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Abstract:   

Rivers and streams contribute to the global carbon cycle by decomposing vast quantities of 

organic matter, but decomposition rates are highly heterogenous, and our understanding of large-

scale patterns and drivers of this process remains limited. Using fine-scale climate, land-use, and 

water-quality data, we generated a predictive model that explains most (81%) of the variation in 5 

cellulose-decomposition rates across 514 streams spanning 135° of latitude. Our model reveals 

key environmental controls of decomposition, including geologic, climatic, and, importantly, 

anthropogenic attributes. Projections of cellulose decomposition, when combined with genus-

level litter-quality attributes, predict leaf-litter-decomposition rates accurately at the global scale 

(70% of variance explained). High-resolution predictions of cellulose and natural-leaf-litter 10 

decomposition provide novel insight into carbon cycling in flowing waters worldwide, including 

vast, unstudied areas of Earth. 

One-Sentence Summary: A distributed experiment yields robust, predictive models of organic-

matter decomposition in rivers worldwide. 

 15 

Main Text:  

Earth’s terrestrial ecosystems produce over 100 billion tons of plant detritus annually (1), and the 

fates of this organic matter (for example, long-term storage, mineralization to greenhouse gasses, 

or incorporation into biomass) depend on the rate at which it is decomposed. River ecosystems 

are carbon-processing hotspots, receiving and decomposing vast quantities of terrestrial plant 20 

matter, especially relative to the small fraction of the landscape they cover (2, 3). By connecting 

terrestrial ecosystems with storage compartments, including floodplains, lakes, and oceans, rivers 
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play a unique role in the global carbon cycle, functioning both as organic-matter conduits and 

reactors. Despite the widely recognized importance of flowing waters in global carbon cycling 

(4–6), our understanding of patterns in organic-matter decomposition and its drivers at large 

spatial scales is still limited (7).  

Large-scale spatial patterns of organic-matter decomposition have been estimated by comparing 5 

leaf-litter decomposition rates from studies conducted in regions with contrasting climate 

regimes (8, 9), conducting literature reviews of local field studies (10), developing conceptual 

models (11, 12) and performing meta-analyses (13, 14). Coordinated, distributed experiments 

(15–19) have been particularly insightful by generating directly comparable data across broad 

geographic areas and identifying coarse-resolution predictors of decomposition rates in rivers, 10 

including differences in decomposer communities and biomes. Still, we lack a comprehensive 

understanding of how drivers such as climate, geology, vegetation, water quality, and soils 

interact to govern organic-matter decomposition at large scales. Such knowledge gaps are 

particularly evident across the tropics and in lower-income economies – ecologically important 

areas where rivers are grossly understudied relative to those in northern temperate zones. 15 

Quantifying patterns and controls of decomposition in these areas is vital, however, because 

much of Earth’s terrestrial plant matter is produced in the tropics (20), resulting in substantial 

transfers of terrestrially derived carbon to the ocean (21). 

Effectively modeling carbon dynamics at the global scale – including areas where field data are 

scarce – requires a mechanistic understanding of the many environmental and biotic factors that 20 

drive organic-matter decomposition. Robust estimates generated by combining existing empirical 

measurements with fine-scale geospatial and environmental data have the potential to reduce the 
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need for additional data in remote or difficult-to-access regions, contribute to a higher-resolution 

understanding of decomposition, support global modeling efforts of carbon dynamics, and 

generate baseline estimates for decomposition in understudied areas of the world. Of particular 

value are models that can accurately predict current in-situ decomposition rates across space, 

enabling manipulation of environmental drivers in silico to predict impacts under scenarios of 5 

future global environmental change. 

Here, we present a predictive model fitted with global data from a coordinated, distributed 

experiment on cellulose decomposition in rivers to reveal previously undocumented patterns in 

decomposition and the key factors driving this fundamental ecosystem-level process. 

Decomposition of cellulose, the most abundant organic polymer on the planet and a main 10 

constituent of plant litter, was quantified by over 150 investigators by using a common cellulose-

decomposition assay (22). The assay was performed in 514 flowing-water ecosystems at 

georeferenced field sites on all seven continents, spanning 135º of latitude and each of Earth’s 

major terrestrial biomes (18, 19). We used high-resolution (15 arcsecond) climate, soil, geology, 

vegetation, and water-quality data (101 predictors) in a boosted-regression tree (BRT) algorithm 15 

to develop the first global, high-resolution predictive model of organic-matter decomposition in 

rivers. We then independently validated the predictive power of the model by generating 

interpolated cellulose-decomposition rates and genus-level leaf-litter chemistry traits to predict 

leaf-litter decomposition at 861 locations across the globe. We found that cellulose is an 

excellent proxy for predicting litter-decomposition rates and that physicochemical factors at river 20 

and watershed scales interact with characteristics of the organic matter being decomposed to 

create heterogenous patterns in riverine decomposition across the planet. This unique approach 



Submitted Manuscript: Confidential 

Template revised November 2022 

5 

 

produced the first truly data-driven perspective of organic-matter decomposition in flowing 

waters worldwide. 

Results and Discussion 

Predicting decomposition rates. Cellulose-decomposition rates are remarkably predictable across 

flowing waters worldwide. The selected climate, geology, soil, and water-quality predictors 5 

explain 81% of variance in field measurements of in-situ cellulose decomposition. Because an 

identical substrate was used at all field sites, observed variation in decomposition rates can be 

attributed unequivocally to the activity of microbial communities and environmental drivers. 

Prior efforts have explained broad variation in decomposition rates across riverine ecosystems as 

a function of exogenous factors such as temperature (13, 18) and concentrations of dissolved 10 

nutrients (16, 23), as well as litter traits (14, 24, 25). Our model supports those prior efforts and 

found that climatic and water-quality parameters are among the most important predictors of 

decomposition rates (Fig 1). However, a relatively large number of predictor variables (n=26) 

have importance values greater than 1.0 (Supplemental Table 1), and no single predictor 

contributes >15% to the predictive power of the model (Supplemental Table 1). This result 15 

reflects the complexity of predicting decomposition-related processes at the global scale.  

Top predictors of cellulose decomposition include expected attributes like mean daily stream 

water temperature (importance value 14.0; Fig. 1A), nitrogen and phosphorus availability (6.7 

and 4.9, respectively; Fig. 1C&D), and mean annual air temperature (2.5; Fig. 1F). Our data and 

approach also highlight watershed-level characteristics that have been given little attention 20 

previously, such as sub-watershed lake area (importance value 6.9, Fig. 1B), actual 

evapotranspiration in the watershed (4.4, Fig. 1E), and the chemical and physical properties of 
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soil (Supplemental Table 1). Although the study sites were selected to have minimal human 

impacts relative to their region of study (18), variables associated with anthropogenic 

development, such as dissolved nutrient yields, crop-land extent (2.0), population count (1.3), 

and river regulation (1.3), still emerge as important predictors (Supplemental Table 1). Notably, 

relationships between predictors and decomposition rates are frequently non-linear, often 5 

revealing thresholds beyond which there are abrupt changes in decomposition rates (e.g., Fig. 

1B, D, & E). Temperature affects cellulose decomposition in multiple ways, including a strong 

positive effect of water temperature (Fig. 1A), and an optimal range (5-13 °C) of annual air 

temperature with predicted lower rates in both cooler and warmer watersheds (Fig. 1F).  

Extrapolating to global patterns of decomposition rates. Our model of riverine cellulose 10 

decomposition reveals pronounced, large-scale spatial patterns of organic-matter processing (Fig. 

2). Rates generally increase with decreasing latitude, with most rapid rates in tropical regions 

(e.g., Central America, Amazon Basin, Western Africa, Indo-Pacific) and areas characterized by 

volcanic activity and young soils, an effect previously documented only at more local scales 

(26). Fluvial ecosystems in these regions are among the least studied (Fig. 2, inset) on the planet, 15 

yet they have high rates of terrestrial primary production (20) and carbon export to the ocean 

(21). Vast areas in middle latitudes with ubiquitous human impacts – Central Europe, eastern 

China, central North America, southeast South America, and Japan – also support elevated 

decomposition rates, strongly suggesting continental-scale human impacts on carbon cycling in 

rivers. In contrast, areas of boreal forests, characterized by short growing seasons, low 20 
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temperatures, and peaty, acidic, water-logged soils, exhibit lower rates of organic-matter 

decomposition, especially in northern Asia, eastern Scandinavia, and northeast Canada.  

Validating predicted cellulose-decomposition rates with leaf-litter-decomposition rates. 

Recognizing that the cotton strips used in our standardized decomposition assay lack the 

chemical complexity of organic matter that naturally enters running waters, we tested whether 5 

our modeling approach could predict variation in the decomposition rates of terrestrial leaf litter 

in rivers reported by ecologists worldwide. Model forecasts were independently validated using 

891 unique litter-decomposition rates from 559 locations and representing 35 genera of terrestrial 

plants (24). Leaf and litter-trait data at the genus level (27, 28) and experimental conditions (13, 

24)  were also used as predictors to account for variation among decomposition estimates 10 

resulting from differences in leaf and litter quality (e.g., lignin, hemicellulose, tannin, nutrient 

content) and the feeding activity of invertebrates (Figure 3A, Supplemental Table 2). Our 

validation model accounts for 70% of the variation in leaf-litter decomposition. The predictive 

power of this model is overwhelmingly driven by predicted rates of cellulose decomposition 

(relative importance 39.5), despite the striking differences in quality between the cotton-strip 15 

substrate and natural litter (Fig 3A, Supplemental Table 2). This result provides strong support 

for the critical role that exogenous drivers play in riverine litter decomposition. Prior research at 

large scales has stressed the importance of litter quality as the predominant control of 

decomposition rates in rivers (14); our results highlight the critical role of environmental factors, 

such as temperature and nutrient availability, at regulating decomposition rates at large scales. 20 

Our validation model also revealed that invertebrate access to leaves, as assessed by 

experimentally manipulating litter-bag mesh size, greatly increased the rate of decomposition in 

all but the fastest decomposing leaves (Fig. 3A). Finally, litter chemistry contributes to the 
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predictive power of the model in expected ways, with genera that are characterized by high 

lignin content and high carbon to nitrogen ratios decomposing more slowly (importance values 

11.9 and 5.5; Figs. 3B,C). Litter nitrogen content (importance value 5.2; Fig 3D) was the only 

other litter trait that provides more explanatory power than expected by chance, including, 

surprisingly, whether leaves were fresh or senesced when entering the river (Supplemental Table 5 

2). It is well recognized that leaf-litter chemistry can vary among individuals within a species 

(29) and even individual leaves from a tree (30); thus, our model may underestimate the 

importance of individual-level variation in leaf chemistry in driving decomposition. To advance 

our understanding of endogenous controls at global scales, we advocate for greater measurement 

and reporting of litter chemistry, especially nitrogen and lignin content. Despite limitations in 10 

available data, we have shown that cellulose decomposition can be an excellent proxy for litter 

decomposition, and our composite model of environmental drivers makes reasonable estimates 

of litter decomposition at a global scale.  

Forecasting decomposition under global environmental change. The high predictive power of 

our cellulose and leaf-litter decomposition models enables forecasting of decomposition rates 15 

under altered climate, land cover, soil conditions, and nutrient-loading scenarios. These 

predictions can identify locations across the globe where decomposition may be particularly 

susceptible or resistant to global change, thereby informing freshwater-conservation efforts. As 

proof of concept, we examined potential changes in predicted litter-decomposition rates 

associated with changes in pine-oak forest composition in Mexican watersheds invaded by pine 20 

bark beetle (31). Our forecasts predict that insect-induced canopy replacement from pine to oak 

would nearly double mean decomposition rates given expected changes in litter quality, with 

particularly marked effects in the Rio Grande de Santiago watershed, a major conduit of organic 
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matter to the Pacific Ocean (Fig. 4). To promote the use of our models for forecasting, we 

created an easy-to-use, open-source online application where users can estimate both cotton-strip 

and leaf-litter decomposition rates for any river across the globe 

(https://costello.shinyapps.io/celldex_map/).  

Conclusions and implications. By pairing a distributed field experiment with publicly available 5 

environmental data, we created the first high-resolution predictions of organic-matter 

decomposition rates in flowing waters worldwide. Our model demonstrates that cellulose-

decomposition rates result from diverse, interacting, and non-linear environmental forcings that 

can best be described with complex, data-rich models. Our relatively simple organic-matter 

substrate serves as an excellent proxy for litter decomposition, which should encourage the use 10 

of the cotton-strip method and this distributed experimental approach. Simplification of the leaf-

litter-bag assay allowed us to both achieve standardized results and fill important geographic 

gaps in remote and low-resourced areas, which should further encourage coordinated, distributed 

experiments (32). Although our datasets were large when compared against other studies of 

organic-matter decomposition, the field data used were both spatially and temporally sparse, 15 

which makes our strong predictive power all the more striking. Thus, this work underscores the 

power of machine-learning algorithms and large geographic databases of environmental data 

(e.g., Hydrobasins) plus the critical value of geographically and temporally extensive data from 

simple but standardized coordinated experiments (e.g., CELLDEX).  

Cellulose decomposition is strongly influenced by many environmental drivers that are and will 20 

continue to be impacted by anthropogenic activities. Undoubtably, climate change, increased 

nutrient loading, intensified land-use modification, and water extraction will continue to alter 

https://costello.shinyapps.io/celldex_map/
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organic-matter processing in rivers and streams. Notably, the human-influenced drivers of 

cellulose decomposition – especially nutrient loading and temperature – are positively related to 

cellulose-decomposition rates. A critical implication is that, in the presence of continued 

environmental change, organic-matter decomposition rates will likely increase in rivers, resulting 

in declines in shorter-term carbon storage (33) and reductions in carbon transfer to longer-term 5 

storage compartments, such as reservoirs, floodplains, and oceans. This study provides new 

insight into ecological processes in rivers and a global understanding of the drivers of carbon 

fluxes between land and water. Given the interest in using ecosystem functions for biomonitoring 

(34, 35), our estimated decomposition rates for immense, unstudied areas of the planet provide 

baseline data for supporting the development of biomonitoring networks in areas where they are 10 

most needed (36), and we have made this model accessible through an open-source online tool. 

Application of the models to current and future environmental threats (e.g., invasive species, 

biodiversity loss, land-use change, climate change) will empower scientists and natural-resource 

managers to better predict how those threats may alter the structure and function of river 

networks worldwide. 15 
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 5 

Fig. 1. Partial-dependence plots (blue lines) of the top variables that predict cellulose-

decomposition rates (Kd, ln transformed). Background maps show global distributions of 

predictor variables. The boosted-regression tree model explains 81% of the variance in 

decomposition rates across the 514 streams used in our study. Most top variables relate to 

climate and water quality, and effects exhibit non-linear threshold responses. Grey ticks on x-10 

axis indicate decile breaks. 
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Fig. 2. Predicted mean annual cellulose-decomposition rates (Kd, ln transformed) revealing broad 

spatial patterns in processing rates. We did not predict Kd for sub-watersheds with ≤10 ha of sub-

basin area, nor for Antarctica, which is not included in HydroAtlas. Inset shows study sites for 

cotton-strip (red circles) and leaf-litter (black circles) decomposition measurements. 5 
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Fig. 3. Partial-dependence plots of the top variables that predict leaf-litter-decomposition rates 

(Kd, ln transformed). The boosted-regression-tree model explains 70% of the deviance in rates 

across 895 published values of leaf-litter decomposition and leaf quality (24). Top predictors 5 

were our modeled cellulose-decomposition rates, invertebrate access to the leaf material, and 

attributes related to litter quality. Smooth fits (GAM) show the relationship between cellulose-

decomposition rate and litter decomposition for the two different common litter-bag mesh sizes 

that allow or exclude invertebrates. The smooth fits capture the general environmental effects on 

decomposition, whereas the partial dependency plots (thin lines) are noisier due to covariation in 10 

leaf quality and environmental conditions (i.e., certain leaf types are used in certain regions). 

Grey ticks on x-axis indicate decile breaks. Note the change in y-axis between panel A and B-C. 



Submitted Manuscript: Confidential 

Template revised November 2022 

20 

 

 

 

 

Fig. 4. Distribution of temperate-coniferous forests in Mexico (all points) and locations (orange) 

where there is a moderate-to-high risk of pine bark beetle (Dendroctonus mexicanus) invasion 5 

(adapted from (31)) that drives a shift from coniferous to deciduous forest. Inset shows the 

density distribution of predicted litter-decomposition rates for streams in areas of moderate-to-

high invasion risk both for pine litter (green solid line) and oak litter (orange dashed line). Our 

model predicts that full canopy replacement from pine to oak would lead to a doubling of mean 

leaf-litter decomposition rates (from 0.004 to 0.008 d-1).  10 
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Materials and Methods 

 

Data Sources 

 

Cellulose decomposition. We used a global dataset of cellulose-decomposition rates 5 

generated by a coordinated field experiment (Cellulose Decomposition Experiment 

(CELLDEX)) (18). Cotton strips were incubated in 514 flowing waters spanning 135 degrees of 

latitude by a consortium of over 150 peer-sourced researchers globally. Cotton strips are 

composed of cellulose, the primary constituent of most terrestrially derived leaf litter and the 

most abundant organic polymer on Earth; as such, cellulose is a plant polymer that is highly 10 

relevant for global biogeochemical cycles. Cotton strips were deployed in 2015-16 during 

periods of peak organic-matter inputs (e.g., autumn in temperate zones, dry season in tropical 

deciduous forests) at sites relatively free of major anthropogenic impacts (i.e., reference 

systems). We typically chose stream orders 1-3 (37) located in each of Earth’s major terrestrial 

biomes (18), and the cellulose-decomposition rate at each stream was summarized as the 15 
exponential decay rate (Kd) of tensile-strength loss: 

 

Kd=-ln(Tf/Ti)/t 

 

where Tf  is the final tensile strength of each cotton strip after incubation in the field, Ti is an 20 
average tensile-strength value of control strips not incubated in the field to establish initial tensile 

strength, and t the field incubation time in days (usually 21-30 days). The loss of tensile strength 

corresponds to the decomposition of the cotton fabric and is driven mostly by the activity of 

microbes. Field and laboratory methods are detailed in (18, 22). 

 25 

Environmental data sources. For data on environmental variables other than in-situ stream 

water temperature, we relied on publicly available datasets with global coverage: 1) (38)for 

estimates of river yields of dissolved reactive phosphorus (kg DRP-P ha-1 yr-1) and nitrate+nitrite 

(kg NOX-N ha-1 yr-1);  2) (39) for estimates of nitrogen (N) deposition; 3) (40) and (41) for 

estimates of phosphorus (P) deposition that we then interpolated; and 4) (42) for data on 96 30 

variables summarized at the 12-digit hydrological scale or for the area upstream (HydroRIVERS: 

River ATLAS_v10_lev12; HydroBASINS: BasinATLAS_v10_lev12) for either river reaches or 

corresponding sub-watersheds, though all variables were not populated for all sub-watersheds). 

We excluded variables from HydroBASINS that were composite measures where we already 

included confounded variables (e.g., biome, human development index, and human footprint). 35 

We recorded temperature data with loggers for a subset (n=360) of the 514 rivers to determine 

the mean daily temperature of the river water during the cotton-strip incubation period.  

 

Litter decomposition trait data. We used a global dataset of 3,216 unique estimates of litter-

decomposition rates (as Kd) for 125 plant genera and multiple experimental conditions (24) to 40 
independently validate the predictive accuracy of our cellulose-decomposition model. These data 

are an expanded version of the data published by LeRoy et al. (2020) (see data repository for 

complete data)(24). For each unique river reach sampled in the dataset, we averaged Kd estimates 

by each unique combination of leaf condition (i.e., leaves picked from the trees while still living 
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or collected from the ground after senescence), plant genus, and direct feeding by detritivorous 

invertebrates (i.e., coarse-mesh which included invertebrates or fine-mesh litter bags which 

excluded invertebrates). We excluded any data for which we had 3 or less measurements of 

decomposition for a genus. The final dataset included 895 unique observations of 35 genera from 

559 river reaches. All but 7 estimates of litter decomposition also included mean temperature 5 

during deployment, which we included as a predictor variable.  

 

Leaf- and litter-trait data sources. We downloaded 384,252 records from 21,100 plant 

species and 4,557 genera of leaf traits related to nutrient, micronutrient, and structural 

compounds for leaves from the TRY plant-trait database (28). After filtering for traits describing 10 

the chemical constituency of plant leaves that we felt were most relevant for decomposition, the 

resulting database included average values for 7 traits representing 64 genera. Litter traits were 

assembled from a literature review of 114 studies comprising 602 litter deployments of 172 

genera in rivers. These trait values were joined by genus to the aforementioned empirical data on 

leaf litter. All genera for which we had litter-decomposition rates had data on either leaf or litter 15 
traits, and most included complete values for both. Details on filtering, aggregating, and variable 

selection as well as full datasets can be found in the data repository. 

 

Data Analysis 

 20 
Environmental data processing. At each river sampling location in the CELLDEX dataset, 

we combined temperature recorded during the experiment, extracted values from nutrient yield 

and deposition rasters, and attributes from HydroBASINS summarized by upstream watershed as 

well as the containing sub-watershed. For HydroBASINS fields that were additionally available 

as monthly summaries (e.g., air temperature, potential evapotranspiration, snow coverage), we 25 

used both annual summaries and those from the month of deployment at each site as predictors in 

the BRT model. Variables from HydroBASINS were back-transformed into original units, and 

predictors with log-normal distributions were log10 transformed. In total, we had 101 predictor 

variables for our cellulose-decomposition model. 

 30 

Boosted-regression tree models. We used the gbm package in R to run boosted-regression 

tree (BRT) models (R Development Core Team, 2019, version 4.2.2)(43)which accommodate 

missing data and allow for complex interactions and non-linear responses. The BRT model was 

fit with Gaussian distributions, a maximum of 50,000 trees, a shrinkage rate of 0.001, and an 

interaction depth of 5. The optimal number of trees was selected using cross-validation (20 35 

folds). While BRT models handle variables with large differences in ranges, we ln-transformed 

Kd to facilitate the interpretation of results. We assessed model predictive accuracy by calculating 

a pseudo-R2 for each model and determined variable importance via permutation tests (44) 

(Supplemental Table 1). Predictor variables with importance values greater than 1/nvariable*100 

were included in trees more than would be expected from random chance and identified for 40 
further discussion (threshold = 0.99)(45). 

 

Output rasters of predicted cellulose-decomposition rates. Using the BRT models and data 

from the assembled spatial data layers, we predicted river Kd at the extent and at the resolution of 

the WorldClim rasters (global with 30 arc-second resolution; www.worldclim.org) using the 45 
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raster package in R. In these output rasters, we did not predict Kd for sub-watersheds with ≤10 ha 

of sub-basin area, nor for Antarctica, which is not included in HydroATLAS. Importantly, we 

predicted Kd using a BRT model that included variables measured at each site in the original 

CELLDEX experiment (i.e., stream temperatures and month of deployment), but those variables 

were not included in the generation of an interpolated global Kd map. 5 

 

Independent validation of predicted cellulose-decomposition rates. To validate the 

predictive model of cellulose decomposition and test the environmental realism of the cellulose 

substrate, we used BRT to predict published rates of leaf-litter decomposition in rivers (ln Kd). 

The leaf-litter Kd BRT model included 17 predictor variables, which included cellulose Kd values 10 

predicted by the BRT model, 2 experimental conditions (coarse and fine mesh litter bags), 7 

genus-level leaf traits (TRY dataset), and 7 genus-level litter traits (literature review). The BRT 

model was fit using the same model parameters as the cellulose-decomposition model, with 

cross-validation to optimize the final number of trees. 

 15 

Data. See repository at https://github.com/dmcostello/CELLDEX_geospatial 

 

 

Supplemental Table 1. Boosted-regression tree model importance values for cellulose-

decomposition rates (ln[Kd])), their description, and the source of data. Importance values greater 20 
than 1 were deemed to be important. 

 
Boosted-regression tree - predicting cellulose-decomposition rate (ln[Kd]) 

 

Pseudo R2 0.81 
  

    

Predictor variable Relative 

importance 

Description Source 

mean_mean_daily_te

mp 

14.02 Measured water temp This study 

log10lka_pc_sse 6.94 Lake area HydroBASINS 

log10NO3c 6.70 NO3 yield McDowell et al. 2021 

log10DRPc 4.89 DRP yield McDowell et al. 2021 

AETmonth 4.40 AET month of deployment HydroBASINS 

tmp_dc_uyr 2.48 Air temperature HydroBASINS 

https://github.com/dmcostello/CELLDEX_geospatial
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snowmonth 2.26 Snow cover month of 

deployment 

HydroBASINS 

tmp_dc_smx 2.25 Air temp maximum HydroBASINS 

soc_th_uav 2.16 Organic C % HydroBASINS 

run_mm_syr 2.10 Runoff HydroBASINS 

crp_pc_sse 2.03 Cropland extent HydroBASINS 

log10dis_m3_pmn 1.94 Discharge minimum HydroBASINS 

gdp_ud_sav 1.71 GDP HydroBASINS 

slp_dg_sav 1.54 Slope HydroBASINS 

pet_mm_uyr 1.44 Potential ET HydroBASINS 

log10sgr_dk_sav 1.30 Stream gradient HydroBASINS 

log10pop_ct_usu 1.29 Population count HydroBASINS 

log10dor_pc_pva 1.29 Degree of regulation HydroBASINS 

tmp_dc_syr 1.28 Air temperature HydroBASINS 

tempmonth 1.28 Air temp month of deployment HydroBASINS 

crp_pc_use 1.24 Cropland extent HydroBASINS 

ele_mt_smx 1.22 Elevation maximum HydroBASINS 

log10dis_m3_pyr 1.09 Discharge average HydroBASINS 

snd_pc_uav 1.09 Sand content HydroBASINS 

log10rdd_mk_uav 1.07 Road density HydroBASINS 

tmp_dc_smn 1.01 Air temp minimum HydroBASINS 

TNdep 0.95 TN deposition Ackerman et al. 2019 

pac_pc_sse 0.90 Protected area extent HydroBASINS 

pre_mm_uyr 0.89 Precipitation HydroBASINS 

aet_mm_uyr 0.88 Actual ET HydroBASINS 

log10gdp_ud_usu 0.88 GDR HydroBASINS 

log10lkv_mc_usu 0.85 Lake volume HydroBASINS 

pre_mm_syr 0.85 Precipitation HydroBASINS 
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TPdep 0.79 TP deposition Brahney et al. 2015 & 

Mahowald et al. 2008 

log10ppd_pk_uav 0.78 Population density HydroBASINS 

cly_pc_sav 0.77 Clay % HydroBASINS 

moist_indexmonth 0.77 Moisture index month of 

deployment 

HydroBASINS 

nli_ix_sav 0.70 Nighttime lights HydroBASINS 

ele_mt_sav 0.68 Elevation average HydroBASINS 

ari_ix_uav 0.67 Aridity index HydroBASINS 

soc_th_sav 0.66 Organic C % HydroBASINS 

snw_pc_uyr 0.65 Snow cover HydroBASINS 

log10rev_mc_usu 0.63 Reservoir volume HydroBASINS 

log10gdp_ud_ssu 0.62 GDP HydroBASINS 

PETmonth 0.61 PET month of deployment HydroBASINS 

log10rdd_mk_sav 0.59 Road density HydroBASINS 

slt_pc_sav 0.59 Silt content HydroBASINS 

pac_pc_use 0.58 Protected area extent HydroBASINS 

slp_dg_uav 0.57 Slope HydroBASINS 

for_pc_use 0.56 Forest cover extent HydroBASINS 

gwt_cm_sav 0.55 Groundwater depth HydroBASINS 

log10inu_pc_ult 0.55 Inundation extent HydroBASINS 

ele_mt_uav 0.52 Elevation average HydroBASINS 

cly_pc_uav 0.51 Clay % HydroBASINS 

for_pc_sse 0.50 Forest cover extent HydroBASINS 

log10ria_ha_ssu 0.50 River area HydroBASINS 

precipmonth 0.48 Precipitation month of 

deployment 

HydroBASINS 

snd_pc_sav 0.47 Sand content HydroBASINS 
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pst_pc_use 0.47 Pasture extent HydroBASINS 

log10pop_ct_ssu 0.45 Population count HydroBASINS 

aet_mm_syr 0.43 Actual ET HydroBASINS 

snw_pc_smx 0.43 Snow cover HydroBASINS 

log10ero_kh_sav 0.38 Erosion rate HydroBASINS 

ari_ix_sav 0.36 Aridity index HydroBASINS 

swc_pc_syr 0.35 Soil water % HydroBASINS 

log10ero_kh_uav 0.35 Erosion rate HydroBASINS 

log10dis_m3_pmx 0.33 Discharge maximum HydroBASINS 

cmi_ix_uyr 0.32 Climate moisture index HydroBASINS 

slt_pc_uav 0.32 Silt content HydroBASINS 

log10ppd_pk_sav 0.31 Population density HydroBASINS 

ele_mt_smn 0.30 Elevation minimum HydroBASINS 

pet_mm_syr 0.29 Potential ET HydroBASINS 

log10riv_tc_usu 0.26 River volume HydroBASINS 

log10lka_pc_use 0.26 Lake area HydroBASINS 

soilwatermonth 0.26 Soil water % month of 

deployment 

HydroBASINS 

log10ria_ha_usu 0.21 River area HydroBASINS 

log10riv_tc_ssu 0.20 River volume HydroBASINS 

nli_ix_uav 0.18 Nighttime lights HydroBASINS 

pst_pc_sse 0.17 Pasture extent HydroBASINS 

kar_pc_sse 0.17 Karst extent HydroBASINS 

urb_pc_sse 0.16 Urban extent HydroBASINS 

log10inu_pc_umx 0.16 Inundation extent HydroBASINS 

log10inu_pc_smx 0.14 Inundation extent HydroBASINS 

snw_pc_syr 0.14 Snow cover HydroBASINS 

ire_pc_sse 0.12 Irrigated extent HydroBASINS 
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swc_pc_uyr 0.12 Soil water % HydroBASINS 

kar_pc_use 0.12 Karst extent HydroBASINS 

ire_pc_use 0.10 Irrigated extent HydroBASINS 

log10inu_pc_slt 0.10 Inundation extent HydroBASINS 

wet_pc_ug1 0.10 Wetland extent - All types HydroBASINS 

cmi_ix_syr 0.10 Climate moisture index HydroBASINS 

urb_pc_use 0.08 Urban extent HydroBASINS 

log10inu_pc_umn 0.07 Inundation extent HydroBASINS 

wet_pc_ug2 0.07 Wetland extent - No lakes, 

reservoirs, rivers 

HydroBASINS 

log10inu_pc_smn 0.06 Inundation extent HydroBASINS 

wet_pc_sg1 0.05 Wetland extent - All types HydroBASINS 

prm_pc_use 0.02 Permafrost extent HydroBASINS 

wet_pc_sg2 0.01 Wetland extent - No lakes, 

reservoirs, rivers 

HydroBASINS 

prm_pc_sse 0.00 Permafrost extent HydroBASINS 

gla_pc_sse 0.00 Glacier extent HydroBASINS 

gla_pc_use 0.00 Glacier extent HydroBASINS 

 

 

 

Supplemental Table 2. Boosted-regression tree model importance values for leaf-litter-

decomposition rates (ln[Kd])), their description, and the source of data. Importance values greater 5 
than 5 were deemed to be important. 

 

BRT predicting litter bag decomposition rate (ln[kd])  
Pseudo R2 0.70   

    

Predictor variable Relative importance Description Source 

ln_pred_k 39.47 Model predicted cotton kd This study 

Mesh.size 20.84 Mesh size LeRoy 2020 

Lignin_Litter_Mn 11.96 Litter lignin content Literature review 

CtoN_Litter_Mn 5.45 Litter C:N Literature review 
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N_Litter_Mn 5.23 Litter N content Literature review 

P_Litter_Mn 3.59 Litter P content Literature review 

C_Litter_Mn 2.37 Litter C content Literature review 

Cellulose_Litter_Mn 2.20 Litter cellulose content Literature review 

Ca_Leaf_Mn 2.03 Leaf Ca content TRY database 

NtoP_Leaf_Mn 1.19 Leaf N:P TRY database 

Thick_Mn 1.04 Leaf thickness TRY database 

Leaf.condition 1.03 Leaf condition TRY database 

NtoP_Litter_Mn 0.95 Litter N:P Literature review 

P_Leaf_Mn 0.76 Leaf P content TRY database 

CtoN_Leaf_Mn 0.69 Leaf C:N TRY database 

C_Leaf_Mn 0.66 Leaf C content TRY database 

N_Leaf_Mn 0.53 Leaf N content TRY database 
 


