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Summary 

Co-observation of a gene variant with a pathogenic variant in another gene that explains the disease presentation 

has been designated as evidence against pathogenicity for commonly used variant classification guidelines. 

Multiple variant curation expert panels have specified, from consensus opinion, that this evidence type is not 

applicable for the classification of breast cancer predisposition gene variants. Statistical analysis of sequence data 
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for 55,815 individuals diagnosed with breast cancer from the BRIDGES sequencing project was undertaken to 

formally assess the utility of co-observation data for germline variant classification. Our analysis included expected 

loss-of-function variants in 11 breast cancer predisposition genes, and pathogenic missense variants in BRCA1, 

BRCA2, and TP53. We assessed whether co-observation of pathogenic variants in two different genes occurred 

more or less often than expected under the assumption of independence. Co-observation of pathogenic variants in 

each of BRCA1, BRCA2, and PALB2 with the remaining genes was less frequent than expected. This evidence for 

depletion remained after adjustment for age at diagnosis, study design (familial versus population-based), and 

country. Co-observation of a variant of uncertain significance in BRCA1, BRCA2, or PALB2 with a pathogenic 

variant in another breast cancer gene equated to supporting evidence against pathogenicity following criterion 

strength assignment based on the likelihood ratio, and showed utility in reclassification of missense BRCA1 and 

BRCA2 variants identified in BRIDGES. Our approach has applicability for assessing the value of co-observation 

as a predictor of variant pathogenicity in other clinical contexts, including for gene-specific guidelines developed by 

ClinGen Variant Curation Expert Panels. 

 

Main text 

The American College of Medical Genetics and Genomics and the Association for Molecular Pathology 

(ACMG/AMP) classification guidelines consist of a series of evidence-based criteria (or codes) that can be applied 

as support for or against the pathogenicity of a variant1. The original description for the supporting benign criterion 

BP5 is “variant found in a case with an alternate molecular basis for disease”. That is, when a variant of unknown 

pathogenicity is observed in an individual with a specific phenotype that is explained by a pathogenic variant (PV) 

in another gene, this co-observation is considered supporting evidence against pathogenicity for the variant under 

clinical assessment1.  

 

After the introduction of the ACMG/AMP guidelines, the Clinical Genome Resource (ClinGen) Variant Curation 

Expert Panels (VCEPs) developed tailored variant curation specifications for some hereditary disease genes2. 

These criteria are available through the ClinGen Criteria Specification (CSpec) Registry (see web resources). 

Review of the publicly available CSpec specifications for hereditary cancer genes identified variability for the BP5 

criterion (summarized in Table S1), such as: usage only when co-observed with certain genes (CDH1, MIM 

[192090])3, 4; usage in certain personal, familial and/or disease-specific context (APC, MIM [611731] and PTEN, 

MIM [601728])5, 6; recommendation against usage (ATM MIM [607585], DICER1 MIM [606241], PALB2 MIM 

[610355], RUNX1 MIM [151385] and TP53, MIM [191170])7-9; or use to capture other clinical evidence data (BRCA1, 

MIM [113705] and BRCA2, MIM [600185])10.  

 

To date, individuals with a PV in each of two different breast cancer (MIM: 114480) predisposition genes, have 

typically been reported with no clearly distinctive clinical features with potential for aiding in variant classification, 

although there are limited reports suggesting somewhat younger average age at onset for these individuals. As 

such, the justification used by the VCEP for not considering the BP5 co-observation criterion is that individuals with 

PVs in both BRCA1 and BRCA2 (or in conjunction with pathogenic variants in other breast-ovarian cancer 

susceptibility genes) do occur. Furthermore, carrying dual BRCA1 and BRCA2 PVs is not associated with an 

unusual clinical presentation; rather, these individuals present with clinical features more typical of a sole BRCA1 

PV carrier11. Here, and throughout, we refer to a PV carrier as an individual with a PV affecting a single allele 

(heterozygous), or both alleles (homozygous or compound heterozygous). Similar arguments have been used 

against the usage of BP5 for the curation of PALB2 variants.  It is nevertheless theoretically possible to estimate, 

from the PV carrier frequency in large datasets, if co-observation of a variant with a PV in a different gene occurs 

more or less often than expected by chance, information that may provide statistically-derived evidence for or 



against pathogenicity. Therefore, we undertook a study to formally assess the utility of the benign supporting 

ACMG/AMP criterion BP5 for the interpretation of germline variants in breast cancer predisposition genes. 

 

This research was approved by the QIMR Berghofer Human Research Ethics Committee (P1051). Analyses were 

based on 55,815 female individuals diagnosed with breast cancer from 43 studies in the Breast Cancer Association 

Consortium (BCAC) and included in the BRIDGES germline targeted sequencing dataset12. Details of the study 

design, sequencing methodology and variant calling have been described previously12, and information about the 

studies included in our analysis are summarized in Table S2. This study did not generate new datasets, but the 

original source data is available from the Breast Cancer Association Consortium (BCAC) via application to the Data 

Access and Coordination Committee (https://bcac.ccge.medschl.cam.ac.uk/). 

 

The BRIDGES sequencing panel covered 35 genes, but only the 11 genes with an established breast cancer risk 

association were considered in these analyses. Pathogenic variants: in BRCA1 (GenBank: NM_007294.4), BRCA2 

(GenBank: NM_000059.4) and PALB2 (GenBank: NM_024675.4) are high-risk for breast cancer (odds ratio (OR) 

> 4.0); those in ATM (GenBank: NM_000051.4) and CHEK2 (GenBank: NM_007194.4, MIM [604373]) are 

associated with moderate breast cancer risk (OR > 2.0); those in BARD1 (GenBank: NM_000465.4, MIM [601593]), 

RAD51C (GenBank: NM_058216.3, MIM [602774]) and RAD51D (GenBank: NM_002878.4, MIM [602954]) are 

associated with triple-negative breast cancer (OR > 5)12; and those in CDH1 (NM_004360.5), PTEN (NM_000314.8) 

and TP53 (GenBank: NM_000546.6) are associated with cancer predisposition syndromes that include increased 

breast cancer risk. BRIP1 MIM [605882], a gene included in the remit for curation by the ClinGen Hereditary Breast 

Ovarian Pancreatic VCEP, based on a clear association with ovarian cancer (MIM: 167000) risk, was specifically 

excluded from our analysis based on lack of evidence for association with breast cancer risk (overall or by subtype) 

in the BRIDGES and CARRIERS studies12, 13. Variant gene and molecular consequence annotation was performed 

using the Ensembl Variant Effect Predictor (VEP) GRCh37 online portal (June 2022)14. Statistical analyses and 

figure generation were performed using R version 4.3.1 with the tidyverse (v2.0.0)15, logistf (v1.26.0), and cowplot 

(v1.1.1) packages. 

 

PVs were defined as single-nucleotide variants or insertions/deletions that are expected loss-of-function (LoF) as 

per the original ACMG/AMP designation for the PVS1 criterion (initiation codon loss, frameshift, stop gain, or splice 

site ±1,2 dinucleotide variants), evaluated in conjunction with the ClinGen recommendations for the PVS1 criterion1, 

16, the gene-specific CSpec recommendations as at May 2023 (ATM, BRCA1, BRCA2, CDH1, PALB2, PTEN and 

TP53) and/or ClinVar classification where available17. Specifically, 61 variants identified in 1,177 individuals were 

excluded as PVs for analyses as follows: expected LoF located in last exon or last 50 bp of the penultimate exon; 

expected LoF variant listed within gene relevant CSpec recommendations as “PVS1_N/A” or “PVS1_Supporting”; 

±1,2 dinucleotide variants located in the last splice site motif for mature mRNA or affecting the penultimate exon 

(BRCA1 and CHEK2 only);  ±1,2 dinucleotide variants in BRCA1 that were excluded from the original BRIDGES 

analysis12, 18; expected LoF variants with a ClinVar17 classification (last reviewed May 2023) of (likely) benign or 

uncertain significance with a review status of “criteria provided, multiple submitters, no conflicts” or “reviewed by 

expert panel”. Since individual variant-level data were available for BRCA1, BRCA2 and TP53, pathogenic 

missense variants in these genes with convincing evidence for pathogenicity (see Table S3 for rationale) were also 

included in co-observation analysis12, 17, 19. 

 

Manual review of the BRIDGES sequencing data was undertaken for breast cancer affected individuals originally 

called as harboring homozygous PVs or compound heterozygous PVs in the same gene, excluding CHEK2. After 

this review and removal of likely sequencing artifacts, two individuals were identified to each harbour two ATM PVs 

(zygosity unknown), and a single individual was found to harbour two in cis stop gain RAD51D variants. Although 

not manually reviewed, 15 individuals harbored either homozygous or compound heterozygous CHEK2 variants, 

with the majority involving the CHEK2:c.1100del variant. Otherwise all other variants included in our analysis were 

considered as heterozygous in accordance with their original call.  

https://bcac.ccge.medschl.cam.ac.uk/


 

We analyzed the co-observation of PVs among 11 breast cancer risk genes in the BRIDGES breast cancer affected 

dataset. The probability of observing the actual number of observed co-observations was first calculated based 

upon the observed frequency of PVs in each comparator under the assumption of independence (see 

supplementary information). We then estimated the expected range of co-observations by calculating the lower and 

upper 95% confidence interval (CI) limits for co-observations based on sampling error, assuming no interaction. 

The actual number of co-observations was designated as depleted if it was less than the expected lower 95% 

confidence co-observation value, or enriched if it was greater than the expected upper 95% confidence value. 

Statistical evidence for departure from a multiplicative model for co-observation for each gene-gene pairing was 

determined by computing Fisher’s exact test p-values.  

 

In order to estimate the likelihood ratio (LR) toward pathogenicity for each gene-gene pairing, we compared the 

occurrence of each gene-gene pairing versus single variant occurrence, with the 95% CIs calculated as previously 

described (see supplementary information)20. An LR of ≤ 0.48 was considered to meet at least supporting benign 

evidence, based on thresholds recommended from Bayesian modeling of the ACMG/AMP21. 

 

To mimic the practical use of clinical variant data arising from gene panel sequencing, we then re-assessed genes 

shown to have evidence for depletion of co-observation with at least one other breast cancer gene (namely, BRCA1, 

BRCA2, PALB2, ATM or CHEK2) for co-observation of a PV in that single gene against the remaining genes 

assessed. As a further analysis, we then repeated the comparisons for BRCA1, BRCA2, PALB2, ATM, and CHEK2 

against all other genes after excluding PVs in high-risk genes (BRCA1, BRCA2 and PALB2).  

 

Logistic regression analysis was conducted to investigate possible confounding of the observed interactions by 

participant selection criteria based on overall study design of familial versus population-ascertainment (as 

designated for the original BRIDGES study), age at breast cancer diagnosis, and study country12. These analyses 

excluded 412 individuals for whom age at diagnosis was missing. The response variable was PV status in the first 

comparator, and explanatory variables were PV status in the second comparator gene/s, age at diagnosis, study 

design, and country.  

 

Our findings were then applied to rare BRCA1 and BRCA2 missense variants observed within the BRIDGES breast 

cancer affected dataset, excluding those missense variants already classified as pathogenic for our co-observation 

analysis (Table S3). To minimize overlap with other ACMG/AMP criteria, only variants with a frequency lower than 

that required to meet at least the BS1_Supporting criterion were considered (global 95% CI filter allele frequency < 

0.00002 with sufficient coverage in any of exome (version 2.1.1), genome (version 2.1.1) or genome (version 3.1.2) 

gnomAD datasets22, 23 modeled against the BRCA1 and BRCA2 CSpec recommendations (V1.1.0). Any of these 

rare missense variants that were found in co-observation with a PV in another gene were classified following the 

CSpec BRCA1 and BRCA2 specifications using publicly available information24-41, and ACMG/AMP criterion 

weights aligned to points as per published recommendations42. The impact on change in classification with addition 

of co-observation evidence was recorded. 

 

Across the 11 breast cancer genes there were 1,261 unique PVs observed in 3,832 individuals (Figures 1A and 

1B). Approximately 6.9% of individuals carried at least one PV, with PVs in BRCA2 (2.0% of individuals) being the 

most frequent (Figure 1B). The CHEK2:c.1100del (p.Thr367MetfsTer15) variant was the most common individual 

PV, observed in 1.4% of all individuals and 19.8% of PV carriers. Co-observation of PVs was seen in 50 individuals, 

involving all genes except CDH1 and PTEN (Figure 1C).  

 

No individual was found to carry PVs in three or more genes. All co-observation instances represented unique 

variant pairs, except the co-observation of TP53:c.1010G>A (p.Arg337His) with CHEK2:c.1100del 

(p.Thr367MetfsTer15) in two individuals. Another three PVs, in addition to the former CHEK2 and TP53 variants, 



were involved in multiple co-observation events: BRCA1:c.5266dup (p.Gln1756ProfsTer74); CHEK2:c.444+1G>A 

and RAD51D:c.451C>T (p.Gln151Ter). Furthermore, CHEK2:c.1100del was the most common variant involved in 

co-observation instances. All PVs occurring in co-observation events were in the heterozygous state. The list of PV 

co-observation events, including variant details, is provided in Table S4. 

 

Most (80.2%) of the 55,815 individuals included in our analysis were from studies that ascertained participants 

independently of family history of cancer (population-based studies), with only 19.8% from familial studies (Table 

S2). The reported age at breast cancer diagnosis ranged from 17 to 98 years (average 54.8 years) for the 55,403 

individuals with age information available. Although the age of breast cancer diagnosis did differ significantly with 

regards to overall PV carrier status (carriers mean 49.9 years vs non-carriers 55.1 years, p<2.2e-16, two-sided 

Student’s t-test), there was no significant difference in age of breast cancer diagnosis between single and dual PV 

carriers (single carriers mean 49.9 years vs dual carriers mean 49.0 years, p=0.584). The proportion of individuals 

with familial ascertainment was 28.6% in carriers versus 19.7% in non-carriers. 

The actual count of PV co-observation fell within the expected 95% CI range for most pairwise gene comparisons, 

and there was no evidence for departure from a multiplicative model based on the Fisher’s exact test (summarized 

in Table S5). There was evidence for the depletion of PV co-observation for five gene combinations: BRCA1 and 

BRCA2; BRCA1 and PALB2; BRCA2 and ATM; BRCA2 and CHEK2; and BRCA2 and PALB2 (Table 1). This 

evidence for depletion of co-observation remained when comparing each of BRCA1, BRCA2, PALB2, ATM and 

CHEK2 against all other breast cancer genes. Statistical evidence (p<0.05) for departure from a multiplicative model 

was seen for co-observation of BRCA1 and BRCA2 in the gene pair analysis, and for each of BRCA1, BRCA2, 

PALB2, ATM and CHEK2 against all other breast cancer genes.   

Co-observation of PVs in BRCA1, BRCA2, PALB2, ATM, and CHEK2 with PVs in other genes was then assessed 

after excluding the designated high-risk variant genes (BRCA1, BRCA2, and PALB2) from the comparison gene 

group. For these analyses evidence of depletion remained for BRCA1, BRCA,2 and PALB2 based on comparison 

of observed counts to the expected range (95% CI), reaching statistical significance based on the Fisher’s exact 

test for BRCA1 (p=0.04) and BRCA2 (p=0.02) but not PALB2 (p=0.06). These findings indicate that high-risk PVs 

in BRCA1, BRCA2, and PALB2 drove the depletion findings observed for ATM and CHEK2.  

Logistic regression analysis showed that evidence for depletion of PV co-observation was not confounded by age 

at diagnosis, study design or country of origin. That is, significant evidence for depletion from the crude analysis 

(either gene-gene or single gene-other genes) remained after adjustments for these variables (Table S6).  

The estimated LR toward variant pathogenicity was ≤ 0.48 for co-observation of a PV in BRCA1, BRCA2 or PALB2 

with a PV in any other gene (Table 1). This was also true for ATM co-observation with a PV in any other gene, but 

the interaction was driven by the high-risk PV genes. This information has applicability for the classification of 

variants of uncertain significance (VUS) identified within the BRIDGES breast cancer affected dataset; that is co-

observation of a VUS in any one of BRCA1, BRCA2 or PALB2 (but not ATM) with a PV in any of the other breast 

cancer panel gene considered in this analysis would provide at least benign supporting evidence in ACMG/AMP 

classification of the co-observed VUS.  

There were 30 rare BRCA1 (out of 618 total) and 61 rare BRCA2 (out of 1,454 total) missense variants found to be 

co-observed with a PV in another gene in the BRIDGES breast cancer affected cohort (Table S7). Slightly less than 

half of these co-observations (40.7%) involved a BRCA1 missense variant with a BRCA2 PV, or vice versa. After 

application of the CSpec BRCA1 and BRCA2 specifications, these missense variants were classified as: benign (n 

= 24), likely benign (n = 53), VUSs (n = 5), or likely pathogenic (n = 1). Likely benign classification was mostly based 

upon application of the BP1_Strong criterion (variant located outside of a functional domain with no predicted impact 

on splicing). However, upon addition of evidence from our co-observation analysis (equivalent to benign supporting 

evidence, or -1 point in the Bayesian classification framework) the initial classification was changed for five 



missense variants (6.0%, 5/83); four increased in classification certainty from likely benign to benign, and one 

moved from likely pathogenic to VUS.  

 

Pathogenic variant co-observations have been described previously for most gene combinations examined in our 

analysis, including between the high-risk variant genes BRCA1, BRCA2 or PALB2 and moderate-risk variant genes 

such as ATM or CHEK243-53. Moreover, rare instances of concomitant observations of PVs in three different cancer 

predisposition genes have also been reported, including a report of three PVs in breast cancer risk genes (BRCA1 

c.5266dupC, PALB2 c.3771C>T and TP53 c.1010G>A) in sisters with early-onset breast cancer 47, 54, 55. Consistent 

with these previous observations, our data provided no significant indication (p=0.584) that dual carriers of PVs in 

different genes have a markedly different phenotypic presentation, including obviously different distribution of age 

at diagnosis, compared to carriers of a single PV. However, the findings do provide statistical evidence for depletion 

of co-observation of PVs in BRCA1, BRCA2 and PALB2 with PVs in other breast cancer genes, where the complete 

list of breast cancer genes included BRCA1, BRCA2, ATM, CHEK2, CDH1, PALB2, BARD1, PTEN, RAD51C, 

RAD51D and TP53. This depletion, relative to the frequency expected if co-occurrence was independent, persisted 

after adjustment for age at diagnosis, study design, and country of origin. Despite no striking differences in clinical 

presentation for dual carriers, our findings provide statistical justification for application of the BP5 code for co-

observation of a VUS with a PV in the context of at least some gene combinations. In this dataset, co-observation 

of a VUS in BRCA1 (LR 0.36), BRCA2 (LR 0.39) or PALB2 (LR 0.18) with a PV in another breast cancer gene 

equates to at least supporting evidence against pathogenicity following criterion strength assignment based on an 

LR of 0.23-0.48:121.  

 

Similar depletion findings have been reported previously, from the analysis of a smaller cohort of familial breast 

cancer affected individuals (5,280 for CHEK2:c.del1100C analysis; 1,411 for ATM analysis). Turnbull et al observed 

lower than expected frequency of co-observation of BRCA1 and BRCA2 PVs with PVs in selected exons of ATM, 

and with the CHEK2:c.del1100C variant56. These authors speculated that for individuals with functional abrogation 

of BRCA1 or BRCA2, limited additional risk for breast cancer is conferred by LoF variants in genes such as ATM or 

CHEK2, which lie upstream in the homologous recombination pathway. An alternative explanation may be that 

nearly all tumors in BRCA1, BRCA2 and PALB2 carriers occur in cells that have undergone inactivation of the wild-

type allele, whereas this is a much less consistent mechanism in tumors arising in ATM and CHEK2 PV carriers57-

61. These biological hypotheses could be investigated in future work by examining patterns of somatic loss of the 

co-occurring genes in tumors. Nevertheless, while a biological explanation for the observation of depletion can be 

speculated, statistically the results indicate that when a PV is present in a high-risk variant breast cancer gene the 

effect of an additional PV is not multiplicative. Instead the risk associated with PVs in the high-risk variant breast 

cancer genes in combination with each other or a moderate-risk gene was attenuated by 40-80% compared to the 

expectation based on the OR estimated in the BRIDGES study12. 

 

These analyses were based on a large cohort of individuals diagnosed with breast cancer the majority from studies 

that did not select participants based on family history. It is important to note that the degree of depletion, and hence 

the appropriate likelihood ratio, may differ in other contexts: for example, if the study participants were selected for 

triple-negative breast cancer, or ovarian cancer. We found no evidence for depletion of co-observed PVs in 

moderate-risk variant genes with approximately 2-fold cancer risk, including those involving ATM and CHEK2 where 

the numbers of PV carriers in the dataset are similar to those seen for high-risk variant genes. However, since the 

expected depletion is likely to be smaller in absolute terms for moderate-risk genes, larger better-powered studies 

may be required to rule out presence of depletion. 

 

Our statistical analysis identified depletion of co-observation of PVs in the BRCA1, BRCA2, and PALB2 high-risk 

variant breast cancer genes compared to other genes commonly included in clinical breast cancer gene panels. 

These findings indicate that the BRCA1, BRCA2, and PALB2 gene-specific classification criteria could allow for co-

observation to be applied as benign supporting evidence for rare variants that do not already meet benign frequency 



criteria, if justified by cohort-specific calibration. For this study specifically, identification of a VUS in BRCA1, BRCA2 

or PALB2, in an individual with a PV in another breast cancer gene (here listed as BRCA1, BRCA2, PALB2, ATM, 

CHEK2, BARD1, RAD51C, RAD51D, CDH1, PTEN, and TP53), could be used to provide supporting evidence 

against pathogenicity for that VUS. Our review of missense VUSs in the BRIDGES breast cancer affected 

individuals indicated that the BP5 criterion could be applied for 4.4% (91/2,072) of rare BRCA1 or BRCA2 missense 

variant observations in this cohort. Inclusion of this evidence type strengthened classification of approximately 5% 

of these variant observations. Moreover, it provided the only clinical evidence against pathogenicity for many of the 

variants found in co-observation with another PV in our dataset. The application of this data type may have even 

more value for classification of PALB2 variants, since this gene is relatively understudied compared to BRCA1 and 

BRCA2.  

 

Calibration of this data type as a predictor against variant pathogenicity for other disease gene panels may highlight 

its value in variant classification for other clinical contexts. To promote dataset-specific calibration of any group of 

hereditary disease genes, we provide an accessible example Excel calculator to determine relevance and strength 

level for co-observation evidence for a given dataset. This calculator is provided as Table S8 to assist the reader 

in determining the relevance and strength level for co-observation evidence in other similar sequencing datasets. 

These findings have the potential to justify use – or non-applicability – of co-observation data for existing gene-

specific criteria developed for other breast cancer genes included in our analysis.  
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Figure Legends 
 

 
 
Figure 1. Observation of pathogenic variants (PVs) in hereditary breast cancer genes within the BRIDGES 
breast cancer affected cohort.  
The BRIDGES breast cancer affected cohort consists of 55,815 individuals. (A) Number of unique PVs observed in 
the cohort. (B) Number of PVs observed within the cohort with the proportion of individuals with at least one PV in 
the designated gene given above bars. (C) Number of PV co-observations, shown for each gene pair. PVs in CDH1 
or PTEN were not co-observed with a PV in another gene. Final figure formatting performed using Inkscape (version 
0.92.3). 
 



Table 1. Genes with evidence for depletion of co-observation of pathogenic variants (PVs) in BRIDGES breast cancer affected cohort.  

 

Comparison 
Gene A vs Gene B 

Co-
observed 

PVs 

PV in 
Gene A 

only 

PV in Gene(s) 
B only 

Expected count individuals with co-
observed PVs (binomial 95% CI) 

Fisher’s 
Exact 

 p-value 
Likelihood ratio (LR) 

LR meets at least 
supporting benign 
evidence (≤ 0.48)a 

Pairwise comparisons 

BRCA1 
BRCA2 5 763 1072 8 - 23 0.027 0.32 (0.13 - 0.77) Yes 

PALB2 0 763 340 1 - 10 0.062 0.10 (0.01 - 1.62) Yesb 

BRCA2 

PALB2 1 1072 340 2 - 12 0.070 0.15 (0.02 - 1.03) Yes 

ATM 2 1072 386 3 - 14 0.109 0.26 (0.06 - 1.02) Yes 

CHEK2 8 1072 911 10 - 27 0.052 0.43 (0.22 - 0.86) Yes 

Single gene versus combined all other genes (ATM, BRCA1, BRCA2, CDH1, CHEK2, BARD1, PALB2, PTEN, RAD51C, RAD51D, TP53)c 

BRCA1 

All other genes 

16 763 3053 31 - 56 0.001 0.36 (0.22 - 0.59) Yes 

BRCA2 22 1072 2738 40 - 69 <0.001 0.39 (0.26 - 0.60) Yes 

PALB2 4 340 3488 13 - 31 0.001 0.18 (0.07 - 0.47) Yes 

ATM 11 386 3435 15 - 35 0.029 0.43 (0.24 - 0.79) Yes 

CHEK2 31 911 2890 36 - 64 0.045 0.62 (0.43 - 0.88) No 

Single gene versus combined all other genes excluding the high-risk variant genes (ATM, CDH1, CHEK2, BARD1, PTEN, RAD51C, RAD51D, TP53)d 

BRCA1 

All other genes 
(exclude high-

risk) 

11 763 1621 14 - 33 0.041 0.47 (0.26 - 0.84) Yes 

BRCA2 16 1072 1621 22 - 44 0.021 0.48 (0.30 - 0.79) Yes 

PALB2 3 340 1621 5 - 17 0.057 0.28 (0.09 - 0.88) Yes 

ATM 6 386 1229 4 - 15 0.454 0.66 (0.29 - 1.47) No 

CHEK2 14 911 696 6 - 20 1.000 1.14 (0.68 - 1.93) No 

a LR ≤ 0.48 was considered as meeting at least supporting benign evidence based upon a Bayesian modelling of the ACMG/AMP criteria proposed 

by Tavtigian et al21.  
b Haldane correction was applied for likelihood calculation.  
c Gene A versus all other genes listed excluding Gene A. 
d Gene A versus all other genes listed excluding Gene A; other genes list excludes high risk variant genes BRCA1, BRCA2 and PALB2. 

Abbreviations: CI, confidence interval; LR, Likelihood ratio; PV, pathogenic variant 


