1 The newly discovered Attu carbonatite of West Greenland: a

2 Mesoproterozoic dyke intrusion enriched in primary Sr-Ba-

3 REE minerals

- 4 Christian Knudsen^{1*}, Alfons Berger², Tod Waight³, Benjamin D. Heredia¹, Tonny B. Thomsen¹,
- 5 Sebastian Tappe^{4*}
- 6 ^{1*} ckn@geus.dk. Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 Copenhagen K, Denmark
- 7 ² University of Bern, Baltzerstrasse 1+3, CH-3012, Switzerland
- 8 ³ Department of Geosciences and Natural Resource Management (Geology Section), University of Copenhagen, Øster
- 9 Voldgade 10, 1350 Copenhagen K, Denmark
- 10 ^{4*} <u>sebastian.tappe@uit.no</u>. Department of Geosciences, UiT The Arctic University of Norway, Dramsveien 201, N-9037
- 11 Tromsø, Norway
- 12 Keywords:
- 14 Carbonatite, Rare Earth Element minerals, exsolution textures, monazite(-Ce), daqingshanite,
- 15 burbankite

- 16 Abstract
- 17 A newly discovered ca. 1.5 Ga old carbonatite dyke in central West Greenland is characterized
- by very high contents of rare earth elements (REE), Sr and Ba (up to 12.4 wt.% total REE, 14.6
- 19 wt.% SrO and 12.4 wt.% BaO). The dyke occurrence is named 'Attu carbonatite' after the nearby
- 20 village Attu. The carbonatite is primarily composed of carbonate minerals such as Sr-rich calcite
- 21 (CaCO₃) and dolomite (CaMg(CO₃)₂), huntite (Mg₃Ca(CO₃)₄), strontianite (SrCO₃), alstonite
- 22 (CaBa(CO₃)₂), burbankite ((Na,Ca)₃(Sr,Ba, Ce)₃(CO₃)₅) and daqingshanite ((Sr,Ca,Ba)₃(Ce,
- 23 La)(PO₄)(CO₃)_{3-x}(OH, F)_x). In addition to the wide range of carbonate minerals, the carbonatite
- 24 contains coarse-grained monazite(-Ce), apatite and magnetite. Barite occurs as discrete crystals
- 25 together with the rock-forming carbonates. Texturally, the carbonatite rock displays abundant

26	intimately intergrown fine- to medium-grained Ca, Sr, Ba and REE carbonate minerals, which
27	exhibit prominent exsolution textures within calcite, burbankite, strontianite and dolomite hosts, as
28	well as in the apatite crystals. Several different exsolution textures are observed: 1) alstonite in
29	calcite; 2) daqingshanite in calcite; 3) daqingshanite in burbankite; 4) Mg-Ba carbonate in
30	strontianite; 5) Mg-Ba carbonate in calcite and strontianite in dolomite; 6) strontianite in apatite;
31	and 7) monazite(-Ce) in apatite. The carbonatite dyke is foliated and exsolution textures are
32	observed internally in the foliation-defining minerals indicating that exsolution occurred after the
33	main deformation event.
34	The carbonatite magma intruded into Archaean basement gneisses that had been affected by the
35	Nagssugtoqidian tectono-metamorphic event at approximately 1850 Ma. Magmatic monazite(-Ce)
36	crystals from the carbonatite yield a U-Pb age of 1565±53 Ma, which is the current best estimate of
37	dyke emplacement. Monazite(-Ce) that exsolved from apatite and calcite yields a U-Pb age of
38	1492±33 Ma, which is within the analytical uncertainty of the primary magmatic monazite U-Pb
39	age. However, the U-Pb age determinations suggest that mineral exsolution occurred a few million
40	years after carbonatite magma emplacement, in response to further cooling of the deep-seated dyke
41	(tectonically-induced uplift?). Dyke emplacement may have occurred within an active ductile shear
42	zone, which helps to explain the foliation of the carbonatite rock, predating cooling-related mineral
43	exsolution. Country rock fenitization by fluids that emanated from the carbonatite dyke intrusion is
44	recorded by the increasing abundance of mafic silicates such as Ba-rich phlogopite at the contact
45	zone.

47 **1** Introduction

- 48 Carbonatites are volumetrically minor but geologically significant igneous rocks that
- 49 potentially provide important information about mantle processes and the deep carbon cycle (Bell et

50	al. 1998; Woolley and Kjarsgaard, 2008; Yaxley et al. 2022). They are not only of special interest to
51	the scientific community, but also to the mining industry and thus human society, because they host
52	the most important niobium (e.g., Araxa, Brazil (Mitchell, 2015) and rare earth element (REE)
53	deposits (e.g., Bayan Obo, China (Drew et al., 1990), Mountain Pass, U.S.A. (Olsen et al. 1954),
54	Mt. Weld, Australia (Willett et al. 1986; Chandler et al. 2024)). In addition, the REE-rich
55	carbonatites provide particularly important constraints on crystallisation and subsequent alteration
56	processes in carbonatite magmatic systems (Moore et al. 2015; Anenburg et al. 2021).
57	Carbonatites are composed of more than 50 vol.% primary (i.e., magmatic) carbonate minerals,
58	and the bulk rock compositions typically have less than 20 wt.% SiO ₂ (Le Maitre et al. 2002). A
59	special subgroup of carbonatites containing wt.% levels of REE has been reported from different
60	locations and tectonic settings worldwide (e.g., Bayan Obo, China (Drew et al. 1990), Mountain
61	Pass, U.S.A. (Olsen et al. 1954), Fen, Norway (Andersen, 1986), Qaqarssuk, Greenland (Knudsen
62	1991), Kangankunde, Malawi (Wall and Mariano, 1996; Broom-Fendley et al. 2017), Khibina,
63	Russia (Zaitsev et al. 1998)). The mineralogy of such Sr-Ba-REE-rich carbonatite types is complex
64	and typically includes an alteration mineral assemblage (e.g., Zaitsev et al. 1998). Metasomatic
65	alteration (fenitization) of the surrounding country rocks is common (Le Bas, 2008; Elliott et al.
66	2018; Yaxley et al. 2022).
67	Several episodes of carbonatitic magmatism are recognized in Greenland, and the following
68	five broad age groups can be discerned:
69	1. Late Archaean (3.0-2.5 Ga): Skjoldungen (Nielsen and Rosing, 1990), Fiskenaesset
70	(Bollingberg et al. 1976) and Tupertalik (Larsen and Pedersen, 1982; Bizzarro et al. 2002).
71	2. Middle Proterozoic (ca. 1.3 Ga): e.g. Qassiarssuk (Stewart, 1970; Andersen, 1997) and

72 Grønnedal-Ika (Emeleus, 1964).

73	3. Late Proterozoic (590-550 Ma): e.g. Sarfartoq (Secher and Larsen, 1980; Larsen and Rex,
74	1992; Tappe et al. 2011, 2012).
75	4. Jurassic (175-150 Ma): e.g. Qaqarssuk (Larsen et al. 1983; Knudsen, 1991) and Tikiusaaq
76	(Steenfelt et al. 2006; Tappe et al. 2009, 2012, 2017; Secher et al. 2009).
77	5. Palaeogene (ca. 56 Ma): Gardiner (Gleadow and Brooks, 1979; Nielsen, 1980).
78	
79	Note that recently a Paleoproterozoic carbonatite magmatic event (ca. 1859 Ma) was proposed
80	for central West Greenland based on monazite mineralization in the Karrat Isfjord area.
81	However, the suggested ferrocarbonatite source to this deposit is yet to be discovered (Mott et
82	al. 2013).
83	
84	In this paper, we report U-Pb monazite ages for the newly discovered Attu carbonatite (named
85	after the village Attu in southern West Greenland), followed by a discussion of the mineralogy and
86	geochemistry of this dyke intrusion. In addition to reporting the presence of several rare carbonate
87	minerals and exsolution textures, we will also discuss the petrogenetic role of the mineral
88	daqingshanite, which comprises both phosphate and carbonate components (Table 1). The
89	occurrence of daqingshanite as exsolution lamellae appears to prevent the formation of secondary
90	REE-carbonate minerals such as bastnäsite and synchysite. Although economic REE mineralization
91	is typically hosted by carbonatite systems that went through multiple stages of autometasomatic
92	overprinting (e.g., Bayan Obo, Wu 2008), the unique exsolution textures documented here show
93	that secondary upgrading of carbonatites is not always required in the formation of high-grade REE
94	mineralization.

96 1.1 Geological setting and field relationships

97	The Attu carbonatite dyke is located at the southern end of Uperniviarsuk island approximately
98	10 km NE of the village Attu between Sisimiut and Aasiaat in southern West Greenland (Fig. 1).
99	The bedrock in the area is mostly Archaean in age, mainly comprising tonalitic to granodioritic
100	gneisses, which have been overprinted by a regional amphibolite to granulite facies metamorphic
101	event at ca. 1850 Ma (Kalsbeek et al., 1987), during a period of major crustal accretion and
102	collision as part of the Paleoproterozoic Nagssugtoqidian orogeny (e.g., Nutman et al., 2008). The
103	carbonatite dyke is located in the northernmost part of the Nordre Strømfjord Shear Zone (Bak et
104	al., 1975; Sørensen, 1983), an area that has been intensely deformed during the Nagssugtoqidian
105	orogeny. Granitic pegmatite magmas formed during this tectono-metamorphic event as late as 1770
106	Ma (Willigers et al., 2001), and possibly even as late as 1676 Ma based on U-Pb rutile ages
107	(Connelly et al., 2000). Lamprophyres and lamproites located just north of our study area (Marker
108	and Knudsen, 1989) yield an age of ca. 1750 Ma (Larsen and Rex, 1992).
109	The pinkish carbonatite body occurs as an up to 1 m wide, steeply to vertically dipping dyke
110	that strikes in NW-SE direction at 128° and can be traced for approximately 50 m along strike (Fig.
111	2). Close to the northeastern contact, it occurs between a 20 m thick NW-SE trending, steeply
112	dipping meta-dolerite dyke (to the left on Fig. 2A) and granulite facies gneisses that dominate the
113	basement in the area (to the right on Fig. 2A). To the southeast, the carbonatite dyke likely
114	continues beneath the sea and to the northwest its contact is covered by overburden at the bottom of
115	a small gully (Fig. 2A). The carbonatite dyke is slightly zoned with light-colored carbonates in the
116	central region and darker pinkish carbonates at the contact to the wall-rocks. Along the contact to
117	the wall-rocks, there is a 5 to 10 cm thick reaction zone (Fig. 2) consisting of a mixture of carbonate
118	minerals and Ba-rich phlogopite plus biotite. Samples 463373 and 463374 represent this transition
119	zone in proximal and distal positions to the carbonatite dyke, respectively (Table 1).

120	In the core of the carbonatite dyke, the rock is coarse (grain sizes of up to several mm) and
121	mainly composed of pink carbonates (mostly calcite) with brownish red monazite(-Ce) crystals. Up
122	to 2 cm large magnetite crystals occur locally. Pink calcite hosts red strontianite inclusions up to
123	100 μ m across in a schlieren-like pattern (Fig. 3). The gneisses and dolerite of the immediate
124	country rock to the carbonatite dyke are characterized by an approximately 20 m thick zone of
125	yellow to orange staining with mm-thick ankerite-rich veins and disseminated ankerite. This zone is
126	best described as a fenitized halo surrounding the carbonatite body (Fig. 2B).
127	2 Analytical methods
128	2.1 Whole-rock major and trace element compositions
129	Whole-rock major and trace element analyses were performed at ACME Laboratories in
130	Canada in 2009, and the data are reported in Table 1. The results for standards analysed alongside
131	our samples are provided in the Supplementary Materials. Cleaned rock samples were jaw crushed
132	to 80% passing (10 mesh, 2 mm). A 250 g aliquot was then riffle split and pulverized in a mild-steel
133	ring-and-puck mill to 85% passing (200 mesh, 75 μm). A 200 mg aliquot was weighed into a
134	graphite crucible and mixed with 1.5 g of LiBO2/Li2B4O7 flux. Crucibles were then placed in an
135	oven and heated to 980°C for 30 minutes. The cooled bead was dissolved in 5% $\rm HNO_3$ (ACS grade
136	nitric acid diluted in demineralised water). Calibration standards and reagent blanks were included
137	in the sample sequence for analysis. Sample solutions were aspirated into an ICP emission
138	spectrograph (Spectro Ciros Vision or Varian 735) to determine the concentrations of SiO ₂ , Al ₂ O ₃ ,
139	$Fe_2O_3,CaO,MgO,Na_2O,K_2O,MnO,TiO_2$ and P_2O_5,as well as the concentrations of Sc, V, Cr,
140	Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,
141	Hf, Pb, Th and U. Loss on ignition (LOI) was determined by igniting a 1 g sample split at 950°C for
142	90 minutes and then measuring the weight loss. Total carbon and sulphur contents are determined
143	by the Leco method. The geochemical data obtained for the carbonatite dyke record magmatic to

144 late-magmatic processes as is suggested by the pristine mineralogy and cooling textures. Secondary 145 alteration is largely absent so that significant post-magmatic element mobility can be ruled out.

146 2.2 Mineral major and minor element compositions by EPMA

147 Mineral analyses were carried out with a JEOL JXA-8200 electron microprobe at the University of Copenhagen. Many of the rock-forming minerals of the Attu carbonatite dyke have unconventional 148 compositions, and most minerals are Sr- and Ba-rich. Quantitative EPMA data for monazite(-Ce) 149 150 ((Ce,La)PO₄) were obtained using the analytical protocol of Scherrer *et al.* (2000). K α X-ray lines were used for Si, Fe, Ca, P and Al; La lines for Y, Ce, La and Er; Lß lines for Pr, Dy, Sm, Gd; Ma 151 lines for Th; and M β lines for Pb and U. For Nd, the most intense L α line was preferred over the L β 152 line as proposed by Scherrer *et al.* (2000), because the interference with the L β line of Ce is negligible 153 (<1% uncertainty in the Nd elemental value). Standards analysed included synthetic REE glasses, as 154 well as natural silicate and phosphate minerals. The EPMA operating conditions were set to 15 kV 155 accelerating voltage and 50 nA beam current at 5 μ m spot size, and the $\phi(\rho Z)$ matrix correction was 156 applied to the raw data. 157

For the Ca-Sr-Ba-REE phosphate-carbonate daqingshanite, La, Ce, Nd, P, Ca, Sr, Ba, F, Pr and 158 Sm were measured by EPMA. The mineral grains were screened for Th and Al, which were always 159 below detection limit. We measured the Ce L β line and the La L α line applying the LiF crystal of the 160 instrument. The L\beta lines for Pr and Sm, and the La lines for Ba (LiF) and Sr (PET) show no overlap 161 162 with the elements in daqingshanite. There was a complete overlap between F and Th. However, Th contents were always below method detection limit of 0.01 wt.%, which implies low F contents. This 163 also shows that the Th-F peak overlap was unlikely to affect the accuracy of the EPMA 164 measurements. For daqingshanite analyses, the operating conditions were set to 15 kV, 7 nA and a 165 beam size of 10 µm because carbonates are unstable under the electron beam. 166

167 2.3 U-Th-Pb age determinations by laser ablation ICP-MS analysis

168	Monazite(-Ce) U-Th-Pb geochronological analysis was performed on thin sections by laser
169	ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) at the Geological Survey of
170	Denmark and Greenland in Copenhagen. A NWR213 solid state Nd:YAG laser system from New
171	Wave Research (ESI) mounted with a standard TV2 ablation cell was coupled to an ELEMENT 2
172	single-collector magnetic sector-field ICP-MS instrument from Thermo-Fisher Scientific. The mass
173	spectrometer was equipped with Ni cones, a Fassel type quartz torch shielded with a grounded Pt
174	electrode and a quartz bonnet. To ensure stable laser output energy, a laser warm-up time of 15
175	minutes was applied before operation, which results in flat ablation craters by a "resonator-flat"
176	laser beam. The mass spectrometer ran for ca. one hour prior to analysis to stabilize the background
177	signal. Samples and standards were carefully cleaned with ethanol in an ultrasonic bath to remove
178	surface contamination. The ablation cell with the inserted sample holder was flushed with helium
179	gas to minimize and stabilize the gas blank level. The ablated material was swept by the helium
180	carrier gas and mixed with argon gas before entering the plasma torch. The ICP-MS instrument was
181	optimised for dry plasma conditions through continuous linear ablation of the GJ-1 zircon standard
182	(e.g., Jackson et al. 2004). The signal-to-noise ratios for the heavy mass range (i.e., 202 Hg to 238 U),
183	emphasizing on ²³⁸ U and ²⁰⁶ Pb, were maximized, while simultaneously opting for low element-
184	oxide formation levels by minimising the 238 UO/ 238 U ratio. To minimize the effect of instrumental
185	drift, a standard-sample-standard analytical protocol was followed, bracketing the samples by 3
186	standard measurements. For data quality control, the Plesovice zircon (Slama et al. 2008) and the
187	monazite(-Ce)s A49H and A276C (pers. comm. Y. Lahaye, GTK) were measured regularly as
188	secondary standards during the analytical session, yielding accuracies and precisions of the age
189	results within 5% of the recommended values (typically even better). Data were acquired from
190	single spot analysis using a laser spot size of 25 $\mu m,$ a nominal laser fluence of 10.5 J/cm^2 and a
191	pulse rate of 10 Hz. Total data acquisition time for a single analysis was at maximum 2 minutes

192	including 30 seconds gas background followed by laser ablation for 30 seconds, and washout for 35
193	seconds. Factory-supplied software was used for the acquisition of the transient data, obtained
194	through automated running mode of pre-set analytical locations. Data processing was carried out
195	off-line using the software Iolite v. 2.5 (Hellstrom et al. 2008; Paton et al. 2011), and the Iolite-
196	integral VizualAge data reduction scheme of Petrus and Kamber (2012). The VizualAge data
197	reduction scheme includes a correction routine for down-hole isotopic fractionation (Paton et al.
198	2010). Monazite(-Ce) ages were obtained using the Tera-Wasserburg inverse concordia diagram
199	and a linear best fit correction intercept procedure to determine an average lower intercept age for
200	the monazite(-Ce) population from each sample analysed (e.g., Vermeesch, 2020).
201	3 Petrography and mineral chemistry
202	The carbonatite rock has a coarse-grained texture defined by large subhedral crystals of
203	monazite(-Ce), apatite, magnetite and dark mica set in a matrix composed of finer-grained
204	carbonates such as Sr-rich calcite and dolomite ((MgCa)(CO ₃) ₂), huntite (Mg ₃ Ca(CO ₃) ₄),
205	strontianite (SrCO ₃), alstonite (Ba,Ca(CO ₃) ₂), burbankite ((Na,Ca) ₃ (Sr,Ba,Ce) ₃ (CO ₃) ₅) and
206	daqingshanite ((Sr,Ca,Ba) ₃ (Ce, La)(PO ₄)(CO ₃) _{$3-x$} (OH, F) _x). The high abundance (5–10 vol.%) of up
207	to 5 mm large pink monazite(-Ce) crystals is rather unique among known carbonatites worldwide
208	(Fig. 3). Centimeter-sized composite calcite-dominated carbonate grains with parallel layers of
209	mainly strontianite are common and suggest that these grains once constituted larger single crystals
210	(Fig. 3). The rock typically exhibits a foliation expressed by parallel alignment of 1 mm thin apatite
211	schlieren (up to 5 mm long) that are visible with a hand lens. The foliation is also visible
212	microscopically as parallel arrangement of the carbonate mineral grains (Fig. 5).
213	3.1 Carbonates
214	The groundmass of the carbonatite rock is dominated by a wealth of intimately intergrown

small- to medium-sized (10-500 $\mu m)$ crystals of calcite, dolomite, daqingshanite, burbankite and

216	alstonite (Figs. 4-9). A dominant textural feature is exsolution among the different carbonate	
217	phases. Calcite is characterized by very high Sr contents, on the order of $5 - 7$ wt.% SrO (Table 2).	
218	Calcite also contains 0.5 to 1 wt.% BaO (Table 2). Generally, calcite is fine-grained and intimately	
219	intergrown with the other carbonate minerals (Figs. 4 and 6). However, calcite crystals may have	
220	been originally much larger, forming poikilitic crystals that enclosed monazite(-Ce) and apatite,	
221	with subsequent exsolution and deformation as indicated by the parallel rows of strontianite. The	
222	strontianite rows probably represent exsolutions from the calcite host along preferred	
223	crystallographic directions (Fig. 3). Similar textures have been reported from Italian carbonatitic	
224	rocks (Vichi et al. 2023). Dolomite is also very rich in Sr (up to 4 wt.% SrO; Table 2). Alstonite	
225	$(Ca,Sr,Ba(CO_3)_2)$ is common in the core of the carbonatite dyke (#334669) occurring as 50×200	
226	μ m large grains that may define a foliation in the rock (Fig. 5; Table 2).	
227	Daqingshanite ((Sr,Ca,Ba) ₃ (Ce, La)(PO ₄)(CO ₃) _{3-x} (OH, F) _x) is present in all the carbonatite	
228	samples examined. In the core zone of the dyke, it occurs as elongated 25 \times 200 μm large grains	
229	defining a foliation in the rock (Fig. 5) together with various Ba- and Sr-carbonates. Daqingshanite	
230	is also present as exsolution lamellae in burbankite (Fig. 8). Representative EPMA data for	
231	daqingshanite are listed in Table 3 where they are compared to daqingshanite data from the Bayan	
232	Obo (China) and Nkombwa Hills (Zambia) carbonatites (Appleton et al. 1992).	
233	Microprobe analyses confirm that burbankite (Na,Ca) ₃ (Sr,Ba,Ce) ₃ (CO ₃) ₅ occurs in the core	
234	zone of the carbonatite dyke together with alstonite, forming $25 \times 75 \ \mu m$ large grains that locally	
235	exhibit exsolution of daqingshanite lamellae (Fig. 8).	
236	In general, different types of exsolution can be observed in the mineral constituents of the Attu	
237	carbonatite dyke:	
238	1. Strontianite occurring as elongated lamellae in calcite (Fig. 9). The strontianite lamellae	
239	locally follow two discrete crystallographic orientations in the calcite crystal hosts (Fig. 9D),	

240		and they are typically folded (Fig. 10). Where larger strontianite lamellae (or schlieren) are
241		observed, they typically contain a core of monazite(-Ce) (Figs. 6 and 10).
242	2.	Mg-Ba carbonate in calcite occurring as submicroscopic to 5 μm long elongated blebs (Fig.
243		10D).
244	3.	Alstonite occurring as 1 μ m thick exsolution lamellae in calcite exhibiting perthite-like
245		textures (Fig. 6).
246	4.	Strontianite occurring in dolomite as rounded submicroscopic blebs up to 1 μm in diameter
247		(Fig. 6).
248	5.	Alstonite occurring as 1–5 μm large blebs in strontianite typically with daqingshanite
249		inclusions (Fig. 7A).
250	6.	Elongated lamellae of daqingshanite occurring in alstonite along cracks or crystallographic
251		planes (Fig. 7B).
252 253	7.	Approximately 1-3 μ m thick and 5-50 μ m long lamellae of daqingshanite occurring in burbankite (Fig. 8).
254 255	8.	Slightly bent composite lamellae of alstonite, daqingshanite and barite occurring in calcite,
256		which are 1 µm thick and up to 20 µm long (Fig. 8).
257	3.2	Phosphates
258	3.2.1	Apatite
259	А	patite occurs as 0.5 to 3 mm large, light-green colored, rounded crystals macroscopically
260	visible	in hand specimen (Fig. 3). Locally, apatite forms schlieren defining a foliation that is visible
261	with a	hand-lens. Apatite contains abundant irregular inclusions of strontianite and monazite(-Ce),
262	and it	may be surrounded by a corona consisting of these same minerals (Figs. 4 and 11). The
263	inclus	ions are mainly located along 20 μm wide parallel zones (darker in BSE images) crossing
264	apatite	e grains (Figs. 4 and 11). These zones have lower contents of heavy elements such as Sr and
265	REE,	and the texture is best interpreted as exsolution of monazite(-Ce) and strontianite from apatite.

266	In addition, there are parallel, minute monazite(-Ce) and strontianite needles included in apatite
267	(Fig. 11). The Sr content in apatite is generally high, with 5-6 wt.% SrO substituting for Ca (Table
268	5). Total Rare Earth Oxide (TREO) contents are typically high between 2 and 4 wt.%. The REE ³⁺ in
269	apatite are charge-balanced by Na^+ (0.3 to 0.5 wt.% Na ₂ O; Table 5). Apatite is common in the
270	mica-rich zones at the contact to the basement gneisses, and there is also apatite with elevated
271	TREO contents present in the fenite aureole bordering the carbonatite dyke. In these apatite crystals,
272	a decreasing content of Sr and REE is observed from core to rim. Apatite in the fenite typically
273	contains 1 to 10 μm large monazite(-Ce) inclusions located in bands with weaker (darker) BSE
274	intensity. Although F dominates the anion site in apatite from the Attu carbonatite and associated
275	fenite, Cl and OH groups are also present.
276	3.2.2 Monazite(-Ce)
277	Monazite(-Ce) at the Attu carbonatite occurs in four different modes (listed in order of
278	decreasing abundance), with only Mode-1 exhibiting primary magmatic features. In contrast, Mode-
279	2, -3 and -4 are best described as reaction products and local exsolution features in which both Th
280	and U contents are below EPMA-method detection limit (Table 6).
281	• Mode-1: Round, brownish pink, 0.5 to 2 mm large crystals (Fig. 3) that exhibit sector zoning
282	(Fig. 12). The Th-zonation is broadly concentric, but with variable styles of embayment and
283	irregularities. Crystal cores generally have the highest Th contents (on average 0.5 wt.% ThO ₂),
284	with marked decrease towards the rims (Table 6). Uranium contents are below EPMA-method
285	detection limit. This monazite mode of occurrence is by far the volumetrically most significant.
286	• Mode-2: Monazite(-Ce) occurs together with strontianite as coronas around large apatite crystals
287	(Figs. 4 and 11).

288	• Mode-3: Between 1 and 50 µm thick, composite strontianite-monazite(-Ce) grains and schlieren	
289	occur in calcite, and these rather elongated features may be folded (Fig. 10), with monazite(-Ce)	
290	in the core.	
291	• Mode-4: Approximately $5 \times 10 \ \mu m$ large, round to irregular inclusions of monazite(-Ce) in	
292	apatite, typically together with strontianite (Figs. 4 and 11).	
293	3.3 Other rock-forming minerals	
294	In the core of the carbonatite dyke, silicate minerals represent less than 10 vol.% of the rock,	
295	and silicate modal abundances increase towards the contact with the country rocks (Fig. 2D). The	
296	most common silicate mineral in the carbonatite is a Ba-mica with a structural formula of	
297	$Ba_{0.41}K_{0.35}Na_{0.19} \text{ (Mg,Fe}^{2+}\text{,Mn})_{2.88}\text{Ti}_{0.16} \text{ Si}_{2.56}\text{Al}_{1.35} \text{ (OH)}_{2} \text{ O}_{10} \text{ (Table 7)}. \text{ The Ba-endmember for } Ba_{0.41}K_{0.35}Na_{0.19} \text{ (Mg,Fe}^{2+}\text{,Mn})_{2.88}\text{Ti}_{0.16} \text{ Si}_{2.56}\text{Al}_{1.35} \text{ (OH)}_{2} \text{ O}_{10} \text{ (Table 7)}. \text{ The Ba-endmember for } Ba_{0.41}K_{0.35}Na_{0.19} \text{ (Mg,Fe}^{2+}\text{,Mn})_{2.88}\text{Ti}_{0.16} \text{ Si}_{2.56}\text{Al}_{1.35} \text{ (OH)}_{2} \text{ O}_{10} \text{ (Table 7)}. \text{ The Ba-endmember for } Ba_{0.41}K_{0.35}Na_{0.19} \text{ (Mg,Fe}^{2+}\text{,Mn})_{2.88}\text{Ti}_{0.16} \text{ Si}_{2.56}\text{Al}_{1.35} \text{ (OH)}_{2} \text{ O}_{10} \text{ (Table 7)}. \text{ The Ba-endmember for } Ba_{0.41}K_{0.45}Na_{0.45}N$	
298	phlogopite (kinoshitalite-ferrokinoshitalite; Tracy 1991, Bigi et al. 1993, Gnos and Armbruster	
299	2000) represents the closest match to the Ba-mica compositions reported here for the Attu	
300	carbonatite. The euhedral, pleochroic Ba-mica crystals (olive to light brown) reach up to 10 mm in	
301	size. Bending of the (001) plane may be observed indicating kink deformation of the micas (Fig. 4).	
302	Tremolite, magnetite and ilmenite are also observed in the Attu carbonatite (Table 7). Barite is	
303	included in most of the carbonate minerals such as in burbankite, daqingshanite, strontianite,	
304	alstonite and calcite (Fig. 5). Allanite is present in the alteration zone that was caused by the	
305	fenitization associated with carbonatite magma emplacement (Fig. 13).	
306	4 Whole-rock geochemistry	
307	The whole-rock Sr, Ba and REE (TREO) contents of the Attu carbonatite reach major element	
308	concentration levels for this dyke intrusion (Table 1). Our samples exhibit strong enrichment of the	
309	LREE relative to the HREE (La _N /Lu _N \sim 2000) (Fig. 14), which is very typical for intrusive	
310	carbonatites from localities worldwide (Woolley and Kempe, 1989; Harmer and Nex, 2016),	
311	including other occurrences in West Greenland (Knudsen 1991; Tappe et al. 2017). At Attu, the	

LREE (La, Ce, Pr, Nd, Sm) account for more than 99 wt.% of the TREO (Table 1). The chondritenormalized REE pattern is slightly concave downwards indicating a relative enrichment in the MREE (Fig. 14). The apparent positive Yb anomaly could be an analytical artifact caused by oxide interference from the very high concentrations of the LREE. This may also explain the apparent negative Tm anomaly.

Sample 463369 is a Sr- and Ba-rich variety of the carbonatite, with SrO plus BaO accounting 317 for 27 wt.% of the rock (Fig. 5). In some samples, REE-bearing carbonates such as burbankite and 318 daqingshanite are rock-forming minerals and present the main REE repositories. In other samples, 319 320 monazite(-Ce) is the main carrier of the REE because it occurs as a common rock-forming mineral, 321 either in the form of phenocrysts or as an exsolved phase together with strontianite (Figs. 4 and 11). 322 The mica-rich glimmeritic transition between the carbonatite and the basement country rock is also enriched in Sr, Ba and the REE (#463373; Fig. 14). The glimmerite is also enriched in Nb 323 relative to the carbonatite core, as is also observed in the Jurassic Qaqarssuk carbonatite complex 324 some 300 km farther south in West Greenland (Knudsen, 1991). The fenitized basement sample 325 463374 is also enriched in the LREE, Sr, Ba and Th compared to the mafic rocks of the basement in 326 the study region (Fig. 14). 327

328 5 U-

U-Th-Pb geochronology

Conventionally, the U-Pb system in geochronology relies on the dual decay of ²³⁸U and ²³⁵U to stable radiogenic ²⁰⁶Pb and ²⁰⁷Pb, respectively. The ²⁰⁶Pb/²³⁸U and ²⁰⁷Pb/²³⁵U ratios therefore define the so-called concordia curve. Another decay chain that can be coupled to the U-decay scheme is the Th-Pb system, where ²³²Th decays to stable radiogenic ²⁰⁸Pb (e.g., Janots et al. 2012; Janots and Rubatto 2014). Recently, Vermeesch (2020) developed an algorithm that helps to visualize coupling between the ²⁰⁸Pb/²³²Th and ²⁰⁶Pb/²³⁸U dates on a U-Th-Pb concordia curve by performing a joint isochron regression between the U-Th-Pb chronometers. This novel visualisation tool allows

investigation of radiogenic to common-Pb ratios (more precise mass spectrometry counting 336 statistics are achieved by measuring mass-208 as the most abundant Pb isotope), thus improving the 337 numerical accuracy of monazite(-Ce) age dates. 338 The monazite(-Ce) recovered from four carbonatite samples were dated by U-Th-Pb 339 geochronology using the LA-ICP-MS technique. The large spread in U/Pb isotopic ratios allows for 340 calculation of lower intercept dates, interpreted as the crystallisation age of these crystals (Fig. 15). 341 The analysed monazite(-Ce) grains from sample 463369 and 463371 represent mm-sized crystals 342 with sector zoning (Fig. 12). They are best interpreted as primary igneous monazite(-Ce) and the 343 344 lower intercept age of 1565 ± 56 Ma in Tera-Wasserburg concordia space determines magma emplacement and crystallization (Fig. 15A). Using the combined U-Th-Pb systematics, we obtained 345 an age of 1565 ± 34 Ma. 346 Phosphorous, REE and Sr now residing in strontianite and monazite(-Ce) coronas are unlikely 347 to have been introduced into the carbonatite rock from external sources, but rather were mobilized 348 internally from very REE- and Sr-rich apatite and calcite. Monazite(-Ce) that occurs as coronas on 349 apatite (Figs. 4 and 11) and aggregates together with strontianite (Figs. 6 and 10) may represent 350 monazite(-Ce) exsolved from apatite and calcite under solid state conditions. These unmixed 351 domains yielded a lower intercept age of 1492 ± 33 Ma, which is within the uncertainty of the 1565 352 \pm 34 Ma age. However, the slightly younger formation age of the unmixed monazite domains 353 compared with the older crystallisation age of the primary igneous monazite(-Ce) is consistent with 354 our textural interpretation (Fig. 15B). 355 6 Discussion 356

- The origins of REE-rich carbonatites, such as the newly discovered occurrence at Attu, have been debated over decades (Mariano, 1989a; Chakhmouradian and Zaitsev, 2012; Moore et al.
- 2015; Anenburg et al. 2020, 2021), with the majority of authors interpreting the REE mineralization

360	in terms of fluid-related processes that affected the carbonatite bodies at a late stage in their
361	magmatic-hydrothermal evolution (e.g., hydro/carbothermal or metasomatic fluids and brine melts).
362	Examples are Bayan Obo in China (Wu 2008; Fan et al. 2016); Qaqarssuk in West Greenland
363	(Knudsen 1991); Gakara in Burundi (Ntiharirizwa et al. 2018) and Khibina on the Kola Peninsula in
364	NW Russia (Zaitsev et al. 1998). However, Mariano (1989b) and Poletti et al. (2016) proposed that
365	the Mountain Pass REE-carbonatite in the western U.S.A. crystallized from a primitive melt that
366	had intruded into Precambrian basement rocks (Olsen et al. 1954). This model is in accordance with
367	Wyllie and Jones (1985) who found that such REE-rich carbonatites can be formed directly from a
368	carbonatite melt. We also interpret the REE mineralization of the Attu carbonatite to have a primary
369	magmatic origin mainly because of the phenocrystic nature of monazite(-Ce) and apatite. The very
370	high abundance of both monazite(-Ce) and apatite, combined with their coarse crystal sizes and
371	association with cm-sized magnetite crystals (Fig. 3), may suggest that the carbonatite dyke
372	represents a cumulate rock. However, the Sr-Ba-REE-rich nature of apatite and groundmass
373	carbonates indicates that the carbonatite melt was originally very enriched in these elements (e.g.,
374	Sartori et al. 2023).
375	6.1 The different types of monazite(-Ce) and their ages
376	The monazite(-Ce) phenocrysts characterised by sector zoning and compositional Th zoning
377	appear to represent a primary magmatic phase crystallized directly from a carbonatite melt, which
378	supports a magmatic model for this REE-rich carbonatite. Compositional data for primary
379	monazite(-Ce) from carbonatites show high Th/U ratios (Zhu and O'Nions 1999). The high Th/U
380	nature of monazite(-Ce) is also reflected in the bulk rock compositions (Table 1). The 1565 ± 56
381	Ma U-Pb age (Fig. 15A) obtained for the Th-rich cores of the monazite(-Ce) crystals constrains the
382	primary crystallisation age. Rims on the large phenocrystic monazite(-Ce) grains have lower Th
383	content compared to the cores, either reflecting Th decrease in the magma or changing conditions of

Th incorporation into the monazite(-Ce) structure. Regardless of the exact mechanism, the compositions and zoning trends of the phenocrystic monazite crystals are best interpreted as primary magmatic features.

Aggregates of strontianite and monazite(-Ce) are observed in calcite where they form a regular pattern probably following crystallographic planes in the host phase (Fig. 9D). These are also developed as schlieren-like stringers (Fig. 10) that range in thickness from 1 to 50 µm. This texture is interpreted as having developed by exsolution of Sr and REE from the primary calcite and apatite to form strontianite and monazite(-Ce). These exsolution textures have subsequently been folded during ductile deformation of the dyke.

393 The monazite(-Ce) found within apatite along sub-parallel 'corridors', occurring together with 394 strontianite, is associated with apatite that has lower content of Sr and REE as evident from the lower (darker) BSE intensity (Fig. 11). These strontianite and monazite(-Ce) crystals were likely 395 exsolved from apatite along these sub-parallel zones. Prokopyev et al. (2017) observed similar 396 exsolution textures in the Seligdar apatite deposit (Central Aldan, Russia) and suggested that late-397 stage chlorine-rich brines were responsible for the REE mobilization. Burtseva et al. (2013) also 398 observed monazite(-Ce) coronas on apatite in the Khamambettu carbonatites (Tamil Nadu, India) 399 and ascribed these textures to late-stage reactions. Harlov et al. (2002, 2003, 2005) conclude that 400 monazite(-Ce) can form over a wide range of temperatures (300-900°C) and pressures (500-1000 401 MPa), but only in the presence of a fluid phase, which indicates that the monazite(-Ce) inclusions in 402 the Attu carbonatite may be a product of fluorapatite/fluid interaction. The fluids responsible for 403 REE transport and deposition are typically considered to have a high activity of ligands such as F, 404 Cl and CO2 (Williams-Jones et al. 2012; Broom-Fendley et al. 2016). However, recent experimental 405 406 work has demonstrated the crucial role of the alkali metals (Na and K) and silica dissolved in such 407 fluids (Anenburg et al., 2020).

408	Th-monazite(-Ce) found in aggregates together with strontianite as well as in "pearls on a string"
409	textures inside a patite yield a 1492 \pm 33 Ma U-Pb age (Fig. 15B), which is potentially younger than,
410	but within uncertainty of, the proposed magma emplacement age of 1565 \pm 56 Ma (Pb-closure
411	temperature for monazite is approximately 700°C). Given that the above-described textures are
412	related to solid-state unmixing during slow cooling, the potentially younger U-Pb age of the
413	secondary monazite(-Ce) provides an estimate for the timescales of unroofing and cooling of the
414	originally deep-seated carbonatite dyke. In other words, the U-Pb data imply that approximately
415	900°C hot carbonatite magma emplaced at deep crustal level (approximately 400°C at 10 km
416	depth), with a subsequent dyke unroofing history on the order of tens of millions of years. The
417	evidence presented so far suggests that although monazite(-Ce) is the main REE carrier in the Attu
418	carbonatite rock, REE contents were also high in apatite and calcite during carbonatite magma
419	crystallization, reinforcing our argument that the REE mineralization is mainly magmatic in nature.
420	6.2 Apatite compositions
421	Primary apatite in the Attu carbonatite is rich in Sr and REE (Table 4). There is simple
422	substitution of Ca \Leftrightarrow Sr, whereas the amount of REE^{3+} is counterbalanced by monovalent Na in
423	apatite:
424	$Na^+ + REE^{3+} \Leftrightarrow 2 Ca^{2+},$
425	or coupled substitution of the type:
426	$\mathrm{Si}^{4+} + \mathrm{REE}^{3+} \Leftrightarrow \mathrm{P}^{5+} + \mathrm{Ca}^{2+}.$
427	Fluorapatite from the Attu carbonatite shows both types of substitution for the REE. Upon
428	cooling, apatite exsolved lamellae of strontianite and monazite(-Ce), which sequestered a
429	significant portion of the REE. In addition, CO_2 was probably also involved during REE
430	mobilization from apatite. For this to occur, reactions with the surrounding primary carbonates or
431	interactions with CO2-rich fluids are necessary. The rims on and cracks in apatite have lower REE

contents, also evident from their lower BSE intensity (Fig. 11). These zones in apatite host abundant 432 433 monazite(-Ce) and strontianite inclusions. Similar observations were made by Prokopyev et al. (2017), who invoked hydrothermal brines to be responsible for the removal of REE from apatite to 434 form monazite(-Ce) at the rims and along cracks in apatite. 435 6.3 REE carbonates as rock-forming minerals 436 REE carbonates such as alstonite, burbankite and daqingshanite occur as minor components in 437 many carbonatites worldwide (e.g., Mitchell 2024). Inclusions of REE carbonates in other rock-438 forming minerals, such as burbankite in apatite or calcite, are reported by Chakhmouradian and 439 440 Dahlgren (2021) from the Fen carbonatite complex in southern Norway. These authors interpreted 441 the exotic inclusions as primary crystals subsequently overgrown by calcite, dolomite and apatite. 442 In contrast, Platt and Woolley (1990) interpreted similar inclusions in dolomite from the Chipman Lake carbonatite as precipitated from an immiscible fluid. 443 The REE carbonates alstonite, burbankite and daqingshanite are major rock-forming phases in 444 the Attu carbonatite (Figs. 5, 6, 7, 8), together with strontianite, calcite, dolomite and barite. The 445 carbonatite rocks typically show a fabric with parallel alignment of these minerals (Fig. 5). They are 446 intimately intergrown and appear to define a tectonic foliation rather than crystal alignment due to 447 magmatic flow (i.e., a tectonic rather than magmatic foliation). 448 Exsolution textures among the carbonate minerals 449 6.4 A feature that distinguishes the Attu carbonatite from most other carbonatite occurrences worldwide 450 is the wealth of different exsolution textures among the Sr-, Ba- and REE-bearing carbonates and 451 phosphates. We identified at least 8 different exsolution textures in the carbonates from the Attu 452 carbonatite. In general, exsolution textures in carbonatites are fairly common; for example, droplets 453 of dolomite in calcite, as well as burbankite and ancylite in calcite (Qaqarssuk carbonatite in West 454 Greenland; Knudsen, 1991), drop-like inclusions of burbankite in calcite (Khibina carbonatite in 455

456	NW Russia; Zaitsev et al. 1998), and calcite with exsolution lamellae of carbocernaite (Rajasthan
457	carbonatite in India; Wall et al. 1993). In the latter example, the exsolution blebs and lamellae of
458	carbocernaite and strontianite in Sr-rich calcite were interpreted as features that formed upon
459	cooling and pressure decrease (Wall et al. 1993), which was probably a consequence of unroofing
460	of this carbonatite dyke. This model is supported by the mineral compositions of the carbonatite
461	dyke, which indicate a purely magmatic crystallization with only little or no evidence for
462	hydrothermal overprinting (Wall et al. 1993).
463	For the Attu carbonatite in West Greenland, the very wide range of REE-, Ba- and Sr-rich
464	carbonates exsolving from each other suggests that the precursor carbonates started crystallization
465	at high temperatures and pressures above a miscibility gap where incorporation of the REE, Ba and
466	Sr was possible. Unfortunately, there are at present no experimental data to constrain the precise
467	conditions at which this may have occurred, but deep crustal levels are implied (>10 km depth),
468	also on the basis of the ductile (shear) deformation of the Attu carbonatite rocks. It is considered
469	likely that the carbonatite was injected as a very REE-, Sr- and Ba-rich melt from which the
470	precursor REE-, Sr- and Ba-rich minerals crystallized together with monazite(-Ce) phenocrysts and
471	Sr-REE-rich apatite. From the latter phase, monazite(-Ce) and strontianite were exsolved during
472	exhumation of the Precambrian metamorphic basement of West Greenland.
473	6.5 The Attu carbonatite in a regional geological context
474	The Archaean to Paleoproterozoic basement of southern West Greenland was deformed and
475	metamorphosed during the extensive Nagssugtoqidian orogeny at ca. 1850 Ma. Emplacement of the
476	Attu carbonatite occurred much later at ca. 1565 Ma, and to the best of our knowledge no major
477	regional tectonic event, such as continental rifting, is known from the greater region during this
478	time. The only other known igneous events that affected the study region belong to the late phase of
479	the Nagssugtoqidian orogeny, such as ca. 1750 Ma old lamprophyres and lamproites (Marker and

480	Knudsen 1989; Larsen and Rex 1992), as well as granitic pegmatites at ca. 1770 Ma (Willigers et al.
481	2001) and also at 1676 Ma (Connelly et al. 2000). Although this may appear surprising at first
482	glance, global databases for carbonatites (Woolley and Kjarsgaard 2008; Humphreys-Williams and
483	Zahirovic 2021) and kimberlites (Tappe et al. 2018) reveal frequent decoupling of such deep-
484	sourced CO2-rich magmatism from large-scale tectonic events, which testifies to their dominant
485	intraplate character and an association with unusually thick and stable continental lithosphere. To
486	date, no associated igneous silicate rocks have been identified to accompany the Attu carbonatite
487	dyke, which suggests that - based on global statistics (e.g., Woolley and Kjarsgaard 2008) - the
488	study region is underexplored for carbonatites and related rocks. For example, in other parts of
489	Greenland and eastern Canada, carbonatite intrusive bodies typically do not occur in isolation but
490	are accompanied by coeval kimberlites (Nielsen et al. 2009; Tappe et al. 2017), aillikites (Tappe et
491	al. 2006, 2008, 2012; Secher et al. 2009), melilitites-nephelinites (Nielsen and Buchardt 1985;
492	Gudelius et al. 2023), as well as phonolites and syenites (Andersen 1997; Finch et al. 2001;
493	Hutchison et al. 2021). Given the very high contents of REE-Sr-Ba in the Attu carbonatite dyke,
494	which we ascribe to a magmatic origin, one may look at a highly fractionated endmember
495	composition that likely evolved from less enriched calcite- or dolomite carbonatite magmas and
496	associated silicate melts. An interesting feature of the Attu carbonatite is that the plentiful
497	exsolution textures developed both before and after the deformation that led to the prominent
498	foliation of the rock. This suggests carbonatite magma emplacement into and crystallization within
499	an active shear zone at deep crustal level (>10 km depth), an inference that may guide continued
500	rare-metal exploration efforts in West Greenland and similar Precambrian basement provinces
501	
	worldwide (Goodenough et al. 2016). The full size of the Mesoproterozoic intrusion hear Attu is
502	currently unknown and further exploration work is required to understand the extent of this newly

Commented [ST1]: Hutchison, W., Finch, A.A., Borst, A.M., Marks, M.A.W., Upton, B.G.J., Zerkle, A.L., Stücken, E.E., Boyce, A.J., 2021. Mantle sources and magma evolution in Europe's largest rare earth element belt (Gardar Province, SW Greenland): New insights from sulfur isotopes. Earth and Planetary Science Letters 568, 117034.

7 Conclusions 505

506	The Attu carbonatite dyke is composed of carbonates such as Sr-rich calcite, Sr-rich dolomite,
507	strontianite, alstonite, burbankite and daqingshanite, as well as of phosphates such as monazite(-Ce)
508	and apatite. Monazite(-Ce) phenocrysts and monazite(-Ce) related to exsolution textures are dated
509	to 1565 \pm 56 Ma and 1492 \pm 33 Ma, respectively. At the dyke contact to the country rocks, the
510	content of mafic silicates, mainly Ba-rich phlogopite in glimmerite domains, increases and
511	developed into a fenite zone.
512	Individual mineral phases have compositions that are dominated by extremely high contents of
513	Sr, Ba and REE, probably due to high formation temperatures, rendering this deposit primary
514	magmatic in nature. The very REE-, Sr- and Ba-rich carbonate minerals were unstable during
515	cooling, and a wealth of exsolution textures developed in calcite, burbankite, strontianite and
516	dolomite as well as in apatite. Chondrite-normalized REE distributions show an overall LREE
517	enrichment as is typical for carbonatites. There is a slight MREE enrichment, which we interpret as
518	a consequence of monazite(-Ce) and apatite accumulation in the dyke. However, the very high
519	contents of Sr and REE in apatite indicate that the carbonatite magma was extraordinarily enriched
520	in these elements.
521	Despite the very high REE concentrations, the economic potential of the Attu carbonatite
522	appears to be small because the deposit has a limited tonnage based on current geological data.
523	However, this sparsely explored region in West Greenland may host similar deposits and comprise

an important carbonatite-related REE district (cf., Mott et al. 2013).

525 Acknowledgment

526	This paper h	has benefited from the constructive criticism by two anonymous reviewers and the				
527	journal editor Ali Polat. We thank Kai Sørensen for making us aware of these "strange pink rocks"					
528	he saw durin	ng geological mapping in the 1960s. ST acknowledges the UiT Faculty of Science and				
529	Technology	for support of Solid Earth research topics. Publication is authorized by				
530	the Geologi	cal Survey of Denmark and Greenland.				
531						
532						
533	Figure captions					
534						
535	Figure 1	Location of the Attu carbonatite dyke on the geological map of West Greenland. The				
536		carbonatite is marked with an asterisk.				
537						
538	Figure 2	Illustrations of the mode of occurrence of the newly discovered Attu carbonatite dyke:				
539	A)	View of the locality from SE. The carbonatite dyke is ca. 1 m wide at this location.				
540	B)	View of the locality from above. The carbonatite has apophyses into the meta-dolerite				
541		wall-rock. The yellow stain in the circled area is tied to ankerite-rich veins. The				
542		position of sample 463374 is indicated.				
543	C)	Pink carbonatite with a black reaction rim (above hammer) that is composed of >90				
544		vol.% dark mica (glimmerite) within the surrounding gneiss.				
545	D)	Small carbonatite vein and pink carbonate in the altered wall-rock consisting of				
546		glimmerite. The position of sample 463373 is indicated.				
547						

548	Figure 3	Detail of the central part of the carbonatite dyke, mainly consisting of pink calcite and
549		light red monazite(-Ce). Calcite hosts exsolved rows of minute pink strontianite
550		grains. Black opaque crystals are Fe-oxide minerals. Matchstick for scale.
551		
552	Figure 4	Electron backscatter photomicrograph of sample 463370 (center of dyke). Large
553		apatite crystals in a carbonate matrix (more details in Figure 5). There is a bright rim
554		on apatite consisting of strontianite and monazite(-Ce). The apatite crystal has
555		exsolved strontianite and monazite(-Ce) seen as "pearls on a string" (Fig. 6). The
556		carbonatite contains Ba-rich phlogopite, monazite(-Ce) and ilmenite. The Ba-rich
557		phlogopite is slightly deformed. In the upper right part of the photomicrograph,
558		parallel arrangement of strontianite in a schlieren-like texture is seen in medium-
559		grained calcite and burbankite aggregates (a), as well as in a fine-grained calcite-
560		burbankite aggregate (b).
561		
562	Figure 5	False colour electron backscatter photomicrograph of sample 463369 (center of dyke).
563		Foliated REE-rich carbonatite consisting of calcite (dark blue), strontianite (light
564		blue), burbankite (green), alstonite (yellow), daqingshanite (orange) and barite (red).
565		A tectonic foliation is defined by parallel arrangement of alstonite, burbankite, calcite
566		and daqingshanite crystals. Calcite contains composite lamellae of alstonite,
567		daqingshanite and barite. Strontianite contains blebs of alstonite and daqingshanite.
568		This image was generated by assigning colours to the different grey levels of the
569		original backscatter electron image.
570		

571	Figure 6	Electron backscatter photomicrograph of the carbonate textures in sample 463370
572		(dyke center; enlargement of Figure 4). The darkest mineral is dolomite exhibiting
573		small exsolution blebs of strontianite in the central parts of the grains. Calcite is
574		slightly brighter and shows perthite-like exsolution patterns of light grey alstonite. The
575		large medium grey crystals are burbankite, light grey crystals are strontianite and the
576		white crystals are monazite(-Ce).
577		
578	Figure 7	False colour electron backscatter photomicrograph of sample 463369 (dyke center;
579		enlargement of Figure 6). Strontianite (light blue) contains blebs of alstonite (yellow),
580		some of which also contain minor blebs of daqingshanite (orange). Alstonite exhibits
581		elongated lamellae of daqingshanite along cracks or crystallographic directions. This
582		image was generated by assigning colours to the different grey levels of the original
583		backscatter electron image.
584		
585	Figure 8	False colour electron backscatter photomicrograph of sample 463369 (dyke center;
586		enlargement of Figure 6). Calcite (dark blue) contains elongated exsolution lamellae
587		of a Mg-Ba carbonate. Burbankite (green) contains elongated parallel exsolution
588		lamellae of daqingshanite. This image was generated by assigning colours to the
589		different grey levels of the original backscatter electron image.
590		
591	Figure 9	Electron backscatter photomicrographs of carbonatite samples from the Attu dyke:
592	A)	Large monazite(-Ce) (Mz) and magnetite (Mt) crystals set in a carbonate matrix in
593		sample 463371 (dyke center). Within the carbonates, elongated strontianite crystals
594		form a folded schlieren-like pattern (more details in Panel B).

595	B)	Elongated strontianite (white) in calcite (medium grey) and dolomite (dark grey). The
596		brighter parts of the calcite have higher contents of Sr, Ba and REE.
597	C)	Large euhedral monazite(-Ce) (Mz), magnetite (Mt) and calcite crystals with
598		exsolution of strontianite (more details in Panel D; #463373 dyke center).
599	D)	The exsolution blebs in the upper right calcite crystal consist of a Mg-Ba carbonate,
600		whereas the exsolution lamellae in the lower left calcite crystal have strontianite
601		composition, following two crystallographic orientations in the calcite host (lower
602		left).
603		
604	Figure 10	Electron backscatter photomicrograph of sample 463369 (center of dyke).
605		Approximately 1-5 μm thin folded lamellae of strontianite occur in calcite. The larger,
606		irregular, light grey areas consist of strontianite with cores of monazite(-Ce). The
607		lighter grey areas in calcite have higher contents of Sr relative to the darker areas.
608		
609	Figure 11	Electron backscatter photomicrograph of sample 463370 (center of dyke; enlargement
610		of Figure 4). Large apatite crystal with a corona consisting of strontianite (light grey)
611		and monazite(-Ce) (white). Within the apatite crystal, rows of monazite(-Ce) and
612		strontianite grains form an irregular pattern especially in the darker areas of the
613		apatite. Needle-shaped strontianite follows a 'N-S' orientation in the apatite host,
614		which presumably presents crystallographically controlled exsolution. The darker
615		apatite domains are depleted in heavy elements such as Sr and REE relative to the
616		brighter apatite domains. The thin 'N-S' vein is composed of barite. The dark mineral
617		to the left is dolomite.
618		

619	Figure 12	Electron backscatter photomicrograph showing complex zoning in a large monazite(-
620		Ce) crystal from carbonatite sample 463369 (center of dyke). Alternating grey-levels
621		characterize the core of the monazite crystal, whereas the rim shows slightly lower
622		BSE intensity. The entire crystal is cut by 5 to 20 μm wide sector zones with a
623		brighter shade of grey oriented parallel to a cleavage plane in the monazite host. The
624		BSE grey-level mainly reflects Th variations.
625		
626	Figure 13	Electron backscatter photomicrograph of country rock sample 463374. Large allanite
627		crystal together with smaller allanite grains along rock-forming silicate grain
628		boundaries. Ankerite crystals and veins are also present within the country rock.
629		
630	Figure 14	REE normalized to chondrite in representative samples from the Attu carbonatite.
631		Samples 463369, -70, -71, -72 are taken from the carbonatite dyke. Sample 463373
632		represents the transition from the carbonatite dyke into the wall-rock. Sample 463373
633		represents fenitized basement rock with ankerite veins. Chondrite values are from Sun
634		and McDonough (1989).
635		
636	Figure 15	Tera-Wasserburg concordia diagrams showing the LA-ICP-MS U/Pb data for
637		monazite(-Ce) from the Attu carbonatite in southern West Greenland. Primary
638		monazite(-Ce) in Panel A is from samples 463369 and 463371, whereas secondary
639		monazite(-Ce) in Panel B is from samples 463370 and 463373.

640 Table captions:

- 641 Table 1 Geochemical analyses of representative samples from the Attu carbonatite dyke
- 642 Table 2 Representative chemical compositions of carbonate minerals
- 643 **Table 3** Representative chemical compositions of daqingshanite
- 644 **Table 4** Representative chemical compositions of burbankite
- 645 Table 5 Representative chemical compositions of apatite
- 646 **Table 6** Representative chemical compositions of monazite(-Ce)
- 647 **Table 7** Representative chemical compositions of silicate minerals

649 References650

- Andersen, T., 1986. Compositional variation of some rare earth minerals from the Fen complex
- (Telemark, SE Norway): implication for the mobility of rare earths in a carbonatite system.
 Mineral. Mag., 50, 503-509.
- Andersen, T., 1997. Age and petrogenesis of the Qassiarssuk carbonatite-alkaline silicate volcanic
 complex in the Gardar rift, South Greenland. Mineralogical Magazine; 61, 499-513.
- Anenburg, M., Mavrogenes, J.A., Frigo, C., Wall, F., 2020. Rare earth element mobility in and
- around carbonatites controlled by sodium, potassium, and silica. Science Advances 6,eabb6570.
- 659 Anenburg, M., Broom-Fendley, S., Chen, W., 2021. Formation of rare earth deposits in
- 660 carbonatites. Elements 17(5), 327-332.
- 661 Appleton, J. D., Bland, D.J., Nancarrow, P.H., Styles, M.T, Mambwe, S.H. Zambezi, P., 1992. The
- occurrence of daqingshanite-(Ce) in the Nkombwa Hill carbonatite, Zambia Mineralogical
 Magazine, 56, 419-422
- 664 Bak, J., Korstgård, J.A., Sørensen, K., 1975. A major shear zone within the Nagssugtoqidian of
- 665 West Greenland. Tectonophysics, 27, 191-209.
- 666 Bell ,K., Kjarsgaard, B.A., Simonetti, A., 1998. Carbonatites into the Twenty-First Century.
- 667 Journal of Petrology 39, 1839-1845.
- 668 Bigi, S., Brigatti, M.F., Mazzuchelli , M., Rivalenti, G., 1993. Crystal chemical variations in Ba-rich
- 669 biotites from gabbroic rocks of lower crust (Ivrea Zone, NW Italy). Contributions to
- 670 Mineralogy and Petrology **113**, 87-99.

- 671 Bizzarro, M., Simonetti, A., Stevenson, R.K., David, J., 2002. Hf isotope evidence for a hidden
- 672 mantle reservoir. Geology 30, 771–774.
- 673 Bollingberg, H., Hopgood, A.M., Kalsbeek, F., 1976. Some trace elements in Archean marbles and
- 674 metamorphosed silico-carbonatites from the Fiskenæsset region. Rapp. Grønlands Geol.
- 675 Unders., **73**, 86-90.
- 676 Broom-Fendley, S., Styles, M. T., Appleton, J. D., Gunn G., Wall, F., 2016. Evidence for
- 677 dissolution-reprecipitation of apatite and preferential LREE mobility in carbonatite-derived
- 678 late-stage hydrothermal processes. American Mineralogist, 101, 596-611.
- 679 Broom-Fendley, S., Wall, F., Spiro, B., Ullmann, C.V., 2017. Deducing the source and composition
- 680 of rare earth mineralising fluids in carbonatites: insights from isotopic (C, O, Sr-87/Sr-86)
- data from Kangankunde, Malawi. Contributions to Mineralogy and Petrology 172, 1-18.
- 682 Burtseva, M. V., Ripp, G. S., Doroshkevich, A. G., Viladkar, S. G., Varadan, R., 2013. Features of
- mineral and chemical composition of the Khamambettu Carbonatites, Tamil Nadu. Journal of
 the Geological Society of India, 81. 655-664.
- 685 Chakhmouradian, A. R., Dahlgren, S., 2021. Primary inclusions of burbankite in carbonatites from
- the Fen complex, southern Norway. Mineralogy and Petrology, 115, 161-171.
- Chakhmouradian, A. R., & Zaitsev, A. N. (2012). Rare earth mineralization in igneous rocks:
 sources and processes. Elements, 8, 347-353.
- 689 Chandler, R., Bhat, G., Mavrogenes, J., Knell, B., David, R., Leggo, T., 2024. The primary geology
- 690 of the Paleoproterozoic Mt Weld Carbonatite Complex, Western Australia. Journal of
- 691 Petrology 65, egae007.

- 692 Connelly, J.N., van Gool, J.A.M., Mengel, F.C., 2000. Temporal evolution of a deeply eroded
- 693 orogen: the Nagssugtoqidian orogen, West Greenland. Canadian Journal of Earth Sciences **37**,
- 694 1121-1142.
- Drew, L.J., Meng, Q. R., Sun, W. J., 1990. The Bayan Obo iron-rare-earth-niobium deposits, Inner
 Mongolia, China. Lithos, 26, 43 65.
- 697 Elliott, H.A.L., Wall F., Chakhmouradian, A.R., Siegfried, P.R., Dahlgren, S., Weatherly, S., Finch,
- 698 A.A., Marks, M.A.W., Dowman, E. Deady, E., 2018. Fenites associated with carbonatite
- 699 complexes: A review. Ore Geology Reviews 93, 38-59.
- 700Emeleus, C.H., 1964. The Gronnedal-Ìka alkaline complex, South Greenland. The structure and
- 701 geological history of the complex. Bull. Grønlands Geol. Unders., **45**:75 pp.
- Fan, H. R., Yang, K. F., Hu, F. F., Liu S., Wang, K. Y., 2016. The giant Bayan Obo REE-Nb-Fe
 deposit, China: controversy and ore genesis. Geoscience Frontiers, 7, 335-344.
- 704 Finch, A.A., Goodenough, K.M., Salmon, H.M., Andersen, T., 2001. The petrology and
- petrogenesis of the North Motzfeldt Centre, Gardar Province, South Greenland. Mineralogical
 Magazine 65, 759 -774.
- 707 Gleadow, A.J.W. Brooks, C.K., 1979. Fission track dating, thermal histories and tectonics of
- ⁷⁰⁸ igneous intrusions in East Greenland. Contrib Mineral Petrol **71**, 45–60
- 709 Goodenough, K.M., Schilling J., Jonsson E., Kalvig P., Charles N., Tuduri J., Deady E.A., Sadeghi
- 710 M., Schiellerup H., Müller A., Bertrand G., Arvanitidis N., Eliopoulos D.G., Shaw R.A.,
- 711 Thrane K., Keulen N., 2016. Europe's rare earth element resource potential: An overview of
- 712 REE metallogenetic provinces and their geodynamic setting. Ore Geology Reviews 72, 838-
- 713 856.

714	Gudelius, D., Marks, M. W., Markl, G., Nielsen, T. F., Kolb, J., Walter, B., 2023. The origin of	
715	ultramafic complexes with melilitolites and carbonatites: a petrological comparison of the	
716	Gardiner (E Greenland) and Kovdor (Russia) intrusions. Journal of Petrology, 64, egad036.	
717	Harlov, D. E., Förster, H. J. Nijland, T. G. 2002. Fluid-induced nucleation of (Y+ REE)-phosphate	
718	minerals within apatite: Nature and experiment. Part I. Chlorapatite. American Mineralogist,	
719	87, 245-261.	
720	Harlov, D. E., Förster, H. J., 2003. Fluid-induced nucleation of (Y+ REE)-phosphate minerals	
721	within apatite: Nature and experiment. Part II. Fluorapatite. American Mineralogist, 88, 1209-	
722	1229.	
723	Harlov, D. E., Wirth, R., Förster H. J., 2005. An experimental study of dissolution-reprecipitation	
724	in fluorapatite: fluid infiltration and the formation of monazite(-Ce). Contributions to	
725	Mineralogy and Petrology, 150, 268-286.	
726	Harmer, R.E., Nex P.A.M., 2016. Rare Earth deposits of Africa. Episodes 39, 381-406	
727	Hellstrom, J., Paton, C., Woodhead, J. Hergt J., 2008. Iolite: Software for spatially resolved LA-	
728	(quad and MC) ICPMS analysis. In: Sylvester P (editor) Laser Ablation ICP-MS in the Earth	
729	Sciences: Current Practices and Outstanding Issues, 343-348, Mineral. Assoc. of Canada,	
730	Quebec, Canada.	
731	Humphreys-Williams, E.R., Zahirovic, S., 2021. Carbonatites and global tectonics. Elements 17,	
732	339-344.	
733	Hutchison, W., Finch, A.A., Borst, A.M., Marks, M.A.W., Upton, B.G.J., Zerkle, A.L., Stüeken,	
734	E.E., Boyce, A.J., 2021. Mantle sources and magma evolution in Europe's largest rare earth	
735	element belt (Gardar Province, SW Greenland): New insights from sulfur isotopes. Earth and	
736	Planetary Science Letters 568, 117034.	

737	Jackson, S	S., Pearson.	N.J., G	riffin. V	V.L.,	Belousova.	E.A., 2	2004.	The app	lication of	of laser	ablation -
					· · ·							

- inductively coupled plasma mass spectrometry to in situ U-Pb zircon geochronology. Chem.
 Geol. 211, 47-69.
- Janots, E., Berger, A., Gnos, E., Whitehouse, M., Lewin, E., Pettke, T., 2012. Constraints on fluid
 evolution during metamorphism from U–Th–Pb systematics in Alpine hydrothermal
 monazite(-Ce). Chem. Geol., 326-327, 61-71.
- Janots, E. Rubatto, D., 2014. U–Th–Pb dating of collision in the external Alpine domains (Urseren
 zone, Switzerland) using low temperature allanite and monazite(-Ce), Lithos, 184, 155–166.
- 745Kalsbeek, F., Pidgeon, R.T., Taylor, P.N., 1987. Nagssugtoqidian mobile belt of West Greenland: A

cryptic 1850 Ma suture between two Archean continents –chemical and isotopic evidence.
Earth Planet. Sci. Lett., 85, 365-385.

- Knudsen, C., 1991. Geology and geochemistry of the Qaqarssuk carbonatite complex, southern
 West Greenland. Monograph Ser. Mineral Deposits, 29, 110 pp.
- Larsen, L.M., Rex, D.C., Secher, K., 1983. The age of carbonatites, kimberlites and lamprophyres
- from southern West Greenland: recurrent alkaline magmatism during 2500 million years.

752 Lithos, 16, 215-221.

- Larsen, L.M., Rex, D.C., 1992. A review of the 2500 Ma span of alkaline-ultramafic, potassic and
 carbonatitic magmatism in West Greenland. Lithos, 28, 367-402.
- 755 Larsen, L.M., Pedersen, A.K., 1982. A minor carbonatite occurrence in southern West Greenland:
- 756 the Tupertalik intrusion. Rapp. Grønlands Geol. Unders., **110**, 38-43.
- 757 Le Bas, M.J., 2008. Fenites associated with carbonatites. Canadian Mineralogist 46, 915-932.
- and Processes. Elements 8, 347-353.

- 759 Le Maitre, R.W. (ed) 2002. Igneous rocks. A classification and glossary of terms.
- 760 Recommendations of the International Union of Geological Sciences Subcommission on the
- 761 Systematics of Igneous Rocks. Cambridge University Press.
- 762 Mariano. A.N., 1989a. Nature of economic mineralization in carbonatites and related rocks, in: Bell,
- K. (Ed.), Carbonatites: genesis and evolution. Unwin Hyman, London, United Kingdom, pp.
 149-176.
- 765 Mariano, A.N., 1989b. Economic geology of rare earth minerals. In Mineralogical Society of
- 766 America Reviews in Mineralogy, **21**, 308-338.
- 767 Marker, M., Knudsen, C., 1989. Middle Proterozoic ultramafic lamprophyre dykes in the Archean
- 768 of the Atâ area, central West Greenland. Rapp. Grønlands Geol. Unders., 145, 23-28.
- 769 Mitchell, R.H., 2015. Primary and secondary niobium mineral deposits associated with carbonatites.
- 770 Ore Geology Reviews 64, 626-641.
- 771 Mitchell, R.H., 2024. Composition and Paragenesis of Daqingshanite from the Kamthai
- 772 Carbothermalite, Rajasthan, India. Mineralogical Magazine. Published online 2024:1-32.
- 773 doi:10.1180/mgm.2024.18
- 774 Moore, M., Chakhmouradian, A.R., Mariano, A.N., Sidhu, R., 2015. Evolution of rare-earth
- mineralization in the Bear Lodge carbonatite, Wyoming: Mineralogical and isotopic evidence.
 Ore Geology Reviews 64, 499-521.
- Montel, J.M., Foret, S., Veschambre, M., Nicollet, C., Provost, A., 1996. Electron microprobe
 dating of monazite(-Ce). Chem. Geol. 131, 37–53.
- 779 Mott, A.V., Bird, D.K., Grove, M., Rose, N., Bernstein, S., Mackay, H., Krebs, J., 2013. Karrat
- 780 Isfjord: a newly discovered Paleoproterozoic carbonatite-sourced REE deposit, central West
- 781 Greenland. Economic Geology, 108, 1471-1488.

- 782 Nielsen, T.F.D., 1980. The petrology of a melilitolite, melteigite, carbonatite and syenite ring dike
- 783 system, in the Gardiner complex, East Greenland. Lithos, 13, 181-197.
- 784 Nielsen, T.F.D., Buchardt B., 1985. Sr-C-O isotopes in nephelinitic rocks and carbonatites,
- 785 Gardiner Complex, Tertiary of East Greenland. Chemical Geology 53, 207-217.
- Nielsen, T.F.D. Rosing, M., 1990. The Archean Skjoldungen alkaline province, South-East
- 787 Greenland. Rapp. Grønlands Geol. Unders., **148**, 93-100.
- 788 Nielsen, T.F.D., Jensen, S. M., Secher, K., Sand, K. K., 2009. Distribution of kimberlite and
- aillikite in the Diamond Province of southern West Greenland: a regional perspective based on
- 790 groundmass mineral chemistry and bulk compositions. Lithos, 112, 358-371.
- 791 Ntiharirizwa, S., Boulvais P., Poujol M., Branquet Y., Morelli C., Ntungwanayo J., Midende G.,
- 792 2018. Geology and U-Th-Pb dating of the Gakara REE deposit, Burundi. Minerals, 8, 394.
- 793 Nutman, A.P., Kalsbeek F., Friend, C.R.L., 2008. The Nagssugtoqidian orogen in South-East
- Greenland: Evidence for Paleoproterozoic collision and plate assembly. American Journal of
 Science 308, 529-572
- 796 Olsen, J.C., Shawe D.R., Pray L.C., Sharp, W.N., 1954. Rare-earth mineral deposit of the Mountain
- 797 Pass district, San Bernardino County, California. U.S. Geol. Surv. Prof. Pap. 261, 75 pp.
- Paton, C., Hellstrom, J.C., Paul, P., Woodhead, J.D., Hergt, J.M., 2011. Iolite: Freeware for the
 visualisation and processing of mass spectrometric data. Journal of Analytical Atomic
- 800 Spectrometry **26**, 2508-2518.
- Paton, C., Woodhead, J.D., Hellstrom, J.C., Hergt, J.M., Greig, A, Maas, R., 2010. Improved laser
- ablation U-Pb zircon geochronology through robust downhole fractionation correction.
- 803 Geochemistry Geophysics Geosystems 11, 1-36.

- 804 Petrus, J.A., Kamber, B.S., 2012. Vizual Age: A Novel Approach to Laser Ablation ICP-MS U-Pb
- 805 Geochronology Data Reduction. Geostandards and Geoanalytical Research 36, 247-270.
- 806 Pilipiuk, A.N., Ivanikov V.V., Bulakh, A.G., 2001. Unusual rocks and mineralization in a new
- 807 carbonatite complex at Kandaguba, Kola Peninsula, Russia. Lithos, 56, 333–347.
- Platt, R. G., Woolley, A. R., 1990. The carbonatites and fenites of Chipman Lake, Ontario. The
 Canadian Mineralogist, 28, 241-250.
- 810 Poletti, J.E., Cottle, J. M., Hagen-Peter, G.A., Lackey, J.S., 2016. Petrochronological constraints on
- the origin of the Mountain Pass ultrapotassic and carbonatite intrusive suite, California.
- 812 Journal of Petrology, 57, 1555-1598.
- Prokopyev, I.R., Doroshkevich, A.G., Ponomarchuk, AV., Sergeev S.A., 2017. Mineralogy, age and
 genesis of apatite-dolomite ores at the Seligdar apatite deposit (Central Aldan, Russia). Ore
 Geology Reviews, 81, 296-308.
- 816 Sartori ,G., Galli, A., Weidendorfer, D., Schmidt M.W., 2023. A tool to distinguish magmatic from
- secondarily recrystallized carbonatites: calcite/apatite rare earth element partitioning. Geology
 51, 54-58.
- 819 Scherrer, N.C., Engi, M., Gnos, E., Jakob, V. Liechti, A., 2000. Monazite(-Ce) analysis; from
- sample preparation to microprobe age dating and REE quantification. Schweizerische

821 Mineralogische und Petrographische Mitteilungen **80**, 93–105.

- Secher, K., Larsen, L.M., 1980. Geology and mineralogy of the Sarfartôq carbonatite complex,
 southern West Greenland. Lithos, 13,199-212.
- 824 Secher, K., Heaman, L.M., Nielsen, T.F.D., Jensen, S.M., Schjøth, F., Creaser, R.A., 2009. Timing
- 825 of kimberlite, carbonatite, and ultramafic lamprophyre emplacement in the alkaline province
- located 64°–67°N in southern West Greenland. Lithos, 112, 400–406

- 827 Slama, J., Kosler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A.,
- 828 Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene N., Tubrett ,M.N.
- 829 Whitehouse, M.J., 2008. Plesovice zircon a new natural reference material for U-Pb and Hf
- 830 isotopic microanalysis. Chemical Geology **249**, 1-2, 1-35.
- 831 Steenfelt, A., Hollis, J.A. Secher, K. 2006. The Tikiusaaq carbonatite: a new Mesozoic intrusive
- complex in southern West Greenland. Geological Survey of Denmark and Greenland Bulletin
 7, 9-12.
- 834 Stewart, J.W., 1970. Precambrian alkaline-ultramafic/carbonatite volcanism at Qassiarssuk, South
- 835 Greenland. Bull. Grønlands Geol. Unders., 84:70 pp.
- 836 Sun. S.-s. McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:
- 837 implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.),

838 Magmatism in the Ocean Basins. Geological Society Special Publication. 42. 313–345.

- Sørensen, K., 1983. Growth dynamics of the Nordre Strømfjord Shear Zone. Journal of Geophysical
 Research, 88, 3419–3437.
- 841 Tappe, S., Foley, S.F., Jenner, G.A., Heaman, L.M., Kjarsgaard, B.A., Romer, R.L., Stracke, A.,
- 842 Joyce, N., Hoefs, J., 2006. Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay,
- Labrador: A consequence of incipient lithospheric thinning beneath the North Atlantic craton.
 Journal of Petrology 47, 1261-1315.
- 845 Tappe, S., Foley, S.F., Kjarsgaard, B.A., Romer, R.L., Heaman, L.M., Stracke, A., Jenner, G.A.,
- 846 2008. Between carbonatite and lamproite: Diamondiferous Torngat ultramafic lamprophyres
- 847 formed by carbonate-fluxed melting of cratonic MARID-type metasomes. Geochimica Et
- 848 Cosmochimica Acta 72, 3258-3286.

- 849 Tappe, S., Steenfelt, A., Heaman, L.M. Simonetti, A., 2009. The newly discovered Jurassic
- 850 Tikiusaaq carbonatite aillikite occurrence, West Greenland, and some remarks on
- 851 carbonatite–kimberlite relationships. Lithos **112**, 385-399.
- 852 Tappe, S., Pearson, D.G., Nowell, G.M., Nielsen, T.F.D., Milstead, P., Muehlenbachs, K., 2011. A
- fresh isotopic look at Greenland kimberlites: Cratonic mantle lithosphere imprint on deep
 source signal. Earth and Planetary Science Letters 305, 235-248.
- 855 Tappe. S., Steenfelt, A. Nielsen, T.D.F. 2012. Asthenospheric source of Neoproterozoic and
- 856 Mesozoic kimberlites from the North Atlantic craton, West Greenland: New high-precision
- 857 U–Pb and Sr–Nd isotope data on perovskite Chemical Geology **320–321**. 113–12.
- Tappe, S., Romer, R.L., Stracke, A., Steenfelt, A., Smart, K.A., Muehlenbachs, K., Torsvik, T.H.,
- 859 2017. Sources and mobility of carbonate melts beneath cratons, with implications for deep
- carbon cycling, metasomatism and rift initiation. Earth and Planetary Science Letters 466,152-167.
- 862 Tappe, S., Smart, K.A., Torsvik, T.H., Massuyeau, M., de Wit, M.C.J. 2018. Geodynamics of
- 863 kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles.
- 864 Earth and Planetary Science Letters 484, 1-14.
- 865 Tracy, R.J., 1991. Ba-rich micas from the Franklin Marble, Lime Crest and Sterling
- 866 Hill, New Jersey. American Mineralogist, 76, 1683–1693
- Vermeesch, P., 2020. Unifying the U–Pb and Th–Pb methods: joint isochron regression and
 common Pb correction. Geochronology 2, 119-131.
- 869 Vichi, G., Perna, M.G., Ambrosio, F., Rosatelli, G., Cirillo, D., Broom-Fendley, S., Vladykin, N.V.,
- 870 Zaccaria, D., Stoppa, F., 2023. La Queglia carbonatitic melnöite: a notable example of an
- ultra-alkaline rock variant in Italy. Mineral. Petrol. 117, 505–528.

8/2 wall, F., Le Das, W.J. Silvasiava, K.K., 1995. Calcile and carbocematic exsolution and con	872	Wall, F., Le Bas	. M.J. Srivastava, R.K.	. 1993. Calcite an	d carbocernaite exsolution and cotect
--	-----	------------------	-------------------------	--------------------	---------------------------------------

- 873 textures in a Sr, REE-rich carbonatite dyke from Rajasthan, India Mineralogical Magazine **57**,
- 874 3, 495-513.
- 875 Wall, F. Mariano, A.N., 1996. Rare earth minerals in carbonatites: A discussion centred on the
- 876 Kangankunde Carbonatite, Malawi. In A.P. Jones, F. Wall, and C.T. Williams, Eds., Rare
- Earth Minerals: Chemistry, Origin, and Ore Deposits, 7, 193–225. Chapman and Hall,
- 878 London.
- Williams-Jones, A.E., Migdisov, A.A., Samson, I.M., 2012. Hydrothermal mobilisation of the rare
 earth elements–a tale of "ceria" and "yttria". Elements, 8, 355-360.
- Willigers, B. J. A., Krogstad, E.J., Wijbrans J.R., 2001, Comparison of thermochronometers in a
 slowly cooled granulite terrain: Nagssugtoqidian Orogen, West Greenland. Journal of
 Petrology, 42. 1729-1749.
- 884 Willett, G.C., Duncan, R.K., Rankin, R.A., 1986. Geology and economic evaluation of the Mt Weld
- carbonatite, Laverton, Western Australia. In International Kimberlite Conference: Extended
 Abstracts. 4, 97-99.
- 887 Woolley, A.R., Kjarsgaard, B.A., 2008. Paragenetic types of carbonatite as indicated by the
- 888 diversity and relative abundances of associated silicate rocks: Evidence from a global
- 889 database. Canadian Mineralogist 46, 741-752.
- 890 Woolley, A.R., Kempe, D.R.C., 1989. Carbonatites: Nomenclature, average chemical compositions,
- and element distribution. In K. Bell, Ed., Carbonatites: Genesis and Evolution, 1-14. Unwin
- 892 Hyman, London.

893	Woolley, A.R.	. Kiarsgaard.	B.A., 2008.	Paragenetic types	of carbonatite a	s indicated by the
0,0		, IL OLO GOVER ON		1 anagemente types	or enroonenre a	

- 894 diversity and relative abundances of associated silicate rocks: Evidence from a global
- 895 database. Canadian Mineralogist 46, 741-752.
- Wu, C., 2008. Bayan Obo Controversy: Carbonatites versus Iron Oxide-Cu-Au-(REE-U). Resource
 Geology, 58, 348-354.
- 898 Wyllie, P. J., Jones, A.P., 1985. Experimental data bearing on the origin of carbonatites, with
- 899 particular reference to the Mountain Pass rare earth deposit. In Applied Mineralogy (Park, W.
- 900 C., Hausen, D. M., and Hagni, R. D., eds.), 935–49. Am. Inst. Mining. Metall. Petrol. Engrs.
- 901 New York.
- Yaxley, G.M., Green D.H., Kamenetsky, V., 1998. Carbonatite metasomatism in the southeastern
 Australian lithosphere. Journal of Petrology 39, 1917-1930.
- 904 Yaxley, G.M., Anenburg , M., Tappe, S., Decree, S., Guzmics, T. 2022. Carbonatites: classification,
- sources, evolution, and emplacement. Annual Review of Earth and Planetary Sciences 50,
 261-293.
- 907 Zaitsev, A.N., Wall, F. Le Ba, s M.J., 1998. REE-Sr-Ba minerals from the Khibina carbonatites,
- Kola Peninsula, Russia: their mineralogy, paragenesis and evolution. Mineral Mag. 62. 225–
 250.
- 910 Zaitsev, A.N., Williams C.T., Jeffries, T.E., Strekopytov, S., Moutte, J., Ivashchenkova, O.V.,
- 911 Spratt, J., Petrov, S.V., Wall, F., Seltmann, R. Borozdin, A. P. 2015. Rare earth elements in
- 912 phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: examples from
- 913 Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes. Ore Geology Reviews, 64, 477-498.

- 914 Zhu, X.K., O'Nions, R.K. 1999. Zonation of monazite(-Ce) in metamorphic rocks and its
- 915 implications for high temperature thermochronology: a case study from the Lewisian terrain.
- 916 Earth. Planet. Sci. Lett. 171. 209-220.