

Faculty of Science and Technology

Department of Computer Science

NLPOps: A Case Study on Automation and Integration of Norwegian Medical

Entity Recognition Model in Clinical Environment.

Zulfiqar Ali

INF-3990 master’s thesis in Computer Science – November 2024

Supervisors

Main supervisor: Lars Ailo Bongo Professor,

Department of Computer Science,

UiT The Arctic University of Norway

Co-supervisor: Kristian Svendsen Associate Professor,

Department of Pharmacy,

UiT The Arctic University of Norway

Co-supervisor: Mohsen Gamal Saad Askar PhD student,

Department of Pharmacy,

UiT The Arctic University of Norway

Abstract

Integrating Machine Learning (ML) models into healthcare system, especially by Natural

Language Processing (NLP), holds tremendous potential for improving hospital workflows and

patient outcomes. This thesis presents the challenges and deployment of an NLP model,

Automated Medical Entity Recognition (AMER), designed to extract medical entities from clinical

text, within in cloud-based Machine Learning and Operations (MLOps) workflow. The aim of this

thesis was to create a scalable, secure and efficient deployment pipeline that can meet the strict

data privacy and compliance requirements of clinical environments.

The AMER model was already developed as local system, we reconfigured it for deployment on

Microsoft Azure by utilizing an automated MLOps pipeline. The pipeline automates crucial stages

like disaster management, model testing and deployment, minimizing the deployment from 2-3

hours to 20-30 minutes. Cost analysis showed that an initial configurations cost of $570 and on-

going monthly operational expenses ranged between $262 during low workload conditions and

$342 during high workload periods.

The AMER model attained an accuracy of 91.8% locally and 90.4% in the cloud with precision,

recall and F1 score above 88% in both environments. Furthermore, optimization techniques were

also performed that reduced latency from 450 milliseconds to 180 milliseconds, meeting the target

limit of under 200 milliseconds for real-time hospital use.

Resource utilization and cost efficiency of AMER were evaluated across different workloads to

test dynamic scaling of the system. At low demand (10 request per second), the Central Processing

Unit (CPU) usage was 15% with the expense of $1.20 per hour, at medium demand (50 request

per second) the usage of CPU increased to 35% costing $3.80 per hour and at the high demand

(100 request per second) CPU was utilized at 65% with the cost up to $6.40 per hour. This adaptive

scaling provided by the cloud reduces the expenses during the low workload periods and scales

resources for high workloads conditions.

While the deployment using cloud provides operational advantages, this thesis discuss the

challenges of integrating MLOps in clinical environments where on-premises secure data centers

are often prioritized. A proposed path for further development includes using hybrid and private

cloud system that allow healthcare providers to utilize MLOps based automation while

maintaining compliance with local regulatory standards.

This thesis contributes to advancements in MLOps in healthcare by showing how cloud-based

automation and deployment can improve the efficiency, scalability and reliability of ML models

in hospital applications. However, further investigations and enhancements are needed for

compliant integrations of ML-driven technologies in healthcare.

Table of Contents

Abstract .. iii

List of Figures .. vi

List of Tables .. vii

List of Acronyms .. viii

1 Introduction ...1

2 NLPOps Approach ..5

2.1 The Automated Medical Entity Recognition Model ..5

2.1 System Architecture Design ...8

2.2 Cloud vs On-premises solutions for MLOps in Healthcare10

2.3 MLOps based AMER Model Integration ...11

2.4 Creating a Resource Group ..13

2.5 Deployment of AMER model demo application. ...13

2.6 Creating Azure Application Service ...14

2.6.1 GitHub Action Initialization ...15

2.6.2 Running the demo application ..17

2.7 Setting up Azure DevOps Configuration ...17

2.7.1 Connecting Azure DevOps with Azure Subscription18

2.7.2 Creating an automated AML environment18

2.7.3 Defining the variables for IaC pipeline ...18

2.8 Infrastructure as Code pipeline ...19

2.9 Continuous Integration Pipeline ...20

2.9.1 CI pipeline tasks ..21

2.9.2 Installing Azure Command Line Interface22

2.9.3 Creating AML Workspace ..22

2.9.4 Defining AML compute ..22

2.9.5 Defining the variables for CI pipeline ..23

2.9.6 Registering the dataset ..23

2.9.7 Running the CI pipeline ..23

2.9.8 Make a model directory ..24

2.10 Training the AMER model ...24

2.10.1 Running the training script..25

2.10.2 AMER model performance monitoring ..25

2.10.3 Registering the model ...26

2.10.4 Downloading the latest version of AMER model26

2.10.5 Copy multiple directories ..26

2.10.6 Publish pipeline artifacts ...26

2.11 Continuous Deployment Pipeline ...26

2.11.1 Define Python Version ..27

2.11.2 Add AML extension ...27

2.11.3 Deploy to Azure Container Instance ...27

2.11.4 Installing requirements..28

2.11.5 Running Unit Test for staging...28

2.11.6 Publish Test Results for staging ..28

2.11.7 Manual Testing ...28

2.12 Deployment to production ..29

2.12.1 Creating environment in AML..30

2.12.2 Creating a Production Endpoint ..30

2.13 Simulation for integration of AMER model ...31

2.13.1 Challenges faced ...31

2.13.2 Solutions Implementation ...32

3 Evaluation and Results ..33

3.1 Model Performance Evaluation ..33

3.1.1 Results ...33

3.1.2 Discussion ...34

3.1.3 Implications and Recommendations ...35

3.2 Operational Efficiency and Scalability ...35

3.2.1 Results ...35

3.2.2 Evaluation Methodology ...36

3.2.3 Discussion ...36

3.3 Deployment Time and Cost Effectiveness ...37

3.3.1 Cost Analysis ..37

3.3.2 Discussion ...38

4 Integration of AMER Model in Hospital Infrastructures ..40

5 Conclusion ..42

6 Appendices ..43

6.1 Declaration of the Usage of Artificial Intelligence ...43

7 Reference List ...44

List of Figures

Figure 1: An illustration of the pipeline of Norwegian medical AMER model [21].7

Figure 2: Overview of the Azure Platforms supporting NLPOps Workflow.8

Figure 3: System Design Architecture for AMER model. ...9

Figure 4: AMER Model MLOps based Integration Design...11

Figure 5: MSA resource group interface. ..13

Figure 6: The dashboard of the demo application. ..14

Figure 7: The GitHub Actions Build Pipeline ...15

Figure 8: The GitHub Actions Deploy Pipeline ..16

Figure 9: Live demo application deployed with CI/CD...17

Figure 10: Environment setup pipeline on Azure DevOps ..19

Figure 11: ARM flow for AML pipeline. ..20

Figure 12: Compete CI pipeline of AMER model on Azure DevOps21

Figure 13: CI pipeline of AMER model on Azure DevOps ..24

Figure 14: Compete CD staging pipeline of AMER model on Azure DevOps.27

Figure 15: Unit Test Results of AMER Model on Azure DevOps.29

List of Tables

Table 1: Variables for automated AML environment pipeline ..18

Table 2: AMER model CI pipeline variables ..23

Table 3: Acceptable threshold limit for different metrics. ...33

Table 4: Performance Metrics of AMER in local and cloud environments.34

Table 5: Latency Comparison of AMER model (Pre vs Post Optimization)34

Table 6: Operational Efficiency and Scalability of AMER with different workloads.36

Table 7: Initial and Monthly Cost of cloud-based AMER model.38

List of Acronyms

Acronym Full Form

ML Machine Learning

MLOps Machine Learning Operations

AMER Automatic Medical Entity Recognizer

NLP Natural Language Processing

AI Artificial Intelligence

NER Name Entity Recognition

GDPR General Data Protection Regulation

HIPAA Health Insurance Portability and Accountability Act

CI/CD Continuous Integration and Continuous Delivery

UiT University in Tromsø – The Arctic University of Norway

EHR Electronic Health Record

RELIS Regionalt legemiddelinformasjonssenter (Regional Medicines and Pharmacovigilance

Centre)

MSA Microsoft Azure

AMLS Azure Machine Learning Studio

API Application Program Interface

AAS Azure App Service

IaaS Infrastructure as a Service

UI User Interface

IaC Infrastructure as Code

SKU Stock Keeping Unit

URL Uniform Resource Locator

ARM Azure Resource Manager

CLI Command Line Interface

DevOps Development and Operations

DRY Don’t Repeat Yourself

AML Azure Machine Learning

API Application Program Interface

ACI Azure Container Instance

CPU Central Processing Unit

GPU Graphics Processing Unit

JSON JavaScript Object Notation

XML Extensible Markup Language

SSL Secure Sockets Layer

HTTPS Hypertext Transfer Protocol Secure

VNet Azure Virtual Network

DIPS Distributed Information and Patient Data System in Hospitals

GB Gigabytes

1 Introduction

In recent years, the integration of Machine Learning (ML) in medical care has transformed how

complex data-related tasks like information retrieval and decision-making support are conducted.

However, deploying ML models in real-world settings for tasks involving Natural Language

Processing (NLP) brings its own challenges. NLP, which is a branch of Artificial Intelligence (AI),

has gained a lot of attention due to analyzation of the human languages and have many applications

in information retrieval, summarization and medical related tasks [1]. Name Entity Recognition

(NER) is a subfield of NLP with the goal of identification and classification of different named

entities in a text into already established categories [2]. Although NER has made great progress in

the medical domain, grabbing the interest of many clinicians, who want to extract meaningful

information from unstructured clinical texts, yet there remains a critical need to deploy these

solutions due to technical and regulatory challenges [3].

Implementing NLP systems in healthcare faces distinct challenges, specifically when managing

sensitive data that must comply with strict regulatory requirements like General Data Protection

Regulation (GDPR) and Health Insurance Portability and Accountability Act (HIPAA). The issues

include making the system scalable, secure, and able to integrate with existing health

infrastructure. While NLP has demonstrated potential across various field, applying it in the field

of medical care demands solutions that can handle data safely within regulatory limits.

Despite the growing advancement in the world of ML, there remains a gap between the model

development and its successful deployment into production environments, especially when it

comes to research-based projects. Many promising ML models fail to be deployed from research

to real world usage due to the lack of focus on the best practices of MLOps. Research highlights a

few challenges that hinder this transition, including a shortage of data science expertise, data

quality issues, and the complications of managing ML models in production environments [4].

MLOps, which unites the automation and operation of ML workflows, is often left unnoticed in

research-based projects, as the focus tends to be on model innovation and accuracy rather than

sustainability and scalability in production [5].

While MLOPs frameworks are successfully utilized in other domains and even for NLP on health

data, these solutions are not often adopted to the Norwegian healthcare context. Additionally,

many of these frameworks are not fully available for research proof-of-concept projects which are

typically limited in resources and scope. An important issue is that the existing solution often fail

to align with the specific expectations of clinical workflows and the users, which results in limited

adoption in real-world healthcare settings [6].

The lack of MLOps practices often end up to uncoordinated development process and making it

hard to deploy, monitor and maintain ML model properly [7]. Many researchers lack the leadership

and organizational support to apply scalable MLOps frameworks which further contributes to the

gap between model creation and deployment. As research papers stress on formalizing and

automating ML lifecycles – from the collection of data to the deployment of model– through

MLOps can improve the success rate and efficiency of ML projects [8]. Without an organized

Continuous Integration and Continuous Deployment (CI/CD) pipeline for an ML model, many

projects remain confined to research settings, hence limiting their real-world impact.

2

This thesis focuses on challenges involved in deploying ML models, specifically NLP models like

AMER, in hospital environments. The challenges addressed include:

1) Deployment of ML models in healthcare needs strict compliance to data protection

standards, like GDPR. Making sure that patient sensitive data is securely maintained

through the MLOps, especially in the cloud environment was the focus of this thesis.

2) Clinical settings require systems that can handle large amounts of data with low latency.

This thesis finds out how to build a cloud-based system for the AMER model that can scale

automatically to meet the demands while keeping response time within clinically

acceptable range.

3) Classical deployment processes for ML can be more time consuming and prone to human

errors. By implementing an MLOps-based workflow with CI/CD pipelines, the thesis

automates operational tasks of AMER, including model testing and deployment and

reduces the deployment time.

4) This thesis also analyzes the complexities of integrating AMER model with already

existing hospital systems, showing the technical modifications required for interoperability

with in secure on-premises environments common in hospitals.

The one and the most relevant related work to this thesis is the ongoing project that focus on

integrating the AMER with hospital systems through Distributed Information and Patient Data

System in Hospitals (DIPS). The project plans on deploying the AMER model within hospital

settings using a microservice architecture, enabling compatibility with existing hospital systems.

However, this work does not completely address the all the operational challenges discussed in

this thesis Although it focuses on data protection, regulatory standards and compatibility with

hospital system, it still misses the MLOps framework required to support automated and

continuous model training, testing, deployment and monitoring. This related work is primarily

centered around secure integration rather than optimizing the AMER model for real-time

performance, scalability and automated workflow management in hospital environments.

This thesis provides a cloud-based MLOps solution to simplify the deployment, management and

scaling of AMER model in clinical settings. Utilizing the automation and flexibility of cloud

provider, the solution handles the challenges including real-time performance and secure data

handling. By integrating automated CI/CD pipelines, real-time monitoring and auto-scaling, this

system ensure the AMER model to function efficiently under changing workloads and simplify

maintenance and updates. This MLOps based approach enables that the model remains reliable,

accurate and adaptable, laying the foundation for practical use of medical NER in hospital

environments.

3

The proposed solution was evaluated across multiple aspects, including deployment efficiency,

cost effectiveness, real-time processing and model performance to enable it meets the demands of

hospital environments. The findings from the evaluation showed significant improvements:

1) Initially, deploying the AMER model took 2-3 hours as it was done manually. With the

implementation of an automated CI/CD pipeline, the deployment time reduced to 20-30

minutes, which is more than 75% improvement. This reduction speeds up the AMER model

updates, reliability and minimizes human errors.

2) The cost examination covered initial configurations, ongoing monthly maintenance and

computational expenses. The initial configuration expense for deploying AMER on Azure

was $570, which included setting up the CI/CD pipeline, computation resource and cloud

storage. Monthly operational cost was $342 and $262 in high and low workloads

respectively, showing the scalability and flexibility provided by the cloud-based

autoscaling. Azure Virtual Network (VNet) and real-time monitoring costs were also added

for secure and efficient model functionality.

3) The AMER model’s accuracy, precision recall and F1 score were analyzed in local and

cloud environments. The AMER model achieved an accuracy of 91.8% in local and 90.4%

in the cloud environments, with the F1 score as 91.1% and 89.6% in the local and cloud

environments respectively. These performance metrics verified the AMER model’s ability

to keep high performance across different environments.

4) Resource usage and cost efficiency were evaluated for AMER across different workload

to examine the system’s ability to scale responsively. Under low workload periods (10

requests per second), the CPU usage was minimum at 15%, resulting in low expense of

$1.20 per hour. In the medium workload periods (50 requests per second), CPU utilization

was 35% and the system automatically scaled, leading to the cost of $3.80 per hour. During

high workload conditions (100 requests per second), CPU usage reached to 65% with

further auto-scaling to maintain performance and costed $6.40 per hour. This capability of

the cloud to automatically adjust computational resources based on workloads enabled cost

efficiency and effective resource management, with low expense in the low-demand times

and increased capacity during high demand conditions.

The results showed that deploying the AMER model on cloud-based infrastructure gives

significant benefits in terms of cost-effectiveness and efficiency. The automated CI/CD pipeline

simplified the AMER model deployment process, minimizing the time and reducing the error

while supporting faster and reliable model updates. The cloud ability to scale automatically

allowed for optimized computational resources usage, enabling the system to handle fluctuating

workloads and controlling cost.

However, while the cloud providers offer these operational benefits integrating MLOps in hospital

settings presents more challenges due to data protection requirements and priority of in-house data

centers. A proposed way to move forward includes exploring hybrid and private cloud services,

4

which would allow hospitals to take advantage from MLOps automation while keeping

compliance with regulatory standards. This method provides feasible pathway for deploying

MLOps workflows in secure clinical settings, clearing the path for broader adoption of ML health

applications.

In the following sections, this thesis is structured as follows:

Chapter 2: NLPOps Approach, describe the AMER model, its integration with Azure platforms

and technical side of our implementation.

Chapter 3: Evaluation and results, covers the metrics and methods to evaluate the performance of

the AMER.

Chapter 4: Explores the ongoing and the most related work: the AMER model integration in

hospital.

Chapter 5: Conclusion, summarize the findings.

5

2 NLPOps Approach

Development and Operations (DevOps) is a set of practices that aim at improving collaboration

between software developers and operations team with the goal of faster and reliable software

delivery [9]. DevOps focuses on automation, continuous integration, continuous deployment

which make it easier to manage and update software in production settings.

MLOps, is known as “DevOps for ML”, builds on these principles that address the challenges of

managing and automation of ML applications in production. MLOps is important because it handle

the challenges that are unique to ML workflows, like model retraining, deployment of updated

models and version control, which make sure ML models remain reliable and accurate with the

passage of time [10].

NLPOps, which is a name given to this thesis, is same as MLOps but focuses on the automation

and operational issues of deploying NLP models. In the NLP applications that involves medical

data, NLPOps focuses on the need to a secure, scalable and compliant deployment.

MLOps plays an important role in the development and deployment of ML model, especially in

scenarios like healthcare where reliability and accuracy are crucial. In this thesis, we focus on

medical NLP applications as a case study, with AMER as an example. AMER is an ML model

that is designed to identify medical entities such as substances, side effects and diagnosis from

medical text which help clinicians in their decision-making.

For a model like AMER, which must function with high accuracy to prevent serious mistakes like

incorrect diagnosis, MLOPs assures that any model updates are tested automatically and deployed

safely with minimum human intervention [11]. This automation reduces the risk and time related

to manual updates. Moreover, MLOps simplifies the scaling of ML models, which is important for

medical applications that handle large amount of medical data. Through cloud services, MLOPs

enables models like AMER to adjust to changing workloads while maintaining consistent

performance [12]. This makes sure that the system can keep on helping clinicians continuously,

when as demand for data processing increases.

In this section, we discuss the AMER model, the tools, technologies and the steps followed to

achieve the objectives of this thesis.

2.1 The Automated Medical Entity Recognition Model

In medicine, it is very important for the professionals working in the field to take history from the

patient and record it in the form of a document. These documents can then be used to identify

things like side effects, drugs and to diagnose a disease in a written text. This method of

identification is slow and manual which can be prone to error. The Electronic Health Record (EHR)

has enabled us to electronically keep the record of patients making it more secure and instantly

available to authorized people [13]. Therefore, now we can find advanced ways to solve this

problem.

The EHR contains a lot of amounts of data but most of this data is unstructured which makes it

difficult to examine and extract key medical insights. Medical NER is a form of NER that can

6

utilized on the history of a patient to identify drugs, diseases and symptoms in an EHR [14]. By

identifying relevant entities in EHR, medical NER helps to turn the unstructured data into structed

format, which makes data analysis more efficient.

In medical NER, an ML model is trained on a dataset, which has specific medical terms labelled.

Once the model is trained, applications use Medical NER to automate tasks which not only helps

clinicians but medical research. Due to language differences, specific models should be trained for

each language as every language has its own grammar, sentence structure and punctuation. Then

to train such a model, a big, annotated dataset is needed which has been labelled into predefined

categories such as substance, disease and medicine. Moreover, annotating such dataset is a manual

process which takes a lot of time.

In this regard, a AMER model for Norwegian medical text has been recently developed at the

Department of Pharmacy of UiT. This model can predict the entities in the text provided to it. To

the best of our knowledge a system like this which automatically annotates a dataset is new and is

not implemented before for Norwegian language so far.

The development of the AMER model started by utilizing the NorMedTerm list, which consist of

77.000 unique medical entities in Norwegian together with a dataset from Regionalt

legemiddelinformasjonssenter (Regional Drug Information and Pharmacovigilance Centre;

RELIS), a compilation of 36 thousand question-answer pairs that are related to medicine from

health professionals [15] [16].

To clean and preprocess the data, spaCy library is utilized which offers capabilities when it comes

to NLP [17]. The NER module in spaCy is supported by multilayer Convolutional Neural

Networks, is used to train the annotated dataset.

7

Figure 1 below shows detailed explanation of the steps taken to develop the AMER model. The

development pipeline starts with data processing, where entities and terms are cleaned from RELIS

and NorMedTerm list. The spacy Entity Ruler is then used to annotate these entities within the

dataset, which creates a labelled dataset. The labelled dataset is divided into 80% for training and

20% for testing of the AMER model. Finally, after training, the AMER model can accurately

recognize entities in Norwegian text. The AMER model can then be saved and implemented to

identify entities in other medical texts in Norwegian.

Figure 1: An illustration of the pipeline of Norwegian medical AMER model [18].

Automatic data annotation has an immense impact on the AMER model, as it streamlines the

training pipeline and ensures data annotation to be more consistent and robust [19]. As a result,

this trained AMER model for Norwegian text offers a range of applications that effect both medical

professionals and researchers. The model can be used in real-time and batch processing scenarios

depending upon the requirements.

For clinical use, AMER can be integrated into hospital infrastructure to perform queries for patient

history summarization, aiding diagnosis support and clinical data extraction. For example, when a

clinician is looking for a patient file, the AMER model can recognize and extract medical entities

from EHR.

Applications can differ between one-off queries for specific patients or daily usage applications

that run consistently across large patients’ databases. For instance, the AMER model can be used

for extracting entities relevant to individual patients. On the other hand, it can be applied to all

patients in a clinic or hospital, automating data analysis on a large scale for quality improvement

or research.

For research applications, the AMER model can help in literate search and medical text indexing,

which can speed up the process of extracting terms from large amounts of unstructured data. This

can be useful for researchers in clinical fields, who need to screen through large dataset to identify

correlations.

8

2.1 System Architecture Design

We used prototyping as a design method to define the architecture for the development and

deployment workflow of the AMER model using MLOPs best practices. This way of design

method allowed us to quickly create and validate different working designs to find the optimal

workflow of our system. For this thesis, we used Microsoft Azure (MSA) for MLOps based

implementation, and its subscription was provided by the informatics department of UiT.

MSA has a range of services that are used to combine all the components of ML and start running

the life cycle of ML operations. The figure 2 below shows an overview of how different platforms

integrate in Azure to support MLOps workflow. The connection of each component shows the

process for developing, testing, deploying and maintaining ML models.

Figure 2: Overview of the Azure Platforms supporting NLPOps Workflow.

The Azure subscription, which was managed by us, serves as an entry point into the environment

of Azure and allow us to use its different services [20]. Each organization using the AMER model

may have its own subscription, which gives security mechanisms like role-based access control,

enabling that only authorized people can have access to the model and data. In our case, we kept

only one subscription which helped us control and manage costs by tracking resource usage for

the AMER model deployment evaluation.

Azure Machine Learning Studio (AMLS) is a platform used in this project for building, deploying

and maintaining AMER model. By AMLS we managed dataset, trained the model and deployed it

as an Application Program Interface (API) [21].

In the AMER case, the preprocessed data, training dataset and output during predictions are stored

inside Azure Blob Storage, which is a type of data storage in Azure’s data store. This storage is

used to securely manage sensitive medical data, assuring compliance and provides access to

necessary data for a model lifecycle [22]. Azure DevOps acts as a main source code repository

and enables CI/CD automation pipelines for each stage of AMER model workflows. This setting

enables that changes are tested and deployed consistently [23]. Azure App Service (AAS) is

9

utilized to deploy the AMER model’s front-end application and integrates well with other Azure

Services [24].

To support scalability and flexibility for multiple applications of AMER, the design uses cloud

platforms multi-tenant capabilities in which each instance can be managed separately, Azure

DevOps pipelines for deployment and version control, AMLS for model versioning, and AAS for

front-end applications deployment. As shown in the figure 3 below, Azure and GitHub are the two

main services utilized here for the automated development and deployment of the AMER model.

Figure 3: System Design Architecture for AMER model.

The User Interface (UI) part of the application is separated by the original AMER model to keep

the system flexible and understandable. GitHub is used as a version control tool to manage the UI,

and its deployment will be automated using GitHub actions. This means that every time a new

version of the UI part of the code is ready to be shipped to the production, there won’t be any need

to manually perform any task. As the code is pushed, an automated pipeline will be initialized, and

the new version will be in production.

Azure DevOps is also a version control tool which we used specifically for the AMER model part

of our system. It can easily integrate with Azure Machine Learning (AML) using an automated

pipeline. We will be utilizing Azure DevOps for the Infrastructure as Code (IaC) and CI/CD

10

pipeline of our AMER model. The IaC pipeline will create an environment in AML for the AMER

model and CI pipeline will perform the tasks including running unit tests, creating computes and

uploading the dataset. The source code of the AMER model will be in Azure DevOps but the

model itself will reside inside AML from where it will be monitored and managed. After the model

in developed in AML a release pipeline will be initiated that will deploy the model

When the model is deployed it will generate an end point. These end points will be only authorized

to specific users which will add an extra security layer to the system using Azure Key-based. The

secure end points can then be accessed by the UI application and the users can get real time

predictions.

Once the system is fully deployed and the results from the evaluation are available, we will try to

further optimize the designed solution. Potential optimizations include implementing caching

solutions for frequently accessed task and refining auto-scaling to handle different workloads

effectively.

2.2 Cloud vs On-premises solutions for MLOps in Healthcare

Utilizing cloud services in MLOps offers technical and operational advantages that are difficult to

recreate in on-premises environments. This thesis uses cloud-based MLOps solutions to handle the

needs in automation, scalability, compliance and resource management.

Cloud providers gives on-demand scalability, allowing this thesis project to smoothly manage

storage and computing resources based on workload demands. This flexibility confirms that

resources are available during peak time without facing the high costs of dedicated hardware. By

scaling up or down as required, the thesis prevents the waste of underutilized resources during

low-demand time [25].

The cloud has integrated CI/CD pipeline tools personalized for ML workflows, which contains

version control, automated model retraining and deployment across different environments

(development, staging and production). In this thesis, these cloud-based CI/CD abilities improves

model updates and deployments, making certain that new AMER model versions are tested and

deployed properly. Without the cloud, building such a pipeline would need manual integration of

separate tools, adding more difficulty [26].

Cloud services provide real-time monitoring and simplify management of resources, both are

important for MLOps in healthcare. This thesis gets automated infrastructure management through

Infrastructure as a Service (IaaS) by the cloud, which removes the need for content maintenance

and hardware upgrades. Real-time monitoring enables resource utilization, potential security

threats and tracking model performance, which enables smooth and secure functionality [27].

Cloud systems come with built-in compliance and security features, including encryption and

regulatory compliance frameworks like GDPR. In this thesis, the cloud security protocols assure

that medical data is handled in secure and compliant manner. Reproducing these levels of security

on-site would need investment and dedicated security resources, which organizations find

impractical.

11

In the context of MLOps, many organizations choose external cloud providers due to the

scalability, monitoring capabilities and convenience that they offer for ML applications. Cloud

services like Microsoft Azure, Amazon Web Services and Google Cloud provide ready-to-use

infrastructures and tools like model deployment, automated scaling, and real-time monitoring,

which would be costly and complex to implement them on-site. These services also has global

availability zones, which make sure disaster recovery and high availability.

 For health organizations, data privacy and compliance regulations are important. Many hospitals,

clinics and research institutions choose cloud operators with data center in their own county to

comply with local regulatory standards like GDPR and HIPAA. By this way, these organizations

can confirm that national legal requirements are met, and patient data is stored locally and is secure

with their own control.

On the other hand, some organizations prefer open-source solutions, which gives more control

over data and avoid vendor lock-in. However, this case needs more people to manage

infrastructure, handle updates and scalability.

A small number of organizations, including hospitals, rely completely on in-house data centers.

This approach allows them to have full control over data lifecycle without relying on an external

cloud service. Although this approach improves privacy and control, yet it can create challenges

in maintaining up-to-date infrastructures and scaling ML operations as data processing demands

increase.

2.3 MLOps based AMER Model Integration

The below figure 4 shows MLOps based model integration design that we will utilize for the

AMER Model. Each module listed in the figure belongs to one or another component of figure 3.

For instance, the CI/CD pipelines and model validation belongs to Azure DevOps, Prediction

Service belong to AAS and the rest of the tasks are part of AMLS. Moreover, this sub-section

explains how different components are connected to create an MLOps lifecycle.

Figure 4: AMER Model MLOps based Integration Design.

12

The process will start by the ingestion of open access medical data, which will be cleaned and

pre-processed to create an annotated dataset in the cloud. This step is important to validate the

data fed to the AMER model is clean, structured and ready for analysis.

The feature store is a main repository in AMLS that stores preprocessed and features that derived

from the clinical text. It provides reusable and consistent data for both model experimentations

and production. As seen in the figure 4 above the Feature Store continuously provide prepared data

for the data ingestion task. In this system the model updates can be planned based on approaches

called manual, periodic and continuous.

In manual approach, updates are initiated by the data scientists only when required, depending

upon when significant changes are needed, or new data is available. This approach gives more

control when the model is updated but it can delay model improvements. Periodic updates is when

the model can be set to retrain after some planned time to assure it remains current. This approach

is a balance which allow the model to adapt to new trends in the data without overwhelming the

system with constant retraining. Finally, with continuous updates, the model could be updated and

retrained as new data comes into the feature store. By this approach the model is always using the

latest data, but it comes with high computational cost. For this thesis, we choose manual approach

to keep the cost low and as it was a just the beginning and starting point for the release of AMER

model in production, therefore we wanted to keep it basic.

The core of this system will be Automated Pipeline, where the tasks like data extraction, data

verification, model training and model evaluation will be carried out. Data extraction involves

pulling relevant data to prepare it for training. Data verification is when the dataset is checked for

quality and completeness. Once verified, the data is then used to train the model. After training the

model, it is evaluated with unit tests to access it’s working. This pipeline will automate the AMER

model lifecycle and will be designed to be repeatable and scalable.

Once the AMER model is trained and tested, it will be stored in the Model Registry, which keeps

track of all the versions of the model. This Model Registry will be important to enable notifications

on model updates and will also help us decide to select the best version of AMER model gets in

production. Once we have more than one version of AMER model, the model registry interface in

AMLS provides us with an interface with the model’s name, its version and different matric

including accuracy, precision and response time. Then based on these metrics we can select which

model version to choose but for this thesis we will train the model once.

The CI/CD will automate the deployment of AMER model in different environments. After the

model is packaged, tested and validated, it will be deployed via CD pipeline. The AMER model

will be available as a secure endpoint that will integrate with clinical infrastructure.

The AMER Models Serving component will allow the trained model to process the real medical

data and return results. This component will be directly linked with the front-end application,

simulating how AMER model would be used in actual clinical system.

13

Once the AMER model is deployed and start to serve requests, its performance will be

continuously monitored using the performance monitoring tools of AMLS. The performance data

is stored in ML Metadata Store to give feedback for future improvements.

The trigger starts the entire pipeline when there are conditions like getting new data, periodic

retraining, or performance feedback showing a need for new version of the model. This mechanism

helps that the system remain efficient and avoid unnecessary resource use. In our case a new

pipeline will be triggers as soon as the new code is pushed into Azure DevOps repository.

This structure will support continuous AMER model improvements and scalability, enabling it to

reliably process medical data. To summarize our implementation, we started by automating the

deployment of the demo application of AMER, followed by creating an IaC pipeline for disaster

recovery and then deploying the AMER model using CI/CD pipelines.

2.4 Creating a Resource Group

Once we have a subscription on MSA, the first step was to create a Resource Group. A Resource

Group is a logical container that organizes and packs together all the assets that are required to run

a project or an application [28]. It can be created on the Azure Portal by just entering a name,

selecting the right subscription and choosing the geographical location of the Azure resource.

After a resource group is created MSA provides you with an interface from where we can view

and manage all the different Azure services inside this resource group as shown in the figure below.

Figure 5: MSA resource group interface.

2.5 Deployment of AMER model demo application.

The AMER model already has a demo web application built on Streamlit, which is an open-source

framework to build interactive web applications and is specifically designed for machine learning

and data science applications [29]. Since the model and the web application are coupled together

14

it was important to decouple both and deploy the web application separately on AAS and the model

on AML.

Before starting this thesis, the AMER model code existed locally in one machine so the first task

before deployment was to push the code to a remote private repository. After cleaning the code

and removing the model part of the code to decouple the system the demo application code is

pused to GitHub.

The initial step of the implementation involved moving the existing local code of AMER to a

remote environment. The code was initially stored in a single computer, so we decoupled the model

code from the rest of demo application code and pushed it to a GitHub repository.

As part of the settings, we created a requirements file to include all the dependencies needed for

the demo application to run. To make these dependencies were separated from any system-wide

packages, we created a virtual environment for the application. This isolation helps in conflicts

preventions and replicate the environment, which is important for our smooth implementation.

For the demo application deployment in this thesis, we utilized GitHub actions as it is simple to

set up and more user friendly.

2.6 Creating Azure Application Service

As part of our system design architecture of AMER and its simplicity to use with other Azure

services, we used AAS to deploy the front-end application of AMER to serve as a prediction

service. Therefore, we created a new AAS instance by entering the name of our demo application,

choosing the right Stock Keeping Unit (SKU), geographical region of the server, and the runtime

stack. After successful deployment submission we get the dashboard created as shown in the figure

6 below. This dashboard will help us further manage and monitor the application.

Figure 6: The dashboard of the demo application.

15

The name kept for the demo application was unique since it becomes our Uniform Resource

Locator (URL) when the application is deployed. Initially, to keep the cost low, we decided to go

for a free version of SKU but after the initial deployment it was observed that for a Streamlit

application to run and to have sockets enabled we need to have pricing tier of minimum B1.

Therefore, we switched the SKU from the free version of F1 to the basic paid version of B1.

Since the demo application is in Python so we selected our run time stack as python 3.8 and the

operating system becomes Linux by default. We also choose nearest location as our deployment

region due to GDPR compliance and data control.

The next step was to link the GitHub repository with the AAS by first authorizing the GitHub to

ASS. After entering the current repository name, branch name and enabling continuous integration

the GitHub and AAS are now linked together.

For this demo application, we decided to directly deploy the application from the source code as

it is the most straightforward way that offers simplicity. The other ways of publishing the

application include docker container or static web app, which can introduce complexities.

2.6.1 GitHub Action Initialization

After the initial submission of the deployment a GitHub workflow gets started within our

repository. A YAML file was created inside the repository which defined all the steps that were

required to build, test and then deploy the application on AAS. During the build process it installed

all the dependencies that we wrote in our requriemnts.txt file. Then, GitHub Actions automatically

initiated a build process which compiled the code from the repository, ran tests, and generated

artifacts. The below figures 7 and 8 show the successful build and deploy pipelines that were

triggered by GitHub actions.

Figure 7: The GitHub Actions Build Pipeline

16

Figure 8: The GitHub Actions Deploy Pipeline

17

2.6.2 Running the demo application

Although the code is connected and deployed to AAS but still there is a last step we took which

was to start the application every time the code is deployed. We did it by providing the startup

command to our server in the configuration settings of AAS. Now we were good to view our demo

application with a URL. The below figure 9 shows a live version of the demo application with

CI/CD enabled. Which means that now every time a new line of code is pushed on GitHub, a

pipeline will be triggered, and a new version of the application will be deployed.

Figure 9: Live demo application deployed with CI/CD

2.7 Setting up Azure DevOps Configuration

Azure DevOps is an important component in our system design architecture that we used to create

automated CI/CD pipelines and for model validation for AMER. Setting up Azure DevOps

involved steps to build an environment for the development and deployment of AMER model. As

we had already decoupled the AMER model from the demo web application. Therefore, it was

much easier to get started with configuring Azure DevOps. Firstly, a private project was created

with a unique name and a description. When the project was created successfully, a repository with

the same name was created inside Azure DevOps. We chose Azure DevOps for the development

and deployment of the AMER model as it preferred tool to use with Azure Cloud [30]. Therefore,

18

the second step was to push all the AMER model source code from the local environment on the

personal computer to Azure DevOps.

2.7.1 Connecting Azure DevOps with Azure Subscription

Before moving forward, it was important to connect Azure DevOps with Azure Subscription to

establish a workflow for the AMER model development and deployment. To do so, we need to

create a service principle that enables us to perform secure communication between the two

services. We selected Azure Resource Manager as service connection as it is used to connect to

Azure DevOps and provides a consistent management layer [31]. Then after selecting the right

subscription, resource group and entering the name of the service connection, a connection is

created. When this was done, now our Azure DevOps is authenticated with the AML.

2.7.2 Creating an automated AML environment

Our next step was to set up an environment in AML for the development and deployment of AMER

model. Although we could manually create it but after doing some study, we found out that it was

highly beneficial to automatically create resources on AML. Using automated way is a best

practice for disaster recovery, as it allows us to define our environment using IaC [32]. Using this

way will help us recreate the environment in the same way if we lose this infrastructure and its

resources.

2.7.3 Defining the variables for IaC pipeline

It was important to define the private variables in advance before using them in our IaC pipeline

because not only it promotes reusability but also allows us to securely store all the sensitive data

that will be utilized for building the pipeline [33]. We created the following variables in the Azure

DevOps library as shown in the table below. The base name refers to the name of our project in

AML and the location is the geographical position of the servers. The service connection name

and the resource group are the same as we had already created. Finally, the workspace is the main

environment that we will use for the AMER model, and the workspace service connection is the

authorization of workspace with Azure resources.

Table 1: Variables for automated AML environment pipeline

Name Value

BASE_NAME nermodel1

LOCATION germanynorth

AZURE_RM_SVC_CONNECTION azure-resource-connection

RESOURCE_GROUP NER-Model-Masters-Thesis

WORKSPACE_NAME ner-model-ws-1

19

WORKSPACE_SVC_CONNECTION ner-model-ws-connection

2.8 Infrastructure as Code pipeline

Before starting to build the IaC pipeline, we pushed the decoupled code of AMER model on Azure

DevOps to keep it in a remote environment.

After configurations and then linking the pipeline with the script we were able to initiate and

successfully run the execution. The pipeline execution can be seen in the figure 10 below of Azure

DevOps along with each step and other related details.

Figure 10: Environment setup pipeline on Azure DevOps

During this process, we explored and found different ways to create our first automated pipeline

and to build an environment in AML by Azure DevOps, one way was by using an ARM template

and other was Azure Pipelines YAML.

The Azure Resource Manager (ARM) template can be used to deploy environments in the Azure

as it helps us in the codification of infrastructure using IaC. We can provide different ARM

templates to the ARM based on the task we want to perform, and the ARM deploys our

environment on the main level of subscription. The ARM template also supports repeatable

deployments because of IaC [34]. The below figure 11 shows the flow of ARM templates to create

an automated pipeline that we used to build an environment in AML.

For our IaC implementation we choose Azure Pipelines YAML, which works in the same way as

ARM Template, but we write our own custom script instead using a template. The reason for

choosing this code first approach in this case was because of its simplicity and flexibility to create

an environment in AML [35].

20

Figure 11: ARM flow for AML pipeline.

Now, we had the environment in which we could start our MLOps journey by building CI/CD

pipelines. The good thing to notice here is that if our system runs into any disaster, since the

infrastructure creation is automated, we can easily run this pipeline script that will configure Azure

DevOps pipeline and re-create a new AML environment.

2.9 Continuous Integration Pipeline

After this, our next step was to focus on building the CI/CD pipelines for the automated integration

and deployment of AMER. As per our MLOPs based AMER model integration design in figure 4,

we started by building continuous integration pipeline for AMER followed by continuous

deployment pipeline.

21

A CI pipeline automated the process of our AMER model development. Every time, before a new

piece of code will be integrated into the main system, it will be automatically tested using this

pipeline. The new changes to the AMER model can only be made once all the requirements and

steps in the CI pipeline are successfully completed. Hence CI pipeline will ensure that our AMER

model development workflow is efficient and consistent [36]. All our CI pipeline tasks ran

successfully as shown in the figure 12 below.

Figure 12: Compete CI pipeline of AMER model on Azure DevOps

To get started we utilized classical editor, which is a graphical interface in Azure DevOps for

building CI pipeline for AMER model. Previously, we used Azure Pipeline YAML for building

the IaC pipeline but this time we utilized the classical editor as it is the simpler to integrate unit

tests and all the other steps into the pipeline by just using the interface [37]. The execution of this

pipeline will take place as soon as new code will be pushed to the AMER model repository.

We added the following tasks in the CI pipeline in the classical interface by simply defining the

type of the task and then executing it using a command to run that task. All the tasks that we will

define in the interface will be converted to YAML file and saved into our repository. Azure

DevOps will use this YAML file to execute the pipeline.

2.9.1 CI pipeline tasks

The first task we added was to set up a python environment. While installing the environment we

also specified the version of python to ensure consistency across our system. Therefore, a virtual

environment was created in which we installed all the dependency packages required by the AMER

model. Since we have already described all dependency packages for our demo application in the

requirements file, so we created a new requirements file and just pointed out the file name to be

executed by the pipeline.

22

While building a CI pipeline it is very important to consider writing unit tests as they verify the

correctness of every small component that are part of the big ML model code [38]. Verifying each

part separately of the AMER model will ensure the smooth execution of the whole model code.

So, to get started we also wrote a basic unit test to verify the creation of the AMER model with a

small set of predefined data. The result of this unit test will help us to move forward in the

execution of the pipeline.

Our next step was to authenticate and connect Azure DevOps, which is the agent that is running

our AMER model pipeline, to our AML by creating a similar service connection we have already

created to link Azure DevOps with our subscription. Therefore, we recreated a service connection

on Azure DevOps but this time with the scope of AML workspace.

2.9.2 Installing Azure Command Line Interface

Now when we have connected Azure DevOps with AML, we needed a coding way to write down

the steps that we need to perform in our pipeline for the development of AMER model. For

instance, we want DevOps to create a compute on AML, but it is not a human that can create it by

interacting with AML studio. Therefore, we need a way of coding that will help us do it for the

development of the AMER model. We can do it by creating an Azure Command Line Interface

(CLI), that is a terminal-based tool in which we can write down the instructions in Azure DevOps

and it will create a compute on AML for us [39].

The AMER model CI pipeline that we are building is running on an Azure Pipeline agent, which

are responsible to execute the tasks that we have defined. This agent needs to have Azure CLI

installed beforehand to make sure that we can successfully execute the further steps of the pipeline.

So before moving forward, we integrated the Azure CLI in the classical editor of our AMER model

CI pipeline by writing the inline installation script.

2.9.3 Creating AML Workspace

The next step was to make sure we have AML workspace already setup. AML workspace is a

centralized hub which is utilized for maintaining and managing our AMER model artifacts

including the AMER model itself and its dataset. Although we have already created an AML

workspace when we ran our IaC pipeline but to follow the best practice, we also integrated it into

the CI pipeline just in case it does not exist or is destroyed. We wrote an inline script to create an

AML workspace but since it already existed it was successful by default.

2.9.4 Defining AML compute

A compute is a computational resource that will be utilized to execute workflows of our AMER

model, especially its development and deployment. It will also ensure that these workflows are

managed and executed properly. Therefore, we wrote another inline script for the creation of a

compute resource. In this script we also defined the minimum and maximum number of the nodes

that we want to utilize for horizontal scaling. Finally, to keep the cost low in the beginning, we

defined the type of compute according to the basic standard and the number of idle seconds of

compute before it scales down.

23

2.9.5 Defining the variables for CI pipeline

Since the inline scripts that we had defined contained variables therefore we needed to define them

in the pipeline variables section separately. The table below shows the variables that we defined

for our pipeline. The first three variables defined were utilized in the inline script to create AML

workspace and the rest of the variables defined were used to create a computational resource.

Table 2: AMER model CI pipeline variables

Name Value

azureml.resourceGroup NER-Model-Masters-Thesis

azureml.workspaceName ner-model-ws-1

azureml.location germanynorth

amlcompute.clusterName nermodelcompute

amlcompute.minNodes 0

amlcompute.maxNodes 2

amlcompute.vmSize STANDARD_E96ADS_V5

amlcompute.idleSecondsBeforeScaledown 300

2.9.6 Registering the dataset

The data required for the development of the AMER model is stored in our Azure DevOps

repository, but we need to upload it to the AML where it can be stored and registered. This data

can be uploaded manually using an AML interface, but we need to automate this task and add it

as a step in our AMER model CI pipeline. Automating this step will save us a lot of extra workloads

every time a developer or a data scientist have modified the data and won’t have to manually

register the data to AML.

Since we already had Azure CLI installed we wrote an inline script in Azure DevOps that uploaded

a registered data on the AML. We also specified in the script that if the data already exists in AML

than create a new version and overwrite that previous AMER model data. As traceability is one of

the best practices of MLOPs offered by cloud-based solutions therefore, we can see all the versions

of the data that we have uploaded to AML.

2.9.7 Running the CI pipeline

Finally, we were able to successfully execute our AMER model pipeline and each step that we had

defined was running in a sequential manner. In this pipeline each step was dependable on the next

24

step so if one step failed all the CI pipeline execution is failed. The below figure 13 shows all the

steps defined and successful execution of our AMER model CI pipeline. After this, we navigated

to AML Studio where we were able to not only cross verify the creation of the workspace and a

compute but also that our data is also registered on AML. Finally, this automated CI pipeline

helped us save a lot of time and avoid errors for the first-time execution and will continue to help

us whenever we want to have modification of the AMER model.

Figure 13: CI pipeline of AMER model on Azure DevOps

2.9.8 Make a model directory

Our last step before the training of model was to make a dumping directory in which we can store

our trained model while the pipeline is executing. The directory can be used to grab our model,

register it in AML and then deploy it. So, we added one more step in our continuous integration

pipeline and wrote an inline bash command that creates a directory for us.

2.10 Training the AMER model

Our most important step in the continuous integration was training the model using an automated

pipeline. We used an inline command to train our AMER model using Azure CLI, which we have

already installed in our pipeline. Before running the command, we needed to make few changes in

our AMER model training script to make it more optimized and run in Azure environment. For

example, we made some changes in the script that were not following Don’t Repeat Yourself

(DRY) principle and were prone to errors for azure environments. In this way we were able to

make the script more clean, maintainable and follow best practices. Finally, we added two

variables in our pipeline which defined the name of experiment and the name of the model that

will be trained in AML.

25

2.10.1 Running the training script

Upon running the training script, we faced our first challenge in the execution of CI pipeline. The

default time limit of each pipeline that runs in Azure DevOps is 60 minutes but the AMER model

that we were training took longer than 60 minutes. We have been using a very minimum low

costing compute, which costed us $0.30 per hour, for our pipeline job, so initially we believed it

was due to low levels of compute. To fix the problem, we tried to increase the compute level by

changing it with a high-cost compute of $0.80 per hour. So, when we tried to execute the pipeline

with more powerful compute, we still faced the same problem. When we further investigated the

issue, we found that we can increase the execution time of the pipeline by utilizing Microsoft-

hosted agents, but it comes with the cost of $40 per month [40]. We knew that the recommended

best practice of MLOps was to automate the training of the model, but as our goal in this thesis

was to keep the cost minimum so we decided to train the AMER model manually using AML

notebook. AML provided an integrated notebook environment which we utilized for development

of AMER model.

To start training the model manually we started by linking our AML environment with Visual

Studio Code, which is an integrated development environment. This method helped in keeping the

training process very smooth. As the data required by the model was already in the same repository,

so we were able to successfully train the model in AML.

2.10.2 AMER model performance monitoring

We had initiated the process of performance monitoring when we were training the AMER model

in the cloud and included scripts to record few important metrics. Therefore, to evaluate the

effectiveness of the AMER model in the cloud, we recorded the following metrics:

• Accuracy: It measures the proportion of accurately identified entities compared to the total

number of entities in a dataset.

• Precision: It can be calculated by dividing the total number accurate anticipated positive

results by the total number of positive results predicted by the model. In medical systems,

high precision is important to avoid incorrect medications, side effects or diagnosis.

• Recall: It is calculated by dividing the total number of true positive results in a dataset by

the number of actual positive findings. High recall is important in medical contexts to

prevent important diagnoses are not missed.

• F1 score: It provide us with a balance between precision and recall by taking the harmonic

mean of both. F1 score is helpful tool when these two criteria are at odds.

These metrics not only helped us in getting insights about the AMER performance in the cloud,

but also helped us in the evaluation part of this thesis

26

2.10.3 Registering the model

Model registration is an important step in machine learning workflows as it enables the trained

model to be versioned and tracked in a centralized environment. We automated this part by writing

a script that registered the AMER model in AML. Before running the pipeline, we defined the

name of the model in a variable storage to enable a secure CI process. The script registered the

AMER model using Azure CLI register command where it is named and versioned.

2.10.4 Downloading the latest version of AMER model

Once the AMER model is registered in AML it can be easily accessed for different operations such

as testing and deployment. We wrote an inline script in our main pipeline file using Azure ml

download command that allowed us to fetch the registered AMER and store it in the model

directory that we have created earlier. One of the important things that we wrote in this script was

to download only the latest version of the model that is registered in AML. This helped us by

making sure that only the latest version of AMER are available for various operations.

2.10.5 Copy multiple directories

We also automated the process of coping multiple directories using an inline script. This step was

important, as these multiple directories, which contained all the files of the AMER model and its

configuration, made sure are copied to a temporary location. This temporary location was then

used in our next step to fetch the copied files. This task copied all files, which were of 6 Megabyte,

that we wanted to utilize in our staging pipeline. The files what we copied were the AMER model

file, python scripts like score.py, and some important configuration files. Automating this task

enabled us with flexible and centrally available file system for the testing and deployment stage of

AMER model.

2.10.6 Publish pipeline artifacts

Finally, we utilized the publish pipeline task in Azure DevOps to automate the publishing of our

multiple copied directories’ artifacts by fetching them from the temporary location as done in the

previous step. This final step was important as it made sure all our relevant folders and artifacts,

which we prepared earlier, were made available for the CD pipeline

Overall, this whole process of CI pipeline provided us with consistency, reduced manual

intervention and ensure smooth implementation of all the pipeline steps.

2.11 Continuous Deployment Pipeline

After successful creation of the CI pipeline, our next step was to create a CD pipeline in Azure

DevOps to test and deploy AMER model as an endpoint in a staging environment. As part of our

MLOps based integration design shown in figure 4, the goal of this CD pipeline was that every

change that we will make in the codebase is tested automatically and then deployed into an

environment where we can review it. Like our CI pipeline, in our CD pipeline we had to define

certain steps which will lead of the deployment of the AMER.

The figure 14 below illustrates a complete staging pipeline in Azure DevOps, showing each step

involved in the deployment process.

27

Figure 14: Compete CD staging pipeline of AMER model on Azure DevOps.

The first thing that we did when we started to create the release pipeline was to point out the

artifacts that we build in our CI pipeline. By doing so, our release pipeline would know which

script to take as input when it will execute. Next, we gave a name to our release pipeline and

specified the agent on which our release pipeline would run. We selected Ubuntu operating system

as the agent due to its stability and reliability.

2.11.1 Define Python Version

In the first step of our CD pipeline, we specified the python version to make sure there is

consistency and compatibility across all the tasks that were to be carried out. This step was also

important because Python is the main programming language that is used for running ml scripts

and different version of Python can have different level of support of libraries. We specified the

Python version as 3.8 to make sure that the environment that will be used in staging is the same as

the one used during the CI pipeline, preventing issues related to version compatibility.

2.11.2 Add AML extension

In the second step, we added AML extension into our pipeline. This extension is important cause

it provides all the commands and tools for interacting with AML directly thorough Azure DevOps.

By adding this extension, we made sure that our pipeline can perform various tasks such as testing

and deployment of AMER model. Without this extension, these tasks would require a lot of manual

work and additional scripts, which could make the task more complex and prone to errors.

2.11.3 Deploy to Azure Container Instance

In the next step, we added the task to deploy the AMER model to Azure Container Instance (ACI).

In this task we build a temporary environment for hosting the AMER model and ran requests on

it. This process used Azure CLI to automate this task and make sure that the AMER model and its

required configuration files are deployed correctly across environments.

28

The inline script we wrote deployed the specific version of the model into a specific workspace of

Azure. We also configured the deployment by defining two scripts, one for container resource

requirements and other for specifying the runtime environment. The first script creates a container

for AMER, allocating with 1 Central Processing Unit (CPU) and 1 Graphics Processing Unit

(GPU) with memory limit of 2 Gigabytes (GB) and 8 GB respectively. The second script describes

the python as a runtime environment and points to a scoring script, which contains the logic for

running prediction requests and to another file that contains configurations for that scoring file.

This process was important as it allowed us to validate the functioning of the model before we

move it to the production. Additionally, the ACI provided us with a scalable, on-demand

environment, which is cheap compared to Azure Kubernetes Service.

2.11.4 Installing requirements

In our fourth step, we installed all the dependencies required by the AMER model by executing a

shell script. The script first validated the Python version, installed various packages related to

Azure and then installed all the essential libraries of the AMER, including spacy, and pandas. This

task was important for setting up an environment with the required packages and to support the

proper functioning of the model and its supporting scripts.

2.11.5 Running Unit Test for staging

Moving to the next part we focused on running unit tests in our pipeline. The reasons for writing

these unit test was because it allowed us to catch the bugs and issues in the last stage of

deployment. This task ensured that the AMER deployed in the staging is validated by checking

its response to a predefined test case.

We wrote two scripts to support the execution of our unit test. Our first script provided custom

pytest fixtures and made sure the correct scoring URL is passed to the test case [41]. Our second

script described the actual unit test by sending a POST request to the AMER scoring URL using

a sample input data. This test made sure that the response returned by the request is successful

and is in the correct JavaScript Object Notation (JSON) format.

2.11.6 Publish Test Results for staging

In our last step, we included a task in our pipeline that published the results of our unit test in a

form of an Extensible Markup Language (XML) report. By posting these results in a format we

made sure that they can be reviewed properly. The test results included information about the

number of tests, their statuses and error messages if the test failed. This step played a vital role in

our pipeline by enforcing accountability and transparency, allowing us to easily identify

bottlenecks in our deployment cycle.

2.11.7 Manual Testing

Finally, our staging pipeline for AMER was successfully executed. Every step, from defining the

python version to deploying the model in an ACI, running test cases and publishing the test results,

was carefully arranged to ensure the stability and readiness for production.

29

After our pipeline ran successfully, we had to manually confirm few things before we could move

forward. We checked the unit test cases results to confirm everything ran as expected. The test

case results as shown in the figure 15 below, showed the unit tests were passed without errors.

Moving ahead, we logged into AML portal to check whether an endpoint had been created when

the pipeline executed. We navigated to the endpoint section, and saw an endpoint was created by

the service connection by the name that we had defined in the variable section of our staging

pipeline.

We used the scoring URL provided in Endpoint section of AML for further manual testing of our

model. We created an API call function that connects to the AMER’s endpoint and merged this

function into our local front-end application, which we had decoupled before. In our local

application, we replaced the code where AMER was used from local repository with the new API

call function. After that, we sent requests using dummy data to the deployed model from our front-

end application. By utilizing different prediction functions of the application, we verified that the

model was working as expected. This step ensured that the deployed model was integrated

correctly and performing accurately in staging.

Figure 15: Unit Test Results of AMER Model on Azure DevOps.

2.12 Deployment to production

The deployment to production is a critical phase in the development lifecycle of a machine learning

model. This is the stage, where the model, which has been thoroughly tested in a staging

environment is transitioned to where it is ready to serve live requests. This section outlines the

methodology used to deploy the AMER model in production and details the steps involved for a

reliable production environment.

30

2.12.1 Creating environment in AML

In the process of our deployment to production, the first step was to create an environment in

AML. This step was important for defining the configurations and dependencies that AMER model

would require for proper execution.

To start, we navigated to the Environments section in AML and choose to create a new Docker

image. Although we had other option available such as using an existing Docker context, but we

went for our own docker context to create a fully customizable environment that matches the

specific dependencies and versions required by AMER. This also allows us to have full control

over the underlying libraries and configuration, which would not have been accomplished with an

existing image.

We customized the Docker context by editing the image file provided by AML. We wrote the

scripts to install key dependencies like azureml-core, azure-storage-blob and spacy. We also

created a custom conda environment with Python and specified that the AMER model would be

served using Gunicorn library through the AML inference server. We included azureml-core for

integration with AML services and azure-storage-blob to get the data from Azure Blob storage

during deployment. Similarly, Spacy was added for the AMER and Gunicorn to efficiently handle

API requests in production.

When the environment creation was completed, AML initiated a job to build a docker image with

the configuration that we had specified. The job ran successfully, confirmed that our image was

built and ready for production deployment.

2.12.2 Creating a Production Endpoint

To deploy the trained AMER model, we navigated to the endpoint section of AML and selected

the model and its required version.

We selected “Managed” as the compute type, but we also had another option which was

Kubernetes. We chose Managed as it provides a simple way to deployment, including scaling and

handling infrastructure. This allowed us to focus on our AMER model rather than managing the

computed resources. For the selection of authentication type, we selected azure key-based because

only the people with the required keys can access the AMER model’s endpoint. We also set the

scoring Timeout to 60 seconds to make sure that the AMER model has enough time to process a

request and return a prediction. This setting was important to prevent timeouts if we had to deal

with more complex and larger input request. Then we selected the same scoring script that we used

in our deployment pipeline which included the way in which AMER model should be loaded and

utilized. We also set the custom environment that we created in the last step and set the selected

the lowest compute to keep the cost as minimum as possible. Lastly, we adjusted the Live Traffic

to 100%, which meant that all the incoming requests would be directed to this new endpoint that

we had created. Doing this whole process allowed us to successfully create a production endpoint

for AMER.

Once the AMER was in production, we had to manually make sure that everything was working

fine. We utilized the Test section in AML by sending a JSON request to the AMER through an

31

interface and were able to simulate real-time input. This JSON contained the necessary input

required by the model and as the input was submitted the model returned the expected results.

2.13 Simulation for integration of AMER model

We used front-end application of AMER as a simulation for its integration with AMER model. To

make the simulation secure like in medical settings we performed the following steps.

Establishing Secure Transfer

When the AMER model was deployed in production it generated a secure endpoint in AML. This

endpoint API facilitated secure communication between the front-end medical application and the

AMER model. Azure Key based authorization and Secure Sockets Layer (SSL) were utilized to

restrict the authorized users and keep the data encrypted during transfer respectively.

Private Endpoints and VNet were configured to confirm that all the communication between the

AMER model and the local application occurred security and directly, bypassing other public

networks. This solution minimized the risk of data exposure and ensured compliance with health

regulatory standards.

Real-Time Processing

In clinical scenarios, where fast data extraction is required, the integration focused to simulate

near-real time communication between the AMER model and the front-end application. To access

the response time, we conducted few tests by sending request to the AMER model from our front-

end application with different workloads. These tests calculated the time taken from when the

request was sent to AMER model until the response was received. The focus in this was on

achieving a response time of less than 2000 milliseconds per request. This limit was set to copy

real-time hospital use, in which delays in data retrieval could affect timely decision-making

process. Tools like Azure Monitor and Application Insights were utilized to record and track the

response times which assured performance and identifying any latency.

2.13.1 Challenges faced

During this process, we faced few challenges including:

Latency in Real-Time Processing

The initial tests that we performed showed higher latency than expected, which could affect the

ability of the system in the real-world medical settings. To solve this, the autoscaling functionality

and additional computations of Azure were used to meet the demand.

Compatibility with Local Systems

The local application which acted as a medical infrastructure, needed to sync with the output of

AMER model. This required to implement a communication function which correctly parsed the

JSON output from the AMER model.

32

2.13.2 Solutions Implementation

To address the challenges, the following solution were implemented.

Latency Optimization

To resolve the latency challenges, the AMER model was deployed to a local region closer to the

user base. Other ways included utilizing Azure caching mechanism to speed up the frequent

operations.

Interoperability

A flexible API function was designed to address this problem. This solution made it possible that

any data input to the local application could be processed by the AMER model efficiently and the

response was returned in a proper structured format.

33

3 Evaluation and Results

In this section, we discuss the evaluation of the cloud-based implementation and deployment of

the AMER model using MLOps driven CI/CD pipeline. The evaluation covered the main elements

of the AMER model integration and focused on the following questions:

• AMER Performance and System Latency: How well does cloud-based AMER model

operate in terms of performance and system latency?

• Operational Scalability: How does the AMER model CI/CD pipelines implementation

scales with different workloads?

• Deployment Time and Cost Effectiveness: What is the deployment time and cost-

effectiveness of automation on a cloud-based system for AMER model?

3.1 Model Performance Evaluation

For the evaluation, AMER was trained and tested locally on a computer to set up a baseline

performance. This baseline provided us a point of comparison to analyze how well the AMER

model performed in different environments. Furthermore, the evaluation metrics that we selected

helped us access to find if the cloud deployment had affected the performance of AMER model.

The table below shows the acceptable threshold for each of the metric.

Table 3: Acceptable threshold limit for different metrics.

Matric Threshold Limit

Accuracy Above 90%

Precision and Recall Above 85%

F1-score Above 87%

After noting the metrics from local environment, we compared the local and cloud environment

results to find out differences in model performance. It focused on if the cloud deployment affected

the model’s capabilities to recognize medical entities with the same accuracy, precision, recall and

F1 score that we noticed in the local environment.

3.1.1 Results

The table below compares the performance of AMER model in both, local and cloud environments

across different metrics. Each metric was recorded with multiple executions and then averaged to

minimize the impact of random variations. Confidence intervals are also shown to point out

variance across executions and any performance instability. The variance was important for

34

understanding the reliability of AMER model in each environment as it indicates how much results

change due to factors like network latency and data processing.

Table 4: Performance Metrics of AMER in local and cloud environments.

Metric Local Environment Cloud-Based Environment

Accuracy 91.8% ± 0.3% 90.4%± 0.5%

Precision 92.5% ± 0.2% 91.1%± 0.4%

Recall 89.7% ± 0.4% 88.2%± 0.6%

F1 Score 91.1% ± 0.3% 89.6%± 0.5%

After integrating the AMER model with a front-end application and performing optimizations, we

were able to successfully simulate a secure medical setting. As shown in the table below, these

optimizations led to reducing latency by over 50% to bring it within acceptable range for real-time

medical data processing.

Table 5: Latency Comparison of AMER model (Pre vs Post Optimization)

Integration Before Optimization After Optimization

Average Latency (milliseconds) 450 180

3.1.2 Discussion

In both environments, AMER had a high performance across the metrics that we included.

Compared to the local environment, the lower performance of cloud was expected due to latency

of remote data processing. However, this difference was small and do not impact the performance

and effectiveness of AMER.

Accuracy in the local environment was a bit higher than in the cloud, showing the low latency and

immediate data access when working locally. In the cloud environment, a delay was observed

which resulted in lower accuracy score. However, the difference of 1.4% between both

environments is small and unlikely to have a major impact in real-world applications.

Precision and Recall were high in both the environment but a small decrease in the cloud was

observed. This shows that while the AMER remained strong, there was a bit performance tradeoff

when deploying it to the cloud. These tradeoffs arose due to the delay in data transmission or

increased computation overhead. Despite these reductions, the cloud deployment of AMER still

maintained high precision and recall.

35

F1 Score showed the difference seen in precision and recall but with a low score in the cloud

environment. This shows that while the cloud environment has challenges, the overall balance

between false positives and false negatives remain strong in both environments.

The minor reduction seen in the cloud environment could be resolved in future by optimizing the

AMER for cloud-based processing or by improving communication methods between the cloud

and the clinical environment. These fixes could help in reducing latency and further align

performance with local environment.

Finally, high latency presented a crucial challenge to achieve real-time data processing, which is

important for decision making in hospitals. The reductions achieved after optimizations showed

the effectiveness of cloud infrastructure in providing low latency solutions for ML in medical

systems. Meeting the target for latency threshold shows that with proper deployment strategies,

the models hosted on cloud can offer the results needed in hospital settings without compromising

performance.

3.1.3 Implications and Recommendations

The operational benefits of deploying the AMER model in a cloud-based environment like

scalability, ease of integration with MLOps best practices and the ability to handle large data

outperforms the minor performance tradeoffs.

Improving the ability of AMER in handling data communication and processing in the cloud help

minimize latency and increase the performance metrics like F1 score and recall. This could involve

optimizing the architecture of cloud or utilizing edge computing techniques to reduce impact of

remote data processing.

In a real medical setting, the language used in medical documentation may change over time.

Therefore, using model drift detection tools in the cloud deployment will be important for

identifying any performance degradation over time.

3.2 Operational Efficiency and Scalability

This subsection evaluates the AMER model’s implementation operational efficiency and

scalability by observing aspects including cloud scalability, resource management and deployment

time. During the process we assessed, how well the CI/CD pipelines improved operational

processes and supported scalable deployments.

3.2.1 Results

The results that we got showed several improvements that were brought by using cloud

environments and implementing CI/CD pipeline for AMER model.

Each scenario was tested based on CPU Utilization, cost per hour and if auto-scaling was required

or not. The table below shows how different workload affected these metrics for AMER. As the

number of requests per second increases, the utilization rate of CPU increases, demanding

additional computation resources. This increases the cost per hour as the cloud services charges

36

on the resource usage. For medium and high workloads, the system automatically scaled resources

to keep performance and enabled that it can handle high demand.

Table 6: Operational Efficiency and Scalability of AMER with different workloads.

Workload CPU Utilization Cost per Hour

(USD)

Resource Scaling

Time

Low (10 requests/second) 15% 1.20 Not required

Medium (50 requests/second) 35% 3.80 Scaled automatically

Medium (100 requests/second) 65% 6.40 Scaled automatically

3.2.2 Evaluation Methodology

This evaluation was carried out in several steps, which are relevant to the deployment process and

cloud infrastructure’s ability to scale.

Computational Resources and Scalability of AMER

The deployment of AMER model in AML was analyzed to check its scalability under different

workloads. We simulated increased workloads by testing the system with inference rate of 10, 50,

and 100 per second. To measure the scalability of AMER we recorded the following metrics:

• Resource Allocation is the amount of CPU and other resources allocated by the cloud

provider under different workloads.

• Cost per hour is estimated hourly cost of operating the AMER model under different

workloads.

• Resource scaling Time is the time taken by the cloud service provider to allocate more

resources to meet the high demand when workload increases.

3.2.3 Discussion

The integration of CI/CD pipeline and deployment using cloud has enhanced the operational

efficiency and scalability of AMER model. These improvements are important for maintaining

performance in real-time applications.

The automatic scaling of AMER not only enabled that the system can meet performance needs

during high demand but also minimized unnecessary costs during low interest periods by avoiding

over provisioning. This difference with static infrastructure, in which resources are allocated based

on high interest results in inefficiencies and higher costs when there is less demand.

The ability to balance performance and costs is important in cloud deployments specifically in

computationally intensive applications like ML in healthcare. The AMER model’s capacity to

37

scale in response to peak demand while maintaining low cost is an indicator of usefulness of cloud-

based deployments for these applications.

Finally, for future implementations, further optimization of auto-scaling, resource management

and automating AMER model training process can improve cost savings and efficiency.

3.3 Deployment Time and Cost Effectiveness

To evaluate the deployment time and cost of maintaining and deploying the AMER model on the

cloud, we reviewed initial costs, computational prices associated with CI/CD and ongoing

maintenance expenses.

In the beginning, the manual deployment time of AMER took 2-3 hours per deployment. After

automation using the CI/CD pipeline, the deployment time was reduced to 2-3 hours per

deployment. This reduction not only speeds up the release time but also reduces the risk of human

errors.

3.3.1 Cost Analysis

The cost analysis that we performed included three components:

1) Initial cost for setup: This was the cost that came from configuring the cloud environment,

creating the IaC infrastructure and implementing the CI/CD pipelines.

2) Ongoing Maintenance costs: This is the monthly expense which is associated with

storage, compute resources and the services that are important to maintain the AMER

model in the hospital environment.

3) Operational costs for CI/CD and computation: This is the costs for data processing,

model inference, executing automated pipelines and real-time monitoring.

38

Table 7: Initial and Monthly Cost of cloud-based AMER model.

Component Initial Cost (USD) Monthly Cost (USD) Description

AML 100 56 Used for AMER model training,

managing and versioning.

AAS 30 19 Hosts AMER model API and

front-end application.

Azure Blob

Storage

20 15 Used to store data related to

AMER model.

Azure

DevOps

70 32 Used for automated testing and

deployment of AMER

Computes 300 90 - 170 (low – high

demand)

Used for data processing, model

inference and workloads.

VNet 25 10 Secures Data communication of

AMER by adding a secure layer.

Real-Time

Monitoring

20 26 Provides real-time tracking of

AMER model and computes.

Network

Costs

5 14 Cost of data transfer between

Azure services.

The details of the cost by each component of Azure are shown in the table above. The total of the

initial cost was $570 while the ongoing monthly operational cost was $342 in high workload

period and $262 in low workload conditions.

3.3.2 Discussion

After the implementation of CI/CD pipeline of AMER the deployment time reduced by more than

75%. This timesaving was due to the automation of the tasks that were previously performed

manually, AMER model’s configuration, validation and deployment. The use of automated

pipelines enabled that the new version of AMER can be deployed more easily by allowing fast

iterations and quick response times for model improvements. The reduction for manual

interference also reduces the risk of human error and makes the deployment more reliable.

Cost analysis showed high initial setup cost but was followed by flexible monthly costs that

changes with demand. When the demand is high, the auto scaling adjusts resources as required,

which increased the costs but keep consistent performance. Although the use of VNet and real-

time monitoring added monthly costs yet it improved security, system reliability and regulatory

39

compliance, which are important for health applications. On the other hand, in the low demand

periods expenses reduced and made the system cost effective as compared to in the house servers,

where auto scaling is complex to achieve and leads to more cost.

Overall, these results shows that using cloud infrastructure can effectively balance costs,

deployment times, scalability and security, which makes it can ideal choice for medical ML

applications.

40

4 Integration of AMER Model in Hospital Infrastructures

In related work, an important project is the integration of AMER core system into a hospital

environment. This project is currently under development, and it aims to facilitate the deployment

of NER models in hospitals by focusing on secure in-house data processing rather than the cloud.

This system is designed with a microservice architecture that focuses on compatibility with

existing medical infrastructure by integrating with DIPS in Norwegian Hospitals. DIPS runs on

secure, in-house servers within hospital servers and uses message brokers for data processing. This

configuration aligns well with the hospital’s requirements for data privacy and compliance with

strict health data regulations as the data remains secure in an internal network.

While this architecture supports secure on-premises deployments and enable interoperability with

DIPS and similar infrastructures, it does not cover the full range of MLOps abilities. The current

focus of this work is on integration rather than the complete lifecycle of ML models. Although this

system includes retraining of AMER, the system lacks continuous integration, automated testing

and deployment and real-time monitoring. Without these aspects, scaling the AMER model,

maintaining its high availability and establishing reliability becomes challenging over time when

retraining and updates are needed in hospital settings.

This thesis uses a cloud-based approach to fully operationalize the AMER model using MLOps

best practices. This approach offers advantages, like flexible storage, automated deployment

pipelines, scalable compute resources and monitoring tools. These benefits contribute to more

efficient, faster and reliable model deployments and updates. By using the cloud service, this

method simplifies the automation of model management processes, enable real-time monitoring

and reduces the deployment of time.

To bridge the gap between the in-house AMER system in hospital and automation and scalability

offered by the MLOPs in the cloud, a hybrid approach is needed in medical environments. Here

we outlined a path forward in which hospital-based information systems could implement MLOps

principles in a secure and compliant manner.

One solution for this is a hybrid infrastructure in which data remain secure in the hospital in-house

data center and model training and experimentations are conducted in a secure cloud environment.

In this way, patients’ data will be anonymized locally before any interaction with the cloud. This

will allow hospitals to have control over sensitive data and computationally intensive task

offloaded to the cloud. The trained AMER model can then be securely transferred back to the

hospital servers for integration and deployment with the local system.

For the hospitals that are reluctant about public cloud usage, private cloud could also be used.

Public cloud can be deployed in a hospital infrastructure that would help hospital to use MLOps

pipelines and services and maintain data privacy. Edge computing, where processing happens

close to the source of data, can offer real-time processing benefits for AMER without fully relying

on the cloud. These edge devices would run containerized versions of AMER and would process

data at the level of hospital while synching with centralized MLOps systems for maintenance and

updates.

41

To clone the benefits of automated pipelines in the cloud MLOps in a secure setting, in-house

CI/CD tools can be installed that are compatible with hospital infrastructure. In this case using

tools like Jenkins and Azure DevOps Server (in-house version of Azure DevOps) would allow

hospitals to automate different deployment stages in a secure network. This method will enable

that AMER model updates can be automatically tested before deployment and any performance

issues can be identified and addressed quickly.

For hospitals implementing local monitoring for ML applications solutions like Prometheus and

Grafana can be used to track model performance, resource usage, data flows and latency in real-

time. Alerts can also be configured for any errors in the system health or AMER model output.

Finally, logging tools like Elasticsearch, Logstash and Kibana can help hospitals examine long-

term trends in AMER model performance and support improvements.

By adopting MLOps best practices for hospital environments and following compliance

regulations, we can move ahead to a secure, scalable and efficient solution for deploying ML

models in healthcare.

42

5 Conclusion

This thesis analyzed the development, deployment and operationalization of AMER model, a

system designed for medical entity recognition in hospital environments. By using MLOps best

practices, this thesis aimed to build an automated, efficient and scalable deployment system on a

cloud infrastructure and provided insights into operational and technical challenges of

implementing ML in medicine.

The AMER model, which was initially build as a local solution was revamped for deployment on

Azure by using an MLOps based pipeline to automate ML model lifecycle. The implementation

showed substantial improvements in deployment time, reliability and cost effectiveness by

reducing the deployment time from hours to minutes through CI/CD automation. Moreover, the

cloud system allowed for dynamic scaling of AMER and made the model adaptable to changing

workloads, which is common in healthcare settings.

A cost analysis showcased the financial impact of this deployment and balancing initial cost with

ongoing operational expenditure. This evaluation highlighted the value of cloud resources

especially in high computes demand, in which auto scaling and resource management allowed

efficient cost allocation. However, the thesis also acknowledged the tradeoff linked with cloud

deployments in terms of cost and scalability.

Alternatively, to previous approach, which is limited to in-house systems, this thesis also provides

a future pathway for using MLOps techniques into secure hospital environments. By using hybrid

architecture and private clouds, advantages of MLOps can be gained while enabling data

protection and compliance with regulations. This approach bridges the gap between ML best

practices and the security needs of health data.

The findings in this thesis shows the potential of MLOps workflows to simplify and secure the

deployment of NER models like AMER in hospital settings. By reducing deployment time,

improving scalability and maintaining model accuracy and performance, this thesis contributes to

developing ML in healthcare, preparing the way for secure and more reliable AI-driven systems

in hospital settings. Future study should focus on making further improvements in secure MLOps

architectures designed for hospitals by allowing integration of ML technology and maintaining

data integrity and patient privacy

43

6 Appendices

6.1 Declaration of the Usage of Artificial Intelligence

For this master’s thesis, I acknowledge the use of generative artificial intelligence from the

below tools and for the following purposes in the report and implementation.

1) (https://app.grammarly.com)

2) (https://gemini.google.com/app)

3) (https://chatgpt.com)

4) (https://copilot.cloud.microsoft)

Purposes include:

1) To improve the text and correct the grammatical mistakes.

2) To maintain the academic style and tone in the text.

3) To enhance the clarity of explanations in the text.

4) To get suggestions for structuring content.

5) To fix the bugs in the code.

6) To get suggestions on Azure specific code. For example, Azure CLI Commands.

https://app.grammarly.com/
https://gemini.google.com/app
https://chatgpt.com/
https://copilot.cloud.microsoft/

44

7 Reference List

[1] D. Khurana, A. Koli, K. Khatter and S. Singh, "Natural language processing: state of the

art, current trends and challenges," Multimedia Tools and Applications, vol. 82, no. 2023.

[2] A. Pathak, "Named Entity Recognition (NER) Explained in Layman’s Terms," 2023.

[Online]. Available: https://geekflare.com/named-entity-recognition/.

[3] P. Bose, S. Srinivasan, W. C. S. IV, J. Palta, R. Kapoor and P. Ghosh, "A Survey on

Recent Named Entity Recognition and Relationship Extraction Techniques on Clinical

Texts," Applied Sciences, vol. 11, 2021.

[4] T. Nguyen, "9 Significant MLOps Challenges and Lessons Learned," [Online]. Available:

https://www.neurond.com/blog/mlops-challenges-solutions.

[5] Datacamp, "The Past, Present, and Future of MLOps," 2021. [Online]. Available:

https://www.datacamp.com/blog/the-past-present-and-future-of-mlops.

[6] R. M. Ratwani, J. Reider and H. Singh, "A Decade of Health Information Technology

Usability Challenges and the Path Forward," 2019. [Online]. Available: https://sci-

hub.se/downloads/2019-02-05//d0/10.1001@jama.2019.0161.pdf.

[7] K. Salama, J. Kazmierczak and D. Schut, "Practitioners guide to MLOps: A framework for

continuous delivery and automation of machine learning.," 2021. [Online]. Available:

https://services.google.com/fh/files/misc/practitioners_guide_to_mlops_whitepaper.pdf.

[8] A. Bodor, M. Hnida and D. Najima, "MLOps: Overview of Current State and Future

Directions," Lecture Notes in Networks and Systems, vol. 629, 2023.

[9] M. Senapathi, J. Buchan and H. Osman, "DevOps Capabilities, Practices, and Challenges:

Insights from a Case Study," Proceedings of the 22nd International Conference on

Evaluation and Assessment in Software Engineering, vol. Part F137700, pp. 57-67, 2018 .

[10] D. Kreuzberger, N. Kühl and S. Hirschl, "Machine Learning Operations (MLOps):

Overview, Definition, and Architecture," 2022. [Online]. Available:

https://arxiv.org/abs/2205.02302.

[11] G. Symeonidis, E. Nerantzis, A. Kazakis and G. A. Papakostas, "MLOps -- Definitions,

Tools and Challenges," in In Proceedings of the 12th IEEE Annual Computing and

Communication Workshop and Conference (CCWC 2022) (pp. 1-6). IEEE., 2022.

45

[12] V. Moskalenko and V. Kharchenko, "Resilience-aware MLOps for AI-based medical

diagnostic system," 2024.

[13] H. IT, "What is an electronic health record," [Online]. Available:

https://www.healthit.gov/faq/what-electronic-health-record-ehr.

[14] C. Wen, T. Chen, X. Jia and J. Zhu, "Medical Named Entity Recognition from Un-labelled

Medical Records based on Pre-trained Language Models and Domain Dictionary," 2021.

[15] I. Pilán, P. H. Brekke and L. Øvrelid, "Building a Norwegian Lexical Resource for Medical

Entity Recognition. To appear in Proceedings of the 2nd workshop on Multilingual

Biomedical Text Processing (MultilingualBIO)," 2020.

[16] J. Schjøtt, L. Reppe and P. Roland, "A question–answer pair (QAP) database integrated

with websites to answer complex questions submitted to the Regional Medicines

Information and Pharmacovigilance Centres in Norway (RELIS): a descriptive study,"

2012.

[17] M. Honnibal and I. Montani, "spaCy 2: Natural language understanding with Bloom

embeddings, convolutional neural networks and incremental parsing.," 2017.

[18] M. Askar, "Automated medical entity recognizer for Norwegian language text". A

Disclosure Of Invention (DOFI) application submitted to The Arctic University of Norway

- UiT. Unpublished.," 2023.

[19] J. Heddes, P. Meerdink, M. Pieters and M. Marx, "The Automatic Detection of Dataset

Names in Scientific Articles," 2021.

[20] Microsoft, "Subscriptions, licenses, accounts, and tenants for Microsoft's cloud offerings,"

2023. [Online]. Available: https://learn.microsoft.com/en-us/microsoft-

365/enterprise/subscriptions-licenses-accounts-and-tenants-for-microsoft-cloud-

offerings?view=o365-worldwide.

[21] S. Singh, K. R. Ramkumar and A. Kukkar, Analysis and Implementation of Microsoft

Azure Machine Learning Studio Services with Respect to Machine Learning Algorithms.,

Springer, Singapore, 2023.

[22] M. Learn, "Medical data storage solutions," [Online]. Available:

https://learn.microsoft.com/en-us/azure/architecture/solution-ideas/articles/medical-data-

storage.

46

[23] Microsoft, "What is Azure DevOps?," 2024. [Online]. Available:

https://learn.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-

devops?toc=%2Fazure%2Fdevops%2Fget-started%2Ftoc.json&view=azure-devops.

[24] marcmercier and mauro-msft, "Azure App Service Patterns and Features for the Azure

Well-Architected Framework," 2022. [Online]. Available:

https://techcommunity.microsoft.com/t5/fasttrack-for-azure/azure-app-service-patterns-

and-features-for-the-azure-well/ba-p/3696156.

[25] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah and P. Merle, "Elasticity in Cloud Computing:

State of the Art and Research Challenges," 2018.

[26] B. Eken, S. Pallewatta, N. K. Tran, A. Tosun and M. A. Babar, "A Multivocal Review of

MLOps Practices, Challenges and Open Issues," 2024.

[27] S. Lehrig, H. Eikerling and S. Becker, "Scalability, Elasticity, and Efficiency in Cloud

Computing:a Systematic Literature Review of Definitions and Metrics," 2015.

[28] Microsoft, "Manage Azure resource groups by using the Azure portal," 2023. [Online].

Available: https://learn.microsoft.com/en-us/azure/azure-resource-

manager/management/manage-resource-groups-portal.

[29] "Streamlit • a Faster Way to Build and Share Data Apps," [Online]. Available:

https://streamlit.io/.

[30] P. D. Tender, "Azure DevOps vs GitHub: Which DevOps Tool Should You Choose?,"

2023. [Online]. Available: https://www.sitepoint.com/azure-devops-vs-github/.

[31] Micorsoft, "Connect to Azure by using an Azure Resource Manager service connection,"

2024. [Online]. Available: https://learn.microsoft.com/en-

us/azure/devops/pipelines/library/connect-to-azure?view=azure-devops.

[32] Microsoft, "Deploy and manage resources in Azure by using JSON ARM templates,"

[Online]. Available: https://learn.microsoft.com/en-us/training/paths/deploy-manage-

resource-manager-templates/.

[33] D. Rendón, Building Your Environment with Azure DevOps and ARM Templates, Apress,

Berkeley, CA, 2022.

[34] D. Bundor, "Using ARM Template to Deploy an Environment in Azure," 2023. [Online].

Available: https://medium.com/@danielbundor91/using-arm-template-to-deploy-an-

environment-in-azure-c3bf101bbb03.

47

[35] Datascientest, "Azure DevOps Pipeline YAML: why configure CI/CD pipelines with

YAML?," 2023. [Online]. Available: https://datascientest.com/en/azure-devops-pipeline-

yaml-why-configure-ci-cd-pipelines-with-yaml.

[36] Microsoft, "Use Azure Pipelines with Azure Machine Learning," 2023. [Online].

Available: https://learn.microsoft.com/en-us/azure/machine-learning/how-to-devops-

machine-learning?view=azureml-api-2&tabs=arm.

[37] K. L. Curve, "CONTINUOUS INTEGRATION AND DEPLOYMENT WITH AZURE

DEVOPS PIPELINES," 2023. [Online]. Available:

https://kenslearningcurve.com/tutorials/continuous-integration-and-deployment-with-

azure-devops-pipelines/.

[38] S. Garg, P. Pundir, G. Rathee, P. Gupta, S. Garg and S. Ahlawat, "On Continuous

Integration / Continuous Delivery for Automated Deployment of Machine Learning

Models using MLOps," 2022.

[39] Microsoft, "Set up MLOps with Azure DevOps," 2023. [Online]. Available:

https://learn.microsoft.com/en-us/azure/machine-learning/how-to-setup-mlops-

azureml?view=azureml-api-2&tabs=azure-shell.

[40] Microsoft, "Microsoft-hosted agents," 2024. [Online]. Available:

https://learn.microsoft.com/en-us/azure/devops/pipelines/agents/hosted?view=azure-

devops&tabs=yaml.

[41] P. Documentation, "pytest fixtures: explicit, modular, scalable," [Online]. Available:

https://docs.pytest.org/en/6.2.x/fixture.html.

48

	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	2 NLPOps Approach
	2.1 The Automated Medical Entity Recognition Model
	2.1 System Architecture Design
	2.2 Cloud vs On-premises solutions for MLOps in Healthcare
	2.3 MLOps based AMER Model Integration
	2.4 Creating a Resource Group
	2.5 Deployment of AMER model demo application.
	2.6 Creating Azure Application Service
	2.6.1 GitHub Action Initialization
	2.6.2 Running the demo application

	2.7 Setting up Azure DevOps Configuration
	2.7.1 Connecting Azure DevOps with Azure Subscription
	2.7.2 Creating an automated AML environment
	2.7.3 Defining the variables for IaC pipeline

	2.8 Infrastructure as Code pipeline
	2.9 Continuous Integration Pipeline
	2.9.1 CI pipeline tasks
	2.9.2 Installing Azure Command Line Interface
	2.9.3 Creating AML Workspace
	2.9.4 Defining AML compute
	2.9.5 Defining the variables for CI pipeline
	2.9.6 Registering the dataset
	2.9.7 Running the CI pipeline
	2.9.8 Make a model directory

	2.10 Training the AMER model
	2.10.1 Running the training script
	2.10.2 AMER model performance monitoring
	2.10.3 Registering the model
	2.10.4 Downloading the latest version of AMER model
	2.10.5 Copy multiple directories
	2.10.6 Publish pipeline artifacts

	2.11 Continuous Deployment Pipeline
	2.11.1 Define Python Version
	2.11.2 Add AML extension
	2.11.3 Deploy to Azure Container Instance
	2.11.4 Installing requirements
	2.11.5 Running Unit Test for staging
	2.11.6 Publish Test Results for staging
	2.11.7 Manual Testing

	2.12 Deployment to production
	2.12.1 Creating environment in AML
	2.12.2 Creating a Production Endpoint

	2.13 Simulation for integration of AMER model
	2.13.1 Challenges faced
	2.13.2 Solutions Implementation

	3 Evaluation and Results
	3.1 Model Performance Evaluation
	3.1.1 Results
	3.1.2 Discussion
	3.1.3 Implications and Recommendations

	3.2 Operational Efficiency and Scalability
	3.2.1 Results
	3.2.2 Evaluation Methodology
	3.2.3 Discussion

	3.3 Deployment Time and Cost Effectiveness
	3.3.1 Cost Analysis
	3.3.2 Discussion

	4 Integration of AMER Model in Hospital Infrastructures
	5 Conclusion
	6 Appendices
	6.1 Declaration of the Usage of Artificial Intelligence

	7 Reference List

