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Abstract 

Integrating Machine Learning (ML) models into healthcare system, especially by Natural 

Language Processing (NLP), holds tremendous potential for improving hospital workflows and 

patient outcomes. This thesis presents the challenges and deployment of an NLP model, 

Automated Medical Entity Recognition (AMER), designed to extract medical entities from clinical 

text, within in cloud-based Machine Learning and Operations (MLOps) workflow. The aim of this 

thesis was to create a scalable, secure and efficient deployment pipeline that can meet the strict 

data privacy and compliance requirements of clinical environments.   

The AMER model was already developed as local system, we reconfigured it for deployment on 

Microsoft Azure by utilizing an automated MLOps pipeline. The pipeline automates crucial stages 

like disaster management, model testing and deployment, minimizing the deployment from 2-3 

hours to 20-30 minutes. Cost analysis showed that an initial configurations cost of $570 and on-

going monthly operational expenses ranged between $262 during low workload conditions and 

$342 during high workload periods.  

The AMER model attained an accuracy of 91.8% locally and 90.4% in the cloud with precision, 

recall and F1 score above 88% in both environments. Furthermore, optimization techniques were 

also performed that reduced latency from 450 milliseconds to 180 milliseconds, meeting the target 

limit of under 200 milliseconds for real-time hospital use.  

Resource utilization and cost efficiency of AMER were evaluated across different workloads to 

test dynamic scaling of the system. At low demand (10 request per second), the Central Processing 

Unit (CPU) usage was 15% with the expense of $1.20 per hour, at medium demand (50 request 

per second) the usage of CPU increased to 35% costing $3.80 per hour and at the high demand 

(100 request per second) CPU was utilized at 65% with the cost up to $6.40 per hour. This adaptive 

scaling provided by the cloud reduces the expenses during the low workload periods and scales 

resources for high workloads conditions. 

While the deployment using cloud provides operational advantages, this thesis discuss the 

challenges of integrating MLOps in clinical environments where on-premises secure data centers 

are often prioritized. A proposed path for further development includes using hybrid and private 

cloud system that allow healthcare providers to utilize MLOps based automation while 

maintaining compliance with local regulatory standards.  

This thesis contributes to advancements in MLOps in healthcare by showing how cloud-based 

automation and deployment can improve the efficiency, scalability  and reliability of ML models 

in hospital applications. However, further investigations and enhancements are needed for 

compliant integrations of ML-driven technologies in healthcare.  
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1 Introduction 

In recent years, the integration of Machine Learning (ML) in medical care has transformed how 

complex data-related tasks like information retrieval and decision-making support are conducted. 

However, deploying ML models in real-world settings for tasks involving Natural Language 

Processing (NLP) brings its own challenges. NLP, which is a branch of Artificial Intelligence (AI), 

has gained a lot of attention due to analyzation of the human languages and have many applications 

in information retrieval, summarization and medical related tasks [1]. Name Entity Recognition 

(NER) is a subfield of NLP with the goal of identification and classification of different named 

entities in a text into already established categories [2]. Although NER has made great progress in 

the medical domain, grabbing the interest of many clinicians, who want to extract meaningful 

information from unstructured clinical texts, yet there remains a critical need to deploy these 

solutions due to technical and regulatory challenges [3].  

Implementing NLP systems in healthcare faces distinct challenges, specifically when managing 

sensitive data that must comply with strict regulatory requirements like General Data Protection 

Regulation (GDPR) and Health Insurance Portability and Accountability Act (HIPAA). The issues 

include making the system scalable, secure, and able to integrate with existing health 

infrastructure. While NLP has demonstrated potential across various field, applying it in the field 

of medical care demands solutions that can handle data safely within regulatory limits.  

Despite the growing advancement in the world of ML, there remains a gap between the model 

development and its successful deployment into production environments, especially when it 

comes to research-based projects. Many promising ML models fail to be deployed from research 

to real world usage due to the lack of focus on the best practices of MLOps. Research highlights a 

few challenges that hinder this transition, including a shortage of data science expertise, data 

quality issues, and the complications of managing ML models in production environments [4]. 

MLOps, which unites the automation and operation of ML workflows, is often left unnoticed in 

research-based projects, as the focus tends to be on model innovation and accuracy rather than 

sustainability and scalability in production [5].    

While MLOPs frameworks are successfully utilized in other domains and even for NLP on health 

data, these solutions are not often adopted to the Norwegian healthcare context. Additionally, 

many of these frameworks are not fully available for research proof-of-concept projects which are 

typically limited in resources and scope. An important issue is that the existing solution often fail 

to align with the specific expectations of clinical workflows and the users, which results in limited 

adoption in real-world healthcare settings  [6].  

The lack of MLOps practices often end up to uncoordinated development process and making it 

hard to deploy, monitor and maintain ML model properly [7]. Many researchers lack the leadership 

and organizational support to apply scalable MLOps frameworks which further contributes to the 

gap between model creation and deployment. As research papers stress on formalizing and 

automating ML lifecycles – from the collection of data to the deployment of model– through 

MLOps can improve the success rate and efficiency of ML projects [8]. Without an organized 

Continuous Integration and Continuous Deployment (CI/CD) pipeline for an ML model, many 

projects remain confined to research settings, hence limiting their real-world impact.   
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This thesis focuses on challenges involved in deploying ML models, specifically NLP models like 

AMER, in hospital environments. The challenges addressed include:  

1) Deployment of ML models in healthcare needs strict compliance to data protection 

standards, like GDPR. Making sure that patient sensitive data is securely maintained 

through the MLOps, especially in the cloud environment was the focus of this thesis.  

 

2) Clinical settings require systems that can handle large amounts of data with low latency. 

This thesis finds out how to build a cloud-based system for the AMER model that can scale 

automatically to meet the demands while keeping response time within clinically 

acceptable range.  

 

3) Classical deployment processes for ML can be more time consuming and prone to human 

errors. By implementing an MLOps-based workflow with CI/CD pipelines, the thesis 

automates operational tasks of AMER, including model testing and deployment and 

reduces the deployment time. 

 

4) This thesis also analyzes the complexities of integrating AMER model with already 

existing hospital systems, showing the technical modifications required for interoperability 

with in secure on-premises environments common in hospitals.  

 

The one and the most relevant related work to this thesis is the ongoing project that focus on 

integrating the AMER with hospital systems through Distributed Information and Patient Data 

System in Hospitals (DIPS). The project plans on deploying the AMER model within hospital 

settings using a microservice architecture, enabling compatibility with existing hospital systems.  

However, this work does not completely address the all the operational challenges discussed in 

this thesis Although it focuses on data protection, regulatory standards and compatibility with 

hospital system, it still misses the MLOps framework required to support automated and 

continuous model training, testing, deployment and monitoring. This related work is primarily 

centered around secure integration rather than optimizing the AMER model for real-time 

performance, scalability and automated workflow management in hospital environments.  

This thesis provides a cloud-based MLOps solution to simplify the deployment, management and 

scaling of AMER model in clinical settings. Utilizing the automation and flexibility of cloud 

provider, the solution handles the challenges including real-time performance and secure data 

handling. By integrating automated CI/CD pipelines, real-time monitoring and auto-scaling, this 

system ensure the AMER model to function efficiently under changing workloads and simplify 

maintenance and updates. This MLOps based approach enables that the model remains reliable, 

accurate and adaptable, laying the foundation for practical use of medical NER in hospital 

environments.  
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The proposed solution was evaluated across multiple aspects, including deployment efficiency, 

cost effectiveness, real-time processing and model performance to enable it meets the demands of 

hospital environments. The findings from the evaluation showed significant improvements: 

1) Initially, deploying the AMER model took 2-3 hours as it was done manually. With the 

implementation of an automated CI/CD pipeline, the deployment time reduced to 20-30 

minutes, which is more than 75% improvement. This reduction speeds up the AMER model 

updates, reliability and minimizes human errors.  

 

2) The cost examination covered initial configurations, ongoing monthly maintenance and 

computational expenses. The initial configuration expense for deploying AMER on Azure 

was $570, which included setting up the CI/CD pipeline, computation resource and cloud 

storage. Monthly operational cost was $342 and $262 in high and low workloads 

respectively, showing the scalability and flexibility provided by the cloud-based 

autoscaling. Azure Virtual Network (VNet) and real-time monitoring costs were also added 

for secure and efficient model functionality. 

 

3) The AMER model’s accuracy, precision recall and F1 score were analyzed in local and 

cloud environments. The AMER model achieved an accuracy of 91.8% in local and 90.4% 

in the cloud environments, with the F1 score as 91.1% and 89.6% in the local and cloud 

environments respectively. These performance metrics verified the AMER model’s ability 

to keep high performance across different environments.  

 

4) Resource usage and cost efficiency were evaluated for AMER across different workload 

to examine the system’s ability to scale responsively. Under low workload periods (10 

requests per second), the CPU usage was minimum at 15%, resulting in low expense of 

$1.20 per hour. In the medium workload periods (50 requests per second), CPU utilization 

was 35% and the system automatically scaled, leading to the cost of $3.80 per hour. During 

high workload conditions (100 requests per second), CPU usage reached to 65% with 

further auto-scaling to maintain performance and costed $6.40 per hour. This capability of 

the cloud to automatically adjust computational resources based on workloads enabled cost 

efficiency and effective resource management, with low expense in the low-demand times 

and increased capacity during high demand conditions.  

 

The results showed that deploying the AMER model on cloud-based infrastructure gives 

significant benefits in terms of cost-effectiveness and efficiency. The automated CI/CD pipeline 

simplified the AMER model deployment process, minimizing the time and reducing the error 

while supporting faster and reliable model updates. The cloud ability to scale automatically 

allowed for optimized computational resources usage, enabling the system to handle fluctuating 

workloads and controlling cost. 

However, while the cloud providers offer these operational benefits integrating MLOps in hospital 

settings presents more challenges due to data protection requirements and priority of in-house data 

centers. A proposed way to move forward includes exploring hybrid and private cloud services, 
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which would allow hospitals to take advantage from MLOps automation while keeping 

compliance with regulatory standards. This method provides feasible pathway for deploying 

MLOps workflows in secure clinical settings, clearing the path for broader adoption of ML health 

applications.   

In the following sections, this thesis is structured as follows:  

Chapter 2: NLPOps Approach, describe the AMER model, its integration with Azure platforms 

and technical side of our implementation.  

Chapter 3: Evaluation and results, covers the metrics and methods to evaluate the performance of 

the AMER. 

Chapter 4: Explores the ongoing and the most related work: the AMER model integration in 

hospital.  

Chapter 5: Conclusion, summarize the findings.  
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2 NLPOps Approach  

Development and Operations (DevOps) is a set of practices that aim at improving collaboration 

between software developers and operations team with the goal of faster and reliable software 

delivery [9]. DevOps focuses on automation, continuous integration, continuous deployment 

which make it easier to manage and update software in production settings.  

MLOps, is known as “DevOps for ML”, builds on these principles that address the challenges of 

managing and automation of ML applications in production. MLOps is important because it handle 

the challenges that are unique to ML workflows, like model retraining, deployment of updated 

models and version control, which make sure ML models remain reliable and accurate with the 

passage of time [10]. 

NLPOps, which is a name given to this thesis, is same as MLOps but focuses on the automation 

and operational issues of deploying NLP models. In the NLP applications that involves medical 

data, NLPOps focuses on the need to a secure, scalable and compliant deployment.  

MLOps plays an important role in the development and deployment of ML model, especially in 

scenarios like healthcare where reliability and accuracy are crucial. In this thesis, we focus on 

medical NLP applications as a case study, with AMER as an example. AMER is an ML model 

that is designed to identify medical entities such as substances, side effects and diagnosis from 

medical text which help clinicians in their decision-making.  

For a model like AMER, which must function with high accuracy to prevent serious mistakes like 

incorrect diagnosis, MLOPs assures that any model updates are tested automatically and deployed 

safely with minimum human intervention [11]. This automation reduces the risk and time related 

to manual updates. Moreover, MLOps simplifies the scaling of ML models, which is important for 

medical applications that handle large amount of medical data. Through cloud services, MLOPs 

enables models like AMER to adjust to changing workloads while maintaining consistent 

performance [12]. This makes sure that the system can keep on helping clinicians continuously, 

when as demand for data processing increases.    

In this section, we discuss the AMER model, the tools, technologies and the steps followed to 

achieve the objectives of this thesis. 

2.1 The Automated Medical Entity Recognition Model 

In medicine, it is very important for the professionals working in the field to take history from the 

patient and record it in the form of a document. These documents can then be used to identify 

things like side effects, drugs and to diagnose a disease in a written text. This method of 

identification is slow and manual which can be prone to error. The Electronic Health Record (EHR) 

has enabled us to electronically keep the record of patients making it more secure and instantly 

available to authorized people [13]. Therefore, now we can find advanced ways to solve this 

problem.  

The EHR contains a lot of amounts of data but most of this data is unstructured which makes it 

difficult to examine and extract key medical insights. Medical NER is a form of NER that can 
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utilized on the history of a patient to identify drugs, diseases and symptoms in an EHR [14]. By 

identifying relevant entities in EHR, medical NER helps to turn the unstructured data into structed 

format, which makes data analysis more efficient.  

In medical NER, an ML model is trained on a dataset, which has specific medical terms labelled. 

Once the model is trained, applications use Medical NER to automate tasks which not only helps 

clinicians but medical research. Due to language differences, specific models should be trained for 

each language as every language has its own grammar, sentence structure and punctuation. Then 

to train such a model, a big, annotated dataset is needed which has been labelled into predefined 

categories such as substance, disease and medicine. Moreover, annotating such dataset is a manual 

process which takes a lot of time.  

In this regard, a AMER model for Norwegian medical text has been recently developed at the 

Department of Pharmacy of UiT. This model can predict the entities in the text provided to it. To 

the best of our knowledge a system like this which automatically annotates a dataset is new and is 

not implemented before for Norwegian language so far. 

The development of the AMER model started by utilizing the NorMedTerm list, which consist of 

77.000  unique medical entities in Norwegian together with a dataset from Regionalt 

legemiddelinformasjonssenter (Regional Drug Information and Pharmacovigilance Centre; 

RELIS), a compilation of 36 thousand question-answer pairs that are related to medicine from 

health professionals [15] [16].  

To clean and preprocess the data, spaCy library is utilized which offers capabilities when it comes 

to NLP [17]. The NER module in spaCy is supported by multilayer Convolutional Neural 

Networks, is used to train the annotated dataset.  
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Figure 1 below shows detailed explanation of the steps taken to develop the AMER model. The 

development pipeline starts with data processing, where entities and terms are cleaned from RELIS 

and NorMedTerm list. The spacy Entity Ruler is then used to annotate these entities within the 

dataset, which creates a labelled dataset. The labelled dataset is divided into 80% for training and 

20% for testing of the AMER model. Finally, after training, the AMER model can accurately 

recognize entities in Norwegian text. The AMER model can then be saved and implemented to 

identify entities in other medical texts in Norwegian.  

 

Figure 1: An illustration of the pipeline of Norwegian medical AMER model [18]. 

Automatic data annotation has an immense impact on the AMER model, as it streamlines the 

training pipeline and ensures data annotation to be more consistent and robust [19]. As a result, 

this trained AMER model for Norwegian text offers a range of applications that effect both medical 

professionals and researchers. The model can be used in real-time and batch processing scenarios 

depending upon the requirements.  

For clinical use, AMER can be integrated into hospital infrastructure to perform queries for patient 

history summarization, aiding diagnosis support and clinical data extraction. For example, when a 

clinician is looking for a patient file, the AMER model can recognize and extract medical entities 

from EHR.  

Applications can differ between one-off queries for specific patients or daily usage applications 

that run consistently across large patients’ databases. For instance, the AMER model can be used 

for extracting entities relevant to individual patients. On the other hand, it can be applied to all 

patients in a clinic or hospital, automating data analysis on a large scale for quality improvement 

or research.  

For research applications, the AMER model can help in literate search and medical text indexing, 

which can speed up the process of extracting terms from large amounts of unstructured data. This 

can be useful for researchers in clinical fields, who need to screen through large dataset to identify 

correlations.  
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2.1 System Architecture Design 

We used prototyping as a design method to define the architecture for the development and 

deployment workflow of the AMER model using MLOPs best practices. This way of design 

method allowed us to quickly create and validate different working designs to find the optimal 

workflow of our system. For this thesis, we used Microsoft Azure (MSA) for MLOps based 

implementation, and its subscription was provided by the informatics department of UiT. 

MSA has a range of services that are used to combine all the components of ML and start running 

the life cycle of ML operations. The figure 2 below shows an overview of how different platforms 

integrate in Azure to support MLOps workflow. The connection of each component shows the 

process for developing, testing, deploying and maintaining ML models. 

 

Figure 2: Overview of the Azure Platforms supporting NLPOps Workflow. 

The Azure subscription, which was managed by us, serves as an entry point into the environment 

of Azure and allow us to use its different services [20]. Each organization using the AMER model 

may have its own subscription, which gives security mechanisms like role-based access control, 

enabling that only authorized people can have access to the model and data. In our case, we kept 

only one subscription which helped us control and manage costs by tracking resource usage for 

the AMER model deployment evaluation.   

Azure Machine Learning Studio (AMLS) is a platform used in this project for building, deploying 

and maintaining AMER model. By AMLS we managed dataset, trained the model and deployed it 

as an Application Program Interface (API) [21].  

In the AMER case, the preprocessed data, training dataset and output during predictions are stored 

inside Azure Blob Storage, which is a type of data storage in Azure’s data store. This storage is 

used to securely manage sensitive medical data, assuring compliance and provides access to 

necessary data for a model lifecycle  [22]. Azure DevOps acts as a main source code repository 

and enables CI/CD automation pipelines for each stage of AMER model workflows. This setting 

enables that changes are tested and deployed consistently [23]. Azure App Service (AAS) is 



9 

 

 

  

utilized to deploy the AMER model’s front-end application and integrates well with other Azure 

Services [24]. 

To support scalability and flexibility for multiple applications of AMER, the design uses cloud 

platforms multi-tenant capabilities in which each instance can be managed separately, Azure 

DevOps pipelines for deployment and version control, AMLS for model versioning, and AAS for 

front-end applications deployment. As shown in the figure 3 below, Azure and GitHub are the two 

main services utilized here for the automated development and deployment of the AMER model.   

 

Figure 3: System Design Architecture for AMER model. 

The User Interface (UI) part of the application is separated by the original AMER model to keep 

the system flexible and understandable. GitHub is used as a version control tool to manage the UI, 

and its deployment will be automated using GitHub actions. This means that every time a new 

version of the UI part of the code is ready to be shipped to the production, there won’t be any need 

to manually perform any task. As the code is pushed, an automated pipeline will be initialized, and 

the new version will be in production.   

Azure DevOps is also a version control tool which we used specifically for the AMER model part 

of our system. It can easily integrate with Azure Machine Learning (AML) using an automated 

pipeline. We will be utilizing Azure DevOps for the Infrastructure as Code (IaC) and CI/CD 
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pipeline of our AMER model. The IaC pipeline will create an environment in AML for the AMER 

model and CI pipeline will perform the tasks including running unit tests, creating computes and 

uploading the dataset. The source code of the AMER model will be in Azure DevOps but the 

model itself will reside inside AML from where it will be monitored and managed. After the model 

in developed in AML a release pipeline will be initiated that will deploy the model 

When the model is deployed it will generate an end point. These end points will be only authorized 

to specific users which will add an extra security layer to the system using Azure Key-based. The 

secure end points can then be accessed by the UI application and the users can get real time 

predictions.  

Once the system is fully deployed and the results from the evaluation are available, we will try to 

further optimize the designed solution. Potential optimizations include implementing caching 

solutions for frequently accessed task and refining auto-scaling to handle different workloads 

effectively.  

2.2 Cloud vs On-premises solutions for MLOps in Healthcare 

Utilizing cloud services in MLOps offers technical and operational advantages that are difficult to 

recreate in on-premises environments. This thesis uses cloud-based MLOps solutions to handle the 

needs in automation, scalability, compliance and resource management.  

Cloud providers gives on-demand scalability, allowing this thesis project to smoothly manage 

storage and computing resources based on workload demands. This flexibility confirms that 

resources are available during peak time without facing the high costs of dedicated hardware. By 

scaling up or down as required, the thesis prevents the waste of underutilized resources during 

low-demand time [25].  

The cloud has integrated CI/CD pipeline tools personalized for ML workflows, which contains 

version control, automated model retraining and deployment across different environments 

(development, staging and production). In this thesis, these cloud-based CI/CD abilities improves 

model updates and deployments, making certain that new AMER model versions  are tested and 

deployed properly. Without the cloud, building such a pipeline would need manual integration of 

separate tools, adding more difficulty [26]. 

Cloud services provide real-time monitoring and simplify management of resources, both are 

important for MLOps in healthcare. This thesis gets automated infrastructure management through 

Infrastructure as a Service (IaaS) by the cloud, which removes the need for content maintenance 

and hardware upgrades. Real-time monitoring enables resource utilization, potential security 

threats and tracking model performance, which enables smooth and secure functionality [27]. 

Cloud systems come with built-in compliance and security features, including encryption and 

regulatory compliance frameworks like GDPR. In this thesis, the cloud security protocols assure 

that medical data is handled in secure and compliant manner. Reproducing these levels of security 

on-site would need investment and dedicated security resources, which organizations find 

impractical.  
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In the context of MLOps, many organizations choose external cloud providers due to the 

scalability, monitoring capabilities and convenience that they offer for ML applications. Cloud 

services like Microsoft Azure, Amazon Web Services and Google Cloud provide ready-to-use 

infrastructures and tools like model deployment, automated scaling, and real-time monitoring, 

which would be costly and complex to implement them on-site. These services also has global 

availability zones, which make sure disaster recovery and high availability.  

 For health organizations, data privacy and compliance regulations are important. Many hospitals, 

clinics and research institutions choose cloud operators with data center in their own county to 

comply with local regulatory standards like GDPR and HIPAA. By this way, these organizations 

can confirm that national legal requirements are met, and patient data is stored locally and is secure 

with their own control.   

On the other hand, some organizations prefer open-source solutions, which gives more control 

over data and avoid vendor lock-in. However, this case needs more people to manage 

infrastructure, handle updates and scalability.  

A small number of organizations, including hospitals, rely completely on in-house data centers. 

This approach allows them to have full control over data lifecycle without relying on an external 

cloud service. Although this approach improves privacy and control, yet it can create challenges 

in maintaining up-to-date infrastructures and scaling ML operations as data processing demands 

increase.   

2.3 MLOps based AMER Model Integration 

The below figure 4 shows MLOps based model integration design that we will utilize for the 

AMER Model. Each module listed in the figure belongs to one or another component of figure 3. 

For instance, the CI/CD pipelines and model validation belongs to Azure DevOps, Prediction 

Service belong to AAS and the rest of the tasks are part of AMLS. Moreover, this sub-section 

explains how different components are connected to create an MLOps lifecycle.  

 

Figure 4: AMER Model MLOps based Integration Design. 
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The process will start by the ingestion of open access medical data, which will be cleaned and 

pre-processed to create an annotated dataset in the cloud. This step is important to validate the 

data fed to the AMER model is clean, structured and ready for analysis.  

The feature store is a main repository in AMLS that stores preprocessed and features that derived 

from the clinical text. It provides reusable and consistent data for both model experimentations 

and production. As seen in the figure 4 above the Feature Store continuously provide prepared data 

for the data ingestion task. In this system the model updates can be planned based on approaches 

called manual, periodic and continuous.  

In manual approach, updates are initiated by the data scientists only when required, depending 

upon when significant changes are needed, or new data is available. This approach gives more 

control when the model is updated but it can delay model improvements. Periodic updates is when 

the model can be set to retrain after some planned time to assure it remains current. This approach 

is a balance which allow the model to adapt to new trends in the data without overwhelming the 

system with constant retraining. Finally, with continuous updates, the model could be updated and 

retrained as new data comes into the feature store. By this approach the model is always using the 

latest data, but it comes with high computational cost. For this thesis, we choose manual approach 

to keep the cost low and as it was a just the beginning and starting point for the release of AMER 

model in production, therefore we wanted to keep it basic.  

The core of this system will be Automated Pipeline, where the tasks like data extraction, data 

verification, model training and model evaluation will be carried out. Data extraction involves 

pulling relevant data to prepare it for training. Data verification is when the dataset is checked for 

quality and completeness. Once verified, the data is then used to train the model. After training the 

model, it is evaluated with unit tests to access it’s working. This pipeline will automate the AMER 

model lifecycle and will be designed to be repeatable and scalable. 

Once the AMER model is trained and tested, it will be stored in the Model Registry, which keeps 

track of all the versions of the model. This Model Registry will be important to enable notifications 

on model updates and will also help us decide to select the best version of AMER model gets in 

production. Once we have more than one version of AMER model, the model registry interface in 

AMLS provides us with an interface with the model’s name, its version and different matric 

including accuracy, precision and response time. Then based on these metrics we can select which 

model version to choose but for this thesis we will train the model once.  

The CI/CD will automate the deployment of AMER model in different environments. After the 

model is packaged, tested and validated, it will be deployed via CD pipeline. The AMER model 

will be available as a secure endpoint that will integrate with clinical infrastructure.  

The AMER Models Serving component will allow the trained model to process the real medical 

data and return results. This component will be directly linked with the front-end application, 

simulating how AMER model would be used in actual clinical system.    
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Once the AMER model is deployed and start to serve requests, its performance will be 

continuously monitored using the performance monitoring tools of AMLS. The performance data 

is stored in ML Metadata Store to give feedback for future improvements.  

The trigger starts the entire pipeline when there are conditions like getting new data, periodic 

retraining, or performance feedback showing a need for new version of the model. This mechanism 

helps that the system remain efficient and avoid unnecessary resource use. In our case a new 

pipeline will be triggers as soon as the new code is pushed into Azure DevOps repository.   

This structure will support continuous AMER model improvements and scalability, enabling it to 

reliably process medical data. To summarize our implementation, we started by automating the 

deployment of the demo application of AMER, followed by creating an IaC pipeline for disaster 

recovery and then deploying the AMER model using CI/CD pipelines.  

2.4 Creating a Resource Group 

Once we have a subscription on MSA, the first step was to create a Resource Group. A Resource 

Group is a logical container that organizes and packs together all the assets that are required to run 

a project or an application [28]. It can be created on the Azure Portal by just entering a name, 

selecting the right subscription and choosing the geographical location of the Azure resource.  

After a resource group is created MSA provides you with an interface from where we can view 

and manage all the different Azure services inside this resource group as shown in the figure below.  

 

Figure 5: MSA resource group interface. 

2.5 Deployment of AMER model demo application.  

The AMER model already has a demo web application built on Streamlit, which is an open-source 

framework to build interactive web applications and is specifically designed for machine learning 

and data science applications [29]. Since the model and the web application are coupled together 
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it was important to decouple both and deploy the web application separately on AAS and the model 

on AML.  

Before starting this thesis, the AMER model code existed locally in one machine so the first task 

before deployment was to push the code to a remote private repository. After cleaning the code 

and removing the model part of the code to decouple the system the demo application code is 

pused to GitHub. 

The initial step of the implementation involved moving the existing local code of AMER to a 

remote environment. The code was initially stored in a single computer, so we decoupled the model 

code from the rest of demo application code and pushed it to a GitHub repository.   

As part of the settings, we created a requirements file to include all the dependencies needed for 

the demo application to run. To make these dependencies were separated from any system-wide 

packages, we created a virtual environment for the application. This isolation helps in conflicts 

preventions and replicate the environment, which is important for our smooth implementation.  

For the demo application deployment in this thesis, we utilized GitHub actions as it is simple to 

set up and more user friendly. 

2.6 Creating Azure Application Service 

As part of our system design architecture of AMER and its simplicity to use with other Azure 

services, we used AAS to deploy the front-end application of AMER to serve as a prediction 

service. Therefore, we created a new AAS instance by entering the name of our demo application, 

choosing the right Stock Keeping Unit (SKU), geographical region of the server, and the runtime 

stack. After successful deployment submission we get the dashboard created as shown in the figure 

6 below. This dashboard will help us further manage and monitor the application.  

 

Figure 6: The dashboard of the demo application. 
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The name kept for the demo application was unique since it becomes our Uniform Resource 

Locator (URL) when the application is deployed. Initially, to keep the cost low, we decided to go 

for a free version of SKU but after the initial deployment it was observed that for a Streamlit 

application to run and to have sockets enabled we need to have pricing tier of minimum B1. 

Therefore, we switched the SKU from the free version of F1 to the basic paid version of B1.  

Since the demo application is in Python so we selected our run time stack as python 3.8 and the 

operating system becomes Linux by default. We also choose nearest location as our deployment 

region due to GDPR compliance and data control.  

The next step was to link the GitHub repository with the AAS by first authorizing the GitHub to 

ASS. After entering the current repository name, branch name and enabling continuous integration 

the GitHub and AAS are now linked together.  

For this demo application, we decided to directly deploy the application from the source code as 

it is the most straightforward way that offers simplicity. The other ways of publishing the 

application include docker container or static web app, which can introduce complexities.  

2.6.1 GitHub Action Initialization 

After the initial submission of the deployment a GitHub workflow gets started within our 

repository. A YAML file was created inside the repository which defined all the steps that were 

required to build, test and then deploy the application on AAS. During the build process it installed 

all the dependencies that we wrote in our requriemnts.txt file. Then, GitHub Actions automatically 

initiated a build process which compiled the code from the repository, ran tests, and generated 

artifacts. The below figures 7 and 8 show the successful build and deploy pipelines that were 

triggered by GitHub actions.  

 

Figure 7: The GitHub Actions Build Pipeline 
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Figure 8: The GitHub Actions Deploy Pipeline 
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2.6.2 Running the demo application 

Although the code is connected and deployed to AAS but still there is a last step we took which 

was to start the application every time the code is deployed. We did it by providing the startup 

command to our server in the configuration settings of AAS. Now we were good to view our demo 

application with a URL. The below figure 9 shows a live version of the demo application with 

CI/CD enabled. Which means that now every time a new line of code is pushed on GitHub, a 

pipeline will be triggered, and a new version of the application will be deployed.  

 

Figure 9: Live demo application deployed with CI/CD 

2.7 Setting up Azure DevOps Configuration 

Azure DevOps is an important component in our system design architecture that we used to create 

automated CI/CD pipelines and for model validation for AMER. Setting up Azure DevOps 

involved steps to build an environment for the development and deployment of AMER model. As 

we had already decoupled the AMER model from the demo web application. Therefore, it was 

much easier to get started with configuring Azure DevOps. Firstly, a private project was created 

with a unique name and a description. When the project was created successfully, a repository with 

the same name was created inside Azure DevOps. We chose Azure DevOps for the development 

and deployment of the AMER model as it preferred tool to use with Azure Cloud [30]. Therefore, 



18 

 

 

  

the second step was to push all the AMER model source code from the local environment on the 

personal computer to Azure DevOps.   

2.7.1 Connecting Azure DevOps with Azure Subscription  

Before moving forward, it was important to connect Azure DevOps with Azure Subscription to 

establish a workflow for the AMER model development and deployment. To do so, we need to 

create a service principle that enables us to perform secure communication between the two 

services. We selected Azure Resource Manager as service connection as it is used to connect to 

Azure DevOps and provides a consistent management layer [31]. Then after selecting the right 

subscription, resource group and entering the name of the service connection, a connection is 

created. When this was done, now our Azure DevOps is authenticated with the AML.   

2.7.2 Creating an automated AML environment 

Our next step was to set up an environment in AML for the development and deployment of AMER 

model. Although we could manually create it but after doing some study, we found out that it was 

highly beneficial to automatically create resources on AML. Using automated way is a best 

practice for disaster recovery, as it allows us to define our environment using IaC [32]. Using this 

way will help us recreate the environment in the same way if we lose this infrastructure and its 

resources.      

2.7.3 Defining the variables for IaC pipeline 

It was important to define the private variables in advance before using them in our IaC pipeline 

because not only it promotes reusability but also allows us to securely store all the sensitive data 

that will be utilized for building the pipeline [33]. We created the following variables in the Azure 

DevOps library as shown in the table below. The base name refers to the name of our project in 

AML and the location is the geographical position of the servers. The service connection name 

and the resource group are the same as we had already created. Finally, the workspace is the main 

environment that we will use for the AMER model, and the workspace service connection is the 

authorization of workspace with Azure resources.    

Table 1: Variables for automated AML environment pipeline 

Name Value 

BASE_NAME nermodel1 

LOCATION germanynorth 

AZURE_RM_SVC_CONNECTION azure-resource-connection 

RESOURCE_GROUP NER-Model-Masters-Thesis 

WORKSPACE_NAME ner-model-ws-1 
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WORKSPACE_SVC_CONNECTION ner-model-ws-connection 

 

2.8 Infrastructure as Code pipeline 

Before starting to build the IaC pipeline, we pushed the decoupled code of AMER model on Azure 

DevOps to keep it in a remote environment.   

After configurations and then linking the pipeline with the script we were able to initiate and 

successfully run the execution. The pipeline execution can be seen in the figure 10 below of Azure 

DevOps along with each step and other related details.  

 

Figure 10: Environment setup pipeline on Azure DevOps 

During this process, we explored and found different ways to create our first automated pipeline 

and to build an environment in AML by Azure DevOps, one way was by using an ARM template 

and other was Azure Pipelines YAML.  

The Azure Resource Manager (ARM) template can be used to deploy environments in the Azure 

as it helps us in the codification of infrastructure using IaC. We can provide different ARM 

templates to the ARM based on the task we want to perform, and the ARM deploys our 

environment on the main level of subscription. The ARM template also supports repeatable 

deployments because of IaC [34]. The below figure 11 shows the flow of ARM templates to create 

an automated pipeline that we used to build an environment in AML.  

For our IaC implementation we choose Azure Pipelines YAML, which works in the same way as 

ARM Template, but we write our own custom script instead using a template. The reason for 

choosing this code first approach in this case was because of its simplicity and flexibility to create 

an environment in AML [35]. 
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Figure 11: ARM flow for AML pipeline. 

Now, we had the environment in which we could start our MLOps journey by building CI/CD 

pipelines. The good thing to notice here is that if our system runs into any disaster, since the 

infrastructure creation is automated, we can easily run this pipeline script that will configure Azure 

DevOps pipeline and re-create a new AML environment.  

2.9 Continuous Integration Pipeline  

After this, our next step was to focus on building the CI/CD pipelines for the automated integration 

and deployment of AMER. As per our MLOPs based AMER model integration design in figure 4, 

we started by building continuous integration pipeline for AMER followed by continuous 

deployment pipeline.  
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A CI pipeline automated the process of our AMER model development. Every time, before a new 

piece of code will be integrated into the main system, it will be automatically tested using this 

pipeline. The new changes to the AMER model can only be made once all the requirements and 

steps in the CI pipeline are successfully completed.  Hence CI pipeline will ensure that our AMER 

model development workflow is efficient and consistent [36]. All our CI pipeline tasks ran 

successfully as shown in the figure 12 below. 

 

Figure 12: Compete CI pipeline of AMER model on Azure DevOps 

To get started we utilized classical editor, which is a graphical interface in Azure DevOps for 

building CI pipeline for AMER model. Previously, we used Azure Pipeline YAML for building 

the IaC pipeline but this time we utilized the classical editor as it is the simpler to integrate unit 

tests and all the other steps into the pipeline by just using the interface [37]. The execution of this 

pipeline will take place as soon as new code will be pushed to the AMER model repository.   

We added the following tasks in the CI pipeline in the classical interface by simply defining the 

type of the task and then executing it using a command to run that task. All the tasks that we will 

define in the interface will be converted to YAML file and saved into our repository. Azure 

DevOps will use this YAML file to execute the pipeline.   

2.9.1 CI pipeline tasks 

The first task we added was to set up a python environment. While installing the environment we 

also specified the version of python to ensure consistency across our system. Therefore, a virtual 

environment was created in which we installed all the dependency packages required by the AMER 

model. Since we have already described all dependency packages for our demo application in the 

requirements file, so we created a new requirements file and just pointed out the file name to be 

executed by the pipeline.  
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While building a CI pipeline it is very important to consider writing unit tests as they verify the 

correctness of every small component that are part of the big ML model code [38]. Verifying each 

part separately of the AMER model will ensure the smooth execution of the whole model code.  

So, to get started we also wrote a basic unit test to verify the creation of the AMER model with a 

small set of predefined data. The result of this unit test will help us to move forward in the 

execution of the pipeline.  

Our next step was to authenticate and connect Azure DevOps, which is the agent that is running 

our AMER model pipeline, to our AML by creating a similar service connection we have already 

created to link Azure DevOps with our subscription. Therefore, we recreated a service connection 

on Azure DevOps but this time with the scope of AML workspace.  

2.9.2 Installing Azure Command Line Interface 

Now when we have connected Azure DevOps with AML, we needed a coding way to write down 

the steps that we need to perform in our pipeline for the development of AMER model. For 

instance, we want DevOps to create a compute on AML, but it is not a human that can create it by 

interacting with AML studio. Therefore, we need a way of coding that will help us do it for the 

development of the AMER model. We can do it by creating an Azure Command Line Interface 

(CLI), that is a terminal-based tool in which we can write down the instructions in Azure DevOps 

and it will create a compute on AML for us [39].  

The AMER model CI pipeline that we are building is running on an Azure Pipeline agent, which 

are responsible to execute the tasks that we have defined. This agent needs to have Azure CLI 

installed beforehand to make sure that we can successfully execute the further steps of the pipeline. 

So before moving forward, we integrated the Azure CLI in the classical editor of our AMER model 

CI pipeline by writing the inline installation script.  

2.9.3 Creating AML Workspace 

The next step was to make sure we have AML workspace already setup. AML workspace is a 

centralized hub which is utilized for maintaining and managing our AMER model artifacts 

including the AMER model itself and its dataset. Although we have already created an AML 

workspace when we ran our IaC pipeline but to follow the best practice, we also integrated it into 

the CI pipeline just in case it does not exist or is destroyed. We wrote an inline script to create an 

AML workspace but since it already existed it was successful by default.  

2.9.4 Defining AML compute 

A compute is a computational resource that will be utilized to execute workflows of our AMER 

model, especially its development and deployment. It will also ensure that these workflows are 

managed and executed properly. Therefore, we wrote another inline script for the creation of a 

compute resource. In this script we also defined the minimum and maximum number of the nodes 

that we want to utilize for horizontal scaling. Finally, to keep the cost low in the beginning, we 

defined the type of compute according to the basic standard and the number of idle seconds of 

compute before it scales down.  
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2.9.5 Defining the variables for CI pipeline 

Since the inline scripts that we had defined contained variables therefore we needed to define them 

in the pipeline variables section separately. The table below shows the variables that we defined 

for our pipeline. The first three variables defined were utilized in the inline script to create AML 

workspace and the rest of the variables defined were used to create a computational resource.  

Table 2: AMER model CI pipeline variables 

Name Value 

azureml.resourceGroup NER-Model-Masters-Thesis 

azureml.workspaceName ner-model-ws-1 

azureml.location germanynorth 

amlcompute.clusterName nermodelcompute 

amlcompute.minNodes 0 

amlcompute.maxNodes 2 

amlcompute.vmSize STANDARD_E96ADS_V5 

amlcompute.idleSecondsBeforeScaledown 300 

 

2.9.6 Registering the dataset  

The data required for the development of the AMER model is stored in our Azure DevOps 

repository, but we need to upload it to the AML where it can be stored and registered. This data 

can be uploaded manually using an AML interface, but we need to automate this task and add it 

as a step in our AMER model CI pipeline. Automating this step will save us a lot of extra workloads 

every time a developer or a data scientist have modified the data and won’t have to manually 

register the data to AML.  

Since we already had Azure CLI installed we wrote an inline script in Azure DevOps that uploaded 

a registered data on the AML. We also specified in the script that if the data already exists in AML 

than create a new version and overwrite that previous AMER model data. As traceability is one of 

the best practices of MLOPs offered by cloud-based solutions therefore, we can see all the versions 

of the data that we have uploaded to AML.  

2.9.7 Running the CI pipeline 

Finally, we were able to successfully execute our AMER model pipeline and each step that we had 

defined was running in a sequential manner. In this pipeline each step was dependable on the next 
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step so if one step failed all the CI pipeline execution is failed. The below figure 13 shows all the 

steps defined and successful execution of our AMER model CI pipeline. After this, we navigated 

to AML Studio where we were able to not only cross verify the creation of the workspace and a 

compute but also that our data is also registered on AML. Finally, this automated CI pipeline 

helped us save a lot of time and avoid errors for the first-time execution and will continue to help 

us whenever we want to have modification of the AMER model.  

 

Figure 13: CI pipeline of AMER model on Azure DevOps 

2.9.8 Make a model directory 

Our last step before the training of model was to make a dumping directory in which we can store 

our trained model while the pipeline is executing. The directory can be used to grab our model, 

register it in AML and then deploy it. So, we added one more step in our continuous integration 

pipeline and wrote an inline bash command that creates a directory for us.   

2.10 Training the AMER model 

Our most important step in the continuous integration was training the model using an automated 

pipeline. We used an inline command to train our AMER model using Azure CLI, which we have 

already installed in our pipeline. Before running the command, we needed to make few changes in 

our AMER model training script to make it more optimized and run in Azure environment. For 

example, we made some changes in the script that were not following Don’t Repeat Yourself 

(DRY) principle and were prone to errors for azure environments. In this way we were able to 

make the script more clean, maintainable and follow best practices. Finally, we added two 

variables in our pipeline which defined the name of experiment and the name of the model that 

will be trained in AML.  
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2.10.1 Running the training script 

Upon running the training script, we faced our first challenge in the execution of CI pipeline. The 

default time limit of each pipeline that runs in Azure DevOps is 60 minutes but the AMER model 

that we were training took longer than 60 minutes. We have been using a very minimum low 

costing compute, which costed us $0.30 per hour, for our pipeline job, so initially we believed it 

was due to low levels of compute. To fix the problem, we tried to increase the compute level by 

changing it with a high-cost compute of $0.80 per hour. So, when we tried to execute the pipeline 

with more powerful compute, we still faced the same problem. When we further investigated the 

issue, we found that we can increase the execution time of the pipeline by utilizing Microsoft-

hosted agents, but it comes with the cost of $40 per month [40]. We knew that the recommended 

best practice of MLOps was to automate the training of the model, but as our goal in this thesis 

was to keep the cost minimum so we decided to train the AMER model manually using AML 

notebook. AML provided an integrated notebook environment which we utilized for development 

of AMER model.  

To start training the model manually we started by linking our AML environment with Visual 

Studio Code, which is an integrated development environment. This method helped in keeping the 

training process very smooth. As the data required by the model was already in the same repository, 

so we were able to successfully train the model in AML.  

2.10.2 AMER model performance monitoring 

We had initiated the process of performance monitoring when we were training the AMER model 

in the cloud and included scripts to record few important metrics. Therefore, to evaluate the 

effectiveness of the AMER model in the cloud, we recorded the following metrics:  

• Accuracy: It measures the proportion of accurately identified entities compared to the total 

number of entities in a dataset.  

 

• Precision: It can be calculated by dividing the total number accurate anticipated positive 

results by the total number of positive results predicted by the model. In medical systems, 

high precision is important to avoid incorrect medications, side effects or diagnosis. 

 

• Recall: It is calculated by dividing the total number of true positive results in a dataset by 

the number of actual positive findings. High recall is important in medical contexts to 

prevent important diagnoses are not missed.  

 

• F1 score: It provide us with a balance between precision and recall by taking the harmonic 

mean of both. F1 score is helpful tool when these two criteria are at odds.  

These metrics not only helped us in getting insights about the AMER performance in the cloud, 

but also helped us in the evaluation part of this thesis 
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2.10.3 Registering the model 

Model registration is an important step in machine learning workflows as it enables the trained 

model to be versioned and tracked in a centralized environment. We automated this part by writing 

a script that registered the AMER model in AML. Before running the pipeline, we defined the 

name of the model in a variable storage to enable a secure CI process. The script registered the 

AMER model using Azure CLI register command where it is named and versioned. 

2.10.4 Downloading the latest version of AMER model 

Once the AMER model is registered in AML it can be easily accessed for different operations such 

as testing and deployment. We wrote an inline script in our main pipeline file using Azure ml 

download command that allowed us to fetch the registered AMER and store it in the model 

directory that we have created earlier. One of the important things that we wrote in this script was 

to download only the latest version of the model that is registered in AML. This helped us by 

making sure that only the latest version of AMER are available for various operations. 

2.10.5 Copy multiple directories 

We also automated the process of coping multiple directories using an inline script. This step was 

important, as these multiple directories, which contained all the files of the AMER model and its 

configuration, made sure are copied to a temporary location. This temporary location was then 

used in our next step to fetch the copied files. This task copied all files, which were of 6 Megabyte, 

that we wanted to utilize in our staging pipeline. The files what we copied were the AMER model 

file, python scripts like score.py, and some important configuration files. Automating this task 

enabled us with flexible and centrally available file system for the testing and deployment stage of 

AMER model.  

2.10.6 Publish pipeline artifacts 

Finally, we utilized the publish pipeline task in Azure DevOps to automate the publishing of our 

multiple copied directories’ artifacts by fetching them from the temporary location as done in the 

previous step. This final step was important as it made sure all our relevant folders and artifacts, 

which we prepared earlier, were made available for the CD pipeline 

Overall, this whole process of CI pipeline provided us with consistency, reduced manual 

intervention and ensure smooth implementation of all the pipeline steps. 

2.11 Continuous Deployment Pipeline 

After successful creation of the CI pipeline, our next step was to create a CD pipeline in Azure 

DevOps to test and deploy AMER model as an endpoint in a staging environment. As part of our 

MLOps based integration design shown in figure 4, the goal of this CD pipeline was that every 

change that we will make in the codebase is tested automatically and then deployed into an 

environment where we can review it. Like our CI pipeline, in our CD pipeline we had to define 

certain steps which will lead of the deployment of the AMER. 

The figure 14 below illustrates a complete staging pipeline in Azure DevOps, showing each step 

involved in the deployment process.  
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Figure 14: Compete CD staging pipeline of AMER model on Azure DevOps. 

The first thing that we did when we started to create the release pipeline was to point out the 

artifacts that we build in our CI pipeline. By doing so, our release pipeline would know which 

script to take as input when it will execute. Next, we gave a name to our release pipeline and 

specified the agent on which our release pipeline would run. We selected Ubuntu operating system 

as the agent due to its stability and reliability. 

2.11.1 Define Python Version 

In the first step of our CD pipeline, we specified the python version to make sure there is 

consistency and compatibility across all the tasks that were to be carried out. This step was also 

important because Python is the main programming language that is used for running ml scripts 

and different version of Python can have different level of support of libraries. We specified the 

Python version as 3.8 to make sure that the environment that will be used in staging is the same as 

the one used during the CI pipeline, preventing issues related to version compatibility.  

2.11.2 Add AML extension 

In the second step, we added AML extension into our pipeline. This extension is important cause 

it provides all the commands and tools for interacting with AML directly thorough Azure DevOps. 

By adding this extension, we made sure that our pipeline can perform various tasks such as testing 

and deployment of AMER model. Without this extension, these tasks would require a lot of manual 

work and additional scripts, which could make the task more complex and prone to errors.  

2.11.3 Deploy to Azure Container Instance 

In the next step, we added the task to deploy the AMER model to Azure Container Instance (ACI). 

In this task we build a temporary environment for hosting the AMER model and ran requests on 

it. This process used Azure CLI to automate this task and make sure that the AMER model and its 

required configuration files are deployed correctly across environments.  
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The inline script we wrote deployed the specific version of the model into a specific workspace of 

Azure. We also configured the deployment by defining two scripts, one for container resource 

requirements and other for specifying the runtime environment. The first script creates a container 

for AMER, allocating with 1 Central Processing Unit (CPU) and 1 Graphics Processing Unit 

(GPU) with memory limit of 2 Gigabytes (GB) and 8 GB respectively.  The second script describes 

the python as a runtime environment and points to a scoring script, which contains the logic for 

running prediction requests and to another file that contains configurations for that scoring file.  

This process was important as it allowed us to validate the functioning of the model before we 

move it to the production. Additionally, the ACI provided us with a scalable, on-demand 

environment, which is cheap compared to Azure Kubernetes Service.   

2.11.4 Installing requirements 

In our fourth step, we installed all the dependencies required by the AMER model by executing a 

shell script. The script first validated the Python version, installed various packages related to 

Azure and then installed all the essential libraries of the AMER, including spacy, and pandas. This 

task was important for setting up an environment with the required packages and to support the 

proper functioning of the model and its supporting scripts.   

2.11.5 Running Unit Test for staging 

Moving to the next part we focused on running unit tests in our pipeline. The reasons for writing 

these unit test was because it allowed us to catch the bugs and issues in the last stage of 

deployment.  This task ensured that the AMER deployed in the staging is validated by checking 

its response to a predefined test case.   

We wrote two scripts to support the execution of our unit test. Our first script provided custom 

pytest fixtures and made sure the correct scoring URL is passed to the test case [41]. Our second 

script described the actual unit test by sending a POST request to the AMER scoring URL using 

a sample input data. This test made sure that the response returned by the request is successful 

and is in the correct JavaScript Object Notation (JSON) format.  

2.11.6 Publish Test Results for staging 

In our last step, we included a task in our pipeline that published the results of our unit test in a 

form of an Extensible Markup Language (XML) report. By posting these results in a format we 

made sure that they can be reviewed properly. The test results included information about the 

number of tests, their statuses and error messages if the test failed. This step played a vital role in 

our pipeline by enforcing accountability and transparency, allowing us to easily identify 

bottlenecks in our deployment cycle.  

2.11.7 Manual Testing 

Finally, our staging pipeline for AMER was successfully executed. Every step, from defining the 

python version to deploying the model in an ACI, running test cases and publishing the test results, 

was carefully arranged to ensure the stability and readiness for production.  



29 

 

 

  

After our pipeline ran successfully, we had to manually confirm few things before we could move 

forward. We checked the unit test cases results to confirm everything ran as expected. The test 

case results as shown in the figure 15 below, showed the unit tests were passed without errors. 

Moving ahead, we logged into AML portal to check whether an endpoint had been created when 

the pipeline executed. We navigated to the endpoint section, and saw an endpoint was created by 

the service connection by the name that we had defined in the variable section of our staging 

pipeline.  

We used the scoring URL provided in Endpoint section of AML for further manual testing of our 

model. We created an API call function that connects to the AMER’s endpoint and merged this 

function into our local front-end application, which we had decoupled before. In our local 

application, we replaced the code where AMER was used from local repository with the new API 

call function. After that, we sent requests using dummy data to the deployed model from our front-

end application.  By utilizing different prediction functions of the application, we verified that the 

model was working as expected. This step ensured that the deployed model was integrated 

correctly and performing accurately in staging.  

 

Figure 15: Unit Test Results of AMER Model on Azure DevOps. 

2.12 Deployment to production 

The deployment to production is a critical phase in the development lifecycle of a machine learning 

model. This is the stage, where the model, which has been thoroughly tested in a staging 

environment is transitioned to where it is ready to serve live requests. This section outlines the 

methodology used to deploy the AMER model in production and details the steps involved for a 

reliable production environment. 
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2.12.1 Creating environment in AML 

In the process of our deployment to production, the first step was to create an environment in 

AML. This step was important for defining the configurations and dependencies that AMER model 

would require for proper execution.  

To start, we navigated to the Environments section in AML and choose to create a new Docker 

image. Although we had other option available such as using an existing Docker context, but we 

went for our own docker context to create a fully customizable environment that matches the 

specific dependencies and versions required by AMER. This also allows us to have full control 

over the underlying libraries and configuration, which would not have been accomplished with an 

existing image.  

We customized the Docker context by editing the image file provided by AML. We wrote the 

scripts to install key dependencies like azureml-core, azure-storage-blob and spacy. We also 

created a custom conda environment with Python and specified that the AMER model would be 

served using Gunicorn library through the AML inference server. We included azureml-core for 

integration with AML services and azure-storage-blob to get the data from Azure Blob storage 

during deployment. Similarly, Spacy was added for the AMER and Gunicorn to efficiently handle 

API requests in production.   

When the environment creation was completed, AML initiated a job to build a docker image with 

the configuration that we had specified. The job ran successfully, confirmed that our image was 

built and ready for production deployment.  

2.12.2 Creating a Production Endpoint 

To deploy the trained AMER model, we navigated to the endpoint section of AML and selected 

the model and its required version.  

We selected “Managed” as the compute type, but we also had another option which was 

Kubernetes. We chose Managed as it provides a simple way to deployment, including scaling and 

handling infrastructure. This allowed us to focus on our AMER model rather than managing the 

computed resources. For the selection of authentication type, we selected azure key-based because 

only the people with the required keys can access the AMER model’s endpoint. We also set the 

scoring Timeout to 60 seconds to make sure that the AMER model has enough time to process a 

request and return a prediction. This setting was important to prevent timeouts if we had to deal 

with more complex and larger input request. Then we selected the same scoring script that we used 

in our deployment pipeline which included the way in which AMER model should be loaded and 

utilized. We also set the custom environment that we created in the last step and set the selected 

the lowest compute to keep the cost as minimum as possible. Lastly, we adjusted the Live Traffic 

to 100%, which meant that all the incoming requests would be directed to this new endpoint that 

we had created. Doing this whole process allowed us to successfully create a production endpoint 

for AMER.  

Once the AMER was in production, we had to manually make sure that everything was working 

fine. We utilized the Test section in AML by sending a JSON request to the AMER through an 
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interface and were able to simulate real-time input. This JSON contained the necessary input 

required by the model and as the input was submitted the model returned the expected results. 

2.13 Simulation for integration of AMER model 

We used front-end application of AMER as a simulation for its integration with AMER model. To 

make the simulation secure like in medical settings we performed the following steps.   

Establishing Secure Transfer 

When the AMER model was deployed in production it generated a secure endpoint in AML. This 

endpoint API facilitated secure communication between the front-end medical application and the 

AMER model. Azure Key based authorization and Secure Sockets Layer (SSL) were utilized to 

restrict the authorized users and keep the data encrypted during transfer respectively.  

Private Endpoints and VNet were configured to confirm that all the communication between the 

AMER model and the local application occurred security and directly, bypassing other public 

networks. This solution minimized the risk of data exposure and ensured compliance with health 

regulatory standards.  

Real-Time Processing 

In clinical scenarios, where fast data extraction is required, the integration focused to simulate 

near-real time communication between the AMER model and the front-end application. To access 

the response time, we conducted few tests by sending request to the AMER model from our front-

end application with different workloads. These tests calculated the time taken from when the 

request was sent to AMER model until the response was received. The focus in this was on 

achieving a response time of less than 2000 milliseconds per request. This limit was set to copy 

real-time hospital use, in which delays in data retrieval could affect timely decision-making 

process. Tools like Azure Monitor and Application Insights were utilized to record and track the 

response times which assured performance and identifying any latency.  

2.13.1 Challenges faced 

During this process, we faced few challenges including: 

Latency in Real-Time Processing 

The initial tests that we performed showed higher latency than expected, which could affect the 

ability of the system in the real-world medical settings. To solve this, the autoscaling functionality 

and additional computations of Azure were used to meet the demand.  

Compatibility with Local Systems 

The local application which acted as a medical infrastructure, needed to sync with the output of 

AMER model. This required to implement a communication function which correctly parsed the 

JSON output from the AMER model.  
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2.13.2 Solutions Implementation 

To address the challenges, the following solution were implemented.  

Latency Optimization  

To resolve the latency challenges, the AMER model was deployed to a local region closer to the 

user base. Other ways included utilizing Azure caching mechanism to speed up the frequent 

operations.  

Interoperability 

A flexible API function was designed to address this problem. This solution made it possible that 

any data input to the local application could be processed by the AMER model efficiently and the 

response was returned in a proper structured format.  
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3 Evaluation and Results 

In this section, we discuss the evaluation of the cloud-based implementation and deployment of 

the AMER model using MLOps driven CI/CD pipeline. The evaluation covered the main elements 

of the AMER model integration and focused on the following questions: 

• AMER Performance and System Latency: How well does cloud-based AMER model 

operate in terms of performance and system latency? 

  

• Operational Scalability: How does the AMER model CI/CD pipelines implementation 

scales with different workloads?  

 

• Deployment Time and Cost Effectiveness: What is the deployment time and cost-

effectiveness of automation on a cloud-based system for AMER model?  

3.1 Model Performance Evaluation 

For the evaluation, AMER was trained and tested locally on a computer to set up a baseline 

performance. This baseline provided us a point of comparison to analyze how well the AMER 

model performed in different environments. Furthermore, the evaluation metrics that we selected 

helped us access to find if the cloud deployment had affected the performance of AMER model. 

The table below shows the acceptable threshold for each of the metric. 

Table 3: Acceptable threshold limit for different metrics. 

Matric Threshold Limit 

Accuracy Above 90% 

Precision and Recall Above 85% 

F1-score Above 87% 

  

After noting the metrics from local environment, we compared the local and cloud environment 

results to find out differences in model performance. It focused on if the cloud deployment affected 

the model’s capabilities to recognize medical entities with the same accuracy, precision, recall and 

F1 score that we noticed in the local environment.  

3.1.1 Results  

The table below compares the performance of AMER model in both, local and cloud environments 

across different metrics. Each metric was recorded with multiple executions and then averaged to 

minimize the impact of random variations. Confidence intervals are also shown to point out 

variance across executions and any performance instability. The variance was important for 
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understanding the reliability of AMER model in each environment as it indicates how much results 

change due to factors like network latency and data processing.  

Table 4: Performance Metrics of AMER in local and cloud environments. 

Metric Local Environment Cloud-Based Environment 

Accuracy 91.8% ± 0.3% 90.4%± 0.5% 

Precision 92.5% ± 0.2% 91.1%± 0.4% 

Recall 89.7% ± 0.4% 88.2%± 0.6% 

F1 Score 91.1% ± 0.3% 89.6%± 0.5% 

 

After integrating the AMER model with a front-end application and performing optimizations, we 

were able to successfully simulate a secure medical setting. As shown in the table below, these 

optimizations led to reducing latency by over 50% to bring it within acceptable range for real-time 

medical data processing.  

Table 5: Latency Comparison of AMER model (Pre vs Post Optimization) 

Integration Before Optimization After Optimization 

Average Latency (milliseconds) 450 180 

 

3.1.2 Discussion 

In both environments, AMER had a high performance across the metrics that we included. 

Compared to the local environment, the lower performance of cloud was expected due to latency 

of remote data processing. However, this difference was small and do not impact the performance 

and effectiveness of AMER.  

Accuracy in the local environment was a bit higher than in the cloud, showing the low latency and 

immediate data access when working locally. In the cloud environment, a delay was observed 

which resulted in lower accuracy score. However, the difference of 1.4% between both 

environments is small and unlikely to have a major impact in real-world applications.  

Precision and Recall were high in both the environment but a small decrease in the cloud was 

observed. This shows that while the AMER remained strong, there was a bit performance tradeoff 

when deploying it to the cloud. These tradeoffs arose due to the delay in data transmission or 

increased computation overhead. Despite these reductions, the cloud deployment of AMER still 

maintained high precision and recall.  
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F1 Score showed the difference seen in precision and recall but with a low score in the cloud 

environment. This shows that while the cloud environment has challenges, the overall balance 

between false positives and false negatives remain strong in both environments.  

The minor reduction seen in the cloud environment could be resolved in future by optimizing the 

AMER for cloud-based processing or by improving communication methods between the cloud 

and the clinical environment. These fixes could help in reducing latency and further align 

performance with local environment.  

Finally, high latency presented a crucial challenge to achieve real-time data processing, which is 

important for decision making in hospitals. The reductions achieved after optimizations showed 

the effectiveness of cloud infrastructure in providing low latency solutions for ML in medical 

systems. Meeting the target for latency threshold shows that with proper deployment strategies, 

the models hosted on cloud can offer the results needed in hospital settings without compromising 

performance.  

3.1.3 Implications and Recommendations 

The operational benefits of deploying the AMER model in a cloud-based environment like 

scalability, ease of integration with MLOps best practices and the ability to handle large data 

outperforms the minor performance tradeoffs.  

Improving the ability of AMER in handling data communication and processing in the cloud help 

minimize latency and increase the performance metrics like F1 score and recall. This could involve 

optimizing the architecture of cloud or utilizing edge computing techniques to reduce impact of 

remote data processing.  

In a real medical setting, the language used in medical documentation may change over time. 

Therefore, using model drift detection tools in the cloud deployment will be important for 

identifying any performance degradation over time.  

3.2 Operational Efficiency and Scalability 

This subsection evaluates the AMER model’s implementation operational efficiency and 

scalability by observing aspects including cloud scalability, resource management and deployment 

time. During the process we assessed, how well the CI/CD pipelines improved operational 

processes and supported scalable deployments.  

3.2.1 Results  

The results that we got showed several improvements that were brought by using cloud 

environments and implementing CI/CD pipeline for AMER model.  

Each scenario was tested based on CPU Utilization, cost per hour and if auto-scaling was required 

or not. The table below shows how different workload affected these metrics for AMER. As the 

number of requests per second increases, the utilization rate of CPU increases, demanding 

additional computation resources. This increases the cost per hour as the cloud services charges 
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on the resource usage. For medium and high workloads, the system automatically scaled resources 

to keep performance and enabled that it can handle high demand. 

Table 6: Operational Efficiency and Scalability of AMER with different workloads. 

Workload  CPU Utilization Cost per Hour 

(USD) 

Resource Scaling 

Time 

Low (10 requests/second) 15% 1.20 Not required 

Medium (50 requests/second) 35% 3.80 Scaled automatically 

Medium (100 requests/second) 65% 6.40 Scaled automatically 

 

3.2.2 Evaluation Methodology  

This evaluation was carried out in several steps, which are relevant to the deployment process and 

cloud infrastructure’s ability to scale.  

Computational Resources and Scalability of AMER 

The deployment of AMER model in AML was analyzed to check its scalability under different 

workloads. We simulated increased workloads by testing the system with inference rate of 10, 50, 

and 100 per second. To measure the scalability of AMER we recorded the following metrics: 

• Resource Allocation is the amount of CPU and other resources allocated by the cloud 

provider under different workloads.  

• Cost per hour is estimated hourly cost of operating the AMER model under different 

workloads.  

• Resource scaling Time is the time taken by the cloud service provider to allocate more 

resources to meet the high demand when workload increases.  

3.2.3 Discussion 

The integration of CI/CD pipeline and deployment using cloud has enhanced the operational 

efficiency and scalability of AMER model. These improvements are important for maintaining 

performance in real-time applications.  

The automatic scaling of AMER not only enabled that the system can meet performance needs 

during high demand but also minimized unnecessary costs during low interest periods by avoiding 

over provisioning.  This difference with static infrastructure, in which resources are allocated based 

on high interest results in inefficiencies and higher costs when there is less demand.  

The ability to balance performance and costs is important in cloud deployments specifically in 

computationally intensive applications like ML in healthcare. The AMER model’s capacity to 
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scale in response to peak demand while maintaining low cost is an indicator of usefulness of cloud-

based deployments for these applications.  

Finally, for future implementations, further optimization of auto-scaling, resource management 

and automating AMER model training process can improve cost savings and efficiency.  

3.3 Deployment Time and Cost Effectiveness 

To evaluate the deployment time and cost of maintaining and deploying the AMER model on the 

cloud, we reviewed initial costs, computational prices associated with CI/CD and ongoing 

maintenance expenses.  

In the beginning, the manual deployment time of AMER took 2-3 hours per deployment. After 

automation using the CI/CD pipeline, the deployment time was reduced to 2-3 hours per 

deployment. This reduction not only speeds up the release time but also reduces the risk of human 

errors.  

3.3.1 Cost Analysis 

The cost analysis that we performed included three components: 

1) Initial cost for setup: This was the cost that came from configuring the cloud environment, 

creating the IaC infrastructure and implementing the CI/CD pipelines.  

 

2) Ongoing Maintenance costs: This is the monthly expense which is associated with 

storage, compute resources and the services that are important to maintain the AMER 

model in the hospital environment.  

 

3) Operational costs for CI/CD and computation: This is the costs for data processing, 

model inference, executing automated pipelines and real-time monitoring.  
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Table 7: Initial and Monthly Cost of cloud-based AMER model. 

Component Initial Cost (USD) Monthly Cost (USD) Description 

AML 100 56 Used for AMER model training, 

managing and versioning. 

AAS 30 19 Hosts AMER model API and 

front-end application.  

Azure Blob 

Storage 

20 15 Used to store data related to 

AMER model. 

Azure 

DevOps  

70 32 Used for automated testing and 

deployment of AMER 

Computes 300 90 - 170 (low – high 

demand) 

Used for data processing, model 

inference and workloads.  

VNet 25 10 Secures Data communication of 

AMER by adding a secure layer.  

Real-Time 

Monitoring 

20 26 Provides real-time tracking of 

AMER model and computes.  

Network 

Costs 

5 14 Cost of data transfer between 

Azure services.  

 

The details of the cost by each component of Azure are shown in the table above. The total of the 

initial cost was $570 while the ongoing monthly operational cost was $342 in high workload 

period and $262 in low workload conditions.   

3.3.2 Discussion 

After the implementation of CI/CD pipeline of AMER the deployment time reduced by more than 

75%. This timesaving was due to the automation of the tasks that were previously performed 

manually, AMER model’s configuration, validation and deployment. The use of automated 

pipelines enabled that the new version of AMER can be deployed more easily by allowing fast 

iterations and quick response times for model improvements. The reduction for manual 

interference also reduces the risk of human error and makes the deployment more reliable.  

Cost analysis showed high initial setup cost but was followed by flexible monthly costs that 

changes with demand. When the demand is high, the auto scaling adjusts resources as required, 

which increased the costs but  keep consistent performance. Although the use of VNet and real-

time monitoring added monthly costs yet it improved security, system reliability and regulatory 
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compliance, which are important for health applications. On the other hand, in the low demand 

periods expenses reduced and made the system cost effective as compared to in the house servers, 

where auto scaling is complex to achieve and leads to more cost.   

Overall, these results shows that using cloud infrastructure can effectively balance costs, 

deployment times, scalability and security, which makes it can ideal choice for medical ML 

applications.  
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4 Integration of AMER Model in Hospital Infrastructures 

In related work, an important project is the integration of AMER core system into a hospital 

environment. This project is currently under development, and it aims to facilitate the deployment 

of NER models in hospitals by focusing on secure in-house data processing rather than the cloud. 

This system is designed with a microservice architecture that focuses on compatibility with 

existing medical infrastructure by integrating with DIPS in Norwegian Hospitals. DIPS runs on 

secure, in-house servers within hospital servers and uses message brokers for data processing. This 

configuration aligns well with the hospital’s requirements for data privacy and compliance with 

strict health data regulations as the data remains secure in an internal network.  

While this architecture supports secure on-premises deployments and enable interoperability with 

DIPS and similar infrastructures, it does not cover the full range of MLOps abilities. The current 

focus of this work is on integration rather than the complete lifecycle of ML models. Although this 

system includes retraining of AMER, the system lacks continuous integration, automated testing 

and deployment and real-time monitoring. Without these aspects, scaling the AMER model, 

maintaining its high availability and establishing reliability becomes challenging over time when 

retraining and updates are needed in hospital settings.   

This thesis uses a cloud-based approach to fully operationalize the AMER model using MLOps 

best practices. This approach offers advantages, like flexible storage, automated deployment 

pipelines, scalable compute resources and monitoring tools. These benefits contribute to more 

efficient, faster and reliable model deployments and updates.  By using the cloud service, this 

method simplifies the automation of model management processes, enable real-time monitoring 

and reduces the deployment of time.  

To bridge the gap between the in-house AMER system in hospital and automation and scalability 

offered by the MLOPs in the cloud, a hybrid approach is needed in medical environments. Here 

we outlined a path forward in which hospital-based information systems could implement MLOps 

principles in a secure and compliant manner. 

One solution for this is a hybrid infrastructure in which data remain secure in the hospital in-house 

data center and model training and experimentations are conducted in a secure cloud environment. 

In this way, patients’ data will be anonymized locally before any interaction with the cloud. This 

will allow hospitals to have control over sensitive data and computationally intensive task 

offloaded to the cloud. The trained AMER model can then be securely transferred back to the 

hospital servers for integration and deployment with the local system.  

For the hospitals that are reluctant about public cloud usage, private cloud could also be used. 

Public cloud can be deployed in a hospital infrastructure that would help hospital to use MLOps 

pipelines and services and maintain data privacy. Edge computing, where processing happens 

close to the source of data, can offer real-time processing benefits for AMER without fully relying 

on the cloud. These edge devices would run containerized versions of AMER and would process 

data at the level of hospital while synching with centralized MLOps systems for maintenance and 

updates.  
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To clone the benefits of automated pipelines in the cloud MLOps in a secure setting, in-house 

CI/CD tools can be installed that are compatible with hospital infrastructure. In this case using 

tools like Jenkins and Azure DevOps Server (in-house version of Azure DevOps) would allow 

hospitals to automate different deployment stages in a secure network. This method will enable 

that AMER model updates can be automatically tested before deployment and any performance 

issues can be identified and addressed quickly.  

For hospitals implementing local monitoring for ML applications solutions like Prometheus and 

Grafana can be used to track model performance, resource usage, data flows and latency in real-

time. Alerts can also be configured for any errors in the system health or AMER model output. 

Finally, logging tools like Elasticsearch, Logstash and Kibana can help hospitals examine long-

term trends in AMER model performance and support improvements.  

By adopting MLOps best practices for hospital environments and following compliance 

regulations, we can move ahead to a secure, scalable and efficient solution for deploying ML 

models in healthcare.  
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5 Conclusion 

This thesis analyzed the development, deployment and operationalization of AMER model, a 

system designed for medical entity recognition in hospital environments. By using MLOps best 

practices, this thesis aimed to build an automated, efficient and scalable deployment system on a 

cloud infrastructure and provided insights into operational and technical challenges of 

implementing ML in medicine.  

The AMER model, which was initially build as a local solution was revamped for deployment on 

Azure by using an MLOps based pipeline to automate ML model lifecycle. The implementation 

showed substantial improvements in deployment time, reliability and cost effectiveness by 

reducing the deployment time from hours to minutes through CI/CD automation. Moreover, the 

cloud system allowed for dynamic scaling of AMER and made the model adaptable to changing 

workloads, which is common in healthcare settings.  

A cost analysis showcased the financial impact of this deployment and balancing initial cost with 

ongoing operational expenditure. This evaluation highlighted the value of cloud resources 

especially in high computes demand, in which auto scaling and resource management allowed 

efficient cost allocation. However, the thesis also acknowledged the tradeoff linked with cloud 

deployments in terms of cost and scalability. 

Alternatively, to previous approach, which is limited to in-house systems, this thesis also provides 

a future pathway for using MLOps techniques into secure hospital environments. By using hybrid 

architecture and private clouds, advantages of MLOps can be gained while enabling data 

protection and compliance with regulations. This approach bridges the gap between ML best 

practices and the security needs of health data.  

The findings in this thesis shows the potential of MLOps workflows to simplify and secure the 

deployment of NER models like AMER in hospital settings. By reducing deployment time, 

improving scalability and maintaining model accuracy and performance, this thesis contributes to 

developing ML in healthcare, preparing the way for secure and more reliable AI-driven systems 

in hospital settings. Future study should focus on making further improvements in secure MLOps 

architectures designed for hospitals by allowing integration of ML technology and maintaining 

data integrity and patient privacy 

 

 

 

 

 

 



43 

 

 

  

6 Appendices 

6.1 Declaration of the Usage of Artificial Intelligence 

For this master’s thesis, I acknowledge the use of generative artificial intelligence from the 

below tools and for the following purposes in the report and implementation.  

1) (https://app.grammarly.com) 

2) (https://gemini.google.com/app) 

3) (https://chatgpt.com) 

4) (https://copilot.cloud.microsoft) 

Purposes include: 

1) To improve the text and correct the grammatical mistakes.  

2) To maintain the academic style and tone in the text. 

3) To enhance the clarity of explanations in the text. 

4) To get suggestions for structuring content. 

5) To fix the bugs in the code.  

6) To get suggestions on Azure specific code. For example, Azure CLI Commands.  

 

 

https://app.grammarly.com/
https://gemini.google.com/app
https://chatgpt.com/
https://copilot.cloud.microsoft/
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