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Mitonuclear discordance between species is readily documented in marine fishes. Such discordance may either be the result of past
natural phenomena or the result of recent introgression from previously seperated species after shifts in their spatial distributions.
Using ancient DNA spanning five millennia, we here investigate the long-term presence of Pacific bluefin tuna (Thunnus orientalis)
and albacore (Thunnus alalunga) -like mitochondrial (MT) genomes in Atlantic bluefin tuna (Thunnus thynnus), a species with
extensive exploitation history and observed shifts in abundance and age structure. Comparing ancient (n= 130) and modern
(n= 78) Atlantic bluefin MT genomes from most of its range, we detect no significant spatial or temporal population structure,
which implies ongoing gene flow between populations and large effective population sizes over millennia. Moreover, we identify
discordant MT haplotypes in ancient specimens up to 5000 years old and find that the frequency of these haplotypes has remained
similar through time. We therefore conclude that MT discordance in the Atlantic bluefin tuna is not driven by recent introgression.
Our observations provide oldest example of directly observed MT discordance in the marine environment, highlighting the utility of
ancient DNA to obtain insights in the long-term persistence of such phenomena.
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INTRODUCTION
Discordance between mitochondrial (MT) and nuclear gene
phylogenies is commonly observed in eukaryotes and can result
from incomplete lineage sorting (ILS) or introgression from
another species (Kimball et al. 2021; Tamashiro et al. 2019; Platt
et al. 2018). Although frequency of the phenomenon across
biological systems remains debated, the increased use of next-
generation sequencing across non-model taxa has revealed
mitonuclear discordance to be a more common phenomenon in
nature than previously thought (Dagilis et al. 2022). The majority
of documented mitonuclear discordance in animals has been
explained as the result of introgression from a closely related
species (Sloan et al. 2017; Pons et al. 2014; Toews and Brelsford
2012). Typically inherited maternally in vertebrates, the non-
recombining introgressed MT genome remains largely intact over
time (Seixas et al. 2018; Brown 2008). The presence of introgressed
MT haplotypes can cause significant bias when using mitoge-
nomic data to describe a species demographic properties or
evolutionary history. Even rare hybridization events can result in
the presence of whole MT haplotypes that do not accurately
reflect the typical history or demography of the taxon. For
example, the presence of introgressed MT haplotypes may
dominate genealogies with recent dispersal history and thereby

overshadow genetic signals from past dispersal events (Sloan et al.
2017; Ballard and Whitlock 2004). Presence of heterospecific
haplotypes will also affect population genomic analyses by
inflating measures of genetic diversity and divergence (Oosting
et al. 2023; Rodriguez and Krug 2022; Wang et al. 2022; Hawks
2017). Avoiding such inflation is important because these statistics
can influence management choices (Willi et al. 2022; Hohenlohe
et al. 2021; Kardos et al. 2021) and increased measures of genetic
diversity or effective population size may exaggerate the genetic
robustness of a truly vulnerable population.
Marine fish hybridize according to their ecologies and life

history strategies, thus the rate of hybridization and proportion of
introgression will vary according to migration behaviour, spawn-
ing site overlap, fecundity, spawning ontology, and offspring
survival (Montanari et al. 2016; Gardner 1997; Hubbs 1955). In the
economically important redfish (Sebastes spp.), high proportions of
introgressive hybridization (15% of all samples) have been found
between two species (S. fasciatus and S. mentella) that live
sympatrically in hybrid zones and yet maintain their morphology,
resembling one of the parent species (Benestan et al. 2021;
Roques et al. 2001). Likewise, introgression has been observed in
European seabass (Dicentrarchus labrax) (Duranton et al. 2020;
Vandeputte et al. 2019), capelin (Mallotus villosus) (Cayuela et al.
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2020; Colbeck et al. 2011), European anchovy (Engraulis encrasi-
colus) (Le Moan et al. 2016), Australasian snapper (Chrysophrys
auratus) (Oosting et al. 2023) and Atlantic and Pacific herring
(Clupea harengus and C. pallasii) (Semenova 2020).
Formation of hybrid zones after recent range shifts induced by

contemporary climate change have already been observed in a
number of species (Kersten et al. 2023; Ottenburghs 2021; Taylor
and Larson 2019; Ryan et al. 2018; Garroway et al. 2010) including
marine fish (Muhlfeld et al. 2014; Potts et al. 2014). The formation
of such hybrid zones can have both deleterious and advantageous
effects. For instance, in trout, warmer freshwater temperatures and
lower precipitation is expected to increase introgressive hybridiza-
tion between native European brown trout (Salmo trutta) and
released non-native brown trout in Mediterranean rivers, poten-
tially leading to loss of local genetic variants (Vera et al. 2023). Yet
in rainbowfish (Melanotaenia spp.), it has been suggested that
introgressive hybridization contributes to climate change resi-
liency by incorporating potentially adaptive genetic variation
(Brauer et al. 2023; Turbek and Taylor 2023). Regardless of the
evolutionary consequences, knowledge about the timing of the
introgression is necessary to understand if it is anthropogenic
impacts that increase rates of hybridization, thereby positively or
negatively altering the adaptive potential of species (Xuereb et al.
2021; Hoffmann and Sgrò 2011).
Atlantic bluefin tuna (Thunnus thynnus, Linneaus 1758) is a

highly migratory marine predatory fish distributed across the
Atlantic Ocean (SCRS 2023; Nøttestad et al. 2020; Block 2019).
Atlantic bluefin exhibits strong natal homing behaviour (Brophy
et al. 2016; Boustany et al. 2008; Block et al. 2005) and is therefore
managed as two separate stocks: the larger Eastern stock
spawning predominantly in the Mediterranean, and a smaller
Western stock spawning predominantly in the Gulf of Mexico
(ICCAT 2023). Recent studies, however, have demonstrated weak
genetic divergence in Atlantic bluefin and the existence of a
previously unknown spawning ground in the Slope Sea where the
stocks seem to interbreed (Diaz-Arce et al. 2024; Aalto et al. 2023;
Andrews et al. 2021; Rodríguez‐Ezpeleta et al. 2019), thereby
challenging the assumption of two reproductively isolated
populations. After severe international overfishing during the last
century, the Eastern Atlantic bluefin stock has at present
recovered due to strict management measures and favourable
oceanographic conditions in the recent decade (ICCAT
2022a, 2022b) followed by improved recruitment with a series
of very strong year classes (i.e. individuals born during the same
spawning season) (ICCAT 2023; Reglero et al. 2018; Garcia et al.
2013). Nonetheless, the heavy exploitation (Andrews et al. 2022;
Block 2019; MacKenzie et al. 2009), lead to shifts in its age
structure and foraging behaviour (Andrews et al. 2023a; Di Natale
2015; MacKenzie et al. 2014; Worm and Tittensor 2011). These
distributional changes, as well as the establishment of potentially
new spawning grounds may impact the potential for introgression
between different species.
The phylogeny within the Thunnus genus has been debated

and was only recently resolved (Díaz-Arce et al. 2016; Santini et al.
2013; Viñas and Tudela 2009; Chow et al. 2006; Alvarado Bremer
et al. 1997; Chow and Kishino 1995). The Atlantic bluefin was
previously thought to be a subspecies of Northern bluefin tuna
together with Pacific bluefin (Thunnus orientalis, Temminck and
Schlegel 1844). The bluefins are now regarded as distinct species
forming a monophyletic group (Ciezarek et al., (2019); Díaz-Arce
et al. 2016; Chow et al. 2006) (see Fig. S1), with non-overlapping
ranges (Tseng et al. 2011), with the albacore tuna (Thunnus
alalunga, Bonnaterre 1788) consistently appearing as sister-
species. Yet in mitochondrial phylogenies, the Pacific bluefin is
more closely related to albacore tuna (Gong et al. 2017; Viñas and
Tudela 2009; Chow et al. 2006) than the Atlantic bluefin. Albacore
tuna is found in both the Pacific, Indian and Atlantic Oceans,
including the Mediterranean Sea, typically preferring warmer

waters than the Pacific and Atlantic bluefins, but with largely
overlapping ranges and spawning areas (Saber et al. 2015; Chow
and Ushiama 1995).
Pacific bluefin- and albacore-like MT genomes have been

observed in the Atlantic bluefin and Atlantic bluefin- and albacore-
like MT genomes have been observed the Pacific bluefin, but no
bluefin-like MT genomes have been found in albacore (e.g. Diaz-
Arce et al. 2024; Chow and Kishino 1995). The presence of the
discordant MT genomes has been explained by introgression
(Viñas et al. 2003 2011; Viñas and Tudela 2009; Rooker et al. 2007;
Chow et al. 2006; Alvarado Bremer et al. 2005; Carlsson et al. 2004;
Chow and Kishino 1995; Chow and Inoue 1993). In the Atlantic
bluefin, the rates of Pacific bluefin- and albacore-like MT genomes
are similar at around 2–5% (Viñas and Tudela 2009; Rooker et al.
2007). Nonetheless, it is unclear if these rates are stable over
longer periods of time. In addition to recent distributional shifts
likely caused by high fishing pressures, it is possible that climate
warming has contributed to novel opportunities for introgression
in recent decades. The distribution of Atlantic bluefin over the last
century has fluctuated with temperature (Faillettaz et al. 2019;
Ravier and Fromentin 2004), and ocean warming has been
implicated in altering migration patterns, spawning ontology, and
habitats of the Atlantic bluefin (Diaz-Arce et al. 2024; Fiksen and
Reglero 2022; Faillettaz et al. 2019; Muhling et al. 2011).
Determining the frequency of discordant MT genomes in the
past can therefore shed light on the drivers of such phenomena in
modern populations.
Here, we use DNA extracted from ancient Atlantic bluefin

specimens to directly investigate the past occurance of MT
discordance and to elucidate potential changes in population
structure and genetic diversity over time (Kersten et al. 2023). Fish
bones have physiological qualities that may increase the like-
lihood of finding well preserved DNA (Ferrari et al. 2021;
Kontopoulos et al. 2019; Szpak 2011) allowing for whole genome
sequencing (Star et al. 2017), even from very limited amounts of
bone (e.g. <10 mg) (Atmore et al. 2023). Here we use such ancient
DNA (aDNA) methods to analyze MT genomes from 130 ancient
and 78 modern Atlantic bluefin spanning a period of approxi-
mately 5000 years (Fig. 1). By sampling before and after the period
of heavy exploitation (1970–2007) and predating anthropogenic
climate change, we investigate spatiotemporal patterns of genetic
diversity.

METHODS
Collection, extraction, and sequencing of ancient samples
from Norway
38 Neolithic (ca. 3000 BCE) tuna bones from the south of Norway were
obtained from three archaeological excavations at Jortveit from 2018 to
2020. Bones were found at varying depths (42–130 cm) in six of nine total
trenches and were estimated to be from 3700–2500 BCE based on
radiocarbon dating of wood and charcoal from the sediment profiles, as
well as directly dated bone harpoons. Three of the bones were also directly
radiocarbon dated to the period approximately 3400–2800 BCE (Nielsen
2020a, 2020b, 2020c; Nielsen and Persson 2020).
All laboratory work prior to PCR was performed in a dedicated aDNA

laboratory at the University of Oslo, following strict anti-contamination
protocols (Llamas et al. 2017; Gilbert et al. 2005). All samples were
extracted using a standard extraction protocol adapted from Dabney et al.
(2013) after a pre-digestion step (DD from Damgaard et al. 2015) or mild
bleach treatment and pre-digestion (BleDD from Boessenkool et al. 2017)
as described in Ferrari et al. (2021) (Table S1). Dual-indexed sequencing
libraries were built as double stranded, blunt-ended libraries following
Meyer and Kircher (2010) and Kircher et al. (2011) with modifications or as
single stranded libraries following the Santa Cruz Reaction (SCR) protocol
(Kapp et al. 2021) (Table S1). Libraries were sequenced on the Illumina
HiSeq 4000 or NovaSeq 6000 (SP Flow Cell) platforms at the Norwegian
Sequencing Centre with paired-end 150 bp reads and demultiplexed
allowing zero mismatches in the index tag. For additional details, see
supplementary section 1.2.

E.F. Eriksen et al.

2

Heredity



Ancient specimens from the Mediterranean
92 individuals from archaeological excavations and zoological collections
throughout the Mediterranean region dating from 100 to 1941 CE were
obtained from Andrews et al. (2024) as BAM files (Table S2). For additional
details about the samples and archaeological sites, see supplementary
section 1.8. These samples were prepared and extracted in the Ancient
DNA Laboratory of the Department of Cultural Heritage (University of
Bologna, Ravenna Campus, Italy), following strict criteria for aDNA analysis
as per the Norwegian samples, and sequenced as single-stranded libraries
(Kapp et al. 2021) at Macrogen facilities (Seoul, South Korea/Amsterdam,
Netherlands) on a HiSeq X (100 bp paired-end) Illumina sequencing
platform. Reads were processed using the Paleomix pipeline v.1.2.14
(Schubert et al. 2014) with settings described below (see “Bioinformatic
processing of ancient and modern sequence data”), yielding an average of
28% endogenous DNA and 11-fold MT coverage (Table S8).

Collection, extraction, and sequencing of modern samples
Modern tuna tissue samples of migratory, foraging adults from Norway
(NOR) (n= 38) were collected by the Norwegian Institute of Marine
Research (IMR), from commercial catch off the coast of Møre og Romsdal,
Western Norway (Table S3) (Supplementary section 1.3). The modern
samples from Norway were all extracted in the modern DNA isolation
laboratories at the University of Oslo, using the DNeasy Blood and Tissue
kit (Qiagen) and following the manufacturer’s protocol.
Modern larvae or young-of-the-year (YoY) specimens (GOM: Gulf of

Mexico, WMED: Western Mediterranean Balearic Islands, CMED: Central
Mediterranean Sicily, EMED: Eastern Mediterranean Levantine Sea, n= 40,
Table S4) were collected from each of the major Atlantic bluefin spawning
sites (Fig. 1) between 2013 and 2018. Juvenile albacore samples from the
Bay of Biscay were caught by commercial vessels trolling in the Bay of
Biscay between June and September of 2010 (Table S5). Larvae and tissue
samples from each specimen were preserved in 96% ethanol and stored at
−20 °C until further processing. Modern spawning site and albacore

samples were extracted at the University of Bologna by a modified salt-
based extraction protocol, as per Cruz et al. (2017), using SSTNE extraction
buffer (Blanquer 1990), and treated with RNase to remove residual RNA.
For the Norwegian samples, libraries were built using the TruSeq DNA

Nano200 preparation kit (Illumina). Modern spawning site extracts, along
with albacore extracts, underwent single stranded library preparation
following the SCR library protocol (Kapp et al. 2021). Sequencing and
demultiplexing, allowing for zero mismatches, was performed at the
Norwegian Sequencing Centre on a combination of the HiSeq 4000 and
NovaSeq 6000 (SP Flow Cell) Illumina sequencing platforms with paired-
end 150 bp reads for all samples.
Raw sequence data of Pacific bluefin whole genome (Suda et al. 2019)

were downloaded from DDBJ (accession no DRA008331) (Table S6) and
used for interspecific population structure analyses.

Bioinformatic processing of ancient and modern
sequence data
Both modern and ancient reads were processed using the Paleomix
pipeline v.1.2.14 (Schubert et al. 2014). All reads were aligned to a draft
nuclear (NCBI BioProject: PRJNA408269) and MT reference genome
(GenBank accession nr NC_014052.1) with BWA-mem v.0.7.17 for mapping.
Only the MT BAMfiles were further processed in GATK v.4.1.4.0 following
GATK best practices (McKenna et al. 2010). Filtered VCFs were indexed
using Tabix v.0.2.6 (Li 2011) and consensus sequences created as individual
fasta files in BCFtools v.1.9 (bcftools consensus -H 1). Outgroup sequences
were downloaded from GenBank (Clark et al. 2016) and curated using
SeqKit v. 0.11.0 (restart -i) (Shen et al. 2016) so that all sequences started at
position 1 in the D-loop, to correspond with the sample sequences. After
renaming the fasta headers to their appropriate sample-IDs using BBMap
v.38.50b (Bushnell 2014) and combining the files to a multiple sequence
alignment (MSA), the joint fasta files were aligned using MAFFT v.7.453
(Katoh et al. 2002) (--auto). For additional details, see supplementary
section 1.4.

Fig. 1 Distribution of the Atlantic bluefin tuna, including spawning areas (green) currently considered by management (adapted from
IMR (2021)). The equal-distance line (45°W) separates the Eastern and Western stocks for management purposes. Sample locations of modern
(squares, white boxes) and ancient tuna (circles, brown boxes) used in this study are indicated on the map. Arrows indicate the main migration
routes of adult Atlantic bluefin (adapted from Fromentin et al. 2014). GOM Gulf of Mexico, NOR Norway, WMED Western Mediterranean, CMED
Central Mediterranean, EMED Eastern Mediterranean. YoY young-of-the-year.
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Population genomic analyses
After an investigation and creation of datasets (supplementary section 1.5),
genetic population structure was investigated using Principal component
analyses (PCA). A map of missing loci and base variants diverging from the
reference genome, was created to assess missing genotypes in both
ancient and modern samples and better visualize introgressed specimens.
All plots were created with R 4.3 in RStudio (Rstudio Team 2021), using
various packages for data loading, analyses, and visualization (supplemen-
tary section 1.1).
Genetic diversity was investigated using a range of standard population

genetic measurements (number of haplotypes (Nh), haplotype diversity
(hD) number of segregating sites (S), nucleotide diversity (π) (Nei 1987),
Tajima’s D (TD) (Tajima 1989), and Fu and Li’s F statistic (F) (Fu and Li 1993))
using Fitchi (Matschiner 2016), DnaSP v.6 (Rozas et al. 2017) and the
R-package pegas (Paradis 2010). To account for differences in sample sizes
across sites when calculating π and TD, an additional analysis using 1000
bootstrap replicates and subsampling five individuals per round without
replacement, was performed in pegas on datasets where the total sample
size was over five.
Phylogenetic relationships were investigated using both ML and

Bayesian approaches. ML trees with 100 nonparametric bootstrap
replicates were created in IQTREE v. 1.6.12 (Nguyen et al. 2015).
ModelFinder Plus (MFP) (Kalyaanamoorthy et al. 2017) was used to search
all available models, and best-fit models were selected according to the
Bayesian Information Criterion (BIC) (Schwarz 1978). Bayesian trees were
created in BEAST 2 v.2.6.4 (R. Bouckaert et al. 2014), using the Yule model
prior under a strict clock with mutation rate 3.6 × 10−8 substitutions per
site per year as per Donaldson and Wilson (1999), running MCMC over
800,000,000 generations and sampling once every 1000 generations
(supplementary section 1.6). The final trees in all phylogenetic analyses
were visualized and curated in FigTree v.1.4.4 (Rambaut 2018).
Evolutionary relationships were visualized using haplotype networks

created in Fitchi (--haploid -p) using the ML trees generated in IQTREE
(described above) (supplementary section 1.7)
Genetic distance between sample locations was assessed using

measures of absolute (dxy) and relative (ΦST) divergence, calculated using
DnaSP v.6 (“DNA divergence between populations”, all sites) and Arlequin
v.3.5 (Excoffier and Lischer 2010) respectively. In Arlequin, pairwise ΦST
was calculated via a distance matrix computed by Arlequin based on
Tamura and Nei (1993) and assuming no rate heterogeneity, as suggested
by bModelTest (R. R. Bouckaert and Drummond 2017) (implemented in
BEAST 2 v.2.6.4 (R. Bouckaert et al. 2014)). To test the significance of ΦST,
p-values were generated in Arlequin using 1000 permutations.

RESULTS
DNA yield and library success
A total of 1.7 billion sequencing reads were obtained for the 38
ancient samples from Norway. These specimens had remarkable
DNA preservation with 100% library success and yielding, on
average, 24% endogenous DNA and 20-fold MT coverage (Table
S7). The reads showed postmortem degradation patterns
expected for authentic aDNA (Fig. S2). A total of 3.1 billion
sequencing reads were obtained for the 84 modern specimens,
resulting in 711-fold MT coverage on average for the 78 Atlantic
bluefin specimens (Tables S9 and S10) and 221-fold MT
coverage on average for the six albacore samples (Table S11).
The Pacific bluefin raw sequence data from Suda et al. (2019)
yielded 3322-fold MT coverage (Table S12). After stringent
filtering, 186 out of 208 specimens (~90%) were kept for further
analyses (Tables S7, S8).

Detecting discordant MT genomes
Out of 186 samples analyzed, seven ancient and four modern
individuals had MT haplotypes that clustered closely with albacore
or Pacific bluefin in the PCA, haplotype network and phylogenies.
The PCA reveals three distinct clusters (Fig. 2) with PC1 separating
an Atlantic bluefin cluster from a Pacific bluefin and albacore
cluster and PC2 separating the latter two speciese. Within the
Pacific bluefin cluster, we observe two modern (both NOR) and
four ancient (two Norway 3000BCE, one Istanbul 800–1200CE and
one Sardinia 1500–1700CE) Atlantic bluefin specimens. Within the

albacore cluster, we observe two modern (one NOR and one
WMED) and three ancient (one Istanbul - 800–1200CE and two
Sicily – 900–1200CE) Atlantic bluefin specimens. The PCA-clusters
are reiterated in the haplotype network (Fig. 2). ML and Bayesian
phylogenetic analyses provided full statistical support (bootstrap
= 100, posterior probability = 1) for the three species as
monophyletic groups with the same six Pacific-like and five
albacore-like haplotypes again clustering with their respective
species (Fig. 2, see also Fig. S6).

Spatiotemporal population structure
We find no significant mitogenomic differentiation between any
of the temporal cohorts. We also observe no spatial differences in
the level of genetic variation between any of the sampling
locations for Atlantic bluefin. Atlantic bluefin individuals from both
management stocks and across the Eastern stock range and
spawning areas are scattered across the intraspecific PCA (Fig. S8)
and haplotype network (Fig. S9). The sampling locations are also
distributed along the entire phylogeny within the Atlantic bluefin
group (Fig. 2, see also Figs. S6, S10). The intraspecific Atlantic
bluefin haplotype network reveals a star-like pattern with more
recent MT haplotypes deriving from an ancestral, central
haplotype (Fig. S9).

Genetic divergence and diversity influenced by introgression
Measures of pairwise genetic distance between Atlantic bluefin
sampling locations show low levels of absolute (dxy) and relative
(Φst) divergence, either excluding (Fig. 3a) or including discordant
MT haplotypes (Fig. 3b). Genetic differentiation increases when
divergent MT haplotypes are included, which are not present at
each location or temporal cohort. In all cases, levels of Φst
remained low and non-significant (Fig. S7) across all populations.
Including individuals with discordant MT haplotypes increased
values of nucleotide diversity π and S (Table S15). The number of
haplotypes (hD) is not impacted; most sample locations only
contained unique specimens (N = Nh) therefore leading to a hD of
1, meaning 100% probability of obtaining unique samples during
random sampling. Tajima’s D (TD) was also not affected by the
inclusion of introgressed individuals and was significantly negative
for most locations and temporal cohorts and when analyzing all
specimens jointly (Table S15).

Frequency of discordant MT haplotypes over time
We observe discordant MT genomes in Atlantic bluefin through-
out a 5000-year chronology (Fig. 4). The earliest observation is the
presence of two Pacific bluefin-like MT genomes in the Neolithic
(ca. 3000 BCE) in Norway. Pacific bluefin-like MT genomes are
further found in early medieval Istanbul (800–1200 CE), late-
medieval Sardinia (1500–1700 CE) and modern Norway. Albacore-
like MT haplotypes are found in early medieval Istanbul (800–1200
CE) and Sicily (900–1200 CE), modern Western Mediterranean and
modern Norway.

DISCUSSION
We here present a 5000-year chronology of MT discordance in the
Atlantic bluefin tuna. The observation of divergent MT haplotypes
in the Neolithic (ca. 3000 BCE), turn of the millennium (800–1200
CE), and in present day populations indicates that it is long-term
natural phenomena rather than recent spatial shifts that explains
their presence. Moreover, our results show that the frequency of
MT discordance in the Atlantic bluefin has remained stable over
millennia despite shifts in abundance and distribution of Atlantic
bluefin populations.

Evidence of mitonuclear discordance through time
We obtain similar proportions of for Pacific bluefin- and albacore-
like MT haplotypes at 2.6% (2/78 individuals) each as reported by
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previous studies in our modern samples. Including our ancient
samples in the calculation, the proportion of MT discordance
remains astonishingly stable with 3.2% Pacific bluefin-like
haplotypes (6/186) and 2.7% albacore-like haplotypes (5/186)
across all samples. In total, six Pacific-like and five albacore-like
haplotypes consistently cluster with their respective species
through all interspecific analyses. We do not observe albacore-
like haplotypes from the Neolithic period, but because of the low
frequency of introgression compared to the sample size we
speculate this is likely due to sampling stochasticity rather than
their lack of presence at the time. Still, it cannot be excluded that
Neolithic climate conditions drove albacore populations away
from areas inhabited by Atlantic bluefin.
The observation of discordant MT haplotypes relies on the

assumption that the sampled archaeological bones used in this
study all stem from Atlantic bluefin individuals. The nuclear DNA
of the ancient Mediterranean samples used in this study, has
been analyzed as part of Andrews et al. (2024) where all
samples, including the individuals with diverging MT haplotypes
cluster together with the modern Mediterranean and Norwegian
Atlantic bluefin individuals. Some of the ancient Norwegian
samples from Jortveit were also included in these analyses,

however the two individuals with Pacific-like MT genomes were
excluded from the analyses due to bad preservation of the
nuclear genome. We therefore cannot be certain that these two
individuals are in fact Atlantic bluefin vertebrae, as the Pacific
and Atlantic bluefin vertebrae are morphologically diffucult to
distinguish. However, no migration of Pacific bluefin into the
Atlantic Ocean has ever been observed and there is no known
range overlap. The optimal temperature range of Pacific bluefin
is around 15–20 °C (Kitagawa et al. 2006), while the ocean
surface temperature in Neolithic Norway peaked at around 8 °C
in mid-august (Risebrobakken et al., (2011)). We therefore find it
highly unlikely that these two individuals stem from migratory
Pacific bluefin.
Should the mitonuclear discordance be driven by past

introgressive hybridization from both albacore and Pacific bluefin,
the location and timing of such events remain to be investigated.
While the albacore has overlapping ranges and spawning areas
with both bluefin species, the Pacific and Atlantic bluefins are
geographically separated with no documented migration. The
potential migration of Pacific bluefin into the Atlantic Ocean has
been hypothesized to occur via the Indian Ocean and following
the Agulhas current around the tip of Africa (Alvarado Bremer

Fig. 2 Species clusters and discordant MT haplotypes within Atlantic bluefin specimens, revealed by PCA, haplotype network and
phylogenetic analyses. A Three species specific clusters detected in ancient and modern Atlantic tuna specimens. The PCA shows three
species specific clusters and PCA eigenvalues are shown in the bottom left corner. Modern modern Pacific tuna (blue) and albacore (grey)
specimens are included as controls. B Relative abundance of haplotypes per location within each PCA-cluster is visualized as pie-charts, with
the number of samples from each location indicated on the slices. C Haplotype network showing three species specific haplotypes.
Haplotypes separated by seven or fewer substitutions were collapsed into single nodes. D Interspecific phylogeny of specimens with posterior
probability support for the species clades (see also Fig. S6). Colours are representative of the spatiotemporal cohorts listed in the legend of
panel (A).
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et al. 2005). Whether this represents a contemporary migration
route or a historical process where past, stronger currents might
have facilitated admixture is unclear (Alvarado Bremer et al.
2005). The similar proportion of mitonuclear discordance from
both albacore and Pacific bluefin and the lack of divergent MT
haplotypes in the albacore makes the range-overlapping albacore
an unlikely carrier of MT haplotypes between the bluefins in the
case of introgression. Given that Pacific bluefin also contains
Atlantic bluefin-like MT haplotypes, incomplete lineage sorting
(ILS) can also explain their presence. The Thunnus genus is
thought to have diverged rapidly within the last 6–10 million
years, with a more recent speciation of the Pacific and Atlantic
bluefins only around 400,000 years ago (Ciezarek et al., (2019);
Díaz-Arce et al. 2016; Santini et al. 2013). While introgressive
hybridization is the likely origin of albacore-like haplotypes in
both bluefin species (Ciezarek et al., (2019)), observed gene-tree
versus species-tree discordance did not deviate from expecta-
tions under ILS in the same study (Ciezarek et al., (2019)). These
results indicate that the observed patterns of Pacific-like MT
haplotypes in the Atlantic bluefin population, and vice versa, may
be a result of ILS rather than introgressive hybridization. Larger

genomic databases are required to furhter delineate between
these two hypotheses.
While our historical investigation focuses on the eastern Atlantic

with samples from the Mediterranean and Norway, discordant MT
genomes from albacore have also been found in the Gulf of
Mexico (1% frequency) and the Slope Sea (6% frequency). Because
such MT genomes in Atlantic bluefin were first observed in the
eastern Atlantic, their presence in the western Atlantic has been
hypothesized to be introduced via gene flow from the Mediterra-
nean (Diaz-Arce et al. 2024). An increase in gene flow from the
Mediterranean into the Gulf of Mexico and Slope Sea will likely
erode genetic differences between the two management stocks
(Diaz-Arce et al. 2024). Direct observations of hybridization events
within the Western Atlantic bluefin stock have not been made,
although albacore is known to spawn across tropical waters
including the South-West Sargasso Sea as well as the Mediterra-
nean (NOAA 2023; ICCAT 2016, 2020). Future studies could
monitor the frequencies of MT discordance in the Gulf of Mexico
to disentangle the recently suggested changes in demographic
patterns (Diaz-Arce et al. 2024) and possibly locate the origins of
contemporary introgression events.

Fig. 4 Pacific bluefin-like MT haplotypes (yellow stars) or albacore-like MT haplotypes (red stars) are observed along an entire 5000-year-
old chronology of ancient Atlantic bluefin tuna specimens. Individual tuna specimens (n= 208) (circle or star) are grouped according to
their age, determined by archaeological context. Specimens were either modern (n= 78), or ancient (n= 130) and dated by archaeological
context. Uncertainty in the age range of ancient specimens is depicted beneath their respective sample sets (light shading).

Fig. 3 No significant spatiotemporal population structure in Atlantic bluefin tuna based on mitogenomic data of 186 specimens. Pairwise
population divergence is presented as a heatmap showing absolute (dxy) and relative (ΦST) divergence between populations when (A)
excluding and (B) including the discordant MT genomes. Divergence is increased when including discordant MT genomes. Locations
containing discordant MT genomes are highlighted with darker shading in panel (B). The nucleotide diversity within each population is shown
on the diagonal. P-values for ΦST can be found in supplementary (Fig. S7).
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Discordant MT haplotypes impact estimates of mitogenomic
differentiation
The presence of discordant haplotypes increases measures of
genetic diversity (S and π), which is driven by the high number of
diverging bases in the introgressed MT genomes (Fig. S5). The
inclusion of these diverging haplotypes also influences the
measures of genetic divergence (dxy and ΦST) between locations
and temporal cohorts, consistently increasing the absolute genetic
diversity (dxy) and altering the pattern of relative genetic
divergence (ΦST). Tajima’s D (TD) was not consistently affected
by the inclusion of introgressed individuals, although in some
cases TD changed value and lost or attained significance when
divergent haplotypes were included (Table S15). Considering
these results, one needs to be aware of highly diverging
haplotypes when extrapolating population genetic statistics from
subsamples of natural populations containing highly diverging
haplotypes. The low frequency of divergent haplotypes in Atlantic
bluefin causes stochasticity at low sample sizes, and we find that
their inclusion inflates population genomic statistics that are
commonly used for management and population viability
assessments (e.g. Dapporto et al. 2022; Hohenlohe et al. 2021;
Zhang et al. 2020).

Spatiotemporal population structure
We find no significant divergence and no pattern of mitogenomic
differentiation between any of the spatial or temporal cohorts.
Ancient and modern samples largely intermixed in all analyses,
suggesting mitogenomic stability and temporal continuity
through time. Similar observations in other species, such as
Atlantic cod (Gadus morhua) (Martínez-García et al. 2021) and New
Zealand snapper (Chrysophrys auratus) (Oosting et al. 2023)
emphasize the low power of the MT genome to observe
spatiotemporal differentiation in wide ranging fish species. The
regular presence of identical haplotypes across sampling locations
and temporal cohorts emphasizes the lack of mitogenomic
variation and informative markers for population structure in this
species. Although we cautiously removed identical samples from
the same archaeological excavations, the presence of identical
samples across cohorts that were processed in different labora-
tories shows that identical MT haploptypes can be observed
regularly.
Population genetic statistics confirmed low mitogenomic

variation with no significant divergence between any of the
spatiotemporal cohorts and no temporal loss of genetic diversity
despite heavy exploitation (Fig. 3A, Table S15). Across datasets, TD
was negative and often significant, suggesting an excess of rare
variants in the datasets. This is indicative of either positive
selection or recent population expansion (Fijarczyk and Babik
2015; Delph and Kelly 2014). Population expansion is further
corroborated in the intraspecific haplotype network, where newer
haplotypes are derived from a shared central haplotype forming a
star-like pattern (Fig. S9). These results highlight robust preserva-
tion of the MT genome despite centuries of human exploitation.

CONCLUSION
Atlantic bluefin tuna has experienced significant changes in
distribution linked to sea surface temperature oscillations during
the past centuries (Faillettaz et al. 2019; Muhling et al. 2011; Ravier
and Fromentin 2004), alongside intense exploitation (Andrews
et al. 2022; Block 2019), biomass depletion, range contraction,
trophic niche loss (Andrews et al. 2021; Di Natale 2015; Tangen
2009), followed by recovery, increased biomass, and range
expansion of the Eastern Atlantic bluefin stock during the last
decade (ICCAT 2023; Nøttestad et al. 2020). Despite such extensive
spatial shifts in distribution over time, we show that the presence
of MT discordance is a long-term natural phenomenon in Atlantic
bluefin. The stable frequency over time suggests that this

phenomenon is robust against recent spatial shifts due to
anthropogenic impacts. By providing a baseline observation, our
study highlight the utility of aDNA to obtain temporal insights in
the long-term persistence of such phenomenon.
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