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Abstract    

Background: Surgical site infections are a major health problem that deteriorates the patients’ 

health and increases health care costs. A reliable method to identify patients with modifiable 

risk of surgical site infection is necessary to reduce the incidence of them but data are limited. 

Hence the objective is to assess the predictive validity of a logistic regression model compared 

to risk indexes to identify patients at risk of surgical site infections. 

  

Methods: In this study, we evaluated the predictive validity of a new model which incorporates 

important predictors based on logistic regression model compared to three state-of-the-art risk 

indexes to identify high risk patients, recruited from 2016 to 2020 from a medium size hospital 

in North Norway, prone to surgical site infection.   

   

Results: The logistic regression model demonstrated significantly higher scores, defined as 

high-risk, in 110 patients with surgical site infections than in 110 patients without surgical site 

infections (p<0.001, CI 19-44) compared to risk indexes. The logistic regression model 

achieved an area under the curve of 80%, which was better than the risk indexes SSIRS (77%), 

NNIS (59%), and JSS-SSI (52%) for predicting surgical site infections. The logistic regression 

model identified operating time and admission type as the major predictors of surgical site 

infections.      

   

Conclusions: The logistic regression model demonstrated better performance in predicting 

surgical site infections compared to three state-of-the-art risk indexes. The model could be 

further developed into a decision support tool, by incorporating predictors available prior to 

surgery, to identify patients with modifiable risk prone to surgical site infection.     
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1. Introduction    
Surgical site infections (SSIs) affect approximately 10% of surgical patients and aggravate the 

rehabilitation phase with an increased risk of extended hospital stays, readmissions, and 

postoperative deaths, as well as increasing hospital costs[1–3]. SSIs accounted for 40% of all 

postoperative complications and 15% of hospital costs identified by the record review method 

Global Trigger Tool (GTT) in the report “Patient injuries in Norway in 2020”[4]. Worldwide, 

postoperative death is the third most common cause of death, and one in three postoperative 

deaths is associated with SSIs[5]. Considering that SSIs have a major impact on morbidity, 

mortality, and hospital expenses, it is important to identify patients at risk of SSI for early 

interventions to modify the risks[6]. Several risk factors have been addressed in the literature 

and included in risk indexes, but few indexes are in clinical use due to suboptimal performance 

in the risk prediction of SSI or that the risk factors are difficult to modify; thus, a different 

approach for SSI risk prediction is needed[7,8].  

 

Prediction models should be based on logistic regression (LR) models, which have shown 

reasonable results and are the preferred method of choice for risk stratification because of their 

simplicity and interpretability instead of regular risk indexes. But resent reviews shows that 

artificial intelligence-enabled decision support in surgery is lacking scientific quality[9]. 

However, to the best of our knowledge, no study has compared risk indexes with LR models. 

Therefore, the purposes of this study were to i) evaluate the validity of the three state-of-the-

art risk indexes to predict the risk of SSI, ii) compare the predictive validity of the indexes to a 

LR model, and iii) explore which risk factors most significantly increase the risk of SSI. Our 

goal was to assess and pinpoint the major, and preferably modifiable, predictors for SSI to 

improve risk stratification.     
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2. Methods     
This study is a prediction and internal validation of a SSI prediction model, using a dataset in 

which a statistical procedure has been applied to increase the event rate. We have used the 

transparent reporting of a multivariable prediction model for individual prognosis or diagnosis 

(TRIPOD) guidelines for reporting prediction model studies to include all relevant 

information[10]. 

 

2.1. Study population and data    
The study included patients who had undergone surgery and were then randomly selected for 

GTT review at a medium-sized hospital in North Norway between January 1, 2016, and 

December 31, 2020. The record review method, GTT, is currently considered the most suitable 

method to measure adverse events due to treatment given in healthcare[11,12].  GTT is a two-

step method in which patient records are screened for specific situations (e.g., triggers) that 

could indicate that an adverse event has occurred, and the screening is for this study performed 

by the Nordic Clinical Automatic Framework (NCAF from SAS Institute © software), which 

was developed to identify triggers based on algorithms for both structured and unstructured 

data[13]. For structured data, the algorithms are built on rule-based algorithms, but for 

unstructured data, such as "patient fall”, text analyses with natural language processing were 

used. If a trigger is identified, a more exhaustive review of the record is performed manually to 

verify if the trigger represents an adverse event. The incidents of SSIs for the study were 

obtained from the GTT review which is more sensitive than using administrative data such as 

ICD 10 codes (International Classification of Diseases and health problems, version 10)[14].    

   

Surgery was defined as a procedure that included a skin incision performed in the operating 

theatre. The included patients were admitted for at least 24 hours and were over 18 years of age 

and extracted randomly from the seven main departments in pools of ten and ten patients every 
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second week from the discharged patient lists. The study was performed in accordance with the 

Helsinki Declaration of 1975 and approved by the data protection official in the Nordland 

Hospital Trust and by the Norwegian Regional Ethics Committee (ref 2021/343618). The 

committee waived the requirement for obtaining written informed consent.     

    

SSI was defined as a wound infection that led to antibiotic treatment, prolonged hospital stay, 

immediate intervention, or death. Seventeen unique risk factors (see Table 2) included in the 

risk indexes, in addition to age and length of stay (LOS), were identified in the patient records 

by manually reviewing the records and included as variables in the study. Patients with 

incomplete or missing surgical data were excluded from the study.    

 

2.2. Risk indexes NNIS, SSIRS, and JSS-SSI    
We choose three state-of-the art risk indexes; NNIS, SSIRS and JSS-SSI, to compare their 

performances to a novel logistic regression model. The rationale behind the selection of these 

three indexes was mainly due to their extensive evaluations in literature. 

 

The National Nosocomial Infections Surveillance (NNIS) was developed from the first risk 

index for predicting SSI in the 1980s named as the Efficacy of Nosocomial Infection Control 

(SENIC)[15,16]. The NNIS uses three variables: American Society of Anesthesiology (ASA) 

score ≥ 3, contaminated wound, and above-average surgical time. Instead of the stringent cut-

off time of 2 hours used in SENIC, the NNIS includes a procedure-specific surgical time based 

on the 75th percentile of the operating time of the individual procedure being performed. The 

tool stratifies patients into low (one feature present), moderate (two features present), or high 

(all three features present) risk of SSI[16].     
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Surgical Site Infection Risk Score (SSIRS) was developed in 2013, available via a web-based 

calculator, where the patient and procedure data are plotted, and the score is calculated based 

on these data[17]. SSIRS includes 13 variables where five of them are binary variables, 

answered with yes or no if the variable is present and the rest are categorical variables. The risk 

score ranges from 0 to 1 which equals 0-100%[17].    

 

The third index JSS-SSI, a Canadian risk scoring tool from 2018, uses five variables: elevated 

care at discharge (add 42 points), surgery time > 3 hours (add 19 points), admission before 

surgery (add 24 points), general, gynecologic, ear-nose-throat, thoracic, or urologic surgery 

(add 22 points), and contaminated or infected wound (add 19 points). The score ranges from 0 

to 100 points where the low risk of SSI ranges from 0 to 42 points, moderate risk ranges from 

43 to 58 points, and the high risk of SSI ranges from 59 to 100 points[18,19].     

     

2.3. Development of a new SSI prediction model based on logistic regression 

model     
The LR model was developed based on the variables used in all three risk indexes. Categorical 

variables were encoded using one-hot encoding, and numerical variables were rescaled using a 

Min-Max scaler.  Any missing values were imputed with simple fill, where the mean value is 

used for numerical variables, and the most frequent value is used for categorical variables.  The 

variables incorporated several overlapping variables such as ASA, contaminated wounds, and 

operating time. To this end, pairwise correlation and variance inflation factors were used to 

estimate the degree of correlation and variance inflation caused by the variable. Consequently, 

the variables that exhibited significant correlations, with a threshold of 0.7, were removed from 

the variable set. This results in excluding ASA ≥ 3, above-average operating time, and 

contaminated wounds but including ASA and wound type (clean, contaminated, or infected). 

Operating time > 3 hours was also excluded as we included hours of operating time.  It is worth 
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noting that while removing the variables, we followed an iterative approach, where we closely 

monitored model performance through repeated training and evaluation with and without these 

variables, and here we report the best-performing model. Univariate logistic regression was 

used to evaluate the association between each variable and SSI. Furthermore, these variables 

were fitted to a multivariable logistic regression, and variables that were no longer significant 

(p <0.01) were removed using backward selection. Body Mass Index (BMI) and age were 

included irrespective of the significance levels, and the final set of variables used in the model 

development is depicted in Table 1. During the entire variable selection, medical expert 

recommendations were incorporated in the process.   

 

Table 1: Predictor variables included in the logistic regression model (N= numerical, B= 

binary, C= categorical)  

 

Category   Variable   

   

Pre-procedure patient 

characteristics    

Age (N)   

BMI (N)   

ASA (C)   

Procedure-related   

Type of admission (C)   

Length of stay (N)   

Operating time (N)   

Admitted before surgery (B)   

High-risk surgery (B)  

 

2.4. Statistical analyses    
The dataset initially consisted of an unbalanced number of patients with and without SSI from 

the set of patients who underwent surgery and were reviewed by the GTT. In the dataset of 

2210 patients, 110 patients were identified as having SSI, and 2100 patients were identified as 

having no SSI. In classification task, class imbalance poses significant challenges, where the 

number of observations belonging to one class significantly outnumbers the observations in 
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another class. Resampling techniques are used to mitigate the class imbalance, which could be 

over-sampling or under-sampling. For our specific case, propensity scoring was used to match 

the number of samples with SSI with that of without SSI based on age and length of stay. The 

propensity scoring method was used due to its popularity and widespread use in medical 

literature[20–22]. The analysis was conducted in R, using the MatchIt package[23,24].  No 

imputation of missing data was necessary since the set of data used for modelling was complete 

with no missing values. 

   

The training and testing set of the LR model was split at a 70/30 ratio, where the model was 

trained on 70% and tested with 30% of the data. A grid search with 5-fold cross-validation was 

employed to estimate the best hyperparameters of the model, and the area under the receiver 

operating curve (AUC ROC) was used for model ranking. The gride parameters consist of 

inverse regularization strength (C), penalty (L1 Lasso regression and, L2 Rigid regression), 

solver (liblinear, 'lbfgs', and 'saga'), and maximum number of iterations. The original dataset 

was bootstrapped repeatedly resulting in multiple separate sets of training and test data, which 

was used to fine-tune the parameters on training set via gride search, refit the model with whole 

training set, and evaluate the model on holdout test set. Bootstrapping is a resampling technique, 

which randomly samples the original dataset with replacement to create multiple new sets of 

training and holdout test data. Feature selection and model developments were conducted using 

Statsmodels and Scikit-learn library, a machine-learning environment in Python[25,26].      

    

For the three risk index, each patient was assigned a risk score based on the sum of the weights 

of each variable. To circumvent difference in the scores, we established the cut-off values 

defining the no-risk of SSI and the high-risk of SSI for all three risk indexes by estimating the 

optimal cut-off threshold value from the ROC curve. Afterwards, the three risk indexes and LR 
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model were compared based on AUC ROC, specificity, sensitivity, positive predictive value 

(PPV), and negative predictive value (NPV)[27–29]. These metrics are the most widely used 

performance indicators, and combining these metrics offers a multifaceted evaluation of a 

model’s performance, ensuring a comprehensive understanding of its strengths and 

weaknesses[30]. T-tests were also performed to evaluate the mean difference between the risk 

scores in the groups with and without SSI. The average performance of the indexes and the LR 

model, along with their associated confidence intervals, were estimated using bootstrapping 

techniques. We performed t-tests at a 5% significance level to test whether the risk scores and 

the AUC ROC were statistically different. A 5% significance level is chosen to maintain 

consistency and facilitating further comparison across similar studies predicting post operative 

infection. We also reported Brier Score for the three risk indexes and the LR model, where low 

Brier Score signifies better model calibration. The Brier Score is measured by computing the 

mean squared difference between the predicted probability and the actual outcomes and can be 

written mathematically as 𝐵𝑆  =  
1

𝑁
∑𝑁
𝑖=1  (𝑝𝑖 − 𝑦𝑖

  )2. A well-calibrated model, as reflected by 

a lower Brier Score, is crucial for providing accurate probability risk estimates. Feature 

importance analysis was also performed to study the association between each variable and the 

incidence of SSI. The analysis was conducted by computing the percentage contribution of the 

magnitude of each feature from the logistic regression coefficients. In this way, one can get a 

crude estimation of the weight of each feature in predicting SSI event[23].     

 

3. Results 
110 patients with SSI were identified and 110 patients from the non-SSI patients population 

were matched. The median age was respectively 63 and 59 years. Median LOS for SSI 

patients were 9 days and for non-SSI patients 5 days. Further descriptive variables in table 2. 
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Table 2: Descriptive statistics and variables for patients with and without SSI.  

 

Variables  Patients with SSI 

(n=110)   

Patients without SSI (n=110)   

LOS, mean   13 days (range 1-63)   10 days (range 1-98)   

Age, mean   60 years (range 19-94)   56 years (range 18-87)   

ASA, mean   2.3 (range 1-4)   2.0 (range 1-4)   

BMI, mean   29 (range 19-47)   27 (range 15-46)   

Operating time, mean   128 minutes (range 9-

666)   

82 minutes (range 6-333)   

ASA ≥ 3 (n)     42 (38 %)   25 (23%)  

Contaminated wound (n)   11 (10 %)  12 (11%)  

Above-average operating time 

(n)   

29 (27 %)   12 (11 %)  

Smoker (n)    23 (21 %)   24 (22 %)  

Peripheral Vascular disease (n)   13 (12 %)  6 (5 %)  

Metastatic cancer (n)   5 (5 %)   7 (6 %)  

Steroid used (n)   7 (6 %)   5 (5 %)  

Sepsis (n)   4 (4 %)   4 (4 %)  

Type of admissions   

Outpatient (n)   

In-patient non-emergency (n)   

In-patient emergency (n)   

   

   

16 (15 %)  

 54 (49 %)  

40 (36 %)  

   

1 (1 %)  

35 (31 %)   

74 (68 %)  

Wound type   

Clean (n)   

Clean/contaminated (n)   

Contaminated/Infected (n)   

   

   

89 (81 %)  

14 (13 %)  

7 (6 %)  

   

98 (89 %)  

8 (7 %)  

4 (4 %)  

General anesthetics (n)   62 (56 %)  58 (53 %)  

Additional procedure performed 

(n)   

8 (7 %)  8 (7 %)  

Discharged to facility (n)    23 (21 %)  24 (22 %)  

Operating time > 3 hours (n)    23 (21 %)  10 (9 %)  

Admitted before surgery (n)   10 (9 %)    30 (27 %)  

High risk surgery (n)   44 (40 %)   28 (25 %)  

             

    

3.1. Comparative Performance     
T-test statistics demonstrated that the risk scores of the LR model, the NNIS and the SSIRS 

were significantly higher in patients with SSI than in those without SSI (p<0.001, CI 19-44, 
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p=0.004, 95% CI 3-17, p<0.001, 95% CI 7-14), whereas the risk score from the JSS-SSI was 

not significantly different between the groups (p=0.324, 95% CI-2-7). The models Brier Score 

were LR (0.1830), JSS-SSI (0.3776), SSIRS (0.3815) and NNIS (0.3468). The comparative 

performance of the three risk indexes and the LR model based on their respective AUC ROC 

are shown in Figure 1.     

  

  

  

 
Figure 1: Area under the receiving operating curve  

    

3.2. Major predictors    
Variable importance is an indicator of which factors are the major predictors of SSI and can be 

useful in interpreting the model, as well as quantifying the degree of risk for SSI in response to 

each variable. The ranking of the variables in the LR model is shown in Figure 2. 
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Figure 2: Major predictors Variable importance for predicting SSI. The X-axis depicts the 

feature index and ordering, and the Y-axis depicts the percentage of coefficients magnitude 

used by the logistic regression.    

 

Post-predictive analysis (figure 3) of the major predictors, that is operating time, and LOS, 

attempted to demonstrate the cut-off values used in deciding the prediction class based on the 

two major predictors. The LR model considers median values of 100 minutes and 8 days as a 

positive class, resulting in false positives, and a median value of 88.5 minutes and 6.5 days as 

a negative class, resulting in false negatives.     

 

 

Figure 3: Post predictive analysis. The two predictors, i.e., operating time and length of stay, 

where the Y-axis depicts the magnitude, and the X-axis depicts each predicted class in relation 
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to the original class (1: with SSI, and 0: without SSI). For example, [1-->0] depicts a patient 

with SSI predicted to be without SSI.   
   

4. Discussion    
We evaluated three state-of-the-art risk indexes’ predictive validity and compared their results 

to an LR model. The key finding of our study is that the results varied according to the model 

being used. We found that the LR model and two of the risk indexes identified significantly 

higher risk scores in patients with SSI than in those without SSI, with the SSIRS and the LR 

model demonstrating the best results. The PPV was highest in the NNIS; however, the index 

had a low NPV, which would result in a low ability to correctly identify patients at risk of SSI. 

The LR model was the only model that achieved reasonable results for all validity properties 

and AUC ROC.      

    

Due to the consequences of SSI reducing them should be of high priority[31]. The incidence of 

SSI differs among hospitals and in our study, including all types of surgeries, we found that the 

overall incidence of SSI was approximately 5%[32]. As our study population was extracted 

from our GTT database, which consist of only 10 % of the total patient population, some 

limitations can explain the low incidence of SSI. We consider the use of record review to 

ascertain patients with surgical site infections as a major strength of the study, compared to 

other studies that rely on administrative data to identify surgical site infections which is 

notoriously difficult.  

    

Identifying the factors that contribute most to predicting the risk of SSI is important when 

developing a risk prediction model. The risk models we tested included both pre-and post-

surgery predictors. However, the major predictors were the post-surgery factors. This limits the 

utility of these models as the clinicians are not able to intervene upon these predictors before 
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surgery. An ideal model would be calculable early enough within a patient's perioperative 

course, even when surgery is being contemplated, to allow time to intervene. However, the net 

benefit with decision curve analysis is another way of evaluating the clinical benefit of a risk 

prediction model[33]. In this study we have only evaluated the accuracy of the models and have 

not perform a decision curve analysis which can tell us whether using a model to aid clinical 

decision-making would improve outcomes for our patients[34]. Among all the predictors from 

the models, we found that operating time was the major predictor of SSI, which is in accordance 

with literature[35]. The next major predictor we found was LOS, which could be LOS to 

surgery or LOS to readmission due to treatment of the SSI. As we were not able to conclude if 

the LOS was related to the main surgery admission or readmission in our data, we do not know 

if this is a true-positive risk factor. Post-predictive analyses indicate that those who had both 

predicted and verified SSI had the longest LOS, with a median of 14 days, which was more 

than twice that of the other groups. These results support the theory that prolonged 

postoperative LOS is associated with SSI, whereas preoperative LOS has a low association with 

SSI[36]. ASA was also a major predictor as higher ASA increases the risk of SSI. There are 

some limitations of ASA as a predictor, as they are highly subjective due to the ASA score is 

set by the anesthesiologist, with notoriously poor inter-rater reliability as it requires direct 

clinician assessment, and it cannot be calculated automatically from the electronic health 

record. 

 

Furthermore, the type of admission, either inpatient or outpatient, seems to play a role in 

predicting SSI. However, in our study, 15% of the patients with SSI underwent surgery as 

outpatients. Among the non-SSI patients, only one underwent surgery as an outpatient. The 

higher rate of SSI in surgeries performed as outpatients could be explained by the short follow-

up time for outpatients. They did not receive the same wound care as the inpatients. However, 
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inpatients undergo more complicated procedures, and their state of health necessitates often 

hospital admission. These factors should increase the risk of SSI by themselves; therefore, we 

often consider outpatient surgeries with less risk of SSI, as these patients have less complicated 

surgeries and are healthier than those admitted. For inpatients, we did not find a difference 

between the groups regarding planned admission or acute admissions.  

 

Our findings are in accordance with previous literature; for example, a review performed by 

Korol et al. in 2013 demonstrated that identifying the correct factor for modification to reduce 

the incidence of SSI is difficult, which can explain why SSIs are difficult to combat[37].  The 

literature demonstrates that there is a major gap between studies such as this one and the 

implementation of such models in clinical use. Most of the studies also lack reporting, thus 

failing them from being used elsewhere. A reporting checklist has therefore been developed in 

order to increase the reproducibility[38]. The prediction models are therefore mostly used for 

infection surveillance[39]. The predictive models should not necessarily be targeting the 

highest risk group, but the group with the most modifiable risk. As the next step, we believe 

large scale external validation of the model should be performed. Further evaluation and 

comparison of various sampling strategies on model performance should be performed 

including synthetic minority over-sampling technique, and over- sampling using propensity 

scores[20–22].  

5. Conclusion    
This study demonstrated that patient and procedural factors in an LR model can be used to 

predict the risk of SSI better than the state-of-art risk indexes. However, a more precise 

predicting model for clinical decision support tool might include modifiable predictors we 

might not yet have exposed. For this purpose, more advanced machine learning technics should 

be applied.     
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Summary points: 

What was already known: 

• Studies reporting risk indexes to be used for prediction of surgical site infections 

demonstrates low sensitivity. 

• Several indexes have been developed but few are in clinical use for predicting surgical 

site infections.  

 What does this study add to our knowledge : 

• State-of-the-art risk indexes are mainly for surveillance, not prediction as they lack 

modifiable predictors. 

• We found major predictors, such as operation time and length of stay, which increase 

the risk of surgical site infections  
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