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Tweetable Statement: Innovating stress urinary incontinence evaluation with deep 36 

learning! Our study applies deep learning on transperineal ultrasound videos, 37 

uncovering bladder neck motion trajectories and parameters, possibly paving the way 38 

for tailored intervention. 39 

 40 

Short Title: DL-assisted transperineal ultrasound for bladder neck motion in SUI 41 

 42 

AJOG at a Glance  43 

A. Why was this study conducted? 44 

• No universally recognized transperineal ultrasound parameters are available for 45 

evaluating stress urinary incontinence; commonly used parameters capture limited 46 

information that may be insufficient. 47 

• Bladder neck motion is crucial in stress urinary incontinence, yet objective and 48 

visual methods to assess its impact are lacking. 49 

B. What are the key findings? 50 

• Deep learning can automatically trace and visualize the bladder neck motion 51 

trajectory and has identified three motion parameters: Valsalva duration, average 52 

speed of the β angle, and maximum speed of the urethral rotation angle—valuable 53 

for diagnosing stress urinary incontinence.  54 

C. What does this study add to what is already known? 55 

• The bladder neck motion trajectory during the Valsalva maneuver can be visualized. 56 

• Three motion parameters were identified as novel diagnostic parameters for stress 57 
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urinary incontinence. 58 

• Deep learning may provide a novel approach for the diagnosis and efficacy 59 

evaluation of stress urinary incontinence. 60 

  61 
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Abstract 62 

BACKGROUND: No universally recognized transperineal ultrasound parameters are 63 

available for evaluating stress urinary incontinence. The information captured by 64 

commonly used perineal ultrasound parameters is limited and insufficient for a 65 

comprehensive assessment of stress urinary incontinence. Although bladder neck 66 

motion plays a major role in stress urinary incontinence, objective and visual methods 67 

to evaluate its impact on stress urinary incontinence remain lacking.  68 

OBJECTIVE: To use a deep learning–based system to evaluate bladder neck motion 69 

using two-dimensional transperineal ultrasound videos, exploring motion parameters 70 

for diagnosing and evaluating stress urinary incontinence. We hypothesized that bladder 71 

neck motion parameters are associated with stress urinary incontinence and are useful 72 

for stress urinary incontinence diagnosis and evaluation.  73 

STUDY DESIGN: This retrospective study including 217 women involved the 74 

following parameters: maximum and average speeds of bladder neck descent, β angle, 75 

urethral rotation angle, and duration of the Valsalva maneuver. The fitted curves were 76 

derived to visualize bladder neck motion trajectories. Comparative analyses were 77 

conducted to assess these parameters between stress urinary incontinence and control 78 

groups. Logistic regression and receiver operating characteristic curve analyses were 79 

employed to evaluate the diagnostic performance of each motion parameter and their 80 

combinations for stress urinary incontinence. 81 

RESULTS: Overall, 173 women were enrolled in this study (82, stress urinary 82 

incontinence group; 91, control group). No significant differences were observed in the 83 
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maximum and average speeds of bladder neck descent and in the speed variance of 84 

bladder neck descent. The maximum and average speed of the β and urethral rotation 85 

angles were faster in the stress urinary incontinence group than in the control group 86 

(151.2 vs 109.0 mm/s, P=0.001; 6.0 vs 3.1 mm/s, P <0.001; 105.5 vs 69.6 mm/s, P 87 

<0.001; 10.1 vs 7.9 mm/s, P=0.011, respectively). The speed variance of the β and 88 

urethral rotation angles were higher in the stress urinary incontinence group (844.8 vs 89 

336.4, P <0.001; 347.6 vs 131.1, P <0.001, respectively). The combination of the 90 

average speed of the β angle, maximum speed of the urethral rotation angle, and 91 

duration of the Valsalva maneuver demonstrated a strong diagnostic performance (area 92 

under the curve, 0.87). When 0.481*β anglea + 0.013*URAm + 0.483*Dval = 7.405, the 93 

diagnostic sensitivity was 70% and specificity was 92%, highlighting the significant 94 

role of bladder neck motion in stress urinary incontinence, particularly changes in the 95 

speed of the β and urethral rotation angles.  96 

CONCLUSIONS: A system utilizing deep learning can describe the motion of the 97 

bladder neck in women with stress urinary incontinence during the Valsalva maneuver, 98 

making it possible to visualize and quantify bladder neck motion on transperineal 99 

ultrasound. The speeds of the β and urethral rotation angles and duration of the Valsalva 100 

maneuver were relatively reliable diagnostic parameters.  101 

Keywords: transperineal ultrasound; stress urinary incontinence; deep learning; 102 

bladder neck motion 103 

 104 
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Introduction 106 

Stress urinary incontinence (SUI) is defined as involuntary urination on physical 107 

exertion or sneezing or coughing; 23%–44% of women experience urinary incontinence, 108 

with approximately 50% being SUI cases. 1-3 The highest incidence occurs in women 109 

over 55, making it a common health issue.2,3 110 

Bladder neck (BN) mobility plays an important role in SUI.4-6 However, observing the 111 

entire process of BN motion objectively and comprehensively remains difficult. This is 112 

mainly because SUI results from a complex interplay of pelvic floor muscles, nerves, 113 

hormones, and other factors.4,5,7 Moreover, the motion is fast, making it challenging to 114 

visualize and quantify. Currently, the SUI diagnosis is largely subjective, and 115 

management decisions are best assessed through subjective reporting.5,8 However, 116 

subjective evaluation provides limited information about the underlying 117 

pathophysiology, potentially missing opportunities for personalized treatments. 118 

MRI can be used to study the pelvic floor structure and detect abnormalities, but 119 

observing BN motion is complex, time-consuming, and requires high patient 120 

compliance.9 Transperineal ultrasound (TPUS) is highly recommended for evaluating 121 

SUI owing to its advantages of visualizing pelvic morphology, ease of access, non-122 

invasiveness, and cost-effectiveness.10-12 TPUS is often conducted with the Valsalva 123 

maneuver, which simulates increased abdominal pressure. This allows for measuring 124 

these traditional parameters such as bladder neck descent (BND), β angle, and urethral 125 

rotation angle (URA) both at rest and the end of the Valsalva maneuver (Figure 1), 126 

helping assess BN mobility and evaluate SUI.6,13,14 However, the diagnostic 127 
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performance of these parameters varies across studies.13-15 This inconsistency is 128 

possibly due to the complex pathophysiology of SUI not being fully understood with 129 

TPUS. Additionally, TPUS primarily evaluates SUI at two static moments (at rest and 130 

the end of the Valsalva maneuver), leaving BN motion during the Valsalva largely 131 

unexplored. This limits the accurate assessment of BN motion and evaluation of 132 

treatment efficacy for SUI. 133 

Deep learning (DL) has significantly improved clinical workflows.16-18 DL-based 134 

TPUS methods have shown high efficiency and reliability in puborectalis muscle and 135 

levator hiatus segmentation.19,20 It has also been proven to be an easy and efficient tool 136 

for assessing spatial and temporal displacement, opening up the possibility of using DL 137 

to automatically capture BN motion.17,18  138 

In this study, we innovatively used a DL-based system to analyze two-dimensional (2D) 139 

TPUS videos, investigate BN motion in women with SUI, and explore BN motion 140 

parameters for evaluating SUI. We hypothesized that BN motion parameters are 141 

associated with SUI and are useful for SUI diagnosis.  142 

 143 

Methods  144 

Study Design and Participants  145 

This retrospective study included 217 women referred to Zhejiang Provincial People’s 146 

Hospital for pelvic floor dysfunction or postpartum visits between December 2022 and 147 

September 2023. The Institutional Review Board of Zhejiang Provincial People's 148 

Hospital approved the study (number JS2022038). Women who underwent routine 149 
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interviews, physical examinations, and TPUS examinations were included. 2D TPUS 150 

videos during the Valsalva maneuver were typically recorded as part of routine clinical 151 

practice. Data on age, height, weight, parity, menopausal status, and history of 152 

gynecologic or pelvic surgical procedures were retrieved from the electronic medical 153 

system; 2D TPUS videos were retrieved from the Ultrasound Medicine Department. 154 

Women diagnosed with SUI by urologists or gynecologists were included in the SUI 155 

group. Healthy continent women were included in the control group. We excluded 156 

women with a history of treatment of SUI or pelvic surgery, who were unable to perform 157 

Valsalva even in the standing position or persistently coexisted with levator 158 

coactivation, or who had pelvic organ prolapse beyond the hymen. Women with 159 

unqualified 2D TPUS videos, including those with incomplete recordings of the 160 

Valsalva maneuver or videos not showing important anatomical landmarks (such as the 161 

pubic symphysis, urethra, or BN), were also excluded. 162 

 163 

TPUS  164 

TPUS was performed using a Voluson E8 device (GE Healthcare, Chicago, IL) with a 165 

4–8-MHz 4-dimensional volume transducer. Two radiologists with > 3 years of TPUS 166 

experience performed the examination per the AIUM/IUGA.10 The midsagittal plane 167 

was acquired with the visualized pubic symphysis, urethra, bladder, vagina, and rectum. 168 

All women were in the dorsal lithotomy position or the standing position after bladder 169 

voiding. The Valsalva maneuver was performed at least thrice, and videos of the 170 

maximal Valsalva maneuver were selected.  171 
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Development of DL-Based AutoPelvic System 172 

The DL-based AutoPelvic system (RayShape Medical Technology, Shenzhen, China) 173 

was used to analyze BN motion using 2D TPUS videos. The system has been approved 174 

with the National Medical Products Administration certificate. The DL algorithm, 175 

which was proposed in our previous work, was integrated into the AutoPelvic system 176 

(Supplementary Methods)21. The algorithm is based on Deeplabv3+ (Supplementary 177 

Figures) and was built on a large training dataset, covering nearly 1000 TPUS videos 178 

from machines of GE Healthcare, Mindray, Philips, and Edan at five hospitals, with > 179 

40,000 images.22. 180 

The DL-based AutoPelvic system (Videoclips) provided BND, β angle, and URA at 181 

each frame. The duration of Valsalva (Dval) in each video and fitted curves of each 182 

motion parameter were generated from the system as well. Fitted curves were used to 183 

visualize trajectories of these motion parameters between groups. Each curve represents 184 

the BN motion parameters of all women in each group during Valsalva. As different 185 

women have different Dval, we used the percentage of Dval as the X-axis and parameter 186 

values as the Y-axis. The Locally Weighted Scatterplot Smoothing algorithm was 187 

applied to smooth these curves.  188 

 189 

2D TPUS Video Analysis  190 

Based on the BND, β angle, and URA at each frame provided by the AutoPelvic system, 191 

the motion parameters included the maximum and average speed of BND (BNDm, 192 

BNDa), β angle (β anglem, β anglea), and URA (URAm, URAa), respectively, Dval and 193 
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speed variance during Valsalva was calculated (Figures 2, 3). Speed variance was used 194 

to compare speed variations between groups. It can reflect the smoothness of motion 195 

trajectories.   196 

Cystocele and SUI can coexist owing to shared common risks.23,24 To further explore 197 

SUI pathophysiological mechanisms on whether cystocele affects BN motion in SUI, 198 

we conducted a subgroup analysis comparing women with and without cystocele in the 199 

SUI group. Cystocele was defined as the descent of the bladder to ≥ 10 mm below the 200 

pubic symphysis reference line during the Valsalva maneuver. This value aligns with 201 

stage 2 in the POP-Q classification and indicates significant prolapse.25  202 

 203 

Statistical Analysis 204 

SPSS (version 26, Chicago, IL) was used. Continuous and categorical data are 205 

presented as mean ± standard deviation and number (percentage), respectively. 206 

Normality data distribution was evaluated with the Kolmogorov–Smirnov test. 207 

Independent-sample t-test and the Mann–Whitney U test were used to compare 208 

normally distributed and skewed variables. Categorical data were compared with the 209 

chi-square test. Associations between motion parameters and SUI were evaluated using 210 

multivariable logistic regression. The receiver operating characteristic (ROC) curve 211 

analysis was applied to calculate the area under the ROC curve (AUC) to evaluate the 212 

diagnostic ability of each motion parameter for SUI. To select the best combination of 213 

motion parameters for SUI, binary logistic regression was applied to calculate the 214 

predictive probability of combined parameters. ROC curves were applied to calculate 215 
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AUCs using predictive probabilities as covariates to estimate the diagnostic ability of 216 

each combination for SUI.26 P＜0.05 (two-sided) indicated statistical significance. 217 

 218 

Results 219 

Of 217 women, we excluded 16 (7.4%) owing to unqualified videos; 12 (5.5%), 220 

insufficient Valsalva or levator ani coactivation; 7 (3.2%), severe pelvic organ prolapse 221 

beyond the hymen; 5 (2.3%), previous or current SUI treatment; and 4 (1.8%), pelvic 222 

surgery. Of the remaining 173, 82 (47.4%) were included in the SUI group and 91 223 

(52.6%) in the control group (Table 1). A significant difference was observed between 224 

the two groups in age, parity, body mass index (BMI), and menopause. Women in the 225 

SUI group were older (42.0 vs 34.4), had higher BMIs (24.8 vs 23.8), and parity (1.3 226 

vs 1.6) than women in the control group. BNDm, BNDa, and speed variance of BND 227 

was not significantly different between groups. However, significant differences were 228 

found in β anglem, β anglea, URAm, and URAa (151.2 vs 109.0 mm/s, P=0.001; 6.0 vs 229 

3.1 mm/s, P<0.001; 105.5 vs 69.6 mm/s, P<0.001; 10.1 vs 7.9 mm/s, P=0.011, 230 

respectively). Speed variance of the β angle and URA also showed significant 231 

differences between groups (844.8 vs 336.4, P <0.001;347.6 vs 131.1, P<0.001, 232 

respectively). Dval was 7.8 and 6.1 s in the SUI and control groups, respectively 233 

(P<0.001). No significant differences were found in motion parameters between 234 

women with cystoceles and without cystoceles (Supplementary Table 1). 235 

Fitted curves were used to visualize the β angle, URA, and BND over time during the 236 

Valsalva maneuver (Figure 4). BND in women with SUI was generally higher than that 237 
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in continent women. Similarly, the β angle and URA tended to be larger than those in 238 

the control group. The curves in the second row show changes in speed over time, 239 

revealing that speeds of the BN, β angle, and URA were faster in the SUI group. All 240 

parameters reached their maximal speed at around 20% of Dval.  241 

In multivariable regression analysis, after adjusting for age, BMI, parity, and 242 

menopause, the odds ratio (OR) for SUI by motion parameters is presented in Table 2. 243 

β anglem (OR 1.01 [95% confidence interval 1.00–1.02], P=0.005), β anglea (1.40 244 

[1.19–1.63], P<0.001), URAm (1.02 [1.01–1.03], P<0.001), URAa (1.08 [1.01–1.16], 245 

P=0.027), and Dval (1.24 [1.09–1.41], P=0.001) were significant diagnostic parameters.  246 

AUCs of β anglem, β anglea, URAm, URAa, and Dval were 0.67, 0.74, 0.72, 0.60, and 247 

0.66, respectively (Table 3, Figure 5a). β anglea + URAm had an AUC of 0.75; β anglea 248 

+ URAm + Dval, 0.87; β anglea + URAm + URAa, 0.78; and β anglea + URAm + β anglem, 249 

0.75, indicating that URAa and β anglem had limited significant diagnostic ability (Table 250 

3, Figure 5b). When β anglea, URAm, and Dval were combined to diagnose SUI, they 251 

showed better performance (AUC, 0.87) than those generated based on each motion 252 

parameter individually. Table 3 also shows the fitted equation derived from binary 253 

logistic analysis and ROC analysis for the combination of β anglea, URAm and Dval. 254 

When 0.481*β anglea + 0.013*URAm + 0.483*Dval = 7.405, the diagnostic sensitivity 255 

was 70% and specificity was 92%. 256 

 257 

 258 

 259 
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Comment 260 

Principle Findings 261 

In this retrospective study, we utilized DL to analyze BN motion using 2D TPUS videos 262 

in women with SUI. The DL algorithm automatically generated the speed for BND, β 263 

angle, and URA over time. We investigated BN motion parameters (BNDm, BNDa, β 264 

anglem, β anglea, URAm) of women with SUI and compared them with those of 265 

continent women, leading to three main findings. 266 

First, during the Valsalva maneuver, the maximum and average speeds of β angle and 267 

URA in the SUI group were faster than those in the control group. Speed variability of 268 

the β angle and URA were greater than those in the control group, implying the support 269 

around the BN and proximal urethra is stronger in continent women than in those with 270 

SUI. However, BNDm and BNDa were not significantly associated with SUI in our 271 

study even after adjusting for age, BMI, parity, and menopause, possibly owing to that 272 

the morphology of the trigone and proximal urethra junction is more crucial than 273 

distance for maintaining urinary continence.  274 

Second, the maximal speed of BND, β angle, and URA all reached around 20% of Dval, 275 

suggesting that the BN and proximal urethra are also a kinematic junction, potentially 276 

affecting each other’s movement during the Valsalva. No significant impact of cystocele 277 

was observed on BN motion parameters in women with SUI.  278 

Third, the combination of β anglea, URAm, and Dval was selected as best diagnostic 279 

parameters: sensitivity was 70% and specificity was 92%, with an AUC of 0.87.  280 

 281 
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Results in the Context of What is Known 282 

To our knowledge, this is the first study using DL to investigate potential associations 283 

between TPUS motion parameters and SUI. Despite those traditional parameters having 284 

been used for two decades, they provided limited information. The BN motion has been 285 

overlooked owing to the absence of applicable tracking tools.  286 

Several methods have been proposed to evaluate BN motion in women with SUI using 287 

TPUS. Rahmanian et al.27 and Peng et al.28 combined TPUS with a six-degrees-of-288 

freedom measurement device and the Flock of Birds system to observe BN motion, 289 

demonstrating its significant value in SUI assessment. However, the method was 290 

complex and not suitable for clinical practice as it requires specialized devices, 291 

coordinate systems, and expertise. Their studies only observed the motion process 292 

during coughing in nine women with SUI and did not observe changes in β angle and 293 

URA. Pirpiris et al.,29 Dong et al.,30 and Zhao et al.,31 used several equidistant points to 294 

manually segment the urethra to establish urethral motion profiles. They measured 295 

these points at rest and the end of Valsalva, and then manually calculated the motion of 296 

these equidistant points. However, this method is time-consuming and may vary 297 

significantly between different operators. Additionally, the motion of the BN and 298 

urethra is a continuous process; discrete measurements are not enough to capture the 299 

motion.  300 

In recent years, DL techniques have been developed rapidly. By utilizing convolutional 301 

and recurrent neural networks, DL algorithms can automatically extract and identify 302 

features representing motion and depth information, effectively capturing spatial and 303 
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temporal information from video sequences.16-19 This makes it possible to visualize 304 

information probably invisible to human eyes. The application of DL algorithms 305 

facilitated the real-time acquisition of Dval rather than relying on multiple manual 306 

measurements to determine start and end points of the Valsalva maneuver.32  307 

Dval was longer (7.8 s) in the SUI than in the control group (6.1 s), suggesting that 308 

women with SUI might need to sustain the Valsalva maneuver for a longer duration to 309 

achieve a more comprehensive assessment. This result supports the findings from 310 

Orejuela et al.32 that the Valsalva maneuver should last at least 6 s.  311 

Concerning cystocele in SUI, no significant differences were observed in motion 312 

parameters between the two groups. This might be due to the limited number of SUI 313 

patients with cystocele (n=26) or this might also suggest that the BN motion during the 314 

Valsalva maneuver is similar between SUI patients with and without cystocele, 315 

indicating that the presence of cystocele does not affect underlying mechanisms of BN 316 

motion in SUI. 317 

Combination motion parameters had better performance than traditional parameters. A 318 

previous study reported an AUC of 0.61 for diagnosing urodynamic stress incontinence 319 

using BND.6 In our study, the AUC for each single motion parameter was 0.60–0.74, 320 

indicating each parameter remains relatively valuable for diagnosing SUI. The 321 

combination of the β anglea, URAm, and Dval demonstrated strong diagnostic 322 

performance (AUC 0.87) and exhibited high specificity (92%), suggesting BN motion 323 

parameters play a more significant role in ruling out SUI, thereby avoiding unnecessary 324 

invasive examinations and preventing overtreatment.  325 
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Women in the SUI group exhibited faster speeds of BN angles, with all speeds reaching 326 

their maximum at almost the same time. The BN and proximal urethra may have 327 

specific motion characteristics during the Valsalva maneuver. This finding is consistent 328 

with the swinging theory proposed by Routzong et al.33,34 They found that the BN in 329 

women with SUI exhibited a greater swinging amplitude than that in continent women. 330 

This swinging is part of the passive urethral closure mechanism and that we attribute 331 

the increased swinging to the weakened integrity of the connective tissue around the 332 

BN.33,34 This suggests that evaluating the motion of the BN and proximal urethra 333 

together, rather than separately, can provide a more comprehensive understanding of 334 

SUI. 335 

 336 

Clinical and Research Implications 337 

We used DL to visualize the spatiotemporal movement of the BN, enabling physicians 338 

to better understand changes occurring in this region and providing a new perspective 339 

for studying underlying SUI mechanisms. We identified three motion parameters (β 340 

anglea, URAm, and Dval) as diagnostic SUI parameters. Their combination outperformed 341 

each single one, offering a more comprehensive understanding that SUI is influenced 342 

by multiple motion factors. 343 

Moreover, the DL algorithm can simplify TPUS by automatically obtaining all 344 

measurements, thereby improving efficiency and reducing operator burden. We 345 

established a diagnostic equation, providing a more promising diagnostic method. A 346 

deeper understanding of BN motion may pave the way for personalized SUI treatment. 347 
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Tailoring interventions based on specific motion patterns can optimize treatment 348 

outcomes and aid in more effective SUI management. However, further research is 349 

needed to validate and expand the application of these results in the assessment of 350 

pelvic floor disorders. 351 

It is important to ensure a sufficient Valsalva maneuver for SUI evaluation. The 352 

maximum speed of motion parameters occurs at around 20% of the Valsalva duration, 353 

indicating that the abdominal pressure exerted on the BN is most significant initially. 354 

Treatments focusing on initial urination control may be a breakthrough for SUI 355 

management.  356 

 357 

Strengths and Limitations  358 

Regarding strengths, first, it is the first to use DL algorithms to extract BN motion 359 

parameters and investigate potential associations between these parameters and SUI. 360 

Second, it is the first to visualize the BN motion trajectory during the Valsalva maneuver, 361 

revealing potential physiological mechanisms. Third, the DL algorithm simplifies 362 

TPUS by automatically obtaining all measurements, improving work efficiency and 363 

reducing operator burden. 364 

Regarding limitations, first, this was a single-center study; although DL algorithms 365 

were established using multicenter data, future studies should expand the sample size. 366 

Second, women in the SUI group were older and had more childbirths compared to 367 

those in the control group, the results should be generalized with caution. Third, while 368 

we focused on BN motion, others have pointed out that the mid-urethra is also related 369 
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to SUI. Further research should explore motion patterns of the urethra to better 370 

understand SUI. Lastly, SUI is a multifactorial disease, and motion parameters in this 371 

study might not fully capture its underlying pathophysiological mechanisms. Future 372 

studies should explore additional motion parameters to gain a more comprehensive SUI 373 

understanding. 374 

 375 

Conclusions 376 

With DL application in TPUS, we found several promising SUI diagnostic parameters: 377 

β anglea, URAm, and Dval—these can be generated automatically via DL algorithms with 378 

non-invasive TPUS. Utilizing these parameters enables the BN motion trajectory to be 379 

visualized and quantified during the Valsalva maneuver, facilitating a deeper 380 

understanding of underlying SUI mechanisms. This approach provides more valuable 381 

information, helps simplify and improve clinical work, and enhances efficiency. 382 
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Table 1 Comparison of demographic data and BN motion parameters between the SUI and control groups  487 

 SUI (n = 82) Control (n = 91) P-value 

Demographic data    

Age (years) 42.0 ± 13.1 32.4 ± 7.5 <0.001 

BMI (kg/m2) 24.8 ± 2.3 23.8 ± 2.8 0.020 

Parity 1.6 ± 0.7 1.3 ± 0.5 <0.001 

Menopause 19 (23.2%) 4 (0.4%) <0.001 

Motion parameters    

BNDm (mm/s) 40.8 ± 26.3 34.0 ± 22.1 0.065 

Timing of reaching BNDm relative to Dval (%) 20.3 ± 18.6 21.8 ± 19.1 0.603 

BNDa (mm/s) 4.7 ± 2.2 5.2 ± 2.6 0.220 

β anglem (°/s) 151.2 ± 77.5 109.0 ± 71.3 0.001 

Timing of reaching β anglem relative to Dval (%) 30.4 ± 23.5 27.8 ± 24.5 0.504 

β anglea (°/s) 6.0 ± 3.8 3.1 ± 2.3 <0.001 

URAm (°/s) 105.5 ± 55.2 69.6 ± 45.0 <0.001 

Timing of reaching URAm relative to Dval (%) 25.6 ± 22.4 24.3 ± 20.5 0.680 
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URAa (°/s) 10.1 ± 6.5 7.9 ± 4.3 0.011 

Speed variance BND 38.4 ± 35.2 30.8 ± 21.6 0.125 

β angle 844.8 ± 676.1 336.4 ± 273.2 <0.001 

URA 347.6 ± 284.0 131.1 ± 96.5 <0.001 

Dval (s) 7.8 ± 3.7 6.1 ± 2.3 <0.001 

BMI, body mass index; BN, bladder neck; BNDm and BNDa, maximum and average speed of bladder neck descent, 

respectively; β anglem, β anglea, URAm, and URAa, maximum and average speed of the β and urethral rotation angles, 

respectively; Dval, duration of Valsalva; SUI, stress urinary incontinence 

Data presented as mean ± standard deviation for continuous variables or number (percentage) for categorical variables 

P-values reported using the Independent-sample t-test and Mann–Whitney U test for continuous variables and the chi-

square test for categorical variables 

 488 

  489 
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Table 2 Multivariable logistic regression analysis of BN motion parameters in SUI  490 

Motion parameters Adjusted ORa (95% CI) P-value 

BNDm  1.01 (0.99–1.02) 0.437 

BNDa 0.87 (0.75–1.02) 0.087 

β anglem 1.01 (1.00–1.02) 0.005 

β anglea 1.40 (1.19–1.63) <0.001 

URAm  1.02 (1.01–1.03) <0.001 

 URAa  1.08 (1.01–1.16) 0.027 

Dval 1.24 (1.09–1.41) 0.001 

BN, bladder neck; BNDm and BNDa, maximum and average speed of bladder neck descent, 

respectively; β anglem, β anglea, URAm, and URAa, maximum and average speed of the β and 

urethral rotation angles, respectively; CI, confidence interval; Dval, duration of Valsalva; OR 

odds ratio; SUI, stress urinary incontinence 
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a Adjusted for age, body mass index, parity, and menopause 

 491 

  492 
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Table 3 Performance of BN motion parameters in the diagnosis of SUI 493 

Motion parameters AUC (95% CI) Cutoff Sensitivity Specificity 

β anglem (°/s) 0.67 (0.58–0.75) 163.1 43% 84% 

β anglea (°/s) 0.74 (0.66–0.82) 3.7 76% 62% 

URAm (°/s) 0.72 (0.63–0.81) 78.2 67% 73% 

 URAa (°/s)  0.60 (0.51–0.70) 8.1 59% 66% 

Dval (s) 0.66 (0.57–0.75) 6.2 71% 57% 

β anglea + URAm 0.75 (0.67–0.83) 0.280* β anglea + 0.009* URAm = 

2.617 

57% 85% 

 β anglea + URAm + Dval 0.87 (0.81–0.93) 0.481*β anglea + 0.013* URAm + 

0.483 *Dval = 7.405 

70% 92% 

β anglea + URAm+URAa 0.78 (0.70–0.85) 0.387*β anglea + 0.013 *URAm − 

*0.147*URAa = 2.344  

75% 61% 
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 β anglea + URAm + β anglem 0.75 (0.67–0.83) 0.269*β anglea + 0.008*URAm + 

0.001*β anglem = 2.578 

59% 75% 

AUC, area under the curve; BN, bladder neck; BNDm and BNDa, maximum and average speed of bladder neck descent, respectively; β 

anglem, β anglea, URAm, and URAa, maximum and average speed of the β and urethral rotation angles, respectively; CI, confidence 

interval; Dval, duration of Valsalva; SUI, stress urinary incontinence 

  494 
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Supplementary Table 1 Comparison of demographic data and BN motion parameters between women with cystocele and without cystocele in 495 

the SUI group  496 

 Women with 

cystoceles (n = 26) 

Women without 

cystocele (n = 56) 

P-value 

Demographic data    

Age (years) 36.1 ± 9.8 44.1 ± 13.5 0.016 

BMI (kg/m2) 24.4 ± 2.3 24.9 ± 2.4 0.377 

Parity 1.4 ± 0.5 1.7 ± 0.7 <0.001 

Menopause 2 (9.1%) 17 (28.3%) 0.088 

Motion parameters    

BNDm (mm/s) 47.3 ± 19.3 38.6 ± 28.1 0.190 

Timing of reaching BNDm relative to Dval (%) 21.0 ± 20.6 20.0 ± 18.0 0.603 

BNDa (mm/s) 5.1 ± 2.3 4.6 ± 2.2 0.380 

β anglem (°/s) 165.0 ± 73.4 146.3 ± 79.0 0.385 

Timing of reaching β anglem relative to Dval (%) 32.1 ± 24.1 25.4 ± 21.4 0.299 

β anglea (°/s) 6.0 ± 3.3 6.0 ± 4.1 0.986 

URAm (°/s) 118.7 ± 47.4 101.4 ± 57.1 0.247 
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Timing of reaching URAm relative to Dval (%) 21.8 ± 16.5 27.0 ± 24.2 0.382 

 URAa (°/s) 11.4 ± 6.6 9.6 ± 6.5 0.276 

Speed variance BND 52.5 ± 56.9  35.3 ± 26.0 0.105 

β angle 1021.0 ± 632.4 802.3 ± 684.6 0.265 

URA 407.8 ± 248.3 336.5 ± 292.8 0.395 

 Dval (s) 8.8 ± 3.7 7.5 ± 3.4 0.299 

BMI body mass index; BN, bladder neck; BNDm and BNDa, maximum and average speed of bladder neck descent, 

respectively; β anglem, β anglea, URAm, and URAa, maximum and average speed of the β and urethral rotation angles, 

respectively; Dval, duration of Valsalva; SUI, stress urinary incontinence  

Data presented as mean ± standard deviation for continuous variables or number (percentage) for categorical variables 

P-values reported using the Independent-sample t-test and Mann–Whitney U test for continuous variables and the chi-

square test for categorical variables 

497 
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Figure legends 498 

Figure 1 Schematic diagram of the traditional TPUS parameters  499 

Horizontal solid line: reference line at the inferior–posterior margin of the symphysis 500 

pubis. Horizontal dotted line: bladder neck position at rest. 0, at rest; v, at Valsalva. 501 

Arrow (0) and Arrow (v): direction of the proximal urethra at rest and Valsalva, 502 

respectively.  503 

BNP, bladder neck position; BND, bladder neck descent: difference between the 504 

bladder neck to the inferior–posterior margin of the symphysis pubis during Valsalva 505 

and at rest; β angle, angle between the proximal urethra and trigone; URA, urethral 506 

rotation angle: rotation angle of the proximal urethra during Valsalva; SP, symphysis 507 

pubis. 508 

 509 

Figure 2 Formulas for BNDm, BNDa, β anglem, β anglea, URAm, and URAa calculations 510 

0, at rest; v, at Valsalva. Arrow (0) and Arrow (v): direction of the proximal urethra at 511 

rest and Valsalva, respectively. Max: maximum of the parameters; t0 and tv: time at 512 

rest and Valsalva, respectively. n: number of video frames, 𝑥: average speed, 𝑥𝑘: value 513 

of each observation. 514 

BNDm and BNDa, maximum and average speed of bladder neck descent, respectively; 515 

BNP, bladder neck position; β anglem, β anglea, URAm and URAa, maximum and 516 

average speed of the β and urethral rotation angles, respectively; Dval, duration of 517 

Valsalva; SP, symphysis pubis.  518 

 519 
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Figure 3 Examples of two women from the SUI and control groups during the Valsalva 520 

maneuver  521 

The BN motion curves are shown below the TPUS images. BN, bladder neck; BND, 522 

bladder neck descent; Dval, duration of Valsalva; SP, symphysis pubis; SUI, stress 523 

urinary incontinence; TPUS, transperineal ultrasound; URA, urethral rotation angle.  524 

 525 

Figure 4 Fitted curves ± standard deviation of BN motion parameters during Valsalva  526 

Each curve represents BN motion parameters of all women in each group during 527 

Valsalva. As different women have different Dval, we used the percentage of Dval as the 528 

X-axis and parameter values as the Y-axis. Red line: fitted curves of the SUI group; 529 

green line: fitted curves of the control group. a, b, and c are fitted curves of BND, β 530 

angle, and URA during Valsalva, respectively; d, e, and f are fitted curves of BND 531 

speed, β angle speed, and URA speed during Valsalva, respectively. 532 

BN, bladder neck; BND, bladder neck decent; Dval, duration of Valsalva; SUI, stress 533 

urinary incontinence; URA, urethral rotation angle.  534 

 535 

Figure 5 ROC curves of BN motion parameters in the diagnosis of SUI  536 

a, ROC curves of the performance of every single motion parameter in diagnosing SUI. 537 

b, ROC curves of the performance of combinations of motion parameters in diagnosing 538 

SUI 539 

BN, bladder neck; ROC, receiver operating characteristic; β anglem, β anglea, URAm, 540 

and URAa, maximum and average speed of the β and urethral rotation angles, 541 
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respectively; Dval, duration of Valsalva; SUI, stress urinary incontinence. 542 

 543 

Supplementary Figure 1 Framework of the deep learning–based AutoPelvic system, 544 

which used DeepLabV3+ to measure motion parameters automatically: (1) 545 

automatically locate landmarks at every frame, (2) measure the BNP for every frame to 546 

identify the rest frame and maximal Valsalva frame, and (3) measure BND, β angle, and 547 

URA.  548 

BND, bladder neck descent; BNP, bladder neck position; URA, urethral rotation angle. 549 

Point S, inferior–posterior border of the symphysis pubis; point U, bladder neck; point 550 

E, direction of the proximal urethra; UE, proximal urethra; UP, posterior wall of the 551 

bladder. 552 

 553 

Supplementary Figure 2 Architecture of DeeplabV3+ for locating landmarks 554 

 555 

Videoclips 1, 2 Examples of automatic measurement during TPUS using the 556 

AutoPelvic system. 1, a TPUS of the control group; 2, a TPUS of the SUI group.  557 

TPUS, transperineal ultrasound; SUI, stress urinary incontinence. 558 

 559 
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Development of Deep Learning (DL)-Based AutoPelvic System 

The DL-based AutoPelvic system (RayShape Medical Technology, Shenzhen, China) 

was used to analyze bladder neck (BN) motion using 2D transperineal ultrasound 

(TPUS) videos. The system has been approved with the National Medical Products 

Administration certificate. As shown in Supplementary Figure 1, the DL algorithm, 

which was proposed in our previous work, was integrated into the AutoPelvic 

system.1 The algorithm is based on Deeplabv3+（Supplemental Figure 1, 2）, a 

powerful and robust segmentation network.2 

The DL-based algorithm was built on a large training dataset, covering nearly 1000 

TPUS videos from machines of GE healthcare, Mindray, Philips, and Edan at 5 

hospitals, with > 40,000 images. The dataset was labeled with point S (the inferior-

posterior border of the symphysis pubis), U (the bladder neck), E (the direction of 

the proximal urethra), and P (the posterior wall of the bladder) by five senior 

physicians with > 5 years of TPUS experience. We constructed a coordinate system 

for the image, with the top corner point designated as (0,0). The DL model 

automatically located these landmarks, and based on their coordinates, we calculated 

the parameters. The proximal urethra is defined as the section of the urethra near BN. 

Gauss heatmaps of landmarks were generated according to their coordinates and 

were used to supervise the output of the algorithm during the training phase. 

The AutoPelvic system was fed in TPUS images as input and output the Gauss 
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heatmaps of the landmarks, including points S, U, E, and P, for each frame in the 

TPUS video. Subsequently, the algorithm automatically measured the bladder neck 

position (BNP), β angle, and urethral rotation angle (URA) based on the localization 

of landmarks in every frame. The initiation of the Valsalva maneuver was identified 

as commencing at the frame with the maximum BNP and ending at the frame with 

the minimum BNP.  

The DL-based AutoPelvic system (Videoclip S1 and S2) provided bladder neck 

descent (BND), β angle, and URA at each frame. The duration of Valsalva (Dval) of 

each video and the fitted curves of each motion parameter were generated from the 

system as well. Fitted curves were used to visualize trajectories of these motion 

parameters between groups.  Each curve represents the bladder neck motion 

parameters of all women in each group during Valsalva. As different women have 

different Dval, we used the percentage of Dval as the X-axis and parameter values as 

the Y-axis. The Locally Weighted Scatterplot Smoothing algorithm was applied to 

smooth these curves.  

On a testing dataset of 400 TPUS videos, the measurements of BND, β angle, and 

URA by the AutoPelvic system achieved an intraclass correlation coefficient (ICC) 

of 0.76-0.94 when compared with two senior physicians with > 3 years of TPUS 

experience.1  

Our experiments were conducted using PyTorch 1.14.0 on a workstation equipped 
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with an NVIDIA GeForce RTX 3090, utilizing Python for programming.  
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