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We study the growth of the number of conjugacy classes of infinite dihedral subgroups of

lattices in PSL2 R, generalizing the earlier work of Sarnak [9] and Bourgain–Kontorovich

[4] on the growth of the number of reciprocal geodesics on the modular surface. We also

prove that reciprocal geodesics are equidistributed in the unit tangent bundle.

1

In this note we are interested in counting conjugacy classes of infinite dihedral sub-

groups, that is subgroups isomorphic to (Z/2Z)∗(Z/2Z), of lattices � ⊂ PSL2 R. Evidently,

we will only care about lattices � with 2-torsion, that is lattices that have elements of

order two—otherwise � has no infinite dihedral subgroups. With the action of � on the

hyperbolic plane H
2 in mind, we refer to the elements of order two as involutions.

Discrete infinite dihedral subgroup of PSL2 R, for example those that arise as

subgroups of a lattice, preserve a unique geodesic AD in H
2, the axis of D. We will refer

to the length �(D) of the quotient D\AD as the length of D. Our first goal is to study the

asymptotic behaviour of the number of conjugacy classes of dihedral subgroups of � of

at most length L, but before stating a precise result we need some notation that will be
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Counting Reciprocal Geodesics 10299

used throughout the paper. We will denote by

I� = {γ ∈ � \ Id, γ 2 = Id}

the set of involutions in �, by

D� = {subgroupsD ⊂ � isomorphic to (Z/2Z) ∗ (Z/2Z)}

the set of all infinite dihedral subgroups of �, and by

D�(L) = {D ∈ D� with �(D) � L}

that consisting of infinite dihedral subgroups of length at most L. Note that the action

of � on itself by conjugation induces actions on I�, D�, and D�(L)—normalizers N�(·)
become then stabilizers.

Theorem 1.1. For every lattice � ⊂ PSL2 R with 2-torsion we have

|�\D�(L)| ∼ C(�)

|χor(�\H2)| · eL

where χor(�\H2) is the Euler characteristic of the orbifold �\H2, where

C(�) = 1

4
·
⎛
⎝ ∑

σ∈�\I�

1

|N�(σ )|

⎞
⎠

2

and ∼ means that the ratio between the two quantities tends to 1 when L → ∞.

Theorem 1.1 generalizes a result of Sarnak. Recall namely that a hyperbolic

element γ in � ⊂ PSL2 R is reciprocal if it is conjugated to its inverse, that is if there is

σ ∈ � with γ −1 = σ−1γ σ . An unoriented closed geodesic in the orbifold �\H2 is reciprocal

if its free homotopy class is represented by a reciprocal element in �. Now, as already

pointed out by Fricke and Klein [7] there is a bijection between (maximal) infinite dihedral

subgroups and (primitive) reciprocal geodesics: the (unoriented) reciprocal geodesic in

�\H2 corresponding to the infinite dihedral group D is the quotient γD = TD\AD where

TD is the index two subgroup of D consisting of hyperbolic elements and where AD is,

as above, the axis of D. The length of the dihedral group and the trace of the associated
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10300 V. Erlandsson and J. Souto

reciprocal geodesic are related by

Tr(γD) = 2 · cosh(2−1�(γD)) = 2 · cosh(�(D)), (1.1)

and since 2 · cosh(�) ∼ e� for large � we get from Theorem 1.1 the following:

Corollary 1.2. For every lattice � ⊂ PSL2 R with 2-torsion we have

|{γ reciprocal geodesics in �\H2 with Tr(γ ) � X}| ∼ C(�)

|χor(�\H2)| · X

as X → ∞. Here notation is as in Theorem 1.1.

In the particular case that �=PSL2 Z we have C(PSL2 Z)= 1
16 and χor(PSL2 Z)= −1

6 ,

meaning that in the modular surface we have

|{γ reciprocal geodesics in PSL2 Z\H2 with Tr(γ ) � X}| ∼ 3

8
· X. (1.2)

This asymptotic was first obtained, among other results, by Sarnak in [9] and it was

Sarnak’s paper what got us interested in these matters.

Another paper that motivated us was one by Bourgain and Kontorovich [4] giving

lower bounds for the number of “low-lying” reciprocal geodesics in the modular surface.

More precisely they proved that for every δ > 0 there is a compact subset Kδ ⊂ PSL2 Z\H2

with

|{γ reciprocal geodesics in Kδ with Tr(γ ) � X}| > X1−δ (1.3)

for all X > 0 large enough. Again we get a generalization of this theorem:

Theorem 1.3. Let � be a lattice with 2-torsion. For every δ > 0 there is a compact set

Kδ ⊂ �\H2 such that

|�\{D ∈ D�(L) with D\AD ⊂ Kδ}| > e(1−δ)·L

for all L > 0 large enough.

Remark. We note that the actual theorem of Bourgain–Kontorovich in [4] is stronger

than what we state here. They consider only fundamental reciprocal geodesics, that is,
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Counting Reciprocal Geodesics 10301

those arising from elements γ satisfying Tr2(γ ) − 4 being square free. This number

theoretical condition has no obvious analogue for general lattices.

While Theorem 1.1 and Theorem 1.3 are close to plain vanilla generalizations

of Sarnak’s (1.2) and Bourgain–Kontorovich’s (1.3), what is somewhat different are the

proofs. Or at least the point of view. Indeed, dropping all number theory from the picture

and considering it all just as a geometric problem we reduce both theorems to very

classical results on counting lattice points in the hyperbolic plane.

This simplified framework also helps to study how reciprocal geodesics are

distributed in the unit tangent bundle T1�\H2. Again we think of them in terms of infinite

dihedral subgroups. Although it is unoriented, the reciprocal geodesic γD associate to the

infinite dihedral group D ∈ D� corresponds to a unique geodesic flow orbit. We denote by

�γD the measure on T1�\H2 given by integrating along this geodesic flow orbit, normalized

to have total mass equal to the length of the geodesic. In other words �γD has total measure

twice the length �(D) of the infinite dihedral group D itself. The behavior of the measures

μL =
∑

D∈D�(L)

�γ (1.4)

was already consider by Sarnak in [9], where he proved that there is a constant c such

that for every compact set � ⊂ T1 PSL2 Z\H2 one has

lim inf
L→∞

1

‖μL‖μL(�) � c · vol(�)

where vol is the probability Liouville measure on the unit tangent bundle, that is the

probability measure induced by the Haar measure via the identification T1�\H2 =
�\ PSL2 R.

Sarnak also conjectures in [9] that, after normalization, the measures μL converge

to vol when L → ∞. This is the statement of the following result:

Theorem 1.4. If � ⊂ PSL2 R is a lattice that has 2-torsion then the measures μL as in

(1.4) converge projectively to the Liouville probability measure vol. More precisely we

have

lim
L→∞

1

‖μL‖
∫

f dμL =
∫

f d vol

for every compactly supported continuous function on T1�\H2.
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10302 V. Erlandsson and J. Souto

Remark. It would be reasonable for the reader to just care about maximal dihedral

subgroups, or about primitive reciprocal geodesics, or they might want to replace in

(1.4) the sum over infinite dihedral subgroups by a sum over reciprocal geodesics. The

results stated above remain valid in all those settings because, as we will see below,

the proportion of non-maximal dihedral subgroups (resp. non-primitive reciprocal

geodesics) among all dihedral subgroups (reciprocal geodesics) with at most length L

tends exponentially fast to 0.

Let us now breeze over the organization of the paper. In section 2 we recall a

few facts about dihedral subgroups of Fuchsian groups, analyzing with some care how

the set of conjugacy classes of such subgroups are parametrized by conjugacy classes

of pairs of involutions. It follows that to count conjugacy classes of dihedral groups

it suffices to count involutions, or rather their fixed points. This is used in section 3

to deduce Theorem 1.1 from Delsarte’s classical orbit points counting result and in

section 4 to get Theorem 1.3 from the fact that lattices in PSL2 R have convex cocompact

subgroups with critical exponent close to 1. Still working under the same framework, we

prove Theorem 1.4 in section 5, modulo another equidistribution result whose proof we

defer to section 6, but which experts will probably consider evident.

Before moving on we should mention another paper that got us interested

in reciprocal geodesics: in [1] Basmajian–Suzzi Valli prove versions of Sarnak’s and

Bourgain–Kontorovich’s results where trace is replaced by word length with respect

to the standard generating set of the fundamental group PSL2 Z 
 Z/2Z ∗ Z/3Z of

the modular surface. Although we have not pursued this direction, it might well be

that the methods we use here can also be used to recover the Basmajian–Suzzi Valli

theorems.

Actually, after completion of this paper, we learned from Ara Basmajian and

Robert Suzzi Valli that they were aware that one could recover Sarnak’s theorem using

an argument similar to the one we use. Although nothing appeared in print, Ara gave

talks outlining the argument. We were not aware of it.

2

Let � ⊂ PSL2 R be a discrete, non-elementary, finitely generated subgroup that has

2-torsion. With D� and D�(L) as above, let Dmax
� ⊂ D� and Dmax

� (L) ⊂ D�(L) be the

corresponding sets of maximal infinite dihedral subgroups of �. The goal of this section

is to prove the following:
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Proposition 2.1. Let � ⊂ PSL2 R be a discrete finitely generated subgroup. Suppose that

the set I� of order 2 elements in � is non-empty, denote by pσ the unique fixed points

of σ ∈ I�, and let J ⊂ I� be a set of representatives of the set �\I� of all �-conjugacy

classes. The map

πL :
⊔

(σ ,σ̄ )∈J×J

(
� · pσ̄ ∩ B∗(pσ , L)

) → �\D�(L)

πL :(σ , σ̄ , γ · pσ̄ ) �→ �-conjugacy class of〈σ , γ σ̄γ −1〉
(2.1)

is surjective for all L > 0. Moreover, for D = πL(σ , σ̄ , γ · pσ̄ ) we have

|π−1
L (D)| � |N�(σ )| + |N�(σ̄ )|

with equality if D ∈ Dmax
� . Here B∗(p, L) = {q ∈ H

2 with 0 < d
H2(p, q) � L} is the punctured

ball of radius L and centered at p.

The interest of Proposition 2.1 is that, as we will exploit in the next sections, it

reduces counting dihedral subgroups to counting lattice points. Indeed, the following is

an immediate corollary:

Corollary 2.2. Let � ⊂ PSL2 R be a discrete finitely generated subgroup. Suppose that

the set I� of order 2 elements in � is non-empty, denote by pσ the unique fixed points of

σ ∈ I�, and let J ⊂ I� be a set of representatives of �\I�. Then we have

|�\D�(L)| �
∑

(σ ,σ̄ )∈J×J
|� · pσ̄ ∩ B∗(pσ , L)|

|�\D�(L)| �
∑

(σ ,σ̄ )∈J×J

|� · pσ̄ ∩ B∗(pσ , L)|
|N�(σ )| + |N�(σ̄ )|

|�\Dmax
� (L)| �

∑
(σ ,σ̄ )∈J×J

|� · pσ̄ ∩ B∗(pσ , L)|
|N�(σ )| + |N�(σ̄ )|

for all L.

The goal for the rest of this section is to prove Proposition 2.1. We start by going

over a few facts about infinite dihedral subgroups of our Fuchsian group �. An infinite

dihedral subgroup D contains a unique index two infinite cyclic subgroup TD. Since the

normalizer in PSL2 R of a parabolic subgroup is torsion free, we get that the infinite cyclic
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10304 V. Erlandsson and J. Souto

subgroup of any infinite dihedral subgroup D of � is hyperbolic. It follows that D acts

on a geodesic AD ⊂ H
2—the action D � AD is conjugated to the standard action of the

infinite dihedral subgroup on the real line: the length of D\AD is the length �(D) of the

dihedral group and the geodesic γD = TD\AD is the reciprocal geodesic associated to D.

The stabilizer Stab�(AD) of the axis is also an infinite dihedral group—it is in fact the

unique maximal dihedral subgroup of � containing D.

Note now that if D /∈ Dmax
� then �(Stab�(AD)) � 1

2�(D). Note also that an

infinite dihedral group contains exactly
⌊

3·k
2

⌋
conjugacy classes of dihedral subgroups

of index at most k. In plain language this means that every non-maximal infinite dihedral

subgroup is the child of a dihedral subgroup of at most half the length, and that dihedral

subgroups don’t have may kids. Out of these two observations we get bounds for the

number of maximal infinite dihedral subgroups of bounded length:

Lemma 2.3. If ε0 < �(D) for every D ∈ D� then we have

|�\D�(L)| � |�\Dmax
� (L)| � |�\D�(L)| − 3 · L

2 · ε0
· |�\D�(2−1 · L)|

for all L > 0.

Continuing with generalities about infinite dihedral subgroups note that any

such D ⊂ � is generated by two distinct involutions σ and σ̄ fixing the axis AD. In fact,

there are precisely two D-conjugacy classes of ordered pairs of involutions generating D,

namely (σ , σ̄ ) and (σ̄ , σ).

In the opposite direction suppose that σ �= σ̄ ∈ � are distinct involutions. Then

the group D = 〈σ , σ̄ 〉 they generate is infinite dihedral and AD is the infinite geodesic

passing through the unique fixed points pσ and pσ̄ of σ and σ̄ , respectively. In those

terms, the length of the dihedral group is given by

�(〈σ , σ̄ 〉) = d
H2(pσ , pσ̄ ). (2.2)

All of this gives us a way to parametrize the set of all infinite dihedral subgroups

of �. As all along let I� ⊂ � be the set of all involutions in �, that is of all elements of

order two. From the discussion above we get surjectivity of the map

I� × I� \ � → D�, (σ , σ̄ ) �→ 〈σ , σ̄ 〉 (2.3)
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where � is the diagonal in I� × I�. The group � acts on I� by conjugation. The map (2.3)

is equivariant under this action and the induced map

�\(I� × I� \ �) → �\D� (2.4)

is surjective. Recall that, as we pointed out earlier, every ordered pair of involutions

generating the infinite dihedral group D = 〈σ , σ̄ 〉 is conjugated, within D, to either (σ , σ̄ )

or (σ̄ , σ). It follows that the map (2.4) is at worst 2-to-1 and that it is exactly 2-to-1

over the set of self-normalizing infinite dihedral subgroups. We record these facts for

later use:

Lemma 2.4. The map (2.4) is at most 2-to-1. Moreover, conjugacy classes of maximal

infinite dihedral subgroups have exactly two preimages.

Recall now that we are assuming that � is finitely generated. This implies that

it has only finitely many conjugacy classes of finite order elements and hence that the

set �\I� is finite. Let J ⊂ I� be a subset consisting of one representative of every �-

conjugacy class. The map

⊔
σ∈J

({σ } × (I� \ {σ })) → �\(I� × I� \ �) (2.5)

sending (σ , σ̄ ) to its conjugacy class is surjective and its restriction to the set {σ } × (I� \
{σ }) has fibers of cardinality equal to that of the normalizer N�(σ ) of σ in �.

Composing the maps (2.4) and (2.5) we get thus a surjective map

π :
⊔
σ∈J

({σ } × (I� \ {σ })) → �\D�. (2.6)

Let us recap what we can say about the cardinality of the fibers of (2.6). First, the

preimage of D ∈ �\D� under (2.4) has at most two points (σ , σ̄ ) and (σ̄ , σ), with equality

if D is maximal. Now, the conjugacy class of (σ , σ̄ ) has |N�(σ )| preimages under (2.5), and

that of (σ̄ , σ) has |N�(σ̄ )| preimages. Altogether we get that:

Lemma 2.5. For every conjugacy class of infinite dihedral subgroups D = 〈σ , σ̄ 〉 ∈ D� of

� we have

|π−1(〈σ , σ̄ 〉)| � |N�(σ )| + |N�(σ̄ )|

with equality if D ∈ Dmax
� is maximal.
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10306 V. Erlandsson and J. Souto

We are now ready to prove Proposition 2.1:

Proof of Proposition 2.1. The basic observation needed to relate the statement of

Proposition 2.1 with what we have been discussing so far is that each involution σ ∈ I�

is uniquely determined by its fixed points pσ ∈ H
2. From this point of view, the map (2.6)

can be rewritten as

π :
⊔

(σ ,σ̄ )∈J×J
(� · pσ̄ \ {pσ }) → D�(L)

π :(σ , σ̄ , γ · pσ̄ ) �→ �-conjugacy class of〈σ , γ σ̄γ −1〉.
(2.7)

The map πL in (2.1), in the statement of the proposition, is just the restriction of this

map to the set
⊔

(σ ,σ̄ )∈J×J
(
� · pσ̄ ∩ B∗(pσ , L)

)
. Now we get from (2.2) that (groups in the

conjugacy class of) the dihedral group π(σ , σ̄ , γ pσ̄ ) have length d
H2(pσ , γ pσ̄ ). It follows

that the map πL in (2.1) takes values in the desired set, and surjectivity follows from

the surjectivity of π . The final claim of the proposition follows also automatically from

Lemma 2.5. �

3

In this section we prove Theorem 1.1 from the introduction. We restate it here for the

convenience of the reader:

Theorem 1.1 . For every lattice � ⊂ PSL2 R with 2-torsion we have

|�\D�(L)| ∼ C(�)

|χor(�\H2)| · eL

where χor(�\H2) is the Euler characteristic of the orbifold �\H2, where

C(�) = 1

4
·
⎛
⎝ ∑

σ∈�\I�

1

|N�(σ )|

⎞
⎠

2

and ∼ means that the ratio between both quantities tends to 1 when L → ∞.

Proof. The key fact we will need is Delsarte’s classical result [6] that

|� · y ∩ B(x, R)| ∼ vol(B(x, R))

| Stab�(y)| · vol(�\H2)
(3.1)
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when R → ∞. Here vol(�\H2) is the volume of the given orbifold. Via Gauß–Bonnet we

can restate this in terms of the orbifold Euler-characteristic

|� · y ∩ B(x, R)| ∼ eR

2 · | Stab�(y)| · |χor(�\H2)| ,

where we have used that vol(B(x, R)) = 2π(cosh(R) − 1) ∼ π · eR. Plugging this into

Corollary 2.2 and noting that Stab�(pσ ) = N�(σ ) for every involution σ we get

|�\D�(L)| � c · eL

|χor(�\H2)| for some c > 0, (3.2)

|�\D�(L)| � C(�) · eL

|χor(�\H2)| , and (3.3)

|�\Dmax
� (L)| � C(�) · eL

|χor(�\H2)| (3.4)

where

C(�) = 1

2
·

∑
(σ ,σ̄ )∈J×J

1

|N�(σ̄ )| · (|N�(σ )| + |N�(σ̄ )|) (3.5)

Here � and � mean that the inequalities hold asymptotically when L → ∞. Anyways,

from (3.2) and (3.3) we get that |�\D�(L)| grows coarsely as eL. It thus follows from Lemma

2.3 that

|�\D�(L)| ∼ |�\Dmax
� (L)| (3.6)

From (3.3) and (3.4) we get a lower bound for the left side and and upper bound for the

right side by the same quantity. We thus get

|�\D�(L)| ∼ C(�) · eL

|χor(�\H2)|

To conclude, elementary algebra yields that C(�) as defined in (3.5) can be rewritten as

in the statement of the theorem. �
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Remark. Since it is going to be of some importance, we want to emphasize that Lemma

2.3 together with the exponential growth of the number of infinite dihedral subgroups

implies that the proportion of non-maximal elements in �\D�(L) decreases exponentially

when L → ∞.

The fact that most infinite dihedral subgroups are maximal comes in handy

now. Indeed, recall that we can associate to the conjugacy class of an infinite dihedral

subgroup D a reciprocal geodesic γD, that this map is surjective, and that it is in fact

a bijection from the set of conjugacy classes of maximal infinite dihedral subgroups

to the set of primitive reciprocal geodesics. Since most infinite dihedral subgroups

are maximal we get that counting reciprocal geodesics is asymptotically equivalent

to counting conjugacy classes of infinite dihedral subgroups. Corollary 1.2 from the

introduction follows then immediately from Theorem 1.1 together with the relation (1.1)

between lengths of infinite dihedral subgroups and lengths of the associated reciprocal

geodesics.

Corollary 1.2 . For every lattice � ⊂ PSL2 R with 2-torsion we have

|{γ reciprocal geodesics in �\H2 with Tr(γ ) � X}| ∼ C(�)

|χor(�\H2)| · X

as X → ∞. Here notation is as in Theorem 1.1.

4

Let us now turn our attention to Theorem 1.3, which we also restate here:

Theorem 1.3 . Let � be a lattice with 2-torsion. For every δ > 0 there is a compact set

Kδ ⊂ �\H2 such that

|�\{D ∈ D�(L) with D\AD ⊂ Kδ}| > e(1−δ)·L

for all L > 0 large enough.

We will reduce this theorem to the fact that the lattice � ⊂ PSL2 R has, for any

δ < 1, a convex cocompact subgroup �0 with critical exponent

δ(�0) = lim
L→∞

1

L
· log |{y ∈ �0 · x0 with d

H2(x0, y) � L}| > δ

Indeed the following is true:
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Lemma 4.1. Every lattice � ⊂ PSL2 R has a sequence of finitely generated subgroups

�k ⊂ � without parabolic elements and with

lim
k→∞

δ(�k) = 1

If � has 2-torsion then �k can be chosen to also have 2-torsion for all k.

Example 1. How do these groups look like for the modular group PSL2 Z? Well, in this

case one can take �k to be the subgroup generated by the set {ηiση−i with i = −k, . . . , k}
where η, σ ∈ PSL2 Z correspond to the Möbius transformations η(z) = z + 2 and

σ(z) = −z−1.

Lemma 4.1 will not surprise anybody and we suspect that in one way or the

other it might well have appeared already in the literature. We prove it below using some

amount of (very classical) technology but it can be done using elementary means and we

encourage the reader to try to do it by themselves. Anyways, before going any further let

us use this lemma to settle Theorem 1.3:

Proof of Theorem 1.3. We get from Lemma 4.1 a finitely generated subgroup �′ ⊂ �,

with 2-torsion, without parabolic elements, and with δ(�′) > 1− δ. Finite generation and

lack of parabolics imply that �′ is convex cocompact and hence that there is a compact

subset K ⊂ �\H2, which contains D\AD for every infinite dihedral group whose conjugacy

class admits a representative contained in �′.
Fix now an involution σ ∈ �′ ⊂ �, choose the set J of representatives of �\I� in

such a way that σ ∈ J , and restrict the map πL in Proposition 2.1 to the set {(σ , σ)} ×
(�′ ·pσ ). From the proposition we get that this map is at most 2 · |N�(σ )|-to-1. This means

that at least 1
2·|N�(σ )| |�′ ·pσ ∩B∗(pσ , L)| elements in �\D�(L) have representatives contained

in �′. From the very definition of the critical exponent and from the bound δ(�′) > 1 − δ

we get that the cardinality of �′ · pσ ∩ B∗(pσ , L) grows faster than e(1−δ)·L. Altogether we

get that, for large L, there are at least e(1−δ)·L elements D in �\D�(L) with D\AD contained

in K. We are done. �

Now, let us prove Lemma 4.1:

Proof of Lemma 4.1. The proof has two different steps. In a first algebraic/topological

step we give a sequence of groups �k. Then we use the relation between bottom of the
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10310 V. Erlandsson and J. Souto

spectrum and critical exponent to show that the groups �k have critical exponent tending

to 1.

Anyways, let us start. Since this is the case we are interested in we are going to

assume that � has both 2-torsion and parabolic elements. This assumption implies that

� contains a subgroup H isomorphic to Z∗Z∗Z/2Z where the two first free factors corre-

spond to maximal parabolic subgroups of �. Now, H is the intersection of the finite index

subgroups of � containing it [10]. It follows thus that � has a finite index subgroup �′

such that the associated orbifold �′\H2 has at least two cusps and a cone point of order 2.

We will find our subgroups inside �′. �

Remark. In the case of the modular group PSL2 Z the subgroup �′ can be taken to be

the group generated by η and σ from Example 1.

Let now c0, . . . , ck be the cusps of �′\H2 and let η = η1 ∪ · · · ∪ ηk ⊂ �′\H2 be a

simple arc system contained in the regular part of our orbifold, with ηi joining c0 and ci.

We orient all those arcs in such a way that c0 is always the origin and denote by

α : �′ → Z

the homomorphism given as follows: represent γ ∈ �′ = π1(�′\H2) by an oriented loop in

the regular part of �′\H2 and let α(γ ) be the algebraic intersection number of that loop

with the arc system η = η1 ∪· · ·∪ηk. It is a surjective homomorphism and by construction

no element in �′′ = ker(α) is parabolic and �′′ has 2-torsion—for what it is worth, note

that �′′ is infinitely generated.

Remark. In the case of PSL2 Z and �′ as in the previous remark, the homomorphism α

is given by α(η) = 1 and α(σ) = 0.

Let now �k ⊂ �′′ be any sequence of finitely generated subgroups with �k ⊂ �k+1

for all k and with �′′ = ∪k�k. These are our groups and all that is left to argue is that

δ(�k) → 1 when k grows.

Claim 1. limk→∞ δ(�k) = 1.

To establish this claim we will make use of a result of Patterson [8] and Sullivan

[11] asserting that for any discrete group G ⊂ PSL2 R with λ0(G\H2) < 1
4 the critical
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exponent is given by the formula:

δ(G) = 1

2
+

√
1

4
− λ0(G\H2). (4.1)

Note that λ0(�′\H2)=0 because �′ is a lattice. Now, since �′′ � �′ is normal with �′/�′′ 
Z

amenable we get from [5], or rather from [2], that λ0(�′′\H2) = λ0(�′\H2) = 0. This means

that for all ε > 0 there is a compactly supported function f ∈ C∞
c (�′′\H2) with Rayleigh

quotient R(f ) � ε. Now, if � is any compact connected subsurface containing the support

of f there is k0 such that �k is contained in π1(�) for all k � k0. This means that the

surface � lifts under the cover �k\H2 → �′′\H2. Lifting the function f we get a function

on �k\H2, which still has Rayleigh quotient less than ε. In particular,

λ0(�k\H2) � ε

for all k � k0. Claim 1 follows now from (4.1).

5

In this section we prove Theorem 1.4, that is the equidistribution of reciprocal geodesics,

making use of Proposition 5.1 below, a different equidistribution result which no expert

will find surprising and which we prove in the next section. Consider namely for x, y ∈ H
2

the measures

μ̃
x,y
L =

∑
z∈�·x∩B∗(y,L)

−→yz (5.1)

where −→yz is the measure on T1
H

2 obtained by integrating, with respect to arc length,

along the lift to the unit tangent bundle of the geodesic arc from y to z. In the next

section we will prove:

Proposition 5.1. Let � ⊂ PSL2 R be a lattice and μ̃
x,y
L as in (5.1). For any compactly

supported function f ∈ Cc(T
1�\H2) and any two x, y ∈ H

2 we have

lim
L→∞

1

‖μ̃x,y
L ‖

∫
f̃ dμ̃

x,y
L =

∫
f d vol

where f̃ is the lift of f to T1
H

2.
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10312 V. Erlandsson and J. Souto

Assuming Proposition 5.1 for the time being, we prove Theorem 1.4:

Theorem 1.4 . If � ⊂ PSL2 R is a lattice that has 2-torsion then the measures μL as in

(1.4) converge projectively to the Liouville probability measure vol. More precisely we

have

lim
L→∞

1

‖μL‖
∫

f dμL =
∫

f d vol

for every compactly supported continuous function on T1�\H2.

Proof. The measure μL is the measure on T1�\H2 obtained by integrating over the

reciprocal geodesics in �\H2 associated to infinite dihedral groups with length at most L.

By Proposition 2.1 we have a map

πL :
⊔

(σ ,σ̄ )∈J×J

(
� · pσ̄ ∩ B∗(pσ , L)

) → �\D�(L)

πL :(σ , σ̄ , γ · pσ̄ ) �→ �-conjugacy class of 〈σ , γ σ̄γ −1〉

of which we think as being a “parametrization” of the set of conjugacy classes of infinite

dihedral groups. Recall that here J ⊂ I� is a set of representatives of �\I�, the set

of conjugacy classes on involutions in �, and that pσ is the unique fixed point of the

involution σ . With this notation consider the measure

μ̂L =
∑

(σ ,σ̄ )∈J×J

⎡
⎣ 1

|N�(σ )| + |N�(σ̄ )|
∑

q∈�·pσ̄ ∩B∗(pσ ,L)

�γπL(σ ,σ̄ ,q)

⎤
⎦ .

The measures μL and μ̂L are supported by exactly the same set of orbits of the geodesic

flow by surjectivity of the map πL. Moreover, on each component the two measures are

multiples of each other, the multiple given by the cardinality of the fibers of πL. In fact,

the bound for the cardinality of the fibers in Proposition 2.1 implies that these multiples

are at most 1, with equality whenever the dihedral group πL(σ , σ̄ , γ · pσ̄ ) is maximal and

say has length at least 1
2L. Since the proportion of non-maximal dihedral groups of length

at most L is exponentially small (compare with (3.6) and with the comment following the

proof of Theorem 1.1) we deduce that to prove that the measures 1
‖μL‖μL converge to vol

it suffices to show that

lim
L→∞

1

‖μ̂L‖ μ̂L = vol .
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Note now that the segment with end points pσ and (γ σ̄ γ −1)(pσ ) projects to the geodesic

γπL(σ ,σ̄ ,γ ·pσ̄ ) under the covering map H
2 → �\H2 and that the point γ · pσ̄ is the midpoint

of this segment. This means that the measure �γπL(σ ,σ̄ ,γ ·pσ̄ ) is the projection to T1�\H2 of

the measure
−−−−−→
pσ (γ pσ̄ ) + −−−−−−−−−−−−−−−→

(γ pσ̄ )((γ σ̄ γ −1)(pσ )) where, as earlier, −→xy is the measure on T1
H

2

obtained by integrating with respect to arc length along the lift to the unit tangent bundle

of the geodesic arc from x to y. Translating the second measure by γ −1 we then get that

the measure �γπL(σ ,σ̄ ,γ ·pσ̄ ) is also the projection of the measure
−−−−−→
pσ (γ pσ̄ ) + −−−−−−−−−−−→

pσ̄ ((σ̄ γ −1)(pσ )).

Altogether we get that μ̂L is the projection to T1�\H2 of the measure

μ̃L = 2 ·
∑

(σ ,σ̄ )∈J×J

⎡
⎣ 1

|N�(σ )| + |N�(σ̄ )|
∑

q∈�·pσ̄ ∩B∗(pσ ,L)

−−→pσ q

⎤
⎦

on T1
H

2. With the same notation as in (5.1) we can rewrite this as

μ̃L = 2 ·
∑

(σ ,σ̄ )∈J×J

[
1

|N�(σ )| + |N�(σ̄ )| · μ̃
pσ̄ ,pσ

L

]
.

Proposition 5.1 asserts that the projections of the measures μ̃
pσ̄ ,pσ

L converge projectively

to vol when L → ∞. It follows that the same is true for μ̂L, the projection of μ̃L. We

are done. �

It remains to prove Proposition 5.1.

6

In this section we prove Proposition 5.1. Let us fix from now on x, y ∈ H
2 and f ∈

Cc(T
1�\H2), say with ‖f ‖∞ � 1, and note that it suffices to prove that for all δ > 0 there

is L0 with

∣∣∣∣∣
1

‖μ̃x,y
L ‖

∫
f̃ dμ̃

x,y
L −

∫
f d vol

∣∣∣∣∣ < δ

for all L � L0. Given such a δ we choose ε > 0 with |f̃ (p) − f̃ (q)| � δ for all p, q ∈ H
2

wich are at most at distance 10ε of each other—this is possible because f̃ is the lift of

the compactly supported function f . Note also that since ε > 0 can be reduced as much

as we want we can think of L = k · ε being an integer multiple of ε. This means that it
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10314 V. Erlandsson and J. Souto

suffices to prove that

lim sup
k→∞

∣∣∣∣∣
1

‖μ̃x,y
k·ε ‖

∫
f̃ dμ̃

x,y
k·ε −

∫
f d vol

∣∣∣∣∣ < δ (6.1)

Now, slicing the ball of radius k · ε as the union

B(y, k · ε) = ∪k−1
r=0A(y, r · ε, ε)

of concentric annuli A(y, r · ε, ε) = B(y, (r + 1) · ε) \ B(y, r · ε), we write our measure as

μ̃
x,y
k·ε =

k−1∑
r=0

ν̃
x,y
r where ν̃

x,y
r =

∑
z∈�·x∩A(y,r·ε,ε)

−→yz.

Evidently, (6.1) follows if we prove that

lim sup
k→∞

∣∣∣∣∣
1

‖ν̃x,y
k ‖

∫
f̃ dν̃

x,y
k −

∫
f d vol

∣∣∣∣∣ < δ. (6.2)

We are not done yet decomposing our measures. Consider namely

ν̃
x,y
k =

k∑
r=0

λ̃
x,y
k,r where λ̃

x,y
k,r = ν̃

x,y
k |A(y,r·ε,ε)

is for r = 0, . . . , k the restriction of ν̃
x,y
k to the annulus A(y, r · ε, ε). For fixed k, all of the

measures λ̃
x,y
k,r (save possibly the one with r = k, where it might be smaller) have the same

total measure

‖λ̃x,y
k,r ‖ = ε · |� · x ∩ A(y, k · ε, ε)| ∼ ε · vol(A(y, k · ε, ε))

| Stab�(x)| · vol(�)
(6.3)

where the claim about asymptotics follows for example from Delsarte’s orbit counting

result (3.1). Anyways, the point is that to prove that ν̃
x,y
k satisfies (6.2) it suffices to prove

that the measures λ̃
x,y
k,r satisfy the analogue claim for most r. More concretely, (6.2), and

hence (6.1) and thus Proposition 5.1, follows once we establish the following:
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Claim 2. There are k1 and k2 such that for all k > k1+k2 and all choices of rk ∈ [k1, k−k2]

we have

lim sup
k→∞

∣∣∣∣∣
1

‖λ̃x,y
k,rk

‖
∫

f̃ dλ̃
x,y
k,rk

−
∫

f d vol

∣∣∣∣∣ < δ.

The role of k1 is to ensure that the spheres of radius rk · ε around x are well-

mixed. Recall indeed that we can identify T1
H

2 with PSL2 R and that when doing so the

geodesic flow becomes right multiplication by diagonal matrices gt ∈ SL2 R with entries

e± 1
2 t. Mixing of the geodesic flow of �\H2 (see [3, III.2.3]) implies that the projection to

T1�\H2 of (the outer normal of) the spheres St(y) = (T1
yH

2) · gt gets equidistributed in

T1�\H2 (see [3, III.3.3]). It follows that there is some k1 with

∣∣∣∣
∫

Sr·ε(y)

f̃ −
∫

f d vol

∣∣∣∣ < δ for all r > k1. (6.4)

Suppose from now on that we fix some r > k1 and cut the sphere Sr·ε(y) into segments

I1, I2, . . . , IN of length �(Ii) ∈ [ε, 2ε] for all i. Denote then by

Ui = ∪t∈[0,ε]Ii · gt

the little surface area obtained by pushing Ii via the geodesic flow for time ε. By the

choice of ε we have that

sup
i

sup
p,q∈Ui

|f (p) − f (q)| < δ.

This means that, choosing for all i some point pi ∈ Ii, we have

∣∣∣∣∣
∫

Sr·ε(y)

f̃ − 1

�(Sr·ε(y))

∑
i

f (pi) · �(Ii)

∣∣∣∣∣ < δ

and similarly

∣∣∣∣∣
1

‖λ̃x,y
k,r ‖

∫
f̃ dλ̃

x,y
k,r − 1

‖λ̃x,y
k,r ‖

∑
i

f (pi) · λ̃
x,y
k,r (Ui)

∣∣∣∣∣ < δ.
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These two bounds, together with (6.4) and the assumption that ‖f ‖∞ � 1, imply that

∣∣∣∣∣
1

‖λ̃x,y
k,r ‖

∫
f̃ dλ̃

x,y
k,r −

∫
f d vol

∣∣∣∣ �

� δ +
∣∣∣∣∣

1

‖λ̃x,y
k,r ‖

∫
f̃ dλ̃

x,y
k,r −

∫
Sr·ε(y)

f̃

∣∣∣∣∣

< 3δ +
∑

i ∈ {1, . . . , N} with
Ui ∩ Supp(f ) �= ∅

∣∣∣∣∣
�(Ii)

�(Sr·ε(y))
− λ̃

x,y
k,r (Ui)

‖λ̃x,y
k,r ‖

∣∣∣∣∣ .

Note that the proportion of λ
x,y
k,r in Ui is given by

λ̃
x,y
k,r (Ui)

‖λ̃x,y
k,r ‖ = |� · x ∩ [Ui · g(k−r)ε]|

|� · x ∩ A(y, k · ε, ε)|

where [V] ⊂ H
2 denotes the image of V ⊂ T1

H
2 under the standard projection.

Now, the exact same argument used to prove the equidistribution of spheres

[3, III.3.3] shows that the spherical segments Ii · g(k−r)ε also get equidistributed when

(k − r) → ∞. Repeating word by word the argument that shows that equidistribution of

spheres implies Delsarte’s asymptotics (3.1) (see [3, III.3.5]) we get that

|� · x ∩ [Ui · g(k−r)ε]| ∼ vol([Ui · g(k−r)ε])

| Stab�(x)| · vol(�)
(6.5)

when (k − r) → ∞. It follows thus from (6.3) and (6.5) that

λ̃
x,y
k,r (Ui)

‖λ̃x,y
k,r ‖ ∼ vol([Ui · g(k−r)ε])

vol(A(y, k · ε, ε))

Now, since f has compact support and since the lengths of the segments Ii are pinched

between two positive constants, we get that the last asymptotic statement holds uni-

formly for all i with Ii ∩ Supp(f̃ ), meaning that there is k2 with

(1 − δ) · vol([Ui · g(k−r)ε])

vol(A(y, k · ε, ε))
�

λ̃
x,y
k,r (Ui)

‖λ̃x,y
k,r ‖ �

(1 + δ) · vol([Ui · g(k−r)ε])

vol(A(y, k · ε, ε))

for all i such that Ui ∩Supp(f ) �= ∅ and all k−r ≥ k2. Given that ε is fixed (and very small)

we get that the ratio between volumes is comparable to the ratio between lengths. Also,
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the length of Ii and the length of Sr·ε(y) grow at exactly the same rate when we apply the

geodesic flow. Combining these two facts we get

(1 − δ − 2ε) · �(Ii)

�(Sr·ε(y))
�

λ̃
x,y
k,r (Ui)

‖λ̃x,y
k,r ‖ � (1 + δ + 2ε) · �(Ii)

�(Sr·ε(y))

for all i such that Ui ∩ Supp(f ) �= ∅ and all k � k2. This implies then that

∑
i ∈ {1, . . . , N} with
Ui ∩ Supp(f ) �= ∅

∣∣∣∣∣
�(Ii)

�(Sr·ε(y))
− λ̃

x,y
k,r (Ui)

‖λ̃x,y
k,r ‖

∣∣∣∣∣ � δ + 2ε

and hence that

∣∣∣∣∣
∫

f d vol − 1

‖λx,y
k,r ‖

∫
f̃ dλ̃

x,y
k,r

∣∣∣∣∣ < 4δ + 2ε

meaning that, up to changing one δ for another and after choosing ε really really small,

we have proved Claim 2. Having proved the claim we have also proved Proposition 5.1.
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