously thought. However, as evident by the trend in figure 11.1, this is more
likely an effect of the considered set of exercise scenarios used to evaluate
the models. A bigger set of exercise scenarios including longer and more in-
tense sessions would likely be better suited to depict the differences, and the
impact knowing a food’s GI has on these models. Due to the amount of low
intensity and short exercise sessions considered and the reward functions bias
towards decreasing the BG concentration, patients are recommended to eat
no pre-exercise meal in almost half of the evaluated scenarios. Both systems
will have exactly the same score and TIR metrics for these no food scenarios.
Due to the amount of them considered, this will lower the total impact of the
scenarios where the meal’s GI actually matters for the recommendation.
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Summary and Conclusion

In the first half of this thesis, a proposed extension to the UVA/Padova BG
simulator was presented, adding the effect a food’s GI has on the glucose-
insulin system. The ability to depict meals both in terms of carbohydrate
content and GI will allow for more nuanced and realistic simulations of patient’s
postprandial BG responses. The availability of a simulation model capable of
this will therefor be beneficial to the development of food recommendation
systems.

Due to the lack of available in-vivo data, the extension was modeled on in-silco
data by fitting the GI depicted by the simulated postprandial BG levels to the GI
of the simulated meals. Only in-silco data from non-diabetic patients were suit-
able to perform this modeling due to the time constraint of the GI calculations.
This severely limits the number of available modeling subjects.

Though lacking sufficient modeling data, the modeled extension shows promis-
ing results with a MSE of 1.380 between the simulated and recalculated GI of
the modeling subjects and the simulations correctly capture the effect a food’s
GI has on the BG response as described in the literature for both non-diabetic
and T1DM patients. Further research and sufficient in-vivo data is however
required to evaluate the accuracy of this extension. It is therefor difficult to
draw a conclusion based on the present results. Nonetheless, the extensions
ability to depict the characteristic effect the GI has on the BG concentrations
should still be admired as it proves the possibility of this type of extension.
We therefor hope our model can work proof of concept and as a baseline for
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further research in the field.

The second half of this thesis focused on how the proposed GI extension could
be used in the development of food recommendation systems. Regular exercise
is an important part of the diabetes treatment. However, many T1DM are
prone to experience states of hypoglycemia during exercise sessions. This may
be unpleasant for the patients and may cause them to develop a restraint
towards exercising. The availability of food recommendation systems that can
recommend the optimal meal to control a patient’s BG concentrations during
exercise and avoid hypoglycemic states is therefore crucial. Utilizing both the
carbohydrate content and GI of meals will theoretically allow the systems to
be used in a wider range of exercise scenarios.

A small experiment was conducted to determine the effect of using GI as a
feature of food recommendation models trained to recommend the optimal
pre-exercise meals. Food recommendation systems both with and without
the knowledge of meals GI were trained, using a strategy of pre-training the
systems on large amount of in-silco data to lower the required data needed to
apply the systems to real life scenarios. The results of the experiment depict
a small positive impact of using GI knowledge on the set of exercise scenarios
considered. However, it can be seen that the impact of using GI grows as the
length and intensity of the considered sessions increases, thereby aligning with
our initial expectations.
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Appendix

A.1 Code

The code and patient parameters used for the proposed GI extension presented
in the thesis can be found at:
https://github.com/HavardStridBuholdt/Code_for_FYS3941.git.

The proposed extension was implemented on Xie’s simglucose [40], the open
source version of the UVA/Padova simulator. In addition to the modifications
described in part II, were adjustments made to the meal announcement, simula-
tion scenarios and environment to comply with the changes. The description of
the pre-planed meals was extended to allow user to specify consumption time,
carbohydrate content and GI of each simulated meal. And Jaloli’s PA extension
was added to allow user specified exercise sessions to be simulated.
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