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"I have no special talent. I am only passionately curious."

- Albert Einstein





Abstract
In a world more and more dependent on new and effective energy sources, the
introduction of fusion power could prove invaluable. Magnetic confinement of
plasma has proved to be difficult, and the curvature of the magnetic field lines in
tokamaks give rise to charge polarization at the boundary of the fusion devices
leading to cross-field transport. Experiments has shown that the dominating
transport is due to 3D filament structures which can be considered as isolated
field-aligned 2D blob structures in the plane perpendicular to the magnetic
field. The center of mass motion of such blob structures are the main focus of
this thesis.

By deriving the reduced two-fluid model while relaxing and retaining the
Boussinesq approximation, and by incorporating parallel closure with parti-
cle loss and sheath dissipation, a set of invariants has been obtained. Using
center of mass diagnostics, we examine the behavior of blobs with varying
initial amplitudes and particle loss parameter derived from the parallel closure.
Additionally, the impact of the Boussinesq approximation is analyzed both with
and without parallel closure.

Utilizing numerical simulations, we verify the scaling found with initial am-
plitude. Further we obtain results indicating blob stagnation in the limit of
larger values of the particle loss parameter, accompanied with behavior equal
to the dynamics shown for the sheath dissipation parameter in the case of
larger values of the particle loss term. The limitations of the Boussinesq ap-
proximation have been verified, and by incorporating the particle loss and the
sheath dissipation terms, a transition region has been identified. This region
separates the dominance of the Boussinesq approximation in the larger ampli-
tude regime from the scaling behavior determined by sheath dissipation. We
also demonstrated an apparent dependence of the initial amplitude on the
acceleration of the blobs in the intermediate initial amplitude regime.
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1
Introduction
In the search for more sustainable and clean energy sources, nuclear fusion has
emerged as a promising technology which is capable of handling the world’s
ever growing energy demands. In spite of popular opinions in media, the
concept of nuclear energy production is not all the same. Fusion, which is the
process that powers stars, involves the fusing of lighter atomic nuclei such
as hydrogen or nitrogen, etc. into heavier atomic nuclei and in the process
releasing enormous amounts of energy [10]. The fusion process occurs at very
high temperatures, making it difficult to contain. In stars such as the sun, the
fusion process occurs at the core which has a temperature of about 15 × 106
K. At these temperatures, the atomic nuclei becomes fully ionized and the
gas becomes a plasma. Stars sustain fusion processes due to the immense
gravitational forces generated by their vast mass. Unfortunately this method of
confinement is not practical for containing fusion reactions in reactors on Earth.
Of the many fusion processes, the most used is the process that combines the
two hydrogen isotopes; Deuterium 2

1𝐷 and Tritium 3
1𝑇 and can be described

by [1, 7]
2
1D +3

1 T →4
2 He +1

0 n (14.1MeV) (1.1)

where Deuterium and Tritium fuses into helium and neutron carrying large
amount of energy. Obtaining Deuterium and Tritium has proved to not be
difficult, and Deuterium can be extracted from seawater. Tritium is slightly
radioactive with a half-life of roughly 12 years, and must be artificially made.
This can be achieved by bombarding the Lithium isotope 6L with neutrons.
Confinement of such a fusion reaction has proved difficult, due to the extremely

1



2 chapter 1 introduction

Figure 1.1: Main concept of toroidally shaped magnetic confinement also known as
Tokamak (Reprinted from [15]).

high temperature requirement of 150 × 106 K to achieve Deuterium - Tritium
fusion reaction. Thus making mechanical confinement practically impossible
[10]. The high temperature plasma would almost instantaneous react with-
and cause erosion of the walls, leading to production of impurities which would
effect the fusion reaction and damaged [10].

Due to the large temperature leading to ionization of the atomic nuclei, a
method of confinement proven to be sustainable is magnetic confinement.
This method consists of utilizing the gyration motion of charged particles in
magnetic fields [7]. By wrapping coils of electrically conducting wire around
the cylinder, this creates a uniform magnetic field within the cylinder. This
will confine the particles inside the cylinder, however the induced magnetic
field lines would intersect vessel walls at both ends of the vessel. This effect
can be mitigated by connecting the cylinder at the ends, creating a torus
or ”donut” shape [7, 10]. Due to the curvature of magnetic field lines, the
particles experiences induced drifts. These are the guiding center drifts, and
cause negatively and positively charged particles to drift in opposite directions
[7, 10, 11]. The resulting charge separation, leads to a combined drifts of the
particles radially outwards [12]. This effect can be seen in figure 1.3, showing
the effects of the charge separation leading to filaments transport as well
as for the core plasma. In order to remove this radially outwards drift, we
introduce a current moving through the cylindrical plasma which induces a
current creating a poloidal magnetic field. The combination of the uniform
magnetic field through the plasma column and the induced poloidal magnetic
field leads to confinement through a combined helical magnetic field [7, 10].
The resulting device is the tokamak, shown in figure 1.1.



3

Figure 1.2: Magnetic confinement structure, red corresponds to the core plasma. Yellow
region shows the scrape-off layer (SOL) (Reprinted from [8]).

Figure 1.3: 3D blob filaments considered as 2D blobs in the perpendicular plane.
(Reprinted from [17])

However, this magnetic confinement structure does not completely mitigate
the plasma transport to the vessel walls. Experiments show a radial transport
of excess plasma particles and heat through the region known as the scrape-off
layer, out to the walls [2–7, 10–14, 17–27]. The scrape-off layer (SOL) is the region
after the last closed flux surface (LCFS) in a tokamak, just outside the core
plasma. Here the magnetic field lines does not close in on them self as is the
case in the core, they instead intersect material surfaces which is called deviator
plates [7, 16]. These plates are specifically made to withstand the excess plasma,
and the structure is shown in figure 1.2. The transport through the SOL has
been observed to be dominated by field aligned 3D plasma filaments, which
can be considered 2D blobs in the plane perpendicular to the magnetic field
lines [2–7, 11–14, 17–23, 25–27]. Figure 1.3 show these 3D filaments, and the
resulting electric drifts due to the polarization caused by the magnetic field
curvature [2–4, 6, 11, 12, 14].
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These filament structures or blob structures are the main focus of this thesis.
Through numerical simulations made using a set of derived model equations,
we will consider the center of mass motion of the blob structures in the perpen-
dicular plane to the magnetic field. We will restrict our analysis to field-align
filaments, which allows us to use the concept of sheath dissipation as parallel
closure [24]. Previous publications consider the effects of blob characteristic
cross-field size, and how it effects the maximum radial velocity [2, 12, 19].
Through an order of magnitude approach, different sizes has been shown to
impact the radial center of mass velocity of the blob structures [2, 5, 6, 11, 12,
18, 20]. This includes the initial perturbed amplitude of the density of blob
structures, where the density are considered a Gaussian distribution.

In this thesis, we will consider the case of isolated blob structures initialized
as Gaussian density perturbation above a constant background density. We
consider single ion species, reducing the complexity of the derived model
equations. In the parallel closure, we introduce two parameters; the particle
loss parameter and the sheath dissipation parameter. The latter has been
considered in previous works such as in ref. [19]. We will derive the reduced
two-fluid model and invariants based on a simplified model containing parallel
closure. We will study the center of mass diagnostics and the dependence of
the initial amplitude along with the dependence on the particle loss parameter.
We will relax the Oberbeck-Boussinesq approximation usually introduced in
the model equations to reduce complexity. And consider the combined effect
of the Oberbeck-Boussinesq approximation and the parallel closure terms in
the model equations.

The rest of the thesis is structure as follows. In chapter 2 we will derive the
model equations retaining and relaxing the Oberbeck-Boussinesq approxima-
tion, obtaining a set of model equations which will form the basis for the studies
done in the thesis. We will further introduce the definitions of the center of
mass diagnostics for isolated blob structures in order to quantify the behavior
of the blobs. In chapter 3 we will derive a set of invariants based on a sim-
plification of the reduced two-fluid model relaxing the Oberbeck-Boussinesq
approximation. chapter 4 will present and discuss the results obtained through
numerical simulations using various versions of the model equations describing
the blob motion in the SOL. Chapter 5 will contain a summary of the results
and discussion from the simulations, and possible ares of focus for further
studies.



2
Background
In order to simulate isolated filaments as blob structures in the two-dimensional
plane perpendicular to the magnetic field lines, a set of model equations must
be derived. In this chapter, we will derive the reduced two-fluid model starting
from the Braginskii equations for a particle species 𝑠. We will consider both the
reduced two-fluid model retaining the Oberbeck-Boussinesq approximation
or more commonly denoted Boussinesq approximation or thin-layer approx-
imation for which we assume a small density gradient. In order for achive
parallel closure we introduce sheath dissipation and particle loss terms, the
latter is of great importance in the simulations discussed in chapter 4. For
isolated blob structures, the center of mass velocity is proportional to the total
radial convective flux making the center of mass diagnostics a highly relevant
quantities to consider [12]. Thus the main characteristics considered in this
thesis, are the center of mass diagnostics for isolated blobs. In this chapter, the
center of mass position and velocity will be introduced and defined along with
the kinetic and potential energy integrals.

2.1 Two-Fluid Model

The behavior of blob structures in the scrape-off-layer of tokamks, can be
described using various models. One such model can be obtained from the
two lowest velocity moments of the kinetic Boltzmann equation, which can be
systematically simplified to reveal the two-fluid model [1, 7].

5



6 chapter 2 background

This section contains a brief derivation of the two-fluid model. And by further
simplifications, the reduced two-fluid model where the Bohm normalization
is utilized. Starting from the lowest order velocity moments, also known as
the Braginskii fluid equations [1, 7], we can introduce the concept of drift
approximation to simplify the momentum equations for each particle species in
order to reveal algebraic expression for the drifts that determines the particles
movement [1]. The motion parallel to the magnetic field lines, will be simplified
using sheath dissipation [24]. Lastly, themodel equations will be simplified using
the Bohm normalization to yield the reduced two-fluid model; which contains
the particle continuity equation and the vorticity equation.

2.1.1 Braginskii Equations

The two lowest order velocity moments of the kinetic Boltzmann equation for
particle species 𝑠 with collisional closure, are given by the continuity equation
and the momentum equation. These can for any particle species 𝑠 be expressed
by

𝜕𝑛𝑠

𝜕𝑡
+ ∇ · (𝑛𝑠u𝑠) = 0 (2.1)

𝑚𝑠𝑛𝑠

(
𝜕

𝜕𝑡
+ u𝑠 · ∇

)
u𝑠 = −∇𝑝𝑠 + 𝑞𝑠𝑛𝑠 (E + u𝑠 × B) −𝑚𝑠𝑛𝑠𝜈𝑠𝑠′ (u𝑠 − u𝑠′) (2.2)

where𝑛𝑠 is the particle density,𝑚𝑠 is the particlemass and𝑞𝑠 is the charge.

In order to reduce these equations,we can use the concept of drift approximation.
This consists of reducing the momentum equation into an algebraic expression
for the drifts that governs the particle motion [1, 7]. Through the introduction of
a unit vector in the direction of the magnetic field B, which is defined by

b =
B
𝐵

we can decompose the motion of the particles into drifts perpendicular to the
magnetic field, so-called cross-field drifts, and motion parallel to the magnetic
field.

We can first consider the cross-field drifts by taking the cross-product of the
momentum equation, defined in equation 2.2, with the unit vector in the mag-
netic field direction. Using the assumption of electrostatic field with potential
𝜙 , so the electric field can be written as E = −∇𝜙 , we obtain an expression for
the cross-field drifts by

u⊥𝑠 =
1
𝐵
b × ∇𝜙 + 1

𝑛𝑠𝑞𝑠𝐵
b × ∇𝑝𝑠 +

𝑚𝑠

𝑞𝑠𝐵
b ×

(
𝜕

𝜕𝑡
+ u𝑠 · ∇

)
u𝑠 −

𝑚𝑠𝜈𝑠𝑠′

𝑞𝑠𝐵
b × (u𝑠 − u𝑠′)
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where the property u⊥ = b× (u𝑠 × b) = u𝑠 − u∥ has been utilized to indicate a
vector perpendicular to the magnetic field. However, this expression contains
the entire velocity of particle species 𝑠 on both sides making it an implicit
expression for the perpendicular velocity. In order to make this expression
explicit, we can apply the concept of drift ordering. We introducing a scale
defined as 𝛿 ≡ 𝜌𝑠/𝐿 where 𝜌𝑠 is the Larmor radius defined as𝑚𝑐𝑠/𝑒𝐵 and 𝐿
a typical length scale of the plasma parameters [7, 16]. Further we introduce
the normalized parameters by 𝑛′ = 𝑛/𝑁 , u′ = u/𝑈 , 𝑝′ = 𝑝/𝑚𝑁𝑐2𝑠 , x′ = x/𝐿
and 𝑡 ′ = 𝑡𝐿/𝑈 . Here 𝑐𝑠 is the acoustic velocity defined as 𝑐𝑠 =

√︁
𝑇𝑠/𝑚𝑠 , 𝑁

background density, U the typical fluid velocity of the specific system. Inserting
this normalization into equation 2.2, we obtain

𝑛′𝑠

(
𝜕

𝜕𝑡 ′
+ u′𝑠 · ∇′

)
u′𝑠 = − 𝑐

2
𝑠

𝑈 2∇
′𝑝′ + 𝑛′ 𝐿

𝜌𝑠

𝑐𝑠

𝑈

(
E
𝑈𝐵

+ u′𝑠 × b
)

(2.3)

where the normalized parameters have been introduced and the collisional
term has been removed and will be reintroduced [16]. We now make the
assumption that the fluid velocity is much smaller than the acoustic velocity
and that 𝜌𝑠 ≪ 𝐿 [7, 16]. So

𝑈

𝑐𝑠
∼ 𝜌𝑠

𝐿
≪ 1 (2.4)

which can be further imposed on the momentum equation. Thus we observe
that the most dominant terms, and are the lowest order terms, are given
by

0 = −∇𝑝𝑠 + 𝑞𝑠𝑛𝑠 (E + u𝑠 × B) (2.5)

leaving the electric drift and the diamagnetic drifts to the lowest order. Inserting
this into the right hand side of the implicit equations and denoting the drifts
respectively by

u𝐸 =
1
𝐵
b × ∇𝜙

u𝑑𝑠 =
1

𝑛𝑠𝑞𝑠𝐵
b × ∇𝑝𝑠

u𝑝𝑠 =
𝑚𝑠

𝑞𝑠𝐵
b ×

(
𝜕

𝜕𝑡
+ (u𝐸 + u𝑑𝑠) · ∇

)
(u𝐸 + u𝑝𝑠)

u𝜈𝑠 = −𝑚𝑠𝜈𝑠𝑠′

𝑞𝑠𝐵
b × ((u𝐸 + u𝑑𝑠) − (u𝐸 + u𝑑𝑠′)) = −𝑚𝑠𝜈𝑠𝑠′

𝑞𝑠𝐵
b × (u𝑑𝑠 − u𝑑𝑠′)

where u𝐸 is the electric drift or E × B-drift, u𝑑𝑠 is the diamagnetic drift, u𝑝𝑠 is
the polarization drift and u𝜈𝑠 is the frictional drift.

And so the cross-field drift can be written as

u⊥𝑠 = u𝐸 + u𝑑𝑠 + u𝑝𝑠 + u𝜈𝑠
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Using this expression for the cross-field drift, we can express the total drift of
particle species 𝑠 as

u𝑠 = u𝐸 + u𝑑𝑠 + u𝑝𝑠 + u𝜈𝑠 + u∥𝑠 (2.6)

where the last term corresponds to the drift parallel to the magnetic field lines.
We will not simplify this term as of now, but rather consider it later in the
derivation when we introduce the concept of sheath dissipation.

Since we now have an expression for the total drifts, this can be further inserted
into the continuity equation, which is defined in equation 2.1. By the linearity
of the divergence operator, we obtain the expression

𝜕𝑛𝑠

𝜕𝑡
+∇ · (𝑛𝑠u𝐸) +∇ · (𝑛𝑠u𝑑𝑠) +∇ · (𝑛𝑠u𝑝𝑠) +∇ · (𝑛𝑠u𝜈𝑠) +∇ · (𝑛𝑠u∥𝑠) = 0 (2.7)

Now we can make further simplification by considering each term individually.
But before we continues with the simplifications of the equations, it can be
useful to clarify the coordinate system we consider.

2.1.2 Further Simplifications

In the derivation of the two-fluid model, we will consider two coordinate
systems; first a cylindrical coordinate system due to toroidally shaped plasma,
and lastly a local Cartesian coordinate system when considering the scrape-off
layer (SOL).

The cylindrical coordinate system is defined by (𝑅,Θ, 𝑍 ), where 𝑅-direction is
radially outwards from the center of the reactor, Θ-direction is in the opposite
direction of the magnetic field lines through the plasma and 𝑍 -direction is
vertically upward. The local Cartesian coordinate system will be introduced
when we change coordinate system later in the derivation [1].

The simplest expression for the magnetic field B, is given by

Btor =
𝐵0𝑅0

𝑅
b (2.8)

where 𝑅0 is the major radius of the device, and 𝐵0 is the magnetic field
strength at this radius. In the cylindrical coordinate system, the expression for
the magnetic field takes the form

Btor = −𝐵0𝑅0

𝑅
Θ̂ (2.9)

since Θ̂ = −b.
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Now that the coordinate system is introduced, we can proceed with the simpli-
fications of the terms in the continuity equation. Using simple vector relation,
the first term in equation 2.7 can be expressed as

∇ · (𝑛𝑠u𝐸) = u𝐸 · ∇𝑛𝑠 + 𝑛𝑠∇ · u𝐸

So we need the divergence of the electric drift, i.e. ∇ ·u𝐸 , to be able to simplify
the expression more. By using vector relations for the gradient, divergence
and curl operator along with the dot product and cross-product in cylindrical
coordinates, we can simplify the divergence of the electric drift by

∇ · u𝐸 = ∇
(
1
𝐵

)
· b × ∇𝜙 + 1

𝐵
∇ × b · ∇𝜙 = − 2

𝐵𝑅

𝜕𝜙

𝜕𝑍
(2.10)

where the relations

∇
(
1
𝐵

)
=

1
𝐵𝑅
𝑅

∇ × b = −1
𝑅
𝑍

have been used. It can now be useful to introduce a local Cartesian coordinate
system, or a slab approximation. Under the assumption that we consider a small
region in the outboard mid-plane, we can use a linearization of the toroidal
angle. Then we introduce the approximations 𝑅 ≈ 𝑥 , Θ̂ ≈ 𝑧 and the binormal
direction becomes 𝑍 = 𝑦 [1, 7]. Further under the assumption that the ratio
of the minor radius 𝑎0 and the major radius 𝑅0 is very small, i.e. 𝑎0/𝑅0 ≪ 1,
then we can apply the approximation 1/𝐵 ≈ 1/𝐵0 [1, 20]. And utilizing that
for a toroidal magnetic field 𝐵𝑅 = 𝐵0𝑅0, the divergence of the electric drift can
be expressed by

∇ · u𝐸 = − 2
𝐵0𝑅0

𝜕𝜙

𝜕𝑦
(2.11)

Further considering the second term in equation 2.7, we can rewrite this
as

𝑛𝑠∇ · u𝑑𝑠 + u𝑑𝑠 · ∇𝑛𝑠 (2.12)

Firstly the second term, which contains the dot-product of the diamagnetic
drift and the gradient of the density for particle species 𝑠, can be simplified
under the assumption of isothermal plasma. That is, we have 𝑝𝑠 = 𝑇𝑠𝑛𝑠 , and
combining this with vector relations in cylindrical coordinates, we are left
with

u𝑑𝑠 · ∇𝑛𝑠 = 0

This results tell us that the diamagnetic drift does not contribute to the advection
of the plasma density, which is sometimes called diamagnetic cancellation [1,
14].
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To simplify equation 2.12 further, we must find an expression for the divergence
of the diamagnetic drift. Using simple vector relations, we can express the
divergence as

∇ · u𝑑𝑠 =
𝑇𝑠

𝑞𝑠𝑛𝑠

(
∇
(
1
𝐵

)
· b × ∇𝑛𝑠 +

1
𝐵
∇ × b · ∇𝑛𝑠

)
= − 2𝑇𝑒

𝑞𝑒𝑛𝑒𝐵0𝑅0

𝜕𝑛

𝜕𝑦
(2.13)

where we have recognized the term in the middle part of the equation above, as
the same found in equation 2.10. And since we also want the electron continuity
equation, then we will for the remainder of the derivation of the first equation
given in this thesis, use electrons as particle species. Further, we will also
introduced the assumption of quasi-neutrality, which implies 𝑛𝑒 ≈ 𝑛𝑖 = 𝑛 for
singly charged ions.

In order to simplify the electron continuity equation further, we can continue
considering the polarization term. To derive an expression for the divergence of
the polarization drift, we consider the mass ratio of the electrons and the ions,
which gives𝑚𝑒/𝑚𝑖 << 1. This indicates that the electron mass is significantly
smaller than the ion mass. Consequently, the contribution of electron inertia
is negligible and can be disregarded in the further derivation of the model
equations and we simply set u𝑝𝑒 ≈ 0, which leads to zero contribution from
the divergence term [1].

At this point, we adopt the common assumption of cold ions (𝑇𝑖 ≈ 0), which
is frequently employed in established literature. Although experimental data
often suggest that the ion temperature exceed electron temperature, i.e. 𝑇𝑖 >
𝑇𝑒 , this simplification is added for mathematical convenience. The cold ion
approximation successfully represent the core dynamics of the system, allowing
for a reduction of the complexity of the the model equations [1, 7]. The frictional
drift can be simplified due the cold ion approximation, thus the using the lowest
order drifts we obtain that the frictional drift for an isothermal, quasi-neutral
plasma can be given by [1, 7]

u𝜈𝑒 = −𝐷𝑛∇⊥𝑛

where 𝐷𝑛 =
𝑚𝑒𝜈𝑒𝑖𝑇𝑒
𝑒2𝐵2

0
is the cross-field diffusion coefficient [16]. 𝜈𝑒𝑖 is the

collisional frequency for electron-ion collisions [16]. Thus the divergence of the
collisional friction drift for the electrons, can be written as [7]

∇ · (𝑛u𝜈𝑒) ≈ −∇ · (𝐷𝑛∇⊥𝑛) ≈ −𝐷𝑛∇2
⊥𝑛 (2.14)

Combining the terms for the divergence, the electron continuity equation under
the assumption made, can be expressed by [1]

𝜕𝑛

𝜕𝑡
+ u𝐸 · ∇𝑛 −

2𝑛
𝐵0𝑅0

𝜕𝜙

𝜕𝑦
+ 2𝑇𝑒
𝑒𝐵0𝑅0

𝜕𝑛

𝜕𝑦
= 𝐷𝑛∇2

⊥𝑛 − ∇ · (𝑛u𝑒 ∥ ) (2.15)

This makes up the first of the two equations contained in the two-fluid
model.
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2.1.3 Vorticity Equation

The second equation of the two-fluid model can be derived by subtracting the
electron- and ion continuity equations. For ions, we follow a similar procedure
as is applied to the electrons, and utilizing the drift approximations approach
to analyze the ion drifts [1].

After applying the procedure, we are left with the following drifts for the ion
movement

u𝑖 = u𝐸 + u𝑝𝑖 + u𝜈𝑖 + u𝑖, 𝑣𝑖𝑠 + u𝑖 ∥ (2.16)

Due to the already established approximation of cold ions, the diamagnetic
drift for the ions are neglected. And an additional drift due to ion-ion collisions
are added, which for the case of electron-electron collisions was neglected due
to the low electron mass compared to the ion mass [1]. This is added as a
viscosity drift.

Further inserting the drifts in equation 2.16, into the continuity equation
gives

𝜕𝑛

𝜕𝑡
+ ∇ · (𝑛u𝐸) + ∇ · (𝑛u𝑝𝑖) + ∇ · (𝑛u𝜈𝑖) + ∇ · (𝑛u𝑖, 𝑣𝑖𝑠) + ∇ · (𝑛u𝑖 ∥ ) = 0 (2.17)

Utilizing the same approach in simplifying the ions continuity equation as
was done for the electron continuity equation, each term can be isolated and
simplified.

The second term in equation 2.17 is the electric drift, which are the same
independent of particle species. And so it is the same for electrons and ions,
which implies that the divergence takes the same form for the ions as it did for
the electrons. From earlier in the derivation, we have

∇ · (𝑛u𝐸) = u𝐸 · ∇𝑛 −
2𝑛
𝐵0𝑅0

𝜕𝜙

𝜕𝑦
(2.18)

The third term represent the polarization drift, which, to the lowest order for
ions neglecting the diamagnetic drift, can be expressed as

u𝑝𝑖 =
𝑚𝑖

𝑒𝐵
b ×

(
𝜕

𝜕𝑡
+ u𝐸 · ∇

)
u𝐸 (2.19)

Inserting this into the divergence and neglecting the non-uniformity of the
magnetic field. So we obtain no contributions from the gradient of the magnetic
field and the curl of the unit vector in the magnetic field, and thus we get the
approximation

∇ · (𝑛u𝑝𝑖) ≈
𝑚𝑖

𝑒𝐵2
0
∇ ·

(
𝑛
𝑑∇⊥𝜙

𝑑𝑡

)
(2.20)



12 chapter 2 background

where the expression
𝑑

𝑑𝑡
=
𝜕

𝜕𝑡
+ u𝐸 · ∇

are introduced, which can be recognized as the well-known material deriva-
tive. The divergence of the polarization drift can be approximated further
by implementing the Boussinesq approximation, also known as the thin-layer
approximation. Imposing this leads to neglection of the gradient of the particle
density in the compression of the polarization drift flux term, and consequently
[1]

∇ ·
(
𝑛
𝑑∇⊥𝜙

𝑑𝑡

)
= ∇𝑛 · 𝑑∇⊥𝜙

𝑑𝑡
+ 𝑛∇ · 𝑑∇⊥𝜙

𝑑𝑡
≈ 𝑛

𝑑∇2
⊥𝜙

𝑑𝑡
(2.21)

This approximation will be introduced at this stage; however, it will be revisited
and relaxed later in this thesis.

The frictional drift, that is the drift due to electron-ion collisions, have already
been found and takes the same form in the ion continuity equation as expressed
in the electron continuity equation. This is expressed in equation 2.14.

The viscosity drift is quite difficult to get an expression for, but for the perpen-
dicular viscosity term we can apply an approximation for the divergence of the
viscosity tensor 𝜋 by [16]

∇ · 𝜋 ≈ 𝐷Ω∇2
⊥u𝐸 (2.22)

leading to the divergence of the ion viscosity term approximated to [7, 16]

∇ · (𝑛u𝑣𝑖𝑠, 𝑖) ≈ −𝑛𝑚𝑖𝐷Ω

𝑒𝐵0
∇2
⊥Ω (2.23)

where the lowest order drift vorticity given by

Ω = b · ∇ × u𝐸 =
∇2
⊥𝜙

𝐵0

has been introduced. Inserting the found terms for the different divergence
terms, leads to the ion continuity equation of the form

𝜕𝑛

𝜕𝑡
+u𝐸 ·∇𝑛−

2𝑛
𝐵0𝑅0

𝜕𝜙

𝜕𝑦
+𝑛𝑚𝑖

𝑒𝐵0

𝑑Ω

𝑑𝑡
−𝐷𝑛∇2

⊥𝑛−𝑛
𝑚𝑖𝐷Ω

𝑒𝐵0
∇2
⊥Ω+∇·(𝑛u𝑖 ∥ ) = 0 (2.24)

Subtracting equation 2.24 and equation 2.15 leads to the vorticity equation
[1].

𝑚𝑖𝑛

𝐵0

𝑑Ω

𝑑𝑡
+ 2𝑇𝑒
𝐵0𝑅0

𝜕𝑛

𝜕𝑦
=
𝑚𝑖𝐷Ω

𝑒𝐵0
∇2
⊥Ω − ∇ · J∥ (2.25)

where the parallel current J∥ = 𝑒𝑛(u𝑖 ∥ − u𝑒 ∥ ) is introduced.
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2.1.4 Sheath Dissipation

To simplify the model equations further, we restrict our analysis to strictly
two dimensions. Specifically the plane perpendicular to the magnetic field B.
However, in the scrape-off layer (SOL), capturing the dynamics in the B-parallel
direction is crucial. To account for these effects, we introduce an integration
along the parallel direction to the magnetic field lines, defined through the
operator expressed as [7]

⟨·⟩ = 1
𝐿∥

∫ 𝐿∥/2

−𝐿∥/2
𝑑𝑠 (2.26)

Here, 𝑠 represents the coordinate along the magnetic field lines, and 𝐿∥ is the
magnetic connection length. The magnetic connection length is a measure of
the path length along a magnetic field line from a given point in the plasma to
the nearest material surface. In this context, the sheath boundary conditions
can be applied. When a reactor is first started, there is a transient phase where
the plasma interacts with initially cold and electrically neutral walls. Due to
the higher mobility and velocity of electrons compared with the ions, electrons
strike the surface walls at a greater rate, resulting in the walls becoming
negatively charged, This charge of the surface walls, leads to the formation of
a thin sheath near the walls, typically with a size of a few Debye lengths into
the plasma [7, 24]. Within this region, quasi-neutrality is no longer maintained,
and the electron density (𝑛𝑒) typically becomes less than the ion density (𝑛𝑖)
due to the accumulation of negative charges on the vessel walls [24].

Proceeding by integrating equation 2.15 and equation 2.25 using the operator
defined in equation 2.26 and assuming that most of the quantities are constant
over the B-parallel direction, the analysis can be simplified into determining
the term

⟨∇ · (𝑛u𝑒 ∥ )⟩ (2.27)

in the electron continuity equation. And the term

⟨∇ · J∥⟩ (2.28)

in the vorticity equation.

In the SOL, using a local Cartesian coordinate system where the magnetic field
is given by B = 𝐵𝑧, the parallel drift reduces to only having one component
along the 𝑧-direction. Thus, to proceed with the analysis, we only need to
evaluate a single component. Consequently we obtain

⟨∇ · (𝑛u𝑒 ∥ )⟩ =
∫ 𝐿∥

2

−
𝐿∥
2

𝑑𝑧
𝜕

𝜕𝑧
(𝑛u𝑒 ∥ ) = 𝑛 · 𝑛u𝑒 ∥

����𝐿∥2
−

𝐿∥
2

(2.29)
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and

⟨∇ · J∥⟩ =
∫ 𝐿∥

2

−
𝐿∥
2

𝑑𝑧
𝜕

𝜕𝑧
J∥ = 𝑛 · J∥

����𝐿∥2
−

𝐿∥
2

(2.30)

where 𝑛 is the surface normal unit vector. As a result, the terms only need
to be evaluated at the boundaries, where the sheath boundary conditions are
applied.

In the sheath region, the electron density is typically given by [24]

𝑛𝑒 = 𝑛𝑠𝑒 exp
(
Λ − 𝑒𝜙

𝑇𝑒

)
(2.31)

where the sheath edge density for a simple SOL, is given by 𝑛𝑠𝑒 = 1
2𝑛 and

Λ = ln
√︁
𝑚𝑖/2𝜋𝑚𝑒 are known as the sheath potential [24]. And in the same

region, the electron velocity are given by [24]

ue∥ = 𝑐𝑠𝑛 (2.32)

the acoustic speed 𝑐𝑠 . The parallel currents to sheath wall in a simple SOL can
be described considering the ion and electron flux by [24]

J∥ = 𝑒𝑛𝑠𝑒𝑐𝑠

[
1 − exp

(
Λ − 𝑒𝜙

𝑇𝑒

)]
𝑛 (2.33)

and under the assumption of a steady-state plasma, the total current must be
conserved. This implies that the current along a magnetic field line must be
constant, and current leaving the sheath must be equal to the negative of the
same current entering in order to avoid the accumulation of net charge within
the region. Thus the currents also obey the the relation J𝑠, 𝑒𝑑𝑔𝑒 = −J𝑠, 𝑒𝑥𝑖𝑡
[24].

With these results, the parallel expressions can evaluated to incorporate the
sheath region in established equations.

⟨∇ · (𝑛u𝑒 ∥ )⟩ =
𝑛𝑐𝑠

𝐿∥
exp

(
Λ − 𝑒𝜙

𝑇𝑒

)
(2.34)

⟨∇ · J∥⟩ = −𝑒𝑛𝑐𝑠
𝐿∥

[
1 − exp

(
Λ − 𝑒𝜙

𝑇𝑒

)]
(2.35)

Inserted back into the equations, theses results yield the two-fluid model

𝜕𝑛

𝜕𝑡
+ u𝐸 · ∇𝑛 −

2𝑛
𝐵0𝑅0

𝜕𝜙

𝜕𝑦
+ 2𝑇𝑒
𝑒𝐵0𝑅0

𝜕𝑛

𝜕𝑦
= 𝐷𝑛∇2

⊥𝑛 −
𝑛𝑐𝑠

𝐿∥
exp

(
Λ − 𝑒𝜙

𝑇𝑒

)
(2.36)

𝑚𝑖𝑛

𝐵0

𝑑Ω

𝑑𝑡
+ 2𝑇𝑒
𝐵0𝑅0

𝜕𝑛

𝜕𝑦
=
𝑚𝑖𝐷Ω

𝑒𝐵0
∇2
⊥Ω + 𝑒𝑛𝑐𝑠

𝐿∥

[
1 − exp

(
Λ − 𝑒𝜙

𝑇𝑒

)]
(2.37)
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2.1.5 Reduced Two-Fluid Model

The equations derived in the previous subsection contains numerous parame-
ters. In order to develop a reduced set of two-fluid model equations that can be
analyzed numerically in a computationally feasible manner, then further sim-
plifications is required. While various ways to normalize the two-fluid model
exists, this thesis adopts the Bohm normalization. In this framework, the spatial
coordinates are normalized by the ion Larmor radius and time are normalized
by the ion cyclotron frequency. The ion Larmor radius and the ion cyclotron
frequency are defined through

𝜌𝑠 =

√
𝑇𝑒𝑚𝑖

𝑒𝐵0
, 𝜔𝑐𝑖 =

𝑒𝐵0

𝑚𝑖

(2.38)

The normalization are defined by

𝑡 → 𝑡 ′ = 𝜔𝑐𝑖𝑡 (2.39)

𝑥 → 𝑥

𝜌𝑠
= 𝑥 ′ (2.40)

𝑦 → 𝑦

𝜌𝑠
= 𝑦′ (2.41)

which also indicates that the velocity 𝑉 ′ = 𝑉 /𝑐𝑠 , where 𝑐𝑠 is the ion acoustic
speed.

Further, the remaining variables are normalized by the introduction of the
following dimensionless quantities

𝑛′ =
𝑛

𝑁0
, 𝜙 ′ =

𝑒𝜙

𝑇0
, 𝑇 ′ =

𝑇𝑒

𝑇0
(2.42)

And the characteristic sizes for the diffusion coefficients

𝐷 ′
𝑛 =

𝐷𝑛

𝜌2𝑠𝜔𝑐𝑖
, 𝐷 ′

Ω =
𝐷Ω

𝜌2𝑠𝜔𝑐𝑖
(2.43)

To simplify the exponential function in the sheath dissipation term, a change
of variables can be introduced. Let

−𝜙 ′ = Λ − 𝜙 (2.44)

which essentially sets the sheath potential, Λ = 0, which will simplify when
the terms are considered further both analytically and numerically.

What can be noticed, is that the nonlinear term of the form

u𝐸 · ∇ (2.45)
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can be further rewritten using the normalized expression for the electric drift
leading to

𝑧 × ∇⊥𝜙
′ · ∇ (2.46)

The unit vector in the 𝑧-direction appears due to the fact that the magnetic
field are purely in the 𝑧-direction and as a consequence the magnetic field unit
vector simplifies to the unit vector in 𝑧-direction.

Utilizing these simplifications and dropping the mark on the normalized vari-
ables and parameters, equation 2.36 and equation 2.37 can be simplified to
give

𝜕𝑛

𝜕𝑡
+ {𝜙, 𝑛} − 𝑔𝑛 𝜕𝜙

𝜕𝑦
+ 𝑔 𝜕𝑛

𝜕𝑦
= 𝐷𝑛∇2

⊥𝑛 − 𝜎𝑛𝑛 exp (−𝜙) (2.47)

𝜕Ω

𝜕𝑡
+ {𝜙,Ω} + 𝑔 𝜕 ln𝑛

𝜕𝑦
= 𝐷Ω∇2

⊥Ω + 𝜎Ω [1 − exp (−𝜙)] (2.48)

where the Poisson bracket notation has been introduced in the particle density
equation through

{𝜙, 𝑛} = 𝑧 × ∇⊥𝜙 · ∇𝑛

and similarly for Ω in the vorticity equation. The observant reader will note
that three new parameter have been introduced defined by

𝑔 =
2𝜌𝑠
𝑅0

, 𝜎𝑛 = 𝜎Ω =
𝜌𝑠

𝐿∥
(2.49)

where 𝑔 is the normalized effective gravity, 𝜎𝑛 and 𝜎Ω are the particle loss
parameter and sheath dissipation parameter respectively.

Another simplification usually introduced along with the Boussinesq approx-
imation, is that the partial derivative of the density in the vorticity equation
can be written as

1
𝑛

𝜕𝑛

𝜕𝑦
=
𝜕 ln𝑛
𝜕𝑦

(2.50)

The model equation can also be expressed in a semi-Boussinesq way, where
the 1

𝑛
𝜕𝑛
𝜕𝑦

are retained, but the gradient of the particle density are neglected.
This form is the one applied in the simulations, which will be discussed more
later in the thesis.

The model comprising equations 2.47 and 2.48 constitutes the primary focus of
this thesis. These equations are employed in order to simulate isolated plasma
blob structures within the scrape-off layer (SOL) of fusion devices.
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2.1.6 Reduced Two-Fluid Model; Non-Boussinesq

In the derivation of the reduced two-fluid model equations presented earlier
in this section, the Boussinesq approximation or the thin-layer approximation
was employed. However, since the scope of this thesis also contains scenarios
where the Boussinesq approximation is not applicable, it will be appropriate
to provide the two-fluid model formulated without invoking the Boussinesq
approximation.

The introduction of the approximation was done when considering the ion
polarization drift in the vorticity equation, specifically equation 2.21, where
the term containing the gradient of the particle density is neglected. However,
when we relax the thin-layer approximation, this term cannot be neglected
and has to be retained in the vorticity equation. The rest of the terms remains
unchanged, and so in the case when the Boussinesq approximation is relaxed,
the model equations takes the form

𝜕𝑛

𝜕𝑡
+ {𝜙, 𝑛} − 𝑔𝑛 𝜕𝜙

𝜕𝑦
+ 𝑔 𝜕𝑛

𝜕𝑦
= 𝐷𝑛∇2

⊥𝑛 − 𝜎𝑛𝑛 exp (−𝜙) (2.51)

∇⊥𝑛

𝑛
· 𝑑Ω
𝑑𝑡

+ 𝜕Ω
𝜕𝑡

+ {𝜙,Ω} + 𝑔
𝑛

𝜕𝑛

𝜕𝑦
= 𝐷Ω∇2

⊥Ω + 𝜎Ω [1 − exp (−𝜙)] (2.52)

Or written in a more compact form as
𝜕𝑛

𝜕𝑡
+ {𝜙, 𝑛} − 𝑔𝑛 𝜕𝜙

𝜕𝑦
+ 𝑔 𝜕𝑛

𝜕𝑦
= 𝐷𝑛∇2

⊥𝑛 − 𝜎𝑛𝑛 exp (−𝜙) (2.53)

∇ ·
(
𝑛
𝑑Ω

𝑑𝑡

)
+ 𝑔 𝜕𝑛

𝜕𝑦
= 𝐷Ω𝑛∇2

⊥Ω + 𝜎Ω𝑛 [1 − exp (−𝜙)] (2.54)

The compact written form of the non-Boussinesq model equations will be taken
advantage of in the derivation of energy integrals which will be presented at a
later stage in the thesis.

2.2 Center of mass

When analyzing isolated coherent blob structures in the SOL region, it can
be advantageous to utilize the center of mass diagnostics to characterize the
movement throughout the region. The position and velocity of the center of
mass for a system of particles provides a concise description of the overall
motion. The center of mass position describes the weighted average location
of all particles in the system, while the center of mass velocity represented
the weighted average of the velocity where the weights are the masses of the
individual particles present.
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This section contains a short description of some useful center of mass diag-
nostics which are useful to apply when studying the time-evolution of isolated
blob-like filaments. The concepts are introduced for a continuous structure,
when all involved quantities are normalized which makes them applicable to
use with the reduced two-fluid model equations derived in the last section.
The introduced concepts are position, velocity and energy. These will involve
integrals and derivatives which will not be solved analytically, but solved by
using numerical schemes for derivative and integrations. The two methods
used are the composite trapezoid method for integration and the finite differ-
ence scheme for derivatives. These are introduced in section A.1 and section
A.2 respectively, in the appendix.

2.2.1 Position and Velocity

The center of mass position of a particle system is the point where the weighted
sum of each position vector of the individual particles present in the system
adds to zero, which in the scene of statistics is comparable to the location
of the mean for a given distribution. In the case of a continuous normalized
distribution with density 𝑛(x, 𝑡) within a volume V, then the center of mass
position are given by

Xcom(𝑡) =
1
𝑀

∫
𝐷

𝑑𝑉 x𝑛(x, 𝑡) (2.55)

where the integral is over the domain 𝐷, in this case a two-dimensional plane,
x = (𝑥,𝑦) and 𝑀 is the conserved particle normalized mass. Since the main
focus of this thesis are on the radial center of mass diagnostics, then the most
interesting position is the radial component given by

𝑋 (𝑡) = 1
𝑀

∫
𝐷

𝑑𝑉 𝑥𝑛(x, 𝑡) (2.56)

It is well-established from classical mechanics that velocity is the time deriva-
tive of the position vector. This relationship forms a basis for the description
of motion, as velocity describes the rate of change of position due to time.
Following this, the center of mass velocity is defined by

V𝑐𝑜𝑚 (𝑡) = 𝑑X𝑐𝑜𝑚 (𝑡)
𝑑𝑡

(2.57)

Since the radial motion is the focus, then the more interesting quantity are the
radial velocity component given by

𝑉𝑥 (𝑡) =
𝑑𝑋 (𝑡)
𝑑𝑡

(2.58)

which are normalized by the ion acoustic velocity 𝑐𝑠 .
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2.2.2 Energy Integrals

When analyzing the center of mass movement of blob structures, it can be
useful to compute the kinetic and potential energy of the isolated blob. These
calculations can, among other purposes, serve as a diagnostic tool to access if
the simulations are reliable or not.

Due to the small electron mass compared to the ion mass, the electron contri-
butions can be neglected and the kinetic energy are determined by the ions.
The lowest order drifts for a general particle species 𝑠 are the electric drift and
diamagnetic drift. However under the assumption of cold ions presented earlier
in the thesis, the diamagnetic drift vanish and the lowest order drift retained
is the electric drift. Utilizing this, the kinetic energy for a system of particles
spanning the volume V can be expressed by

𝐾 (𝑡) = 1
2

∫
𝐷

𝑑𝑉 𝑛(x, 𝑡)u2
𝐸 (2.59)

or alternatively by

𝐾 (𝑡) = 1
2

∫
𝐷

𝑑𝑉 (∇⊥𝜙)2 𝑛(x, 𝑡) (2.60)

where the approximated expression for the electric drift in the local Cartesian
coordinate system is applied.

The potential energy which for a general magnetic field, are composed by
two components; one due to the magnetic field and one due to gravitational
potential, will in the case of a curved magnetic field be simplified to an effective
gravitational potential energy [27]. The effective gravitational potential energy
is expressed by

𝐺 (𝑡) = 𝑔
∫
𝐷

𝑑x 𝑥𝑛(x, 𝑡) (2.61)

Using the definition of the center of mass position stated in equation 2.56,
the expression for the effective potential gravitational energy can be rewrit-
ten

𝐺 (𝑡) = 𝑀𝑔𝑋 (𝑡) (2.62)

which is recognizable from the familiar equation for the gravitational potential
energy𝑚𝑔ℎ from classical mechanics. Where𝑚 mass of the object, 𝑔 gravita-
tional constant and ℎ height above a certain reference level.

These expression will be used later in the thesis when an analytical expression
for the energy integrals, are obtained.





3
Energy Integrals
This chapter contains the derivation of energy invariants using a simplified
model relaxing the Boussinesq approximation, and retaining the particle loss
parameter and the sheath dissipation parameter. The validity of the derived
invariants are test utilizing numerical simulations of blob structures, and further
compared to numerical computations of the same quantities. This in done in
chapter 4, which contains the numerical simulations and results.

3.1 Derivation for Simplified Model

To derive analytical expressions for the derivative of the energy integrals, it
is convenient to introduce simplifications to the reduced model derived in
section 2.1 due to the complexity of the equations. Neglecting the diamagnetic
drift compression, diffusion in the density equation and the density factor in
the diamagnetic drift compression term in the vorticity equation. Along with
neglecting the diffusion term in the vorticity equation, and linearizing both the
particle loss term and the sheath dissipation term using a Taylor expansion for
the exponential function. This yields simplified equations of the form

𝜕𝑛

𝜕𝑡
+ {𝜙, 𝑛} − 𝑔 𝜕𝜙

𝜕𝑦
= −𝜎𝑛𝑛 (3.1)

∇ ·
(
𝑛
𝑑∇⊥𝜙

𝑑𝑡

)
+ 𝑔 𝜕𝑛

𝜕𝑦
= 𝜎Ω𝑛𝜙 (3.2)

21
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where the Boussinesq approximation are relaxed. Prior to analyzing the sim-
plified model equations, it is beneficial to explore a relation that will prove to
be very useful. Further analyzing the time derivative of the square of gradient
of 𝜙 gives

𝑑

𝑑𝑡
(∇⊥𝜙)2 =

𝑑

𝑑𝑡
(∇⊥𝜙 · ∇⊥𝜙) =

𝑑∇⊥𝜙

𝑑𝑡
· ∇⊥𝜙 + ∇⊥𝜙 · 𝑑∇⊥𝜙

𝑑𝑡
= 2∇⊥𝜙 · 𝑑∇⊥𝜙

𝑑𝑡

Rewritten gives

⇒ 1
2
𝑑

𝑑𝑡
(∇⊥𝜙)2 = ∇⊥𝜙 · 𝑑∇⊥𝜙

𝑑𝑡
(3.3)

Which is a quite useful result and will be utilized later in the derivation of the
energy integrals.

To simplify the integrations required to derive analytical expressions for the
energy integrals, some specific boundary conditions must be imposed in both
the 𝑥 - and 𝑦-directions. Neumann boundary conditions will be used in the
𝑥 -direction, defined through

𝜕𝑛(0, 𝑦, 𝑡)
𝜕𝑥

=
𝜕𝑛(𝐿𝑥 , 𝑦, 𝑡)

𝜕𝑥
=
𝜕𝜙 (0, 𝑦, 𝑡)

𝜕𝑥
=
𝜕𝜙 (𝐿𝑥 , 𝑦, 𝑡)

𝜕𝑥
= 0 (3.4)

where 𝐿𝑥 are the 𝑥 -size of the domain and additionally, the derivative of the
vorticity are also vanishing at the 𝑥 -boundaries. In the 𝑦-direction, periodic
boundary conditions will be utilized. This are defined through

𝑛(𝑥, 0, 𝑡) = 𝑛(𝑥, 𝐿𝑦, 𝑡),
𝜕𝑛(𝑥, 0, 𝑡)

𝜕𝑦
=
𝜕𝑛(𝑥, 𝐿𝑦, 𝑡)

𝜕𝑦
(3.5)

𝜙 (𝑥, 0, 𝑡) = 𝜙 (𝑥, 𝐿𝑦, 𝑡),
𝜕𝜙 (𝑥, 0, 𝑡)

𝜕𝑦
=
𝜕𝜙 (𝑥, 𝐿𝑦, 𝑡)

𝜕𝑦
(3.6)

where 𝐿𝑦 are the 𝑦-size of the domain. Additionally the vorticity are subjected
to the same boundary conditions in 𝑦.

Proceeding to the derivation of the energy integrals, we begin with the ki-
netic energy integral. This is achieved by multiplying equation 3.2 by 𝜙 and
integrating over the domain denoted 𝐷.∫

𝐷

𝑑x 𝜙∇ ·
(
𝑛
𝑑∇⊥𝜙

𝑑𝑡

)
+ 𝑔

∫
𝐷

𝑑x 𝜙
𝜕𝑛

𝜕𝑦
= 𝜎Ω

∫
𝐷

𝑑x 𝑛𝜙2 (3.7)

Utilizing a term-by-term approach on equation 3.7, and considering the first
term on the left hand side and rewriting using well known vector relations.
Combined with the divergence theorem and utilizing the boundary conditions
specified earlier, one can rewrite∫

𝐷

𝑑x 𝜙∇ ·
(
𝑛
𝑑∇⊥𝜙

𝑑𝑡

)
= −

∫
𝐷

𝑑x ∇⊥𝜙 ·
(
𝑛
𝑑∇⊥𝜙

𝑑𝑡

)
= −

∫
𝐷

𝑑x 𝑛∇⊥𝜙 · 𝑑∇⊥𝜙

𝑑𝑡
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Applying the useful relation obtained in equation 3.3, the following are ob-
tained

⇒
∫
𝐷

𝑑x 𝜙∇ ·
(
𝑛
𝑑∇⊥𝜙

𝑑𝑡

)
=

∫
𝐷

𝑑x
1
2
𝑛
𝜕

𝜕𝑡
(∇⊥𝜙)2 (3.8)

Moving on to the second term on the left hand side of equation 3.7

𝑔

∫
𝐷

𝑑x 𝜙
𝜕𝑛

𝜕𝑦
(3.9)

Using the product rule for derivation over the variable 𝑦, this integral can be
rewritten

𝑔

∫
𝐷

𝑑x𝜙𝜕𝑦 (𝑛) = 𝑔
∫
𝐷

𝑑x 𝜕𝑦 (𝑛𝜙)−𝑔
∫
𝐷

𝑑x𝑛𝜕𝑦 (𝜙) = −𝑔
∫
𝐷

𝑑x𝑛𝜕𝑦 (𝜙) (3.10)

The first term is evaluated to zero due to the imposed boundary conditions
and the remaining term can be recognized as the radial density flux [12]. And
equation 3.7 reduces to

⇒
∫
𝐷

𝑑x
1
2
𝑛
𝜕

𝜕𝑡
(∇⊥𝜙)2 = −𝑔

∫
𝐷

𝑑x 𝑛
𝜕𝜙

𝜕𝑦
− 𝜎Ω

∫
𝐷

𝑑x 𝑛𝜙2 (3.11)

From section 2.2.2, the definition of the kinetic energy integral are

𝐾 =
1
2

∫
𝐷

𝑑x 𝑛(∇⊥𝜙)2 (3.12)

Taking the time derivative of the kinetic energy integral and since the boundary
conditions does not depend on time, the derivative can be moved inside the
integration. Using the product rule, the time derivative of the kinetic energy
integral can be written by

𝑑𝐾

𝑑𝑡
=

1
2

∫
𝐷

𝑑x
𝜕𝑛

𝜕𝑡
(∇⊥𝜙)2 +

1
2

∫
𝐷

𝑑x 𝑛
𝜕

𝜕𝑡
(∇⊥𝜙)2 (3.13)

Proceeding with the second term in equation 3.13.∫
𝐷

𝑑x
𝜕𝑛

𝜕𝑡
(∇⊥𝜙)2 (3.14)

This integral can rewritten using the particle density equation, defined in
equation 3.1. Thus

1
2

∫
𝐷

𝑑x
𝜕𝑛

𝜕𝑡
(∇⊥𝜙)2 = −1

2

∫
𝐷

𝑑x {𝜙, 𝑛}(∇⊥𝜙)2 +
𝑔

2

∫
𝐷

𝑑x
𝜕𝜙

𝜕𝑦
(∇⊥𝜙)2

− 𝜎𝑛

2

∫
𝐷

𝑑x 𝑛(∇⊥𝜙)2
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Using a term-by-term approach in order to rewrite the integral, and starting
by considering the integral

−1
2

∫
𝐷

𝑑x {𝜙, 𝑛}(∇⊥𝜙)2 (3.15)

In order to solve the given integral, the integrand can be rewritten in terms of
vector operations. Thus

⇒ −
∫
𝐷

𝑑x ẑ × ∇𝜙 · ∇𝑛 ∇⊥𝜙 · ∇⊥𝜙 (3.16)

where the definition of the Poisson bracket are utilized and (∇⊥𝜙)2 = ∇⊥𝜙 ·
∇⊥𝜙 . Utilizing vector relations and a constant unit vector 𝑧 combined with
integration-by-parts and divergence theorem using the boundary conditions,
the expression above can be further simplified

−
∫
𝐷

𝑑x ẑ × ∇𝜙 · ∇𝑛 ∇⊥𝜙 · ∇⊥𝜙 =

∫
𝐷

𝑑x ∇⊥𝜙 · ∇⊥𝜙 ∇𝑛 ∇ · (ẑ × ∇𝜙) (3.17)

where the divergence in the last term can be expanded trough

∇ · (ẑ × ∇𝜙) = (∇ × ẑ) · ∇𝜙 − ẑ · (∇ × (∇𝜙)) = 0 (3.18)

for which both terms evaluates to zero. The first due to no change in the unit
vector leading to a zero curl, and the second due to the curl of a gradient is
identically zero. Combining the terms yields

−1
2

∫
𝐷

𝑑x {𝜙, 𝑛}(∇⊥𝜙)2 = 0 (3.19)

Further considering the electric drift compression term, given by

𝑔

2

∫
𝐷

𝑑x (∇⊥𝜙)2
𝜕𝜙

𝜕𝑦
(3.20)

Again applying the vector form of the integrand, and rewriting gives∫
𝐷

𝑑x∇⊥𝜙 · ∇⊥𝜙 ∇ · (ẑ × ∇𝜙) (3.21)

The divergence terms can be immediately recognized as the term shown in
equation 3.18, and using the results we obtain

𝑔

2

∫
𝐷

𝑑x (∇⊥𝜙)2
𝜕𝜙

𝜕𝑦
= 0 (3.22)

and thus the expression vanishes. By combining the results of the various
computed terms, the time derivative of the kinetic energy integral is expressed
by

𝑑𝐾

𝑑𝑡
= −𝑔

∫
𝐷

𝑑x 𝑛
𝜕𝜙

𝜕𝑦
− 𝜎Ω

∫
𝐷

𝑑x 𝑛𝜙2 − 𝜎𝑛

2

∫
𝐷

𝑑x 𝑛(∇⊥𝜙)2 (3.23)
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The second term in this equation, given by

−𝜎𝑛
2

∫
𝐷

𝑑x 𝑛(∇⊥𝜙)2

can be rewritten using the definition of 𝐾 into

−𝜎𝑛𝐾 (3.24)

indicating that the particle loss term in the density equation, has to the lowest
order an exponential decaying effect on the kinetic energy integral.

Having determined the time derivative of the kinetic energy integral, attention
can now be shifted to determining the time derivative of the effective grav-
itational potential energy integral. From section 2.2.2 the expression for this
energy integral is known to be

𝐺 = 𝑔

∫
𝐷

𝑑x 𝑥𝑛 (3.25)

Taking the time derivative of 𝐺 and moving the derivative inside the integral,
which is allowed due to the boundary conditions being constant in time. This
leads to

𝑑𝐺

𝑑𝑡
= 𝑔

∫
𝐷

𝑑x 𝑥
𝜕𝑛

𝜕𝑡
(3.26)

In order to derive the desired expression, we multiply equation 3.1 by 𝑔𝑥 and
integrate over the domain.

𝑔

∫
𝐷

𝑑x 𝑥
𝜕𝑛

𝜕𝑡
+ 𝑔

∫
𝐷

𝑑x 𝑥{𝜙, 𝑛} − 𝑔2
∫
𝐷

𝑑x 𝑥
𝜕𝜙

𝜕𝑦
= −𝜎𝑛𝑔

∫
𝐷

𝑑x 𝑥𝑛 (3.27)

The first term in equation 3.27 can immediately be recognized as the time
derivative of the effective gravitational potential energy integral. Proceeding
with the second term, given by

𝑔

∫
𝐷

𝑑x 𝑥{𝜙, 𝑛} (3.28)

which can be simplified by first rewriting the Poission bracket utilizing the
expanded form {𝜙, 𝑛} =

𝜕𝜙

𝜕𝑥
𝜕𝑛
𝜕𝑦

− 𝜕𝜙

𝜕𝑦
𝜕𝑛
𝜕𝑥
. Thus the integral can be rewritten

as ∫
𝐷

𝑑x 𝑥
𝜕𝜙

𝜕𝑥

𝜕𝑛

𝜕𝑦
−
∫
𝐷

𝑑x 𝑥
𝜕𝜙

𝜕𝑦

𝜕𝑛

𝜕𝑥
(3.29)

where the combined expression has been separated. Using integration-by-parts
in 𝑥 on the first term and in 𝑦 on the second term gives∫

𝐷

𝑑x 𝑛
𝜕𝜙

𝜕𝑦
+
∫
𝐷

𝑑x 𝑛
𝜕2𝜙

𝜕𝑥𝜕𝑦
−
∫
𝐷

𝑑x 𝑛
𝜕2𝜙

𝜕𝑥𝜕𝑦
=

∫
𝐷

𝑑x 𝑛
𝜕𝜙

𝜕𝑦
(3.30)
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where the two last expressions cancels out. Thus the integral of the Poisson
bracket can be written as

𝑔

∫
𝐷

𝑑x 𝑥{𝜙, 𝑛} = 𝑔
∫
𝐷

𝑑x 𝑛
𝜕𝜙

𝜕𝑦
(3.31)

which can be recognized as the density flux in the radial direction [12]. Con-
tinuing on with this approach leads to considering the term

𝑔2
∫
𝐷

𝑑x 𝑥
𝜕𝜙

𝜕𝑦
(3.32)

Rewriting using product rule in 𝑦 gives∫
𝐷

𝑑x 𝑥𝜕𝑦𝜙 =

∫
𝐷

𝑑x 𝜕𝑦 (𝑥𝜙) −
∫
𝐷

𝑑x 𝜕𝑦 (𝑥)𝜙 = 0

where 𝜕𝑦 = 𝜕
𝜕𝑦

. Due to the periodic boundary conditions in 𝑦-direction, the
contribution from the first term vanishes. And since 𝑥 and 𝑦 are independent
variables the second term evaluates to zero, giving

𝑔2
∫
𝐷

𝑑x 𝑥
𝜕𝜙

𝜕𝑦
= 0 (3.33)

Combining the results obtained into equation 3.27, it follows that the time
derivative of the effective gravitational potential energy integral is given
by

𝑑𝐺

𝑑𝑡
= −𝑔

∫
𝐷

𝑑x 𝑛
𝜕𝜙

𝜕𝑦
− 𝜎𝑛𝐺 (3.34)

where
𝐺 = 𝑔

∫
𝐷

𝑑x 𝑥𝑛

Showing that to the lowest order, the effect of the particle loss term in in the
density equation has a exponential decaying effect on the potential energy
integral. This is the same effect observed for the same term in the derivative
of the kinetic energy integral.

With the expressions for the time derivative of the kinetic energy integral and
the effective gravitational potential energy integral now established, they can
be combined into an expression for the time derivative of the total energy in
the system.

𝑑𝐾

𝑑𝑡
+ 𝑑𝐺
𝑑𝑡

= −2𝑔
∫
𝐷

𝑑x 𝑛
𝜕𝜙

𝜕𝑦
− 𝜎Ω

∫
𝐷

𝑑x 𝑛𝜙2 − 𝜎𝑛𝐾 − 𝜎𝑛𝐺 (3.35)

with
𝐾 =

1
2

∫
𝐷

𝑑x 𝑛(∇⊥𝜙)2, 𝐺 = 𝑔

∫
𝐷

𝑑x 𝑥𝑛
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Neglecting the sheath dissipation and particle loss effect in both the density
and the vorticity equation results in a simplified expression for the difference
in the time evolution of the kinetic energy integral and the effective potential
energy integral expressed as

𝑑𝐾

𝑑𝑡
− 𝑑𝐺
𝑑𝑡

= 0 (3.36)

So in the case of no sheath dissipation and no particle loss, the result given
in equation 3.36 is consistent with the results obtained in ref [27], when they
consider a simple expression for a curved magnetic field.

The validity of the resulting energy relations derived from the heavy simplified
model defined at the beginning of this section, will be further analyzed and
discussed in the next chapter, when simulations of the reduced two-fluid model
equations are the main focus.





4
Numerical Simulations
This chapter contains the numerical simulations, results and discussion on the
simulations and results. At the start of each section, there is stated a short
description of the model equations used to simulate isolated blob structures,
along with previous results from publications which has investigated the given
topic. The results from the simulations are given in a separate subsection,
where we also comment and describe the results. The discussion on the results
and comparing to previous results if they exists, is done at the end of each
section in a separate subsection. In the first subsection, the setup of the code,
initial conditions and parameter values will be discussed. The parameter values
will also be specified at the beginning of each section, in order to prevent
misinformation of the used parameter value and ensuring reproducibility of
the simulations.

4.1 Simulation Setup and Reference Values

This section outlines the simulation configuration and constant values for
parameters not varied in the parameter scan for simulations. The configuration
contains the programs used for numerical solutions to the model equations,
the domain specifications and boundary conditions applied to the respective
quantities. Themodel equations and parameters used in the various simulations
will also be stated at the start of each parameter scan, in order to make the
simulations easier to follow and also recreate.

29
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The numerical framework utilized to simulation of the isolated blob-like struc-
tures at the scrape-off layer of fusion devices, is the BOUT++ framework
[9]. Boundary Turbulence in C++ or BOUT++ as it is known as, is a frame-
work that solves and simulates non-linear equations in 2D and 3D curvilinear
coordinates. Its main use is plasma fluid equations, but it can also handle
general time-dependent equations [9]. Once the framework has been suc-
cessfully compiled, it is quite easy to utilize. By specifying parameter values
and initial conditions for the respective quantities in a BOUT.inp file, the
simulation parameter can be defined which allows the user to easily modify
simulations environment to fit specified situations. The output are dumped
into .dmp.nc files, which can be further handled with the ”xBOUT” Python
package for data handling. More information on the package can be obtained
from: https://github.com/boutproject/xBOUT. The packges utilized ”xArray”,
which is sort of a combination of ”Pandas” and ”NumPy” for multidimen-
sional array handling. For more information on the ”xArray” package see:
https://docs.xarray.dev/en/stable/.

This BOUT++ framework is open source and can be obtained from the GitHub
page; https://github.com/boutproject/BOUT-dev. The GitHub page comes with
a manual and examples of how to use the given framework. All simulations run
in the thesis make use of the BOUT++ framework combined with different
numerical solvers. The use of a already established framework for numerical
simulations, removes the added workload of creating a potentially unstable
numerical solver, since the framework already has been numerically tested for
stability.

In order to solve the model equations specified in chapter 2; the reduced
two-fluid model equations, two types of solvers are needed. One which solves
the equations when the Boussinesq approximation has been imposed and one
which can handle solving without the Boussinesq approximation. In the case of
implementation using Boussinesq, the BOUT++ framework in two dimensions
utilizes a built-in cyclic solver. For the case when the Boussinesq approximation
is relaxed, the BOUT++ framework needs to utilized a non-linear solver, and in
the case for the simulations used here, it utilizes ”PETSc”. This is an open source
non-linear solver obtained from: https://github.com/petsc/petsc/tree/release-
3.19. Note that version 3.19 of the PETSc solver has been utilized, since it is the
version which is most compatible with the BOUT++ framework at the writing
of this thesis.

The domain specifications are consistent across all simulations, with variations
applied only to the parameters and the initial condition to the density pertur-
bation. The domain lengths are defined as 𝐿𝑥 = 200𝜌𝑠 and 𝐿𝑦 = 100𝜌𝑠 , with a
grid resolution of 512×256. The simulation time step is set to correspond to one
ion cyclotron frequency (𝜔𝑐𝑖) and further the output datasets are maintained
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at 200 steps. Consequently, each dataset contains 200𝜔𝑐𝑖 outputted time steps
containing values of density, vorticity and potential of a two dimensional grid.
However, for some of the more computationally heavy simulations the dataset
may contain fewer outputted time steps than 200𝜔𝑐𝑖 , but not shorter than
100𝜔𝑐𝑖 . From this point and throughout the rest of this thesis, all parameters
and plots will be given in dimensionless units, unless explicitly denoted.

When it comes to the spatial size of the blob structures, it has been observed in
experiments that the typical blob structure size is around 0.5−2cm. And the ion
Larmor radius is typically 𝜌𝑠 ≈ 10−3m, combined with a typical major radius of
𝑅0 ≈ 1m [2, 12, 17, 18, 22]. To ensure that the blob remains relatively localized
so that the evolution of the density and the potential are unaffected by the
boundaries, the normalized size of of the blob structures is set to 𝑙 = 0.03𝐿𝑥 =

0.03 · 200𝜌𝑠 which gives 𝑙 = 6 in dimensionless size. And since a blob size of
0.5cm is 5 in normalized units, the chosen value is comparable tomeasurements
made in experiments. By the typical SOL values, the dimensionless parameter
for the effective gravity are approximately 𝑔 ≈ 10−2 and the dimensionless
particle loss parameter and sheath dissipation parameter 𝜎𝑛 and 𝜎Ω is set to
∼ 𝜌𝑠

𝐿∥
= 10−4 when the parameter are not varied. Here we have used that the

typical value of the magnetic connection length is 𝐿∥ ≈ 10m [12]. The diffusion
coefficient is set to 10−4 to add a small diffusivity in every simulation [2, 5, 12,
17, 18, 22].

Figure 4.1: Density profile for initial amplitude Δ𝑛/𝑁 = 1 showing the Burgers’
solution effect on the profile as it evolves. The interaction between the
background density and the blob produces sheared flows, which produces
formation of the steep leading edge and a trailing wake observed in the
figure [5].
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Figure 4.1 shows the an initially symmetric blob with Δ𝑛/𝑁 = 1, retained
Boussinesq approximation combined with no sheath dissipation and no particle
loss. The blob is simulated using the model introduced in section 2.1.5. It shows
the density profile of the blob taken at 𝑦 = 50𝜌𝑠 and shown for four time
steps. The blue line is the initial density profile as the shape of a Gaussian blob,
and the dotted lines show the evolution of the profile for three time steps of
50𝜔𝑐𝑖, 70𝜔𝑐𝑖 and 90𝜔𝑐𝑖 . From the figure it is clear that as the density profile
evolves over time, the profile becomes more localized as a consequence of the
fact that velocity scales as a power law of density in the initial phase of blob
evolution when dissipation is neglected are [3, 11, 12, 18, 20–22]

𝑉𝑥 ∼ 𝑛(𝑡)𝛼 (4.1)

and the density evolution for a single density peak are determined by

𝜕𝑛

𝜕𝑡
+ 𝑛(𝑡)𝛼 𝜕𝑛

𝜕𝑥
= −𝜎𝑛 (4.2)

to lowest order,where the particle loss term is linearized. This can be recognized
as Burgers’ equation for a one-dimensional problem,which quickly breaks down.
Thus in order for the code to be numerically stable, the diffusion term must be
present for all simulations, and the value will remain unchanged throughout
all parameter scans and simulations. They are set to a values of the same order
as the particle loss and sheath dissipation terms value of 10−4.

The potential, density and vorticity have Neumann boundary conditions at both
the 𝑥 -boundaries and are periodic at both boundaries in 𝑦-direction. These
where introduced in section 3.1. The initial conditions for the potential and the
viscosity are set to zero, 𝜙 (𝑥,𝑦, 0) = Ω(𝑥,𝑦, 0) = 0 and the density profile is
initialized as a Gaussian perturbation of the form

𝑛(𝑥,𝑦, 𝑡)
𝑁

= 1 + Δ𝑛

𝑁
exp

(
− (x − x0)2

2𝑙2

)
(4.3)

where Δ𝑛 is the blob amplitude, 𝑁 is the constant background density which
will be identically equal to 1 for all simulations and x0 is the starting position
of the blob defined as (50𝜌𝑠, 50𝜌𝑠).

In order to evaluate blob center of mass motions, one has to be able to track
the blob structures throughout the motion. There are several ways this can
be accomplished, but here a threshold value on the density has been set to
estimate the blob size. This can be defined using a set, given as

𝑛𝑏𝑙𝑜𝑏 = {𝑛(𝑥 .𝑦, 𝑡) | 𝑛(𝑥,𝑦, 𝑡) > threshold} (4.4)

where the threshold value is set to 1 × 10−9, the rest of the values are set to
0. Thus only density values above this threshold will contribute to determine



4.2 energy integrals 33

the center of mass diagnostics of the various blob structures simulated. In
the contour figures showing the density, the background density has been
subtracted to only consider the blob structures. This is done in the processing
part, and not in the simulation part. There the background density is present
as a constant value of 𝑁 = 1.

4.2 Energy Integrals

In chapter 3, an analytical expression for the kinetic- and effective gravitational
potential energy was obtained utilizing a simplified model. Much of the motiva-
tion for obtaining invariants for systems, are the information they can provide
on restrictions of the dynamics of a given system. And the use of invariants in
numerical simulations, to verify their validity. In this thesis, the latter serves as
the primary motivation for the use of the invariants. The restrictions on dynam-
ics approach has been utilized in several previous publications, such as in ref.
[27] where they use a relaxation of the Boussinesq approximation but neglect
the particle loss and sheath dissipation terms among other simplifications used
to simplify the complexity of the analytical expressions. Or in ref. [20] where
the Boussinesq approximations is retained and sheath dissipation and particle
loss terms are neglected, but the diffusion terms are retained.

To obtain an analytical expression for the invariants in chapter 3, a very simpli-
fied model where used. The model equations where obtained by linearize the
particle loss and sheath dissipation terms, relaxing the Bouessinesq approxi-
mation and neglecting diamagnetic drift given by

𝜕𝑛

𝜕𝑡
+ {𝜙, 𝑛} − 𝑔 𝜕𝜙

𝜕𝑦
= −𝜎𝑛𝑛 (4.5)

∇ ·
(
𝑛
𝑑∇⊥𝜙

𝑑𝑡

)
+ 𝑔 𝜕𝑛

𝜕𝑦
= 𝜎Ω𝑛𝜙 (4.6)

and the derivation yielded the invariants

𝑑𝐾

𝑑𝑡
+ 𝑑𝐺
𝑑𝑡

= −2𝑔
∫
𝐷

𝑑x 𝑛
𝜕𝜙

𝜕𝑦
− 𝜎Ω

∫
𝐷

𝑑x 𝑛𝜙2 − 𝜎𝑛𝐾 − 𝜎𝑛𝐺 (4.7)

and if we imposing no particle loss and sheath dissipation parameter 𝜎𝑛 =

𝜎Ω = 0, combined with subtracting the time derivatives of the energy integrals
gives

𝑑𝐾

𝑑𝑡
− 𝑑𝐺
𝑑𝑡

= 0 (4.8)

which reveals that the difference in the time derivative of the energy integrals is
zero. However, in the simulations of the blob structures we will not linearize the
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particle loss and sheath dissipation terms. So the simulated model equations
are given by

𝜕𝑛

𝜕𝑡
{𝜙, 𝑛} − 𝑔 𝜕𝜙

𝜕𝑦
= 𝐷𝑛∇2

⊥𝑛 − 𝜎𝑛𝑛 exp(−𝜙) (4.9)

∇ ·
(
𝑛
𝑑∇⊥𝜙

𝑑𝑡

)
+ 𝑔 𝜕𝑛

𝜕𝑦
= 𝐷Ω∇2

⊥Ω + 𝜎Ω𝑛[1 − exp(−𝜙)] (4.10)

where diffusion are added for stability. This model equations leads to a modi-
fication in the particle loss term and the sheath dissipation term, yielding the
invariant equation

𝑑𝐾

𝑑𝑡
+ 𝑑𝐺
𝑑𝑡

= −2𝑔
∫
𝐷

𝑑x 𝑛
𝜕𝜙

𝜕𝑦
− 𝜎Ω

∫
𝐷

𝑑x 𝑛[1 − exp(−𝜙)]

− 𝜎𝑛

2

∫
𝐷

𝑑x 𝑛(∇⊥𝜙)2 exp(−𝜙) − 𝜎𝑛
∫
𝐷

𝑑x 𝑥𝑛 exp(−𝜙)

(4.11)

where the terms are now no longer linearized. In the case of no particle loss
and no sheath dissipation, this gives the invariant stated in equation 4.8. And
so the invariants which will be studied through simulations in this section in
the case of particle loss and sheath dissipation terms, given in equation 4.11.
In order to simulate blob structures we utilize the parameter values 𝑔 = 0.01,
𝑙 = 6, neglecting diamagnetic drift compression in the particle density equation
and relaxing the Boussinesq approximation. To ensure the stability of the
simulations, the diffusion terms will be reintroduced into the simulated model
equations. The diffusion terms will act as sink terms in the energy equations,
and thus a difference in the results from the simulations and the analytical
expressions found is to be expected.

In the simulations where particle loss and sheath dissipation is retained, the
values used are 𝜎𝑛 = 𝜎Ω = 10−4. Further the blob structure are initialized
as a symmetric blob with initial perturbed amplitude of Δ𝑛/𝑁 = 1 and the
background density are set to 𝑁 = 1 as is the case for all simulations done in
this thesis.

4.2.1 Simulations Results

The following subsection contains the results from the energy integrals simu-
lations and contains a description of the results.
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Particle loss and sheath dissipation included

Figure 4.2: Density shown as colored contour in all plots. The potential shown as blue
curves on the top, and the vorticity as blue curves on the lower row. Dotted
lines corresponds to negative values, and lines to positive values. The blob
structure is observed to moves radially in the positive 𝑥 -direction.

Figure 4.2 shows the evolution of an initial symmetric blob structure with
perturbed amplitude Δ𝑛/𝑁 = 1 over three different time steps, along with the
electrostatic potential and the vorticity for each of the time steps. Density is
shown as colored contours in all the plots, further the potential is shown as blue
curves along with the density on the top row and the vorticity is shown as blue
curves on the bottom row. Dotted lines corresponds to negative values and the
lines corresponds to positive values. The blob is initially a symmetric structure,
but through the formation of a electrostatic potential and a vorticity field the
blob is accelerated radially in the positive 𝑥 -direction [3, 12]. The blob structure
develops a steeping front and a trailing wake, resembling the effect of Burgers’
equation in one-dimensional problem, which was discussed in section 4.1. The
particle dissipation and diffusion combined with stretching due to convective
flow, leads to a decreasing perturbation amplitude as the blob moves radially
outwards [12, 13]. This leads to the creation of the two observed lobes on
either side of the main structure, leading to the formation of a mushroom
shape, this is referred to as Kelvin-Helmholtz vortices and vortex shedding [2].
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Figure 4.3: Left shows the center of mass radial position of the blob structure observed
in figure 4.2. Right shows the computed center of mass radial velocity for
the same structure. All axis are dimensionless, but time axis emphasized
for readability.

The disjoint lobe structures have a net different vorticity polarity [3, 11–13].
Figure 4.3 shows the computed center of mass radial position and velocity of
the blob structure shown in the contour plot in figure 4.2. The center of mass
diagnostics are computed numerically using the definitions specified in section
2.2 combined with using the numerical approximation methods defined in A.1
and A.2 respectively. The blob structure are initially at rest, but quickly reach
an advection phase where it starts to accelerate outwards radially. It reaches
a maximum after approximately 100 time steps for which it has traveled a
distance of several ion Larmor radius 𝜌𝑠 . Due to the diffusion and dissipation of
density, the structures front vanishes, and the blob decelerates and the motion
stops somewhat. The further dissipation and diffusion leads to the vanishing of
the blob density into making it indistinguishable from the background density,
which leads to the noisy pattern reach after approximately 300𝜔𝑐𝑖 . This effect
explains the behavior seen in the radial position figure, where the blob appears
to move in the negative radial direction.
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Figure 4.4: Shows the time derivative of the kinetic energy integrals. The blue line
corresponds to the numerical solution and the orange line corresponds to
the analytical solution.
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Figure 4.5: Shows the time derivative for the effective gravitational potential energy.
Blue line corresponds to numerical solution and the orange line corre-
sponds to the analytical solution.

Figure 4.4 shows the time derivative of the kinetic energy integral, both the
estimated numerical solution and the found analytical solution defined in chap-
ter 3. Figure 4.5 shows the time evolution of the derivative of the effective
gravitational potential energy, also here both the numerical and the analytical
solutions. To compute both solutions require numerical integrations and deriva-
tives, which are solved utilizing the numerical methods defined in A.1 and A.2
respectively. From the figure showing the time derivative of the kinetic energy
integral, considering the analytical solution computed using we observe a sharp
increase in the derivative of the kinetic energy of the blob as the formation of
the electrostatic potential and vorticity field accelerates the structure radially
outwards. After about 100 time steps, we observe a decreasing derivative of the
kinetic energy which slows down as the curve approaches zero value. Consid-
ering the curve for the numerical computation of the derivative of the kinetic
energy integral, we observe a slight increase as the blob is accelerated. However
the value for the numerical computation increases very slow and reach a much
lower value before it decreases to zero value. We observe a large difference
in the analytical solution and the numerical value, but this difference in value
can be a result of the neglection of diffusion in the analytical solutions. They
would act as sinks, leading to a decrease in the derivative of the kinetic energy
integral. After between 200 − 300 time steps, the solution appears to retain
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close to zero. However, the analytical curve becomes noisy and fluctuating
around the same region which could be due to numerical error.

From the figure showing the time evolution of the derivative of the effective
gravitational potential energy, we see that the numerical curve appears to stay
close to or be zero throughout the simulation. The analytical curve decrease
as the blob is accelerated, before it rises up towards zero value. We have
again not considered the diffusion part, which is present due to the stability
of the simulations. Thus a difference in the curves could be as a result of the
neglection of the terms in the analytical solution.

Figure 4.6 show the computed energy integrals for the kinetic energy and the
effective gravitational potential energy. Both are computed using composite
trapezoid method for numerical integration, this method is shown in section A.2
in the appendix. From the kinetic energy figure, 4.6a we observe the increase
in kinetic energy as the radial velocity of the blob increases. After reaching a
maximum when the blob reaches a maximum radial COM velocity, the kinetic
energy is observed to decrease with increasing time slowly approaching a zero
value as the blobs velocity approaches zero. Figure 4.6b shows the effective
gravitational potential energy which starts at a high value, and is observed to
decrease with increasing time and decreasing blob density. As the density of
the blob stricture dissipates and diffuses, the resulting effect is a decrease in
the potential energy. The decrease in potential energy is observed to be more
or less linear over time.

(a) Shows the time evolution of the computed
kinetic energy integral.

(b) Shows the time evolution of the computed
effective gravitational potential energy in-
tegral.

Figure 4.6: Time evolution of the computed energy integrals.
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No sheath dissipation and no particle loss terms

Figure 4.7: Left shows the time derivative of the kinetic energy integral. Right shows
the time derivative of the effective gravitational potential energy integral.

Figure 4.7 shows the time derivative of the kinetic- and effective potential
energy integrals. This is computed from a simulation a blob structure relaxing
the Boussinesq approximation combined with neglecting the particle loss and
sheath dissipation terms. The derivative of the kinetic energy integral starts at a
value of zero, and increases with the increasing radial center of mass velocity of
the blob structure. After reaching a maximum, it decreases with the decreasing
radial velocity. The derivative of the effective gravitational potential energy
increases from a starting value of zero, before reacting a maximum and further
decreasing when the blob structure diffuses into the background density. It
finally settles around a value of roughly zero.

Figure 4.8 shows the difference in the changes of the kinetic- and potential
energy integrals. It starts out decreasing from an initial values of zero, before
reaching a minimum and further increasing to a value around zero. The results
will be further discussed in the next subsection.
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Figure 4.8: Difference of the time derivatives of the kinetic- and the potential energy
integrals.

4.2.2 Discussion

In the case of sheath dissipation and particle loss terms added to the simulations,
we obtained a difference between the derived invariants and the numerically
computed invariants. However, in the derivation of the invariants we neglected
the impact of diffusion which would appear as a sink in the energy integrals
equations. From the figures, we observe a difference in the numerical com-
puted derivative and the analytical solutions. This indicates that the may not
converge well when particle loss and sheath dissipation are involved. In terms
of the kinetic energy, the difference is small and could be due to numerical
approximations. In the case of the effective potential energy, the difference
appears to be large in value and only after about 300 time steps they appear
to be close to similar. However, the analytical solution seems unstable at that
point and experience fluctuations.

When the particle loss and sheath dissipation terms are neglected, then the
invariants takes the form as found in ref [27]. In figure 4.8 we see that the
difference between the derivative of the kinetic energy integral and the effective
gravitational potential energy are small and mostly around a value of zero.
However, the value are not exactly zero, showing some error which could come
from numerical approximations. But the value seems to stay close to zero,
which is roughly approximate to the analytical invariant solution found in
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chapter 3, and the same found in ref. [27].

4.3 Initial Amplitude Variations

Many previous publication focuses on the impact made from the initial per-
turbed amplitude of the blob structures on the radial center of mass motion,
which also is the focus on the simulations in this section [12, 13, 18, 20, 21,
27].

The evolution of plasma filaments in magnetized plasmas, can also be described
through the plasma vorticity equation given as [11, 21]

b · ∇ ×
(
𝜌
𝑑V
𝑑𝑡

)
= 𝐵B ·

(
𝐽∥
𝐵

)
+ 2b · 𝜅 × ∇𝑃 (4.12)

where 𝑃 is the plasma pressure, 𝜌 is the mass density, V is the fluid velocity of
the plasma, b is the unit vector in the direction of the magnetic field lines and
𝜅 = (b · ∇)b is known as the magnetic curvature vector. Under the assumption
that parallel currents can be neglected, and utilizing an order of magnitude
approach implying ∇⊥ ∼ 1/𝑙 , 𝑑/𝑑𝑡 ∼ 𝑉 /𝑙 , 𝜅 ∼ 1/𝑅. That is, the perpendicular
gradient scales inverselywith the characteristic blob size, thematerial derivative
scales as velocity divided by blob size and magnetic curvature vector scales
inversely with magnetic field radius of curvature [21]. Finally using ∇𝑃/𝜌 ∼
𝑐2𝑠Δ𝑛/𝑙 (𝑁 + Δ𝑛), which combined gives the inertial velocity scaling regime. In
the case of small perturbed amplitudes Δ𝑛/𝑁 ≪ 1, the scaling of the radial
velocity of the filaments can be expressed as 𝑉 ∼ (Δ𝑛/𝑁 )1/2 [11, 12, 18–21].
Showing a square-root dependence on the initial amplitude in the inertial
scaling regime. In the limit of large initial perturbed amplitude Δ𝑛/𝑁 ≫ 1, a
saturation occur and the radial velocity of the filaments becomes independent
of the initial amplitude Δ𝑛/𝑁 [19, 21].

Utilizing the same arguments and approach as in the inertial scaling regime,
but retaining the parallel effects closed as sheath dissipation, leads to the
sheath dissipation scaling regime. Here velocity 𝑉 ∼ 𝜙/𝐵𝑙 which balances the
effect of parallel currents and interchange terms, which for small perturbed
amplitudes Δ𝑛/𝑁 ≪ 1 a scaling of 𝑉 ∼ Δ𝑛/𝑁 [19, 21]. So in the case of
retained sheath dissipation, the radial filament velocity scales linearly with
the initial amplitudes. In the limit of large initial amplitude Δ𝑛/𝑁 ≫ 1, the
contributions from the parallel currents becomes vanishing compared to the
other terms and consequently this leads to the same scaling as in the case
of no parallel currents. Which again leads to the case of saturation, and the
radial filament velocity becomes independent of initial amplitude. Much of
the described literature neglects the influence of the particle loss term in
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the described scaling. In the section, the combined effect of the particle loss
parameter and the sheath dissipation parameter will be considered.

The model equations used for the simulations, are the full model equations
derived in chapter 2 where the Boussinesq approximation are invoked. These
are given by

𝜕𝑛

𝜕𝑡
+ {𝜙, 𝑛} − 𝑔𝑛 𝜕𝜙

𝜕𝑦
+ 𝑔 𝜕𝑛

𝜕𝑦
= 𝐷𝑛∇2

⊥𝑛 − 𝜎𝑛𝑛 exp (−𝜙) (4.13)

𝜕Ω

𝜕𝑡
+ {𝜙,Ω} + 𝑔

𝑛

𝜕𝑛

𝜕𝑦
= 𝐷Ω∇2

⊥Ω + 𝜎Ω [1 − exp (−𝜙)] (4.14)

The density is initialized as symmetric blob following a Gaussian shape, which
is described in the setup section. The potential and vorticity are set to initial
value of zero. Parameters are set to 𝑔 = 0.01, 𝐷𝑛 = 𝐷Ω = 𝜎𝑛 = 𝜎Ω = 10−4. In
the simulations where particle loss and sheath dissipation are neglected, the
parameters are set to 𝜎𝑛 = 𝜎Ω = 0 and the rest of the parameters retains their
values. If they are retained, their value are set to 𝜎𝑛 = 𝜎Ω = 10−4. The center
of mass position and velocity are computed using the definition combined with
the numerical methods defined in the sections A.1 and A.2.

4.3.1 Simulations Results

This subsection contains the results from the parameter scan in the initial
perturbation amplitude, along with a short description.
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No sheath dissipation and no particle loss term

Figure 4.9: Contour plots with initial density perturbation Δ𝑛/𝑁 = 0.01. The top row
shows the density along with the potential, and the density along with
the vorticity on the lower row. The blob structures moves radially in the
positive 𝑥 -direction.

Figure 4.9 shows a blob structure with initial density perturbed amplitude
Δ𝑛/𝑁 = 0.01 along with the electrostatic potential in and the vorticity curves.
The blob is simulated neglecting particle loss and sheath dissipation terms. The
blob is initialized as a symmetric structure, but due to the formation of the
electrostatic potential and vorticity field the blob accelerates radially outwards.
Due to the small potential and the constant effect of the diffusion term, the blob
diffuses before the appearance of the steeping front and the trailing wake seen
for larger blobs [3, 12, 13]. At the last time step we observe a large asymmetry
in the blob structure, where the density appears to accumulate on the lower
side of the initial blob structure. Due to the diamagnetic drift compression
term in the density equation, the time evolution of the density is dependent
on the spatial variation of the density in the 𝑦-direction. So in the case of small
initial amplitudes, only a small variation in the derivative of the density would
create the large asymmetry observed in the vertical direction. The blob are not
influenced by particle loss or sheath dissipation, and thus the density are not
subjected to dissipation along the magnetic field lines.
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Figure 4.10: Contour plots with initial density perturbation Δ𝑛/𝑁 = 1. The top row
shows the density along with the potential, and the density along with
the vorticity on the lower row. The blob structures moves radially in the
positive 𝑥 -direction.

Figure 4.10 shows an initial symmetric blob structure with perturbed amplitude
Δ𝑛/𝑁 = 1 along with the electrostatic potential and the vorticity for three
different time steps. As for the previous blobs seen, due to the formation of an
electrostatic potential and a vorticity field the blob accelerates radially in the
positive 𝑥 -direction. At the second time steps, we observe the formation of a
steeping front and a trailing wake due to the interaction of the blob density
with the background plasma density. The interaction creates a sheared flow
pattern due to weaker force resulting in weaker flow at large values of |𝑦 | [5].
The emergence of the steeping front and trailing wake are more visible in this
figure compare to the figures for lower initial perturbed amplitude. The last
time step in the figure, shows the emergence of the mushroom shape with
lobes on either side of the steeping front which is known as Kelvin-Helmholtz
vorticies and vortex shedding [2]. Due to diffusion, the amplitude are seen
to decrease although that is not very visible in the figure. The diffusion are
several orders of magnitude lower than the density, and will effect will take
longer to be noticeable.
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Figure 4.11: Contour plots with initial density perturbation Δ𝑛/𝑁 = 10. The top row
shows the density along with the potential, and the density along with
the vorticity on the lower row. The blob structures moves radially in the
positive 𝑥 -direction.

Figures 4.11 shows an initial symmetric structure with perturbed amplitude
Δ𝑛/𝑁 = 10 , along with the electrostatic potential and vorticity. The same
dynamics observed in previous figures for lower initial amplitudes are observed.
The structures initially accelerates due to the formation of an electrostatic
potential and a vorticity field. The subsequent formation of a mushroom shape
is observed in these figure, but for the larger amplitude blobs the shape seems
to appear comparable to those formed from shocks; shock fronts.
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(a) The scaled center of mass radial velocity
for blob structures with initial perturbed
amplitude ranging from Δ𝑛/𝑁 = 0.01 to
Δ𝑛/𝑁 = 5. They are scaled to be between
0 and 1, and so the difference in magni-
tude are not shown here.

(b) The scaled center of mass radial velocity
for blob structures with initial perturbed
amplitude ranging from Δ𝑛/𝑁 = 10 to
Δ𝑛/𝑁 = 100. They are scaled to be be-
tween 0 and 1, and so the difference in
magnitude are not shown here.

Figure 4.12: This figure shows the scaled center of mass radial velocity for different
initial perturbed amplitudes.

Figure 4.12 shows the scaled radial center of mass velocity as ti evolves over
time for a range of initial perturbed amplitudes from 10−2 to 102. Due to the
axis for the velocity being scaled, the difference in magnitude are lost, but the
shapes are retained. Observed from the figures, is that the acceleration phase
of the blob structures with low initial amplitudes, appear longer. Observations
from the figure shows that for smaller initial amplitudes, the time until the
blob reaches its maximum velocity appears to be approximately equal and as
a consequence the time to reach maximum radial center of mass velocity are
independent of initial amplitude. This is in agreement with previous numerical
simulations and studies on center of mass radial velocity as a function of initial
amplitude [20]. In the case of larger perturbed amplitudes, the velocity curves
are observed to be similar but time to reach maximum radial velocity are
dependent on initial perturbed amplitude. Also in agreement with previous
studies [19, 20].

Figure 4.13 shows the maximum radial center of mass velocity as a function of
the initial perturbed amplitude in logarithmic scale. The initial amplitude spans
from 10−2 to 102, and the dotted lines corresponds to a least squares estimate
to fit a power law scaling. The span of line are the points used to estimate the
coefficients using a straight line in log-log space. Also observed in the figure,
are what appears to be an interesting behavior on the points corresponding to
initial amplitude perturbation of 10−2 and 2× 10−2 which seems not to follow
the same scaling as the other points in the lower regime. They do not fit with
the simulations results found in previous works [12, 19, 20],where the maximum
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radial velocity points appear to follow the same line scaling as the rest. However,
the points in this case appears to have higher maximum velocities than in the
previous publications, leading to the possibility that they must be outliers. By
considering the figure showing the radial velocity over time, the possibility of
finding a local maximum or a maximum for which the function are nonphysical,
seems not to explain the behavior of the outliers. Another possible explanation
of the outliers, can be the computations of the center of mass velocity. Since
the methods using to estimate the blob structure, center of mass position and
velocity relies on utilizing numerical approximations. Then there is a possibility
that due to the low initial density, the numerical error due to either truncation
or approximation are to large. And as a consequence, describing the center of
mass diagnostics for these points are not feasible with the used estimates. And
thus the points should be disregarded in the determining the scaling in the
lower regime.

Figure 4.13: Shows the maximum radial velocity for each of the different structures
with initial perturbed amplitude ranging from 10−2 to 102. The axis
are in logarithmic from, and a least square estimate for scaling laws are
shown as dotted lines.
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Sheath dissipation and particle loss terms retained

Figure 4.14: Contour plots with initial density perturbation Δ𝑛/𝑁 = 0.01. The top row
shows the density along with the potential, and the density along with
the vorticity on the lower row. The density is shown as colored contours,
and the potential and vorticity is shown as blue curves where dotted
lines corresponds to negative values and lines correspond to positive
values. The blob structures moves radially in the positive 𝑥 -direction.
Blob influenced by sheath dissipation.

Figures 4.14 - 4.15 shows initial symmetric blob structures subjected to particle
loss and sheath dissipation with initial perturbed amplitudes from along with
the electrostatic potential and vorticity for three time steps. The density is
shown as colored contour, the potential at the top row as blue curves and the
vorticity as blue curves on the bottom row. The dotted lines corresponds to
negative values and lines corresponds to positive values. In the previous subsec-
tion, figures showing the same span of initial amplitudes but the simulations
where run without the addition of sheath dissipation terms. Comparing, we see
the same dynamics for both cases. The formation of a electrostatic potential
and vorticity field, accelerates the blob radially outwards. Further we observe
the creation of a steeping front and trailing wake, and finally the mushroom
shape. We also observe the appearance of the lobes on either side of the blob
structures with opposite polarity in the vorticity. In the low initial amplitude
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Figure 4.15: Contour plots with initial density perturbation Δ𝑛/𝑁 = 0.2. The top row
shows the density along with the potential, and the density along with
the vorticity on the lower row. The blob structures moves radially in the
positive 𝑥 -direction. Blob influenced by sheath dissipation.



4.3 init ial amplitude variations 51

figure, we observe again observe the asymmetric behavior due to the inclusion
of diamagnetic drift compression in the density equation. For the lower initial
amplitudes, the diffusion and dissipation leads to a sharp decrease in density
amplitude. Leading to restricted motion observed in the figures. However, due
to the particle loss and sheath dissipation terms, the density dissipates at a
higher rate compared to the case with no sheath dissipation and no particle
loss.

(a) Scaled center of mass velocity for blob
structures with initial perturbed amplitude
ranging from Δ𝑛/𝑁 = 0.01 to Δ𝑛/𝑁 = 5.
Blobs subjected to sheath dissipation.

(b) Scaled center of mass velocity for blob
structures with initial perturbed ampli-
tude ranging from Δ𝑛/𝑁 = 10 to Δ𝑛/𝑁 =

100. Blobs subjected to sheath dissipation.

Figure 4.16: Scaled center of mass velocity for blobs subjected to sheath dissipation

Figure 4.16 shows the center of mass velocity for a range of different initial
perturbed amplitudes for blob structures subjected to particle loss and sheath
dissipation. It shows that in limit of larger initial perturbed amplitudes. the
radial center of mass velocity remains seemingly unchanged. In the case for
the lower initial amplitudes, we observe a big change in terms of the shape
and accelerations phase. For the lowest initial amplitude, it quickly rises to
maximum values meaning it accelerates quickly in the initial phase. Before the
diffusion and dissipation decrease the amplitude and the blob decelerates to a
much lower value. For larger amplitude blobs, the inertial term takes over and
the acceleration becomes slower, until we observe somewhat the same as we
did in the case of no sheath dissipation.

Figure 4.17 shows the maximum radial center of mass velocity as a function of
the initial perturbed amplitude for the blob structures subjected to particle loss
and sheath dissipation. The axis are given in logarithmic scale, and the dotted
line again corresponds to the least squares estimate the parameter for scaling
laws. In the region of small initial amplitudes, the values follows a quite steep
line with a rate of increase ≈ 1. Before there is a transition region over to a
more flat increase for the remaining points. As we observer, in the region of
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larger initial amplitudes the scaling transition to the same as for the case when
sheath dissipation was neglected.

Figure 4.17: Maximum radial velocity for initial perturbed amplitude ranging from
10−2 to 102. Blob structures subjected to sheath dissipation and the axis
are given in logarithmic scale. Dotted lines are the least squares estimate
for power scaling laws.

4.3.2 Discussion

Comparing the maximum velocity as function of the initial perturbed amplitude
Δ𝑛/𝑁 in the case of no sheath dissipation and no particle loss terms shown
in figure 4.13 and in the case of retaining the sheath dissipation 𝜎ò𝑚𝑒𝑔𝑎 and
particle loss 𝜎𝑛 terms shown in figure 4.17, both predicts similar scaling for the
largest initial amplitudes. In this region, the simulations results predicts that
radial COM velocity scales as𝑉𝑥 ∼ (Δ𝑛/𝑁 )0.24. From previous publications and
results, for larger perturbed amplitude the radial velocity becomes independent
of the initial amplitude[19, 21]. Further for smaller amplitudes in the case of
no sheath dissipation and no particle loss, the radial COM velocity scales as
𝑉𝑥 ∼ (Δ𝑛/𝑁 )1/2 and retaining sheath dissipation gives the sheath dissipative
regime for which the radial COM velocity scales as 𝑉𝑥 ∼ Δ𝑛/𝑁 . The results
obtained in here are 𝑉𝑥 ∼ (Δ𝑛/𝑁 )0.90, which differ slightly from the previous
values obtained for the scaling. However, in the large amplitude scaling region,
the effect of parallel currents becomes very small compared to the perturbation
of the blob density and the sheath dissipation term and the particle loss term
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are only a small correction to to a quantity which are orders of magnitude
larger, which leads to the same scaling factor in the larger region. Since there
is a region of transition between the scaling in the lower amplitudes and the
independent region. A possible explanation for the lower observed value for the
scaling, is that the points used for the lease squares estimates are located in the
transition between the lower scaling and the independent region. In previous
publications neglects the effect of particle loss, which could effect the motion
of the blob structures in the lower amplitude region. This can explain the
difference obtain in the results for the sheath dissipation scaling regime.

From the figure showing the radial COM velocity scaling for neglected sheath
dissipation, figure 4.13, we obtained that COM radial velocity scales as 𝑉𝑥 ∼
(Δ𝑛/𝑁 )0.68. From the least squares estimate process, it became clear that the
number of used points greatly effects the value of the scaling factor, and on
point added was in some cases enough to alter the value of factor of almost 0.1.
So there is a high uncertainty in the value of the scaling factor. This can be a
possible cause in the difference in the observed scaling factor of 0.68 and the
scaling factor obtained from a order of magnitude approach combined with
simulations results in previous publications [11, 12, 19, 21].

4.4 Particle Loss

Previous works into the effect of the sheath dissipation on the radial center of
mass velocity of filament structures, focuses on the vorticity equation. More
specifically the non-dimensional sheath dissipation parameter 𝜎Ω, while the
effect due to particle loss parameter 𝜎𝑛 are neglected [12, 19]. Implementing the
particle loss term in the density equation is not the easiest thing to consider, due
to the exponential decaying effect this term has on the background density. This
will be discussed inmore detail in subsection 4.4.1,where a possible solutionwill
be described. However, these solutions have limitations and another possible
approach will be mentioned in the summary of this thesis.

The thesis will focus on the effects of 𝜎𝑛 and further neglect the contributions
from the sheath dissipation term 𝜎Ω. The reason for the interest in 𝜎𝑛, comes
from results obtained from stochastic modeling of filaments as density pulses
recorded at a fixed probe over time [23].

By considering super-position of 𝐾 uncorrelated pulses which moves radially
along the 𝑥 -axis described by [21–23]

Φ𝐾 (𝑥, 𝑡) =
𝐾∑︁
𝑘=1

𝜙𝑘 (𝑥, 𝑡 − 𝑠0𝑘 ) (4.15)
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Pulse 𝜙 (𝑥, 𝑡 − 𝑠0𝑘 ) is located at a reference point 𝑥 = 0 at arrival time 𝑠0𝑘 . The
time evolution of each single pulse is assumed to follow [21–23]

𝜕𝜙

𝜕𝑡
+𝑉 𝜕𝜙

𝜕𝑥
+ 𝜎𝑛𝜙 = 0 (4.16)

where the subscription are dropped for readability.𝑉 denotes the pulse velocity
and𝜎𝑛 a constant linear damping due to the sheath dissipation parameter in the
density equation. The radial position of a pulse at any time 𝑡 can be described
through [23]

𝑋 (𝑡) =
∫ 𝑡

0
𝑑𝑡 ′ 𝑉 (𝑡 ′) (4.17)

The velocity can be considered to be time dependent, given by a power law
dependent of the instantaneous pulse amplitude [23]

𝑉 (𝑡)
⟨𝑣0⟩

= 𝑐𝜈

(
𝐴(𝑡)
⟨𝑎0⟩

)𝛼
(4.18)

where ⟨𝑎0⟩ is the average of the initial random variable of the amplitude at
the reference point 𝑥 = 0, 𝑎0 = 𝐴(0) initial amplitude and ⟨𝑣0⟩ is the average
velocity at the reference point, 𝑣0 = 𝑉 (0) velocity random variable at the
reference point [23]. 𝑐𝜈 are the proportionality coefficients. 𝛼 → 0 describes
radial velocity independent of the pulse amplitude and 𝛼 = 1 describes a linear
relationship between the quantities [23]. When there is a dependence on the
radial velocity of the instantaneous pulse amplitude and utilizing equation
4.17, integration gives the pulse radial position as a function of time [23]

𝑋 (𝑡) = 𝑋max [1 − exp (−𝛼𝜎𝑛𝑡)] (4.19)

where the maximum radial position are defined as [23]

𝑋max =
𝑐𝜈 ⟨𝑣0⟩
𝜎𝑛𝛼

(4.20)

In the limit of 𝜎𝑛𝑡 → ∞, the radial position 𝑋 (𝑡) → 𝑋max. So as time evolves
the pulse radial position will approach the maximum radial position and
stagnates at 𝑋max, while the pulse amplitude exponentially decays as the pulse
moves closer to this position [23]. This predicted pulse or blob stagnation, are
the main motivation for examining the effect from the 𝜎𝑛 term on the blob
dynamics in numerical simulations.

The model equations used for simulations in this section retaining the Boussi-
nesq approximation, are given by

𝜕𝑛

𝜕𝑡
+ {𝜙, 𝑛} − 𝑔𝑛 𝜕𝜙

𝜕𝑦
+ 𝑔 𝜕𝑛

𝜕𝑦
= 𝐷𝑛∇2

⊥𝜙 − 𝜎𝑛𝑛 exp (−𝜙) (4.21)

𝜕Ω

𝜕𝑡
+ {𝜙,Ω} + 𝑔

𝑛

𝜕𝑛

𝜕𝑦
= 𝐷Ω∇2

⊥Ω (4.22)
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where sheath dissipation 𝜎Ω = 0 and will so for all simulations done in this
section. Further 𝑔 = 0.01, 𝑙 = 6, 𝐷𝑛 = 𝐷Ω = 10−4, and the blob is initialized
using a symmetric Gaussian blob with initial amplitude Δ𝑛/𝑁 = 0.1, 1, 2. Back-
ground density set to 𝑁 = 1, potential and vorticity initialized as zero.

4.4.1 Exponential decay in the background

When considering model equations retaining the effect of particle loss 𝜎𝑛 in
the density equation, it has some unkind affects on the background density
which needs to be addressed before simulations on the parameter scan in the
particle loss term. Only considering the background density 𝑁 when there is
no blob structure present in the simulation, inserted into the density equation
specified in equation 4.21, neglecting all other terms except for the particle loss
term yields

𝜕𝑁

𝜕𝑡
= −𝜎𝑛𝑁 exp(−𝜙) (4.23)

where the right hand side can be linearized exp(−𝜙) ≈ 1 and is straight
forward to solve. Solving gives

𝑁 (𝑡) = 𝑁0 exp(−𝜎𝑛𝑡) (4.24)

and so clearly, to the lowest order the particle loss term gives exponential decay
in the background density. This is an unfortunate effect leading to problems
when we want to study the evolution of blob structures. The code has been
updated with a added term in order to mitigate this effect, however this is
not used in these simulations. This is because that computation does not work
when changing the particle loss parameter 𝜎𝑛, and when the parameter is of
the order 10−2 the simulations appears to break down.
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Figure 4.18: Contour plots for the density on the left and the potential for the blob
structure at right side. In order for the potential to be non-zero, one unit
of time has elapsed. Both plots shows a isolated blob structure, and a
small electrostatic potential.

Figure 4.18 shows a symmetric blob structure with initial perturbed amplitude
Δ𝑛/𝑁 = 1 simulated using the model equations shown in equation 4.21 and 4.22
with a particle loss parameter 𝜎𝑛 = 0.05. The left plot in the figure shows the
density and the associated potential is shown on the right, and there appears
to be a normal simulation. Figure 4.19 show the same simulation of an initially
symmetric blob structure after 200 time steps. Clearly this is not right, and
needs to be addressed. From the figure we observe a wave-like pattern which
has emerged in the density and in the potential, which creates an interesting
behavior.
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Figure 4.19: Contour plots for the density on the left and the potential for the blob
structure at right side. The density and potential are shown for 200
elapsed time steps. The non-physicality are shown in both plots, and a
wave-like behavior emerges in both the density and the potential.

To try to give an explanation of this somewhat peculiar and nonphysical
behavior,wemust focus on themethod implemented tomitigate the exponential
decay in the background density. The idea behind the implemented method,
is to add back the same amount that was subtracted due to decay in the
background density𝑁 . By defining a constant potential𝜙bg = 0, and computing
the particle loss decay in the background density by given by 𝜎𝑛𝑁 exp(−𝜙bg)
and add this back to the total density 𝑛. But the model equations are coupled
through the particle loss term in the density equation and the partial derivative
of 𝑛 term in the vorticity equation. So the evolution of the density and the
potential effect each other, and creates a coupling between them. The particle
loss term can be linearized using a Taylor expansion of the exponential function,
which gives

𝜕𝑁

𝜕𝑡
∼ 𝜎𝑛𝑁 (1 − 𝜙) (4.25)

and shows that 𝑁 is now proportional to the potential 𝜙 . Since the background
potential 𝜙𝑏𝑔 = 0, we add back 𝜎𝑛𝑁 to the background density which implies
canceling the first term in 4.25, leaving

𝜕𝑁

𝜕𝑡
∼ 𝜎𝑛𝑁𝜙 (4.26)

which implies a linear coupling to 𝜙 . If there is a difference in 𝜙 and 𝜙𝑏𝑔
due to numerical approximations and errors, the expression does not decay to
zero value. It becomes negative and due to the partial derivative term in the
vorticity equation, the density again influences the potential. Does a runaway
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effect happens, where it appears that the potential and the background density
becomes essentially the same quantity. And the resulting effect, are the wave-
like pattern both in the background density and the potential, shown in figure
4.19. To remove the unwantednonphysical effect, amodification to the discussed
approach is to use the potential 𝜙 and not the constant value 𝜙bg which should
cancel out the difference causing the decaying effect of the background density
𝑁 . This is the implementation used to simulate the blobs with initial perturbed
amplitude Δ𝑛/𝑁 = 1 and Δ𝑛/𝑁 = 2 in this section.

However, although the implementation used above appears to work well in
the two mentioned cases. When we consider Δ𝑛/𝑁 = 0.1, then again some
interesting behavior emerges. Lets for now use the approach mentioned above
to consider simulations of model equations 4.21 and 4.22 with Δ𝑛/𝑁 = 0.1.
Figure 4.20 shows the computed center of mass radial position and velocity for
the simulated blob structure with particle loss parameter 𝜎𝑛 = 0.01, 0.02, 0.05
respectively. Figure 4.21 shows the maximum radial velocity as a function of
particle loss parameter for values of the parameter ranging from 10−4 to 0.05.
We can observe that the maximum radial COM velocity starts to decrease
of larger particle loss terms, but for some reason appears to increase after a
particle loss parameter of 𝜎𝑛 = 0.01 and becomes much a larger value for
𝜎𝑛 = 0.05. This is clearly visible in the figure showing the radial velocity,
where for 𝜎𝑛 = 0.05 the acceleration of the blob appears to increases in after
about 25 time steps peaking at almost twice the maximal radial velocities for
𝜎𝑛 = 0.01, 0.02 respectively. Thus we must conclude that the implemented
method for mitigate the decaying effect on the background density has its
limitations and at this point one could speculate onwhat causes this nonphysical
behavior in results. One explanation could be instabilities due to higher order
terms in the Taylor expansion of the exponential function combined with
numerical error. But this is speculation of the author, and should be a topic for
further analysis.
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Figure 4.20: Radial COM diagnostics for 𝜎𝑛 = 0.01, 0.02, 0.05 showing the nonphysi-
cal effects for the larger 𝜎𝑛 values. Initial amplitude is Δ𝑛/𝑁 = 0.1.

Figure 4.21: Maximum radial COM velocity as a function of 𝜎𝑛 for Δ𝑛/𝑁 = 0.1. Shows
the nonphysical behavior for larger 𝜎𝑛 values.

Since the method implemented for Δ𝑛/𝑁 = 1 and Δ𝑛/𝑁 = 2 appears to yield
problems when simulated for lower initial amplitudes, then we will introduce
a simplified model. This will only be used in the case when Δ𝑛/𝑁 = 0.1, for
the two other cases when Δ𝑛/𝑁 = 1, 2 respectively we will use the model
equations 4.21 and 4.22.
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Newmodel for small amplitudes

When considering small blob perturbed amplitudes, we can make the assump-
tion that the formed electrostatic potential 𝜙 ≪ 1. Under that assumption, the
exponential term appearing in the particle loss term in equation 4.21 can be
approximated using a Taylor expansion. Using the first term in the expansion,
simplifies exp(−𝜙) ≈ 1. To consider the blob, and not the background density,
the density in the particle loss term can be written as 𝑛 − 𝑛𝑏𝑔 = 𝑛 − 1. Here
the constant value of the background density has been used. Combining the
approximated terms with the particle loss parameter, gives 𝜎𝑛 (𝑛 − 1) as the
simplified particle loss term in the model equations. Further simplifications
can be made by neglecting the diamagnetic compression drift and the electric
compression drift terms in the particle density equation. Thus the simplified
model takes the form

𝜕𝑛

𝜕𝑡
+ {𝜙, 𝑛} = 𝐷𝑛∇2

⊥𝑛 − 𝜎𝑛 (𝑛 − 1) (4.27)

𝜕Ω

𝜕𝑡
+ {𝜙,Ω} + 𝑔

𝑛

𝜕𝑛

𝜕𝑦
= 𝐷Ω∇2

⊥Ω (4.28)

The parameters will remain unchanged from the previous model, only the
equations made to simulate the blobs are changed when considering Δ𝑛/𝑁 =

0.1.

4.4.2 Simulations Results

The subsection contains the results from the parameter scan in the particle
loss parameter 𝜎𝑛, while the sheath dissipation parameter is set to 𝜎Ω = 0 for
all simulations.
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Figure 4.22: Shows the center of mass radial diagnostics for blobs with Δ𝑛/𝑁 = 0.1
with varying 𝜎𝑛 parameter from 10−4 to 0.01. Position is shown to the
left and velocity is shown on the right.

Figure 4.23: Shows the center of mass radial diagnostics for blobs with Δ𝑛/𝑁 = 1
with varying 𝜎𝑛 parameter from 10−4 to 0.01. Position is shown to the
left and velocity is shown on the right.
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Figure 4.24: Shows the center of mass radial diagnostics for blobs with Δ𝑛/𝑁 = 2
with varying 𝜎𝑛 parameter from 10−4 to 0.01. Position is shown to the
left and velocity is shown on the right.

Figures 4.22, 4.23 and 4.24 shows the radial center of mass position and velocity
for a blob with initial amplitude Δ𝑛/𝑁 = 0.1, 1, 2 respectively, for 𝜎𝑛-values
ranging from 10−4 to 0.01. For Δ𝑛/𝑁 = 1, 2, the blobs have been simulated
using the Boussinesq approximated model equations 4.21 and 4.22. And for
Δ𝑛/𝑁 = 0.1, the blobs have been simulated using hte Boussinesq approxi-
mated model equations 4.27 and 4.28. The blobs is initially at rest before the
formation of electrostatic potential and a vorticity field accelerates the blobs
radially outwards. The blob with smaller 𝜎𝑛-values is observed to have a longer
acceleration phases and appear to have a higher COM radial velocity. In the
case of perturbed amplitude Δ𝑛/𝑁 = 1 and Δ𝑛/𝑁 = 2, the velocity curves has
distinct peaks before they decelerate down to a low value as the blob structures
dissipates due to dissipation and diffusion.
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Figure 4.25: Shows the center of mass radial diagnostics for blobs with Δ𝑛/𝑁 = 0.1
with varying 𝜎𝑛 parameter from 0.01 to 0.05. Position is shown to the
left and velocity is shown on the right.

Figure 4.26: Shows the center of mass radial diagnostics for blobs with Δ𝑛/𝑁 = 1
with varying 𝜎𝑛 parameter from 0.01 to 0.05. Position is shown to the
left and velocity is shown on the right.
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Figure 4.27: Shows the center of mass radial diagnostics for blobs with Δ𝑛/𝑁 = 2
with varying 𝜎𝑛 parameter from 0.01 to 0.05. Position is shown to the
left and velocity is shown on the right.

Figures 4.25, 4.26 and 4.27 shows the radial COM position and velocity as
the blob structures evolves over time for Δ𝑛/𝑁 = 0.1, 1, 2 respectively, with
𝜎𝑛-values from 0.01 to 0.05. For the case of Δ𝑛/𝑁 = 1 and Δ𝑛/𝑁 = 1 the
velocity curves accelerates before they reach a peak velocity, and further the
velocity decreases. The blobs velocity is observed to decrease with increasing
𝜎𝑛-values. Observed from the largest value of 𝜎𝑛 in the case of initial perturbed
amplitude of 0.1, is that the velocity curves appears to reach a constant value
as the blob travels with constant velocity radially outward. For the two other
cases, they seems to have a small decrease after 100𝜔𝑐𝑖 but appears to have
some of the same dynamics as in the lower amplitude case. The figure showing
the computed center of mass diagnostics for Δ𝑛/𝑁 = 0.1 only contains data
for 200 time steps, and thus do not show the peak in the same way as for the
two other cases. These simulations was only run for 200 time steps, but should
be verified further for confirmation of the maximum radial values. However,
they show the same trend as observed for the two other initial perturbed
amplitudes.
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Figure 4.28: Maximum center of mass radial velocity are shown as a function of 𝜎𝑛
for blobs with Δ𝑛/𝑁 = 0.1. The 𝜎𝑛-axis are shown in logarithmic scale
and the maximum 𝑉𝑥 -axis are shown in linear scale.

Figure 4.28 shows the computed maximum radial COM velocity as a function
of the particle loss parameter 𝜎𝑛. The𝜎𝑛-axis are show in a logarithmic scale
and the maximum radial velocity axis is shown in linear scale. In the region of
lower particle loss parameters, the maximum velocity appears to only slightly
decrease with increasing parameter value. At approximately 𝜎𝑛 ≈ 10−3 we
observe a transition region where the maximum radial COM velocity is seen to
decrease with increasing particle loss parameter value. After a short transition
region, the maximum velocity has a sharp decrease with increasing parameter
value.
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Figure 4.29: Shows a maximum radial COM velocity as a function of the particle
loss parameter 𝜎𝑛 for blobs with Δ𝑛/𝑁 = 1 shown as red crosses and
Δ𝑛/𝑁 = 2 shown as black dots. 𝜎𝑛-axis are shown in logarithmic scale
and the maximum radial COM velocity are shown in linear scale.
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Figure 4.30: Shows a maximum radial COM velocity as a function of the particle
loss parameter 𝜎𝑛 for blobs with Δ𝑛/𝑁 = 1 shown as red crosses and
Δ𝑛/𝑁 = 2 shown as black dots. Both axis are shown in logarithmic scale.

Figure 4.29 show the maximum radial COM velocity for initial amplitudes
Δ𝑛/𝑁 = 1, 2 respectively. Black dots corresponds to blob structure with
Δ𝑛/𝑁 = 2 and the red crosses show the blob structure with Δ𝑛/𝑁 = 1.
The maximum velocity axis is given in linear scale and the particle loss pa-
rameter axis is given in logarithmic scale. In the lower particle loss parameter
region, radial COM velocity for both blobs appears to follow a almost straight
line with a small decrease in maximum velocity with increasing particle loss
parameter. We can also observe a transition region where maximum velocity
for both blobs appears to decrease at an increasing rate with a small change in
particle loss parameter, before they transition to a large decrease with increas-
ing 𝜎𝑛. But the decrease in maximum velocity appears to be greatest for the
blob structure with initial perturbed amplitude Δ𝑛/𝑁 = 2. Figure 4.30 show
the same situation but here the both axis are given in logarithmic scale. In
the lower particle parameter region, it appears that both for Δ𝑛/𝑁 = 1 and
Δ𝑛/𝑁 = 2 the maximum radial velocity is independent of the particle loss
parameter. When 𝜎𝑛 ≈ 10−2, we have a transition region where the maximum
radial velocity has a small decrease with increasing 𝜎𝑛, before they appear to
transition into a region where the maximum radial velocities follows a line
down.
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Figure 4.31: Maximum instantaneous density amplitude as a function of radial COM
velocity for several 𝜎𝑛-values. Both axis are shown in logarithmic scale.
Initial density of blobs Δ𝑛/𝑁 = 0.1.

Figure 4.32: Maximum instantaneous density amplitude as a function of radial COM
velocity for several 𝜎𝑛-values. Both axis are shown in logarithmic scale.
Initial density of blobs Δ𝑛/𝑁 = 1.
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Figure 4.33: Maximum instantaneous density amplitude as a function of radial COM
velocity for several 𝜎𝑛-values. Both axis are shown in logarithmic scale.
Initial density of blobs Δ𝑛/𝑁 = 2.

Figures 4.31, 4.32, 4.33 shows the maximum instantaneous amplitude as a
function of the blobs radial COM velocity for Δ𝑛/𝑁 = 0.1, 1, 2 respectively. In
the case when 𝜎𝑛 ≲ 10−3, the lines are approximately linear in the logarithmic
sense indicating that the blobs retain most of their density with increasing
radial COM velocity. For the blobs with 𝜎𝑛 > 10−3, the lines starts to curve
with increasing velocity. The curvature of the lines are observed to increase
with increasing particle loss parameter, and the start of the curving appears to
be dependent on the particle loss parameter. When the blobs accelerates, they
seems to retain most of their density for the lower velocities. But as the radial
velocity increases, we observe that the maximum density amplitude decreases
with an increasing rate towards the maximum radial velocity. For 𝜎𝑛 = 0.05,
the blobs is observed to dissipate density at a significant rate in the region
of lower radial COM velocities. The rate of dissipation is observed to increase
concurrently with the increase in radial velocity. As the blob approaches the
maximum radial velocity, the rate of decreasing maximum density amplitude
increases until the blobs reaches themaximum radial velocity where the density
amplitude are seen to decrease at a very high rate.
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Figure 4.34: Contour plot showing the density, potential and vorticity curves for
Δ𝑛/𝑁 = 1 blob structure with 𝜎𝑛 = 1 × 10−4. The blob are shown
for three different time steps.

Figure 4.34 shows the density as colored contour, while electrostatic potential
and vorticity are given as blue contour curves for a blob structure with initial
perturbed amplitude Δ𝑛/𝑁 = 1 and particle loss parameter𝜎𝑛 = 10−4. The top
row shows the electrostatic potential along with the density and the bottom row
shows the vorticity curves along with the density. Here we observe the induced
radial motion due to the electrostatic potential and the vorticity field, and
the formation of leading steeping front and trailing wake due to interactions
between the blob density and the background density.We also observe the
formation of the previously seen mushroom shape and the formation of side
lobes with opposite polarity of the vorticity.
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Figure 4.35: Contour plot showing the density, potential and vorticity curves for
Δ𝑛/𝑁 = 0.1 blob structure with 𝜎𝑛 = 0.05. The blob are shown for
three different time steps

Figure 4.35 shows the density as colored contours, the electrostatic potential
and the vorticity for a blob with initial perturbed amplitude Δ𝑛/𝑁 = 0.1
and particle loss parameter 𝜎𝑛 = 0.05. The potential is shown as blue lines
on the top row and the vorticity are show on the bottom row as blue lines.
The dotted lines corresponds to negative values and the lines corresponds to
positive values of the quantity. The initially symmetric shape is observed to
retain as the blob is accelerated radially, although the distance traveled by the
blob appears to be very small in comparison with previous results for lower
particle loss parameter.

4.4.3 Discussion

The results showing the radial COM velocity of the blobs as it evolves over time
and the figures showing themaximum radial velocity for the various particle loss
parameters shows a decreasing maximum radial velocity with increasing sheath
dissipation. This is in agreement with prediction using stochastic modeling,
showing in the limit of large 𝜎𝑛𝑡 the blobs stagnate [23]. In the case of the
larger particle loss parameter region, it appears as if the maximum radial COM
velocity follows some form of scaling lawwhich appears to also be dependent on
the initial amplitude. In both cases as we increased the particle loss parameter,
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we observe the points from the maximum radial appears to follow a line in
loglog space. The followed line appears to be different for the initial perturbed
amplitudes. From the figures showing the maximum instantaneous amplitude,
it shows that the for the lower particle loss parameter the maximal amplitude
decreases slow or not at all. Indicating little change in the amplitude over the
motion, and the radial velocity appears undetermined by the instantaneous
amplitude or only weakly dependent. For larger values of the particle loss
parameter, the blobs appears to dissipate density at a higher rate as they reach
the maximum velocity. This effect is very visible in the case of 𝜎𝑛 = 0.05.

For Δ𝑛/𝑁 = 0.1 where the simplified model was utilized, in the case of 𝜎𝑛 =

0.05 the results shows a blob structure that accelerates rapidly to maximum
velocity and retains the same velocity while it dissipates density at a high rate.
The blob is also observed to retain its symmetric shape and we do not see a
distinct steeping front and trailing wake. These results are the same as found
in ref. [19], where the effect of the sheath dissipation was investigated. We
show here the same behavior for the particle loss parameter, as for the sheath
dissipation parameter. This result indicates that by utilizing the simplified
model, 𝜎𝑛 appears to yield the same results as 𝜎Ω which is an interesting result
and requires further research to verify the behavior.

The simplified model used for simulating Δ𝑛/𝑁 = 0.1 seems to give good
results in this case, but the validity of the model and the simplifications used
have not been considered. In order to gain insight into the models limita-
tions and predictions, further studies must be completed with varying initial
amplitude.

An approachwhich could have been utilized in order tomitigate the exponential
decay in the background density, is to linearize the particle loss term. Utilizing
this approach would leave the original code unchanged, and the problematic
nonphysical behavior will then not be a problem. This approach will work well
for all initial amplitudes, and could be used to verify the results obtained in
this thesis.

4.5 Non-Boussinesq

Many previous works simplifies the complex dynamics of the vorticity equation
by neglecting the added inertial term due to the density gradient, this is
the Boussinesq approximation or also called the thin-layer approximation
[20]. Studies into the dynamics of this approximation has shown that this
approximation is valid in when the perturbed density amplitude is relatively
small with respect to the background density, |Δ𝑛 |/𝑁 ≪ 1 [20]. As far as
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this author is aware, there does not seem to exist publications which relaxes
the Boussinesq approximation combined with retaining the sheath dissipation
and particle loss terms. And so a study combining these could prove useful in
determining blob motion and are part of the main focus in the simulations in
the following section.

Earlier works into the relaxation of the Boussinesq approximation and ne-
glection of the sheath dissipation and particle loss, predicts and has shown a
dependence on the acceleration in the case of |Δ𝑛/𝑁 | < 1, where𝐴/𝑔 ∼ Δ𝑛/𝑁
[27]. And for the larger amplitudes 𝐴 ∼ 𝑔, thus predicting that the accelera-
tion of the blobs should stay constant above a transition region [27]. In the
case of no sheath dissipation and particle loss, a scaling analysis made in ref.
[27] shows in the limit of small amplitudes, the radial COM velocity scales as
𝑉𝑥 ∼ (Δ𝑛/𝑁 )1/2 which is the inertial scaling result [11, 19, 20]. When retaining
the sheath dissipation and particle loss terms, no scaling analysis appears to
have been done. But in the case of small amplitudes, the gradient of the density
should be small compared to the other terms. Neglecting the gradient term in
the vorticity equation, leads to the linear scaling found in previous works [19].
So in the limit of small perturbed amplitudes, we should see a linear scaling if
our logic holds.

Simulation of the blob structures relaxing the Boussinesq approximation, is
obtained by utilizing the model equations presented in section 2.1.6. The model
is given by

𝜕𝑛

𝜕𝑡
+ {𝜙, 𝑛} − 𝑔𝑛 𝜕𝜙

𝜕𝑦
+ 𝑔 𝜕𝑛

𝜕𝑦
= 𝐷𝑛∇2

⊥𝑛 − 𝜎𝑛𝑛 exp (−𝜙) (4.29)

∇⊥𝑛

𝑛
· 𝑑Ω
𝑑𝑡

+ 𝜕Ω
𝜕𝑡

+ {𝜙,Ω} + 𝑔
𝑛

𝜕𝑛

𝜕𝑦
= 𝐷Ω∇2

⊥Ω + 𝜎Ω [1 − exp (−𝜙)] (4.30)

or expressed in a more compact form

𝜕𝑛

𝜕𝑡
+ {𝜙, 𝑛} − 𝑔𝑛 𝜕𝜙

𝜕𝑦
+ 𝑔 𝜕𝑛

𝜕𝑦
= 𝐷𝑛∇2

⊥𝑛 − 𝜎𝑛𝑛 exp (−𝜙) (4.31)

∇ ·
(
𝑛
𝑑Ω

𝑑𝑡

)
+ 𝑔 𝜕𝑛

𝜕𝑦
= 𝐷Ω𝑛∇2

⊥Ω + 𝜎Ω𝑛[1 − exp (−𝜙)] (4.32)

We will use parameter values 𝑔 = 0.01, 𝑙 = 6, 𝐷𝑛 = 𝐷Ω = 10−4 and the blobs
is initialized as a symmetric Gaussian blob with varying initial perturbed am-
plitude Δ𝑛/𝑁 where the background density 𝑁 = 1. In the simulations where
sheath dissipation and particle loss terms are retained, parameter values is
𝜎𝑛 = 𝜎Ω = 10−4. Figures and results where particle loss and sheath dissipation
is neglected, are specified in the figure description. The data from simulations
retaining the Boussinesq approximation and added sheath dissipation and
particle loss comes from the simulations made in section 4.3.
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4.5.1 Simulation Results

Figure 4.36: Center of mass radial diagnostics comparing blob subjected to Boussinesq
approximation and not subjected to Boussinesq approximation for initial
amplitude Δ𝑛/𝑁 = 0.1. The blue full line corresponds to Boussinesq
simulation and orange dotted line corresponds to non-Boussinesq simu-
lation. Position is shown on the right and velocity are shown on the left.

Figure 4.37: Center of mass radial diagnostics comparing blob subjected to Boussinesq
approximation and not subjected to Boussinesq approximation for initial
amplitude Δ𝑛/𝑁 = 0.5. The blue full line corresponds to Boussinesq
simulation and orange dotted line corresponds to non-Boussinesq simu-
lation. Position is shown on the right and velocity are shown on the left.
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Figure 4.38: Center of mass radial diagnostics comparing blob subjected to Boussinesq
approximation and not subjected to Boussinesq approximation for initial
amplitude Δ𝑛/𝑁 = 2. The blue full line corresponds to Boussinesq simu-
lation and orange dotted line corresponds to non-Boussinesq simulation.
Position is shown on the right and velocity are shown on the left.

Figure 4.39: Center of mass radial diagnostics comparing blob subjected to Boussinesq
approximation and not subjected to Boussinesq approximation for initial
amplitude Δ𝑛/𝑁 = 5. The blue full line corresponds to Boussinesq simu-
lation and orange dotted line corresponds to non-Boussinesq simulation.
Position is shown on the right and velocity are shown on the left.
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Figure 4.40: Center of mass radial diagnostics comparing blob subjected to Boussinesq
approximation and not subjected to Boussinesq approximation for initial
amplitude Δ𝑛/𝑁 = 10. The blue full line corresponds to Boussinesq
simulation and orange dotted line corresponds to non-Boussinesq simu-
lation. Position is shown on the right and velocity are shown on the left.

Figures 4.36 - 4.40 shows the center ofmass radial position and velocity for blobs
with initial perturbed amplitude Δ𝑛/𝑁 ranging from 0, 1 to 10. The blue line
shows the evolution of a blob simulated retaining the Boussinesq approximation,
and the orange dotted line shows the evolution of a blob simulated with model
equations where the Boussinesq approximation are relaxed. We observe from
figure 4.36 showing a perturbed amplitude of Δ𝑛/𝑁 = 0.1, that the curves
for the position and velocity are very similar. They appear to show the same
dynamics with overlapping lines for most of the blobs motion, with only small
deviations. Further considering the blobs with perturbed initial amplitude
Δ𝑛/𝑁 = 0.5, shown in figure 4.37. We don now see a more clear deviation
between the two curves as the blobs move radially outwards. The Boussinesq
simulation show a blob a slight increase in acceleration and a maximum
velocity which is seen to be greater than for the non-Boussinesq case. The
shape of the individual curves is observed to be quite similar, however the
slope of the velocity curves differ slightly up to maximum radial velocity. From
figures 4.38, 4.39 and 4.40, which shows blobs with initial perturbed amplitude
Δ𝑛/𝑁 = 2, 5, 10 respectively, the difference in acceleration is quite visible.
It appears that the acceleration decreases with increasing initial perturbed
amplitude, although seen from the two last figures it appears that the maximum
radial velocity of the blob structures in these two cases are approximately the
same. Figure 4.41 shows the root-mean-square error between the radial COM
velocity computed in the case of Boussinesq and non-Boussinesq simulations.
Observed from the figure, in the lower initial amplitude region there is a very
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small rms error between the curves. As the amplitude is increased to unity, we
observe a slight error which is ≪ 0.02. As the amplitude is increased further,
the error increases fast and at a initial amplitude of 10 the corresponding rms
error is approximately 10%.

Figure 4.41: The root-mean-squared error computed between the radial COM velocity
curves for each initial perturbed amplitude Δ𝑛/𝑁 from 0.1 to 10. Figure
are given in logarithmical scale for the initial amplitude and linear scale
for the error.
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Figure 4.42: Maximum radial COM velocity as a function of initial amplitude for
Boussinesq and non-Boussinesq simulations. The black dots shows the
Boussinesq approximation and the red crosses shows the non-Boussinesq.
The blue dotted line shows a least squares estiamte for a scaling law
using non-Boussinesq points.
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Figure 4.43: Maximum radial COM velocity as a function of initial amplitude for
non-Boussinesq simulations with and without the effect of sheath dissi-
pation. Black dots corresponds to simulations where sheath dissipation
and particle loss has been neglected, and red crosses corresponds top
simulations where sheath dissipation are retained.

Figure 4.42 shows maximum radial COM velocity as a funciton of initial per-
turubed amplitude in the case of retaining Boussinesq approximation and
relaxing the Boussinesq approximation, combined with sheath dissipation and
particle loss in both cases. The black dots shows the Boussinesq simulations
and the red crosses shows the non-Boussinesq simulations. In the lower am-
plitudes region when Δ𝑛/𝑁 < 1, the maximum velocity appears to be the
same with small to no difference in the values. Using a least-squares estimates
for Δ𝑛/𝑁 ≲ 1 yields a scaling for the radial velocity in the lower amplitude
region by 𝑉𝑥 ∼ (Δ𝑛/𝑁 )0.87. In the region of larger perturbed amplitudes
Δ𝑛/𝑁 > 1, we start to observe a difference in the estimated values fast. Al-
ready at Δ𝑛/𝑁 = 2 there seems to be a noticeable difference in the values. For
the two points corresponding to Δ𝑛/𝑁 = 5 and Δ𝑛/𝑁 = 10, we observe that
the points are the same and the radial velocity appears to be independent of
initial amplitude in the larger amplitude region. Figure 4.43 shows the maxi-
mum radial COM velocity for simulations where the Boussinesq approximation
are relaxed with and without sheath dissipation terms. In the larger amplitude
region, they appear to yield the same maximum velocity which appears to be
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unchanged by initial amplitude. In the middle and lower amplitude region, they
appear to deviate. In the lower region they appear to follow different scaling,
the values differ at an increasing rate for decreasing initial amplitudes.

Figures 4.44, 4.45 and 4.46 shows the maximum instantaneous amplitude
scales as a function of the radial COM velocity of the blob structures, for initial
perturbed amplitudes 0.1, 1, 10 respectively. The blue lines corresponds to sim-
ulations retaining the Boussinesq approximation and sheath dissipation, the
orange dotted line corresponds to simulations relaxing the Boussinesq approx-
imation while retaining sheath dissipation and particle loss. And the green
dotted line corresponds to simulations relaxing the Boussinesq approximation
and neglecting the sheath dissipation and particle loss terms. From the figure
showing Δ𝑛/𝑁 = 0.1, We observe that the lines corresponding to the Boussi-
nesq approximation retaining sheath dissipation and the simulation relaxing
the Boussinesq approximation but retaining sheath dissipation, follows exactly
the same curve. They appear to remain unchanged, dissipating little density for
the lower radial velocities. The simulations retaining the sheath dissipation and
particle loss appear to dissipate density at a lower radial velocities compared
to the case of the simulation where the sheath dissipation and particle loss are
neglected. For Δ𝑛/𝑁 = 1, the curves show similar characteristics and appears
to dissipate density at a similar rate for all radial velocities. We observe some
deviation in the case of non-Boussinesq and Boussinesq with sheath dissipation,
and the non-Boussinesq simulated blob without sheath dissipation and particle
loss dissipates density at a rate comparable to the Boussinesq simulated blob.
The deviation between the simulation using the Boussinesq approximation
and the simulated blob relaxing the Boussuinesq approximation are most vis-
ible deviated in figure 4.46 which shows the simulations for initial perturbed
amplitude Δ𝑛/𝑁 = 10. We observe that the non-Boussinesq simulations dis-
sipates density at a higher rate for lower radial COM velocities compared to
the case with Boussinesq approximated simulations. For the larger amplitudes,
the effect of the sheath dissipation and particle loss is not clearly visible as the
curves retaining the sheath dissipation and particle loss terms and neglecting
the terms show similar characteristics.
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Figure 4.44: Maximum instantaneous amplitude as a function of radial COM velocity,
with initial perturbed amplitude Δ𝑛/𝑁 = 0.1. Blue line corresponds to
Boussinesq approximation, orange and green dotted lines corresponds to
non-Boussinesq with and without sheath dissipation terms respectively.
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Figure 4.45: Maximum instantaneous amplitude as a function of radial COM velocity,
with initial perturbed amplitude Δ𝑛/𝑁 = 1. Blue line corresponds to
Boussinesq approximation, orange and green dotted lines corresponds
to non-Boussinesq with and without sheath dissipation and particle loss
terms respectively.
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Figure 4.46: Maximum instantaneous amplitude as a function of radial COM velocity,
with initial perturbed amplitude Δ𝑛/𝑁 = 10. Blue line corresponds to
Boussinesq approximation, orange and green dotted lines corresponds
to non-Boussinesq with and without sheath dissipation and particle loss
terms respectively.
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Figure 4.47: Shows the density, potential and vorticity curves for initial perturbed
amplitude Δ𝑛/𝑁 = 5. Simulation made using non-Boussinesq model
neglected sheath dissipation and particle loss, shown for three distinct
time steps.
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Figure 4.48: Shows the density, potential and vorticity curves for initial perturbed
amplitude Δ𝑛/𝑁 = 10. Simulation made using non-Boussinesq model
neglected sheath dissipation and particle loss, shown for three distinct
time steps.

Figure 4.47 shows a blob structure simulated using the model relaxing the
Boussinesq approximation and neglecting the particle loss and sheath dissipa-
tion for a initial perturbed amplitude Δ𝑛/𝑁 = 5. The figure shows the density
as colored contour. The potential as blue lines on the top row and the vorticity
as blue lines on the lower row. The dotted lines corresponds to negative values
and the lines corresponds to positive values. We observe initially the same
dynamics as observed for the lower perturbed amplitudes. The blob is initially
accelerated due to formation of electrostatic potential and vorticity field, but
when the steeping front and trailing wake forms, the blob appears rotated. For
the two last time steps, the blob appears to have asymmetric motion in the
𝑦-direction and appears to accelerate downwards as the blob moves radially. It
appears the introduction of an added inertia term in the form the gradient of
the density, greatly impacts the symmetric motion of the blob structures. This
dynamic is also visible for the case when Δ𝑛/𝑁 = 10, shown in figure 4.48.
The blob structures almost appears to rotate due to the effect of the gradient
of the density, decelerating the density in the direction of the largest density
gradient.
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4.5.2 Discussion

From the center of mass radial position and velocity of the blobs simulated
using Boussinesq approximation and relaxing the Boussinesq approximation
but both retaining sheath dissipation 𝜎Ω and particle loss 𝜎𝑛, shows clearly
when the approximation is valid. For the lower initial perturbed amplitudes,
|Δ𝑛/𝑁 | ≪ 1, shows that the computed position and velocity curves for the
blobs are essentially the same. This is supported by the estimated root-mean-
squared error, which is essentially zero for the lower initial amplitudes. As
the initial amplitude increases to unity, we observe a increasing difference
in the curves and this is accompanied by an increases in root-mean-squared
error value for the associated curves. In the amplitude region Δ𝑛/𝑁 ⪆ 1, the
curves deviate quite clearly and we can see that the acceleration of the blobs
decreases in the region 1 < Δ𝑛/𝑁 ≲ 10. It appears that the acceleration of
the blobs is dependent on the initial amplitude, where a increase in perturbed
amplitude is followedby a decrease in acceleration. This could indicate a inverse
relationship between the quantities and should be considered more carefully.
When the initial amplitudes is Δ𝑛/𝑁 ≥ 5, the shape of the curves is observed
to be very different and deviates extremely. This is supported by the large
root-mean-squared error, which in the case of Δ𝑛/𝑁 = 10 is approximately
10%. The results appear to show a linear relationship with initial amplitude
for Δ𝑛/𝑁 ≪ 1, which is consistent with previous work [27].

Further results from these simulations relaxing the Boussiensq approximation
but retaining the sheath dissipation and particle loss terms, show a scaling of
the maximum radial COM velocity in the lower perturbed amplitude Δ𝑛/𝑁 ≲ 1
region which is approximately linear with the initial amplitude. The results
show a scaling of the form 𝑉𝑥 ∼ (Δ𝑛/𝑁 )0.87 which was essentially the same
scaling as found in the simulation retaining Boussinesq approximation com-
bined with the inclusion of the sheath dissipation and particle loss terms. So it
appears that in the region of lower amplitude retaining sheath dissipation and
particle loss combined with relaxing the Boussinesq approximation, the radial
velocity approaches the same scaling with initial amplitude as was obtained in
the simulations run with the Buessinesq approximation. This is in agreement
with the results obtained in ref. [27], however they neglect the impact of sheath
dissipation and particle loss, thus obtaining a square-root dependence of the
maximum radial velocity in the lower amplitude region, that is inertial scaling.
But they show that in the lower amplitude region, the maximum velocity scal-
ing obtained from simulations relaxing Boussinesq approximation approaches
the maximum radial velocity scaling obtained from simulations retaining the
Boussinesq approximation. We here obtain sheath dissipation scaling in the
limit of lower initial amplitudes due to the added sheath dissipation and particle
loss terms. In the larger amplitude perturbations for blobs simulated relaxing
Boussinesq approximation combined with retaining sheath dissipation 𝜎Ω and
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particle loss 𝜎𝑛, the results show a detachment in the larger amplitude region.
For Δ𝑛/𝑁 ≥ 5, the maximum radial velocity appears to stay unchanged. This
behavior is observed both when sheath dissipation and particle loss is retained
and when sheath dissipation and particle loss are neglected, while Boussinesq
approximation is relaxed. Thus indicating that maximum radial velocity quickly
becomes independent of initial amplitude when Boussineseq approximation is
relaxed.





5
Summary and Outlook
The main topic of this thesis are simulations of isolated blob structures in
the scrape-off layers of fusion plasma. By considering the center of mass
motion of the blobs, we compare the impact of the initial perturbed density
amplitude with and without the effect of particle loss and sheath dissipation
terms. When the particle loss term and the sheath dissipation terms is neglected,
we obtain almost the same maximum radial velocity scaling shown in previous
publications of square-root dependence on the initial amplitude in the inertial
scaling limit [11, 13, 19, 21]. The difference comes most likely from numerical
error. In the higher limit, we show a scaling in the intermediate region between
square-root and complete detachment of 0.24. The estimated scaling done by
least-squares method after repeated computations, was concluded to have a
large uncertainty in the estimated value. For the case when we included particle
loss term and the sheath dissipation term, we obtained the almost linear scaling
found in previous publications up to a uncertainty in the estimated values [19–
21].

We found through the introduction of a simplified model, a set of energy
integrals which was shown to reduce to the same results obtained in ref. [27]
when neglecting the particle loss and the sheath dissipation terms. These where
shown to deviate from the numerical estimates, however the energy integrals
neglected the diffusion terms to reduce complexity. They are retained in the
simulations and could cause the difference in solutions. When the particle
loss term and sheath dissipation are neglected, we show solutions which yield
approximately the as predicted from the derived energy invariants.
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Stochastic modeling have shown the presence of blob stagnation in the limit
of larger values of the particle loss parameter [23]. Using three different initial
perturbed amplitudes we show a decreasing maximum radial velocity with
increasing particle loss parameter, indicating an eventual stagnation of the
blobs in the limit of increasing particle loss parameter. For the lower initial
amplitude simulations where we implemented a new model different from
the larger amplitude cases, we obtain similar behavior shown for the larger
values of the sheath dissipation parameter. The blob appears to retain the
initial symmetric shape as it accelerates to a low value, which is retained as it
dissipates density at a high rate [19].

One of the main topics of this thesis, is the limitations of the Boussinesq
approximation or the thin-layer approximation combined with particle loss
and sheath dissipation parameters. Using center of mass diagnostics we show
the same apparent behavior found for the acceleration of the blobs in the
lower amplitude region when the initial amplitude is Δ𝑛/𝑁 ≪ 1, where
the acceleration appears to scale linearly with initial amplitude [27]. In the
intermediate region, when 1 < Δ𝑛/𝑁 ≲ 10 the results show an decreasing
acceleration with increasing initial amplitude. This could indicate a relationship
between the acceleration and the initial amplitude, and should be considered
more carefully. In the higher region, the maximum radial velocity is shown
to become independent of initial amplitude around Δ𝑛/𝑁 ≈ 5 showing no
difference in maximum value for larger initial amplitudes. In the lower region,
we show the transition into a sheath dissipation scaling equal to the one found
when Boussinesq approximation is retained. The results in this thesis is as
far as this author is aware, the first to show this. The conclusion is that the
Boussinesq approximation appears to have little impact on the maximum radial
velocity in the region where particle loss and sheath dissipation parameter has
an impact on the maximum radial velocity. In the larger amplitude region, the
Boussinesq approximation appears to impact the maximum radial velocity and
sheath dissipation and particle loss appears to have little impact in this region
when they are set to a value of 10−4. In general the Boussinesq approximation
is confirmed to be accurate for small initial amplitudes Δ𝑛/𝑁 ≪ 1.

The impact of the particle loss parameter𝜎𝑛 should be consideredmore in terms
of a model with linearized particle loss term and neglected sheath dissipation
term. Such a model would mitigate the exponential decaying effect on the
background density, and would retain most of the complexity of the model
which was neglected in the simplified model introduced in section 4.4.1. The
behavior from the results in this thesis appears to predict blob stagnation in the
limit of larger values of the particle loss parameter. However, the introduction
of two different models to study the particle loss term, is less than fortunate.
Thus requiring further studies using a rigid model to make conclusion on the
dynamics of the system and the predictions of blob stagnation.



A
Numerical Schemes and
Diagnotsical Tools

A.1 Finite Difference

The finite difference method is a numerical scheme in which a continuous
domain is discretized into a set of grid points. The derivatives are approximated
by evaluating the function at these grid points, using expressions which are
derived by a truncated Taylor series expansion. For the approximation of a first-
order derivative in one variable, the truncated Taylor series expansion gives
three approximations; forward difference, backward difference and central
difference.

Let the discretized grid be denoted by the set of points 𝑡0, ..., 𝑡𝑛 where 𝑡𝑖 =
𝑡0 + 𝑖Δ𝑡 and Δ𝑡 are the uniform spacing between the points. The forward
difference approximation of the first order derivative at a point 𝑡𝑖 are given
by

𝑉 (𝑡𝑖) =
𝑑𝑋 (𝑡𝑖)
𝑑𝑡

≈ 𝑋𝑖+1 − 𝑋𝑖
Δ𝑡

+ O(Δ𝑡) (A.1)

The approximation utilizes the function value at 𝑡𝑖 and 𝑡𝑖+1 to approximate the
derivative and the associated error are of order O(Δ𝑡) which indicates that the
method has an accuracy of first order.

Similar the backward difference approximation of a first order derivative at a
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point 𝑡𝑖 , are given by

𝑉 (𝑡𝑖) =
𝑑𝑋 (𝑡𝑖)
𝑑𝑡

≈ 𝑋𝑖 − 𝑋𝑖−1
Δ𝑡

+ O(Δ𝑡) (A.2)

This approximation utilizes the function values at 𝑡𝑖 and 𝑡𝑖−1 to approximate
the derivative, and the associated error are of order O(Δ𝑡) which indicates
that also this method has an accuracy of first order.

Finally the central difference approximation of a derivative of first order at a
point𝑡𝑖 are given by

𝑉 (𝑡𝑖) =
𝑑𝑋 (𝑡𝑖)
𝑑𝑡

≈ 𝑋𝑡+1 − 𝑋𝑖−1
2Δ𝑡

+ O((Δ𝑡)2) (A.3)

The central difference method uses values of the function values at 𝑡𝑡+1 and 𝑡𝑖−1
to approximate the derivative at point 𝑡𝑖 , and the associated error are of order
O((Δ𝑡)2) which indicates that this method is second order accurate.

A.2 Composite Trapezoid

The composite trapezoid method is a numerical integration method, used to
approximate a given integral of a function over some domain. For a two-
dimensional integral it divide the domain into a grid of sub-rectangles and
approximate the integral as a weighted sum of the function values at the
respective grid points.

For a function 𝑓 (𝑥,𝑦), integrated over the two-dimensional domain by

𝐼 =

∫ 𝑏

𝑎

∫ 𝑑

𝑐

𝑑𝑥𝑑𝑦𝑓 (𝑥,𝑦) (A.4)

can be approximated by introducing a grid through dividing the interval [𝑎, 𝑏]
into 𝑚 subintervals each of width ℎ𝑥 = 𝑏−𝑎

𝑚
and the interval [𝑐, 𝑑] into 𝑛

subintervals, each of width ℎ𝑦 = 𝑑−𝑐
𝑛

. The grid points (𝑥𝑖, 𝑦 𝑗 ) becomes

𝑥𝑖 = 𝑎 + 𝑖ℎ𝑥 , 𝑦 𝑗 = 𝑐 + 𝑗ℎ𝑦, 𝑖 = 0, ...,𝑚, 𝑗 = 0, ..., 𝑛 (A.5)

The integral can be approximated by the weighted sum

𝐼 ≈
𝑚∑︁
𝑖=0

𝑛∑︁
𝑗=0

𝑤𝑖𝑤 𝑗 𝑓 (𝑥𝑖, 𝑥 𝑗 )ℎ𝑥ℎ𝑦 (A.6)
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By using the weights𝑤 = 1 for interior points in the grid,𝑤 = 1
2 for the edge

points and 𝑤 = 1
4 for the corner points, the integral over a two-dimensional

domain can be approximated by

𝐼 ≈ ℎ𝑥ℎ𝑦
©«

∑︁
𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟

𝑓 (𝑥𝑖, 𝑦 𝑗 ) +
1
2

∑︁
𝑒𝑑𝑔𝑒𝑠

𝑓 (𝑥𝑖, 𝑦 𝑗 ) +
1
4

∑︁
𝑐𝑜𝑟𝑛𝑒𝑟𝑠

𝑓 (𝑥𝑖, 𝑦 𝑗 )
ª®¬ (A.7)

Since the domain considered in this thesis are a rectangular domain, this
method is quite effective. The error of this method is second order accurate
with error of order O(ℎ2𝑥 + ℎ2𝑦).





Bibliography
[1] D. E. Antonsen. “Blob structures at the boundary of magnetically con-

fined plasmas.” Project paper (FYS-3740), Department of Physics and
Technology, Faculty of Science and Technology, 06-2024.

[2] A. Y. Aydemir. “Convective transport in the scrape-off layer of tokamaks.”
In: PHYSICS OF PLASMAS 12, 062503 (2005).

[3] N. Bian et al. “Blobs and front propagation in the scrape-off layer of
magnetic confinement devices.” In: PHYSICS OF PLASMAS, volume 10,
number 3 (2003).

[4] D. A. D’Ippolito, J. R. Myra, and S. I. Krasheninnikov. “Cross-field blob
transport in tokamak scrape-off-layer plasmas.” In: PHYSICS OF PLAS-
MAS, volume 9, number 1 (2002).

[5] D. A. D’Ippolito, J. R. Myra, and S. J. Zweben. “Convective transport by
intermittent blob-filaments: Comparison of theory and experiment.” In:
PHYSICS OF PLASMAS 18, 060501 (2011).

[6] D. A. D’Ippolito et al. “Blob Transport in the Tokamak Scrape-off-Layer.”
In: COntrib. Plasma Phys. 44, No. 1-3, 205 - 216 (2004).

[7] Gregor Decristoforo. “Numerical simulations and stochastic modeling
of intermittent fluctuations in magnetized plasmas.” In: A dissertation
for the degree of Philosophiae Doctor, UiT Arctic Unniveristy of Norway
(March 2021).

[8] DIFFER. “PLASMAMATERIAL INTERACTIONS.” https://www.differ.nl/research/plasma-
material-interactions, accesed: 15.12.2024.

[9] B. D. Dudson et al. “BOUT++: A framework for parallel plasma fluid
simulations.” In: Computer Physics Communications, 180(9):1467 - 1480
(2009).

[10] Jeffrey P. Freidberg. Plasma Physics And Fusion Energy. Cambridge Uni-
versity Press, 2007.

[11] O. E. Garcia. “Blob Transport in the Plasma Edge: a Review.” In: Plasma
and Fusion Research: Review Arcticles, volume 4, 019 (2009).

[12] O. E. Garcia, N. H. Bian, and W. Fundamenski. “Radial interchange
motions of plasma filaments.” In: PHYSICS OF PLASMAS 13, 082309
(2006).

95



96 BIBLIOGRAPHY

[13] O. E. Garcia et al. “Mechanism and scaling for cevection of isolated struc-
tures in nonuniformly magnetized plasmas.” In: PHYSICS OF PLASMAS
12, 090701 (2005).

[14] O. E. Garcia et al. “Turbulence and intermittent transport ath tbe bound-
ary of magnetized plasmas.” In: PHYSICS OF PLASMAS 23, 122302 (2005).

[15] searching for the perfect shape ITER. “https://www.iter.org/node/20687/searching-
perfect-shape.” Acessed: 15.12.2024.

[16] Henrik Jäntti. “Numerical Simulations of Turbulence at the Boundary of
Fusion Plasma.” MA thesis. UiT The Arctic University of Norway, 2022.

[17] S. I. Krasheninnikov, D. A. D’Ippolito, and J. R. Myra. “Recent theoretical
progress in understanding coherent structures in the edge and SOL
turbulence.” In: J. Plasma Physics 73, 5: 679 - 717 (2008).

[18] R. Kube and O. E. Garcia. “Effect on dynamical friction on interchange
motion of plasma filaments.” In: PHYSICS OF PLASMAS 19, 042305 (2012).

[19] R. Kube and O. E. Garcia. “Velocity scaling for filament motion in scrape-
off layer plasmas.” In: PHYSICS OF PLASMAS 18, 102314 (2011).

[20] R. Kube, O. E. Garcia, and M. Weisenberger. “Amplitude and size scaling
for interchange motions of plasma filametns.” In: PHYSICS OF PLASMAS
23, 122302 (2016).

[21] J. M. Losada, O. Paikina, and O. E. Garcia. “Stochastic modeling of blob-
like plasma filaments in the scrape-off layer: Correlated amplitudes and
velocities.” In: PHYSICS OF PLASMAS 31, 042514 (2024).

[22] J. M. Losada, A. Theodorsen, and O. E. Garcia. “Stochastical model-
ing of blob-like plasma filaments in the scrape-off layer: Theoretical
foundation.” In: PHYSICS OF PLASMAS 30, 042518 (2023).

[23] O. Paikina et al. “Stochastic modeling of blob-like plasma filaments in
the scrape-off layer: Time-dependent velocities and pulse stagantion.” In:
In reviw; obtain from https://doi.org/10.48550/arXiv.2412.04966 (2024).

[24] Peter C. Stangeby. The Plasma Boundary of Magnetic Fusion Devices.
Institute of Physics Publishing, 2000.

[25] C. Theiler et al. “Blobmotion and control in simple magnetized plasmas.”
In: PHYSICS OF PLASMAS 18, 055901 (2011).

[26] C. Theiler et al. “Cross-FieldMotion of Plasma Blobs in an OpneMagnetic
Field Line COnfiguration.” In: PHYSICAL REVIEW LETTERS 103, 065001
(2009).

[27] M. Wiesenberger et al. “Unified transport scaling laws for plasma blobs
and depletions.” In: PHYSICS OF PLASMAS 24, 064502 (2017).






	Abstract
	Acknowledgements
	List of Figures
	1 Introduction
	2 Background
	2.1 Two-Fluid Model
	2.1.1 Braginskii Equations
	2.1.2 Further Simplifications
	2.1.3 Vorticity Equation
	2.1.4 Sheath Dissipation
	2.1.5 Reduced Two-Fluid Model
	2.1.6 Reduced Two-Fluid Model; Non-Boussinesq

	2.2 Center of mass
	2.2.1 Position and Velocity
	2.2.2 Energy Integrals


	3 Energy Integrals
	3.1 Derivation for Simplified Model

	4 Numerical Simulations
	4.1 Simulation Setup and Reference Values
	4.2 Energy Integrals
	4.2.1 Simulations Results
	4.2.2 Discussion

	4.3 Initial Amplitude Variations
	4.3.1 Simulations Results
	4.3.2 Discussion

	4.4 Particle Loss
	4.4.1 Exponential decay in the background
	4.4.2 Simulations Results
	4.4.3 Discussion

	4.5 Non-Boussinesq
	4.5.1 Simulation Results
	4.5.2 Discussion


	5 Summary and Outlook
	A Numerical Schemes and Diagnotsical Tools
	A.1 Finite Difference
	A.2 Composite Trapezoid

	Bibliography

